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aF: Forschung, Fakten, Fantasie, Am Reff 1, D-24226 Heikendorf, Germany; bThünen Institute of
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We used our novel and programmable Porpoise Alarm (PAL, patd.) to synthesize life-
like, electronic harbour porpoise communication signals based on those described for
captive animals. In the Little Belt, Denmark, we employed PAL (source level
158 ^ 1 dB p–p re 1mPa@1m; centroid frequency 133 ^ 8.5 kHz) to synthesize three
aggressive click train types termed “A”, “F3” and “M1” to naive, free-living harbour
porpoises. Via theodolite tracking (372 h of total visual effort spread over 10
expeditions) we found that, depending on signal type, porpoises either avoid or become
attracted to PAL: Signal types “A” and “F3” are slight deterrents, porpoises increasing
minimum range (þ23 to 32m, respectively), whereas “M1” attracts porpoises,
reducing range (by 229m). As determined via archival acoustic detectors (AADs),
both signals “F3” and “M1” led the animals to significantly intensify their click rate (by
þ10% and 68%, respectively) while signal “A” led to a significant reduction (259%).
We propose that equipping fishing gear with PAL emitting signal “F3” could
potentially reduce porpoise by-catch by increasing (1) awareness through enhanced
echolocation and (2) distance to the nets. Detection probability and radius of PAL/
AAD tandems could be improved by emitting signal “M1” to focus porpoise
echolocation signals on the AAD. The signal may also be useful in luring animals away
from hazards, which may be helpful for conservation measures prior to the onset of
harmful acoustic activities such as pile-driving, seismic exploration or ammunition
clearance.

Keywords: harbour porpoise; Phocoena phocoena; click communication; field
experiments; by-catch mitigation; acoustic surveys; instrumentation

Introduction

Fishery by-catch

In a recent study, Reeves et al. (2013) show that 75% of odontocete species, 64% of

mysticetes, 66% of pinnipeds and all species of sirenians and marine mustelids have been

recorded as gillnet by-catch over the past 20 years. By-catch remains a critical issue

demanding urgent attention if further losses of marine mammal diversity and abundance

are to be prevented. Between 2000 and 2009, the number of harbour porpoise carcasses

found annually along the German Baltic Sea coast increased from 25 to 152 year21.

In 47–86% of those carcasses that were relatively well preserved, by-catch was identified

as the mortality cause (Herr et al. 2009; Koschinski and Pfander 2009). Latest figures
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(2012, Eva Wehrmeister, pers. comm. to C. Dorrien) show a decrease in strandings to 72

animals. The reason for this is unclear.

Warning the animals of widely spread hazards such as gill nets (Vinther and Larsen

2004; Orphanides and Palka 2013; Scheidat et al. 2013) by increasing their minimum

distance to the threat (Kraus et al. 1997) and raising their awareness by increasing their

echolocation intensity (Koschinski et al. 2006) could reduce the risk of collision and

entanglement. To reduce by-catch in fisheries, currently employed acoustic deterrent

devices (ADDs), also called pingers, produce aversive noise.

Several hypotheses were brought forward on the mechanism of pinger deterrence in

marine mammals in general (e.g. Götz and Janik 2013). Dawson et al. (2013) suggested

that acoustic devices are most effective in reducing by-catch of neophobic species such as

porpoises. Culik et al. (2001) showed that porpoises maintain a safety distance of several

100m to ADD-equipped nets. However, they simultaneously reduce echolocation

intensity (Cox et al. 2001; Culik et al. 2001; Berggren et al. 2002; Carlström et al. 2009;

Hardy et al. 2012) and therefore may become entangled between too widely spaced

(Berggren et al. 2002) or defective pingers (Palka et al. 2008; Carretta and Barlow 2011).

Furthermore, maintaining large safety distances may lead to exclusion from parts of the

habitat. We also assume that porpoises fail to establish a connection between the aversive

noise and the threatening nets: monofilament gillnets become only discernible for the

biosonar of porpoises at very close range (estimates range from 8 to 25m, Koschinski et al.

2006), and if the animals are actively echolocating, which is not always the case even in

the absence of pingers (Akamatsu et al. 1994; Koschinski et al. 2006; Linnenschmidt

2007). One of the major aims of our study was therefore to develop a new acoustic method

to overcome these drawbacks.

In general, acoustic signals are likely to induce avoidance if they are similar to signals

for which the subject has made a negative association (Coram et al. 2014). This will most

likely be the case with predator signals. Avoidance will become stronger if repeatedly

reinforced by non-lethal predator encounters, and weaken in the absence of reinforcement.

However, Bomford and O’Brien (1990) reviewed the use of aversive sound to exclude

terrestrial pests and concluded more generally that biologically significant signals would

have an effect: in terrestrial species alarm signals are often used. Whereas such calls are

not known to be commonly used by marine mammals (Coram et al. 2014), Clausen et al.

(2011) identified a variety of aggressive harbour porpoise signals in animals in captivity.

This offered a promising alternative to the acoustic deterrents used to date.

Detection and population estimates

A recent estimate of the remaining vaquita population, which only occurs in a small range in

the north-east of the Gulf of California, yielded only 150 animals (Jaramillo-Legorreta et al.

2007). The closely related harbour porpoises were once numerous in the Baltic Sea south

and east of the Belt region but today the population is estimated in the low thousands:

Scheidat et al. (2008) give combined estimates for theGermanExclusive Economic Zone in

Kiel Bight,Mecklenburg Bight and theGermanwaters of the Baltic proper ranging between

457 (March 2003; CV ¼ 0.97) and 4610 (May 2005; CV ¼ 0.35). Further east, in the Baltic

Proper, porpoise detection densities are very low, with only three detections in Polish

coastal waters (Gillespie et al. 2005) and an estimate of ,600 porpoises in a 43,000 km2

study area in international waters of the Baltic Sea block (Hiby and Lovell 1996).

Reliable detection of endangered marine mammal species or populations in their

remaining habitat (e.g. Jaramilllo-Legorreta et al. 2013; Benke et al. 2014; cf. Culik 2011,
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for review) or within close range of hazardous activities such as ammunition clearance,

seismic exploration or pile-driving is a pre-requisite for specific protective measures

(Koschinski 2011; Brandt et al. 2013). However, harbour porpoise detection by observers

on airplanes or ships, or via archival acoustic detector (AAD) is fraught with low detection

ranges and probabilities: trackline detection probability g(0) from aircraft (Laake et al.

1997) is only 0.079–0.292. Ship-based detection probability during good weather (sea

state , 1.5) decreases from 0.8 to less than 0.2 within 0–300m from the ship (Reay 2005).

In passive acoustic monitoring, g(0) reaches only 0.1–0.3, with an effective detection

range of only 22–104m (Kyhn et al. 2012). The reason for low acoustic detection

probabilities is believed to be discontinuous echolocation by the animals as well as by their

echolocation signals being rarely focused on the receiver: porpoise signals are narrow

beam with a 3-dB aperture of only 138 in the horizontal plane (Koblitz et al. 2012). As a

consequence, confidence intervals for population estimates of rare porpoise species or

populations are very large (Barlow and Gerrodette 1997; Benke et al. 2014). We propose

here that acoustic measures capable of attracting the attention of the target species would

be helpful in increasing detection range and probability, to the benefit of protective

measures.

Porpoise communication signals

For echolocation as well as for communication, members of the Phocoenidae seemingly

only produce narrowband high-frequency (NBHF) clicks arranged in specific click trains

(Clausen et al. 2011). NBHF clicks have durations of approximately 100ms, high

directionality, centre frequencies around 130 kHz, and source levels (SLs) of up to 205 dB

pp re 1mPa, 1m (Villadsgaard et al. 2007). During behavioural studies in the Fjord & Belt

Centre, Kerteminde, Clausen et al. (2011) observed five types of behaviour between male,

female and juvenile animals, each associated with particular communication click trains

characterized by either constant click rates, upsweep chirps or a combination of both. For

the reasons stated by Bomford and O’Brien (1990), four of these signal types, observed

during grooming, contact, approach or swimming in echelon did not qualify for our

objectives. Only those characterized during aggressive interactions (Clausen et al. 2011,

see details later) served as a template to programme and generate de novo (as opposed to

playback of recordings) life-like communication sounds with our new patented, self-

contained synthetic porpoise click train generator Porpoise Alarm (PAL; DPM Pat. Nr.: 10

2011 109 955). We tested this in the field on naive harbour porpoises and recorded their

reaction visually via theodolite tracking and acoustically with AADs.

Our investigations were aimed at identifying specific porpoise communication signals

for different tasks: (1) to increase the distance of porpoises to the PAL, while

simultaneously increasing their echolocation rate, two prerequisites for the development

of a new method to reduce the risk of collision and entanglement in fishing gear, and (2) to

enhance detection by using PAL signals to attract and focus harbour porpoises to a PAL/

AAD tandem within acoustic range and leading them to significantly increase their

echolocation rate.

Methods

Click train generator PAL

The autonomous, synthetic click and click train generator PAL (Figure 1; patd. by Boris

Culik and Matthias Conrad) is an omni-directional transmitter, except for a cone of

Bioacoustics 3203
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approximately 908 aperture in the long axis behind the spherical sound transducer, owing

to the air-filled housing. Each PAL (centroid frequency 133 kHz, SL calibrated in the test

tank of L-3 Communications ELAC Nautik GmbH, 158 þ 1 dB p–p re 1mPa @ 1m) can

be programmed via personal computer and purpose-built software to generate individual

porpoise-like clicks as well as various click train patterns consisting of constant click rates,

up- or downsweep chirps and any combination of these, with freely programmable

repetition rates and pauses.

We attempted to match aggressive harbour porpoise communication signals (sensu

Clausen et al. 2011) as closely as possible. Specifically, we tested three signal types termed

“A”, “M1” and “F3” differing in duration, number of upsweep chirps, click rate per second

and repetition rate per minute (Table 1; Figure 2). Signal “F3” imitates the 3d aggressive

signal recorded by Clausen et al. (2011) from a female towards a male. “F3” is composed

of two upsweep-chirps and has a total duration of 1.22 s, beginning with a click rate of 173

clicks s21 and ending with 959 clicks s21. This signal was repeated at approximately 20 s

intervals. “M1” corresponds to the first signal recorded from a male towards a female (one

upsweep chirp, 0.47 s duration, 130–911 clicks s21, repeated three times per minute).

Finally, signal “A” matches their general description of aggressive porpoise signals (see

“Discussion” section) but does not replicate any of their recordings in particular (1.14 s

duration, two upsweep chirps, 437–774 clicks s21, seven repetitions per minute).

As shown in field recordings (Figure 2) using an AAD (CPOD, Chelonia, Mousehole, UK,

details provided later), all three click train types were emitted at 133 kHz, without

Table 1. Characteristics of the three PAL-generated synthetic porpoise communication signals.

Signal
Click train
duration (s)

Upsweep 1
(clicks s21)

Upsweep 2
(clicks s21)

Repetition rate
(N min21)

A 1.14 437–565 658–774 7
F3 1.22 173–507 519–959 3
M1 0.47 130–911 3

Notes: As shown in Figure 1, signals are composed of up to two consecutive upsweep chirps.

Figure 1. Self-contained synthetic porpoise signal generator “PAL” (dimensions: 30 cm long, 9 cm
diameter). Top: the housing is made of 10mm polyoxymethylene. Bottom: programmable
electronics board with protruding omni-directional signal transducer (.1 month autonomy).
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harmonics at lower frequencies. Individual clicks consisted of 8–14 cycles, a variability

which is probably an artefact of field measurements.

All PALs were tested prior to and after deployment (acoustically by checking sound

transmission and visually by checking the light emitting diode on electronics board) as

well as during experiments via archival CPOD recordings. Independently of each other,
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Figure 2. Field recordings via CPOD of the three synthetic communication signals tested in this
study. Top: click rate (s21; NB: click rates emitted by PAL correspond to the higher values shown,
lower data points stem from clicks lost in indirect propagation paths); middle: frequency distribution
(kHz); bottom: number of cycles per click. The three signals differ with respect to the number of
upsweep chirps (two in signals “A” and “F3”, one in signal “M1”), duration and total number of
clicks produced (Table 1).
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and independent of porpoise presence, PALs would operate for 15min (treatment)

followed by 15-min silence (controls) and so on. Because observers could neither see nor

hear which PAL was active at any one time, this effectively resulted in a blind approach.

Acoustic buoys

During experiments, we equipped up to four mooring buoys (80 cm diameter), each with

one calibrated PAL and CPOD AAD (Chelonia). CPOD is a self-contained, calibrated

archival acoustic data analyser, with an omni-directional hydrophone with centre

frequency of 130 kHz (sensitivity2208 dB re 1VmPa21) and a range of 20–160 kHz (for

further details, see http://www.chelonia.co.uk/c-pod_standardisation.htm). CPOD and

PAL were strapped to each other in tandem and end-to-end and secured at their midpoint at

4m depth, to ensure vertical orientation in currents. Buoys were moored outside the

shipping lane, along the 8 ^ 0.5m depth contour, at least 320m apart from the next

acoustic buoy using an anchor and an anchor stone. This distance was required to avoid

recording signals from adjacent PAL/CPOD tandems. Normally buoys were deployed on

the Strib side of the Little Belt only, except during the expedition involving RV Clupea,

when two buoys were deployed on either side of the Little Belt (Figure 3, Table 2 for

deployment details). Until July 2013, CPOD/PAL buoys were deployed only during

daytime. Thereafter, buoys were left at sea night and day, for the full period of a field trip.

CPOD uses digital waveform characterization to select cetacean clicks and log the

time, centre frequency, sound pressure level, duration and bandwidth of each click (for

more details, see http://www.chelonia.co.uk). All acoustic data were filtered and analysed

using the software CPOD.exe (ver. 2.042) to produce cp3 output files. We used the

following software-specific parameters: train filters: all Q; kerno classifier: NBHF, Other

Cet, Sonar, unclassed; click filter: 120–150 kHz. Because the CPOD software repeatedly

failed to exclude PAL signals during processing and generation of the output files, all data-

sets were also inspected visually and every synthetic PAL signal (clearly recognizable by

its repetitive pattern, constant frequency and duration) in the cp3 file was excluded

manually in the process. Data output was the number of net porpoise clicks per minute.

Study area and set-up

All experiments took place during the summers of 2012 and 2013 in Danish waters

between the towns of Fredericia and Strib at sea state ,2. Here, the Little Belt is only

1.35 km wide and water depths reach 46m in the middle of the channel (Figure 3). During

daylight hours, from a land-based research platform in Strib, approximately 13.5m above

sea water (558 32,609N; 98 46,162 E) and facing north, we determined surfacing positions

of individual porpoise groups using a programmable electronic theodolite (Geodimeter

total station 620). This recorded horizontal and vertical angles to the nearest 1024 degree

and time to the nearest 1021 s with a data storage capacity of several thousand data-sets.

Instrument height above sea level was determined at intervals for tide correction by

determining the vertical angle to a calibrated gauge attached to a submerged structure near

shore. Distance to the gauge, which also served as our reference point, was measured using

the built-in laser range finder. On station we had two to three observers scanning the area

during most of the daylight hours. During one field trip (Table 2), we also deployed the

German RV “Clupea” on the Fredericia side of the Little Belt with three to four additional

observers simultaneously scanning the area to spot harbour porpoise groups and report

these via radio to the theodolite station.
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Table 2. Details on field experiments conducted in the Little Belt, DK to the north of Strib.

Observation platforms Signal Start date End date
Visual

effort (h)
CPOD/PAL
buoys (n)

Theodolite A 27 Aug. 2012 30 Aug. 2012 38 2
Theodolite A 10 Sep. 2012 12 Sep. 2012 26 2
Theodolite/RV Clupea A 21 Sep. 2012 4 Oct. 2012 82 4
Theodolite M1 20 April 2013 22 April 2013 25.9 2
Theodolite M1 02 May 2013 6 May 2013 47.5 3
Theodolite M1 27 May 2013 28 May 2013 21.4 3
Theodolite F3 10 June 2013 12 June 2013 28.8 3
Theodolite F3 24 July 2013 27 July 2013 41.7 3
Theodolite F3 27 Aug. 2013 29 Aug. 2013 27.6 4
Theodolite F3 25 Sep. 2013 28 Sep. 2013 32.9 4

Figure 3. Study area in the Little Belt, DK, between the towns of Fredericia and Strib (maps
courtesy of Google Earth). The theodolite was positioned in Strib facing north. Marine navigation
buoys marked “Nav”, research buoy positions marked red. Up to four research buoys each carrying a
PAL and CPOD tandem were deployed simultaneously: up to four on the Strib side and up to two on
the Fredericia side. RV Clupea was only available in September 2012. For details, see Table 2.
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We conducted a total of 10 field trips of 2–13 days duration between August 2012 and

September 2013, with 9–200 days pause in between. Our aim was to reduce possible

porpoise response attenuation with time as well as pseudo-replication by reducing

the probability of testing the same animals: As shown by Teilmann et al. (2008), 23%

of porpoises in the Little Belt can be expected to be visiting, spending 2 days or less in the

area, whereas 77% are foraging, staying more than 2 days. In total, we visually surveyed

the area for 371.8 h: three field trips in summer/autumn of 2012 to test the effect of signal

“A” on harbour porpoise behaviour (146 h of visual effort); three field experiments

between April and May 2013 to test the effect of signal “M1” (94.8 h) and four field

expeditions between June and September 2013 to test signal “F3” (131 h).

Data analysis was conducted in EXCEL using standard trigonometric functions to

determine interpolated height above sea level, buoy and porpoise surfacing position (cf.

Würsig et al. 1991; Müller 2013 for details). From theodolite data and for each signal type,

we determined the distance between the nearest CPOD/PAL acoustic buoy and surfacing

harbour porpoise groups (mean group size 1.9–2.2). In order to avoid pseudo-replication,

we only used the minimum surfacing distance (MSD) for each porpoise group sensu

Dawson et al. (2013):

(a) when the PAL was off (controls; repeated surfacings of the same group in the

vicinity of a PAL after the device had switched off were discarded) and

(b) when the PAL was on (experiment).

Only a few groups remained within detection range (details provided later) 15min and

more, beginning with PAL off. For these, we recorded two values, as mentioned.

Site-specific sound propagation

Site-specific sound propagation parameters were determined in order to derive acoustic

harbour porpoise, PAL and CPOD ranges (Figure 4). We used the calibrated PAL as a

porpoise signal generator and deployed it by boat at 6m depth in 12m deep water

(determined by hand-held echosounder, Hondex PS 7), at various ranges (Garmin GPS 12)

from the calibrated CPOD moored just North of the theodolite position (Figure 3).

SL of the PAL is related to received levels (RLs) of the CPOD and transmission loss

(TL; all in dB p–p re 1mPa @ 1m) by

SL ¼ RLþ TL

RL was converted from recorded CPOD data (P, in Pa) via

RL ¼ 20 log
P

P0

� �

where P is pressure in Pa and P0 ¼ 1026 Pa.

We assumed TL to be best described by the shallow water sound propagation model

appropriate for depths ,200m (Richardson et al. 1995), as

TL ¼ 10 logR1 þ 10 logR2 þ aR1

with R1 ¼ PAL–CPOD distance (m), R2 ¼ 0.5 £ water depth (m) and sound absorption

a ¼ 0.04 dBm21 (at 135 kHz; salinity 35 ppt; Richardson et al. 1995).
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As shown in Figure 4, this shallow water propagation model (dots) yields an almost

constant back-calculated SL of the PAL irrespective of distance to the CPOD: the slope is

not significantly different from zero (slope ¼ 0.0076 dBm21, R 2 ¼ 0.0476). The

calculated y-intercept is 158 dB and corresponds well to the SL generated by the

calibrated PAL.

As opposed to this, applying the deep water, spherical propagation model of

Richardson et al. (1995), where TL ¼ 20 Log R1 (Figure 4, triangles) overestimates

propagation loss and consequently SL. This yields a significant overestimate of back-

calculated PAL SL with distance (0.056 dBm21) and re-calculated SL for a source at

250m is 20 dB higher than the actually produced SL.

Detection range

For analysis of visually obtained porpoise behaviour data, we needed to consider the

acoustic range of harbour porpoises, PAL and CPOD.We calculated detection ranges for a

variety of combinations: (1) two types of weather with different ambient noise levels

(NLs); (2) three types of porpoise orientation, either towards (08), sideways (908) or away
(1808) and (3) porpoises either as sound detectors or as sound source (Table 3).

We used the following assumptions for weather conditions: fair (wind force 0Bft, no

rain; NL ¼ 67 dB p–p re 1mPa @ 1m) and foul (wind 7Bft, strong rain; NL ¼ 87 dB p–p

re 1mPa@ 1m; Urick 1983; Richardson et al. 1995). We conservatively assumed porpoise

SL ¼ 178 dB (data from the Little Belt, Villadsgaard et al. 2007) when the acoustic

beam hits the detector head on (^6.58, Koblitz et al. 2012), but only 141 dB sideways

(animal at 908) and 134 dB when the animal faces with its tail to the detector (1808 ^ 458;
Hansen et al. 2008). Harbour porpoise hearing is very sensitive, with a critical ratio
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(CR) ¼ 38 dB (135 kHz) and directional, with a directivity index (DI) of 11.7 dB (e.g.

when the animals are at 1808 to the detector; Kastelein et al. 2005). We assumed that a

sideway orientation would result in þ6 dB.

The PAL is an omni-directional sound source with an SL of 158 dB p–p re 1mPa @
1m. The CPOD is an omni-directional receiver with a CR ¼ 47.5 dB (at 135 kHz; Dähne

et al. 2013). Detection range was defined as the distance from the sound source where

signal excess (SE) . 0, with SE ¼ SL 2 (TL þ NL þ CR þ DI).

Results

Detection range

From the calculations based on published data (see earlier), we derived that in fair weather

a CPOD can detect a harbour porpoise clicking “head on” from a distance of 670m, but if

the animal is facing sideways or away, detection range falls to 50 and 13m, respectively

(Table 3). However, a PAL transmitting at the site of the detector would be heard at

distances of at least 460m (head on), 340m (sideways) and 240m (tail on). Since it is

impossible to determine the orientation of the porpoises under water, we conservatively

assumed animals to be able to detect PAL signals during our acoustic experiments

conducted in fair weather at a distance of 300m from each PAL/CPOD acoustic buoy and

truncated all visual data-sets accordingly, to avoid conclusions based on false positives or

false negatives.

MSD to acoustic buoys

From theodolite data, we determined the MSD of porpoises to acoustic buoys (Table 4).

Data obtained during controls (PAL off) were compared by analysis of variance

(ANOVA) to ascertain that all values were comparable between one experiment and the

next. This was confirmed (F ¼ 1.22, critical F ¼ 3.05, p ¼ 0.29, df ¼ 181), and all

control data were pooled (mean 144m, 95% CI ¼ 11.3m, n ¼ 182).

Subsequently, we used ANOVA to determine whether MSD differed between pooled

control and the three treatments (signal types “A”, “F3” and “M1”) and found this to be

highly significant (F ¼ 5.31, critical F ¼ 2.62, p ¼ 0.0013, df ¼ 379). Post hoc analysis

(Tukey test) showed that surfacing distance during emission of any of the three signal

types was significantly different from controls (pairwise comparison of controls with

Table 3. Calculated acoustic detection ranges.

Detection Range (m)

Sea state (Bft)

0 7

HP ! CPOD Head on 670 280
Side 50 1
Tail on 13 0

PAL ! HP Head on 460 120
Side 340 50
Tail on 240 20

Notes: HP, harbour porpoise; CPOD, archival acoustic detector; PAL, programmable synthetic communication
signal generator. Head on: porpoises facing towards ^ 6.58; side: porpoises parallel (908); tail on: porpoises
facing backwards (1808 ^ 458).
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signals “A” and “M1” was significant at a ¼ 0.01 level, comparison of controls with

signal “F3” at a ¼ 0.05 level). Pairwise comparisons between signals “A” and “M1” and

between “F3” and “M1” were also highly significant (at a ¼ 0.01 level), but comparison

between signals “A” and “F3” was not (at a ¼ 0.05 level).

Comparison of treatments with pooled controls (Table 4) shows that signal “A” leads

the animals to increase their mean distance to the PAL (from 144m during PAL off to

174m during PAL on) by 30m. Porpoise response to signal “F3” is similar with a 19m

increase. The right-shift in distance distribution during PAL on is clearly visible in both

cases (Figure 5). The response of harbour porpoises to signal “M1” is the complete

opposite (mean distance to PAL only 119m), and animals come significantly closer

(225m). With “M1” porpoises repeatedly swum directly to the acoustic buoy to

investigate it more closely (26.4% of sightings within the 20m range; Figure 5).

Acoustic reaction to synthetic signals

For all CPOD data-sets, we determined the number of clicks received per minute during

15-min PAL off as compared to the 15min during PAL on and 15min when PAL was off

again (Table 5; Figure 6). Data-sets with only 1min of click activity within the 45-min

period were discarded. Because the numbers of received clicks per minute varied between

daytime and night-time, as well as from one approach to the next, we standardized each

interval with respect to itself by calculating the percentage of clicks for each minute with

respect to the total number of clicks observed in that 45-min interval. This enabled us to

compare across all the data-sets and gives every interval in the data-set the same weight.

Within each treatment category (signals “A”, “F3” and “M1”), statistical comparison

between the proportion of clicks emitted during each of the three 15-min phases shows

significant differences [ANOVA with arcsine transformed percentage values sensu

McDonald (2009), at a ¼ 0.0001]. With signal “A” (Table 5; Figure 6), mean click rate

dropped from 2.78% (control) to 1.15% (PAL on) and then increased again to 2.73%

(control). Click activity during signal “A” was only 41% of previous control. With signal

Table 4. Surfacing distance of harbour porpoise groups to acoustic buoys (via theodolite tracking).

Signal

A F3 M1 PAL off pooled

PAL off
Mean min. dist. (m) 151 131 148 144
95% CI 19.6 20.1 18.7 11.3
Median 144 115 141 131
Obs (n) 66 58 58 182a, b

Mean group size (n) 2.3 1.9 2.2
PAL on
Mean min. dist. (m) 174a 163b, c 119a, c

95% CI 18.8 18.4 27.1
Median 189 167 101
Obs (n) 68 77 53
Diff. PAL off/on (m) 1 30 1 19 2 25

Notes: Values during controls (PAL off) were pooled and compared to synthesized signals “A”, “F3” and “M1”.
Mean min. dist., mean minimum distance (m); CI, 95% confidence interval; diff PAL off/on, difference between
pooled PAL off values as opposed to emitting the specific signal type. Pairwise comparisons significant at
a ¼ 0.01 level (a), a ¼ 0.05 level (b, c). For details, see text.
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“F3”, mean click rate rose from 2.26% (control) to 2.49% (PAL on) and then dropped to

1.92% (control). Click activity with signal “F3” was 110% of previous control. The

highest click rates were induced by signal “M1” and click rate increased to 168% of

controls (3.07% during PAL on as opposed to 1.83% during control).

More profound analysis relating porpoise surfacing distance to acoustic behaviour

recorded via CPOD was only possible in the very few cases where the animals remained

within 300m of one of the buoys prior to (control) and during PAL operation. This was

observed four times with signal “M1” (Figure 7). Click activity (bars) of porpoise groups

swimming at approximately 150–250m from the detector (tracked via theodolite,

black line) is at first low (0–25min21). This changes significantly as the PAL is active
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Figure 5. Frequency distribution of minimum porpoise surfacing distance (D) to the PAL/CPOD
acoustic buoys as determined via theodolite. Control (PAL off): grey-shaded area in background.
Signal (PAL on): dark bars. (A) Signal “A”: right shift in distance: dark bars extend beyond shaded
area at far range. (B) Signal “F3”: less pronounced right shift. (C) Signal “M1”: surfacing distance is
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(shaded area): the porpoises approach the detector to within 10m and click at higher rates

(.100min21). After a few minutes, the animals leave.

Discussion

PAL to determine local acoustic range

The spherical TL model used by Villadsgaard et al. (2007) for the Little Belt works

reasonably well within the first tens of metres, but over larger distances they found it to

overestimate SL by approximately 1 dB per 10m. Our results largely agree with theirs: we

determined acoustic range within 300m of the AAD and found the spherical TL model to

overestimate back-calculated SL by 0.7 dB per 10m. We therefore used the shallow water

propagation model of Richardson et al. (1995) instead (Figure 4) to find that back-

calculated values for SL were independent of PAL distance to the CPOD. The use of our

calibrated, programmable, self-contained, easy-to-operate sound source PAL (Figure 1) to

produce signal types and frequencies corresponding to those of the target species proved to

be very helpful for this task. As opposed to this, the effort required by Villadsgaard et al.

(2007) for their range estimations was very substantial. We propose that PAL may help to

simplify in situ calibration of acoustic detectors and characterization of site-specific

properties (cf. also Gauger et al. 2012). It is currently employed by researchers in Scotland

and Denmark for this purpose.

Averse reaction to aggressive signals “A” and “F3”

PAL was programmed to emit aggressive signals based on those recorded on captive

harbour porpoises by Clausen et al. (2011). Their recordings of the upsweeping, high

repetition rate click trains emitted by a male and a female porpoise and involving a calf

during aggressive interactions in the enclosure had a duration between 0.3 and 3 s.

Minimum click rates ranged from 150 to 500 s21 (male towards calf) and 100–630 s21

(mother towards male), while maximum click rates were 900–1100 and 750–1050 s21,

respectively. According to Clausen et al. (2011),

“The aggressive sequences were sometimes made up of one click train and other times
consisted of up to three click trains.”

Table 5. CPOD data obtained during PAL experiments with three synthetic signal types.

PAL off PAL on Pal off Difference on/off (%)

Signal A
Observations (n) 727 727 727
Mean click (%) 2.78 1.15 2.73 41
Raw (clickmin21) 4.74 1.99 4.79

Signal F3
Observations (n) 634 634 634
Mean click (%) 2.26 2.49 1.92 110
Raw (clickmin21) 17.89 17.2 17.21

Signal M1
Observations (n) 119 119 119
Mean click (%) 1.83 3.07 1.76 168
Raw (clickmin21) 5.07 9.48 5.46

Notes: Number of observations ¼ number of 15-min intervals for each signal type. Mean click % ¼ proportion
of clicks emitted in any 1min within the 45-min interval. Raw ¼ mean number of clicksmin21 within 15-min
interval. For details, see text and Figure 5.
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All three signal types investigated in our study match these criteria (Table 1; Figure 2).

According to Clausen et al. (2011):

The “aggressive” porpoise would suddenly turn towards the subject of aggression (either the
calf or the male) and emit a high repetition rate click pulse often while performing a rapid
scanning movement of its head. The receiving porpoise always fled after receiving this
directed high repetition rate.

Due to the narrow acoustic beam, this head movement would result in a highly variable

RL, which could not be reproduced here. But although SL (and due to the omni-directional

PAL, RL) in our experiments was constant, our synthetic signals “A” and “F3” entice a similar
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activity increases to 110% during PAL on. (C) Signal “M1”: mean click activity increases to 168%
during PAL on (all as opposed to controls in the 15-min period before PAL on; for details, cf. Table 5).
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reaction: porpoises within hearing distancemove away and increase their surfacing distance to

the active PAL. This confirms the assumption of Clausen et al (2011) that the information

seems to be encoded in the click repetition rates, rather than, for example, in the SL.

Observed avoidance to “F3” and “A” is moderate: porpoises only increase their mean

distance to the acoustic buoys by 19–30m, respectively, as opposed to PAL off (Table 4).

This is far less intensive than the effect of deterring signals of standard ADDs. Culik et al.

(2001) found that with a Pice pinger, mean porpoise approach distance increased from

150m (controls) to 530m, a difference of 380m or more than 10 times that observed here.

Similarly, the mean distance increased from 431m (controls) to 752m when a Dukane

NetMark 1000 pinger was active (Berggren et al. 2002), a difference of 321m. Viewed by

itself, porpoise avoidance reaction to the PAL signals “F3” and “A” would not be expected

to reduce by-catch.

Echolocation response

Whereas ADDs were found to reduce echolocation activity in porpoises, reaction to PAL is

dependent on the type of the signal emitted. After exposing porpoises to pinger-like sounds

(100–140 kHz; 153 dB; 200ms; every 4 s) Teilmann et al. (2006) observed a reduction in

echolocation intensity. This was confirmed by Carlström et al. (2009), who monitored

echolocation rates around simulated bottom-set nets equipped with Dukane NetMark 1000
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pingers, observing a reduction between 50% and 100%. Recently, Hardy et al. (2012)

reported a similar reaction to the “banana” pinger (Fishtec Marine, Dartington, UK).

Reduced echolocation activity would prevent the animals from obtaining the sensory

information required to avoid net collision and entanglement and entails that ADDs cannot

be considered an end point in the development of acoustic by-catch mitigating devices.

Unfortunately, Clausen et al. (2011) do not report on the acoustic reaction of animals

towards their vocal aggressors.We find here that depending on signal type, porpoise reaction

ranges from a strong decrease in echolocation activitywith signal “A” to amoderate increase

with signal “F3”. It appears that signal “A” (increased distance and reduced echolocation)

elicits a similar but weaker response as compared with pingers. This effect is not helpful to

reduce by-catch: signal “A” andmore so pingersmay lead animals to collidewith nearby, but

unmarked nets or with unmarked net sections: Carretta and Barlow (2011) found that

cetacean by-catch was 10 times higher with $1 malfunctioning pinger compared to nets

without pinger failure. They hypothesize that cetaceans might misinterpret the gaps in

acoustic coverage as safe passages they can cross acoustically “blindfolded”.

Signal type, including click rate, duration and form seem to be crucial for the provoked

reaction. Koschinski et al. (2003) showed that harbour porpoises could be stimulated to

increase echolocation activity by exposing free-living animals to synthesized low-

frequency offshore windmill noise (peak SL: 128 dB re 1mPa2Hz21 at 1m; maximum

sound energy between 30 and 800Hz). In a later study, Pleskunas and Tregenza (2005)

found an increase in porpoise click activity after the emission of a very brief synthetic

click train (130 kHz, repeated every 4 s, duration 0.4 s, SL: 130 dB re 1mPa). However,
Kindt-Larsen (2008) tested a type of “porpoise alerting sound (PAS)” pingers generating

porpoise-like click trains, although with very high click rates (pulses between 50 and 2500

clicks s21; 110 kHz; SL: 126–138 dB p–p re 1mPa @ 1m) with ambiguous results. She

concluded that signal composition and propagation required more attention.

As opposed to this, our results with signal “F3” confirm earlier findings in the

Kerteminde aquarium and at sea. There, we recorded an increase in porpoise echolocation

activity directed at an earlier version of the PAL emitting signal “F3” (repetition rate

8.9min21; Culik and Winkler 2011). With the same reasoning as earlier, we assume that

increased distance to the stimulus and at the same time, increased bioacoustic awareness

could possibly reduce the risk of becoming entangled in PAL-equipped nets and perhaps

also in nearby unequipped nets.

Many previous studies (see review by Coram et al. 2014) report a reduction in

responsiveness to acoustic deterrents over time, often referred to as “habituation”.

However, Dawson et al. (2013) found that there was no diminution of the response of

cetaceans (as measured by by-catch rates) to long-term exposure to pingers. Because PAL

produces biologically significant signals, with reinforcement occurring during inter-

specific interactions, we do not expect habituation over time. We have only opened a door

to synthetic communication, and currently conducted tests with PAL in monitored

commercial gillnet fisheries will have to prove this.

Positive reaction to signal “M1” and detection range

The active space estimated by Clausen et al. (2011) for harbour porpoises using aggressive

signals in the wild is up to 250m, assuming an SL of 155 dB. This is somewhat lower than

our estimates: the PAL generates a SL of 158 dB and for fair weather (no rain or wind) we

estimated a maximum range to receiving porpoises (Table 3) of 460m. Conservatively

assuming harbour porpoise signals in the wild to have a minimum SL of 178 dB
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(Villadsgaard et al. 2007), we estimate a CPOD detection range of up to 670m in fair

weather (head on). However, when the animals are not oriented towards the CPOD, range

estimations drop to as low as 13m when the animals face with their tail to the AAD, which

compares well with the literature (Clausen et al. 2011). In poor weather, this is further

reduced and CPOD may only record harbour porpoises if these face the AAD head on at

close range (Table 3).

Stenback (2006) tested interactive pingers and observed a variety of behavioural

reactions. Normally, porpoises would show a clear avoidance reaction towards the

displacement sound generated by these pingers. However, some mother–calf pairs were

observed approaching and repeatedly triggering the device through increased click activity

without showing any avoidance towards the provoked displacement noise. A similar

reaction was observed with our signal “M1”, albeit in the absence of calves: the

observations shown in Figure 7 are from April to May, that is before the start of the calving

season (pers. obs. Boris Culik, Siebert et al. 2006).

Porpoises in the Fjord & Belt Centre stem from the Danish Belt Sea and their semi-

natural enclosure communicates acoustically with Kerteminde harbour (Verfuß et al.

2005). We therefore assumed that the aggressive communication signals observed in

captivity and synthesized in the PAL study would match those used by the same

population in the nearby wild, including the Little Belt. Therefore, reaction to the

“aggressive” signal “M1” was unexpected. Clausen et al. (2011) had recorded this signal

on the male towards the female as well as in several of their recordings of the female

towards the calf. Our signal “M1” matched this very well and completely lacked, for

example, low repetition click train components recorded in communication calls

associated with other behaviour such as approach, contact, echelon or grooming.

Nevertheless, signal “M1” did not cause an avoidance or flight response but significantly

attracted wild porpoises and led them to intensify their echolocation (Figures 5–7).

While the reason for attraction by “M1” remains unclear, this effect could be used to

improve acoustic detection probability of the animals. As shown in the introduction, g(0)

in acoustic monitoring reaches only 0.1–0.3, because of the intermittent echolocation and

the narrow echolocation beam of porpoises, requiring, in a figurative sense, that porpoises

“hit” the AAD to ensure detection. As shown in Table 3 actively “calling” harbour

porpoises with signal “M1” at the site of the AAD would potentially increase detection

radius in fair weather to at least 240m, if signal M1 made them turn around and focus their

signals on the AAD. This is the range within which porpoises should be able to hear the

PAL even when swimming away from it. In bad weather, most porpoises would go

undetected by a CPOD, lest their signals hit the detector head on. Our simple model shows

that even under these conditions, PAL could substantially improve detection radius and

presumably probability. We assume the impact on the animals to be small: our calculations

show that in fair weather, PAL would only be heard within a radius of 460m (head on) to

240m (tail on). The signal also seems to lose its attraction within 10–20 min (Figure 7), a

rather short-lived effect.

Conclusions

Electronic communication signals synthesized de novo by PAL can be used to influence

harbour porpoise behaviour. Signal “F3” leads harbour porpoises to increase their

surfacing range to the sound source, while at the same time raising their echolocation rate.

This combination is very different from what is observed during the deployment of

acoustic deterrents and could enable porpoises to avoid acoustically marked nets or other
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obstacles, while simultaneously decreasing their chance of collision with other, unmarked

hazards in their path. To test whether signal “F3” might be useful to avoid harbour

porpoise by-catch in set gill nets, we have developed a fisheries version of PAL which is

being tested at present in North and Baltic Sea commercial gillnet fisheries.

Signal “M1” is an effective stimulator and entices animals within hearing range to

approach and significantly intensify their echolocation, thereby increasing their chance of

detection by a passive acoustic detector moored at the same site. With the “right tone”,

PAL may positively contribute in acoustically detecting low-density populations such as

the endangered vaquita in the Gulf of California (Jaramilllo-Legorreta et al. 2013) or

harbour porpoises in the eastern Baltic Sea (Benke et al. 2014). Signal “M1” would also

increase the chance of detecting dispersed harbour porpoises prior to hazardous marine

activities such as seismic exploration, pile-driving or ammunition clearance. Another

usage could be to lure animals out of hazardous areas such as tide-affected rivers.

Preliminary trials showed promising results.
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