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Abstract–Single crystal (U-Th) ⁄He dating was applied to 24 apatite and 23 zircon grains from
the Wetumpka impact structure, Alabama, USA. This small approximately 5–7.6 km impact
crater was formed in a shallow marine environment, with no known preserved impact melt,
thus offering a challenge to common geochronological techniques. A mean (U-Th) ⁄He apatite
and zircon age of 84.4 ± 1.4 Ma (2r) was obtained, which is within error of the previously
estimated Late Cretaceous impact age of approximately 83.5 Ma. In addition, helium
diffusion modeling of apatite and zircon grains during fireball ⁄ contact, shock metamorphism,
and hydrothermal events was undertaken, to show the influence of these individual thermal
processes on resetting (U-Th) ⁄He ages in the Wetumpka samples. This study has shown that
the (U-Th) ⁄He geochronological technique has real potential for dating impact structures,
especially smaller and eroded impact structures that lack impact melt lithologies.

INTRODUCTION

A major development in Earth sciences over the past
decade has been the widespread appreciation of the
importance of bolide impact events on the geological and
biological history of Earth. Obtaining more accurate and
precise ages for the Earth’s impact events will help
identify any local- or global-influencing impact-related
biotic effects and will help us understand possible
clustering of impacts in the stratigraphic record.

The main challenge in dating impact structures is
that isotope systematics of the traditionally applied
geochronometers (e.g., K-Ar, Sm-Nd, Rb-Sr, and U-Pb)
in 90% of the target rocks and minerals are not
completely reset during these short but very intense
hypervelocity impact events, thus making geochronological
dating very difficult (Schärer and Deutsch 1990; Deutsch
and Schärer 1994). Approximately 75% of known
terrestrial impact structures have either never been dated
or have poorly constrained geochronological ages (i.e.,
>10% errors; Earth Impact Database 2012). Many of
these ages were obtained by traditional stratigraphic
dating; however, there are many problems and pitfalls
associated with these techniques (e.g., Schmieder and

Buchner 2008). An ideal chronometer for dating impact
structures would require a low closure temperature and a
fast diffusion rate for the radiogenic daughter product.
The (U-Th) ⁄He dating technique meets these two
criteria, and offers a new geochronological method for
providing accurate ages for impact structures (van Soest
et al. 2011). Previous studies using the low-temperature
apatite fission-track chronometer have yielded mixed
results (e.g., Wagner and Storzer 1975; Miller and
Wagner 1979; Weber et al. 2005), and the best fission
track results often come from dating tektite glasses or
apatites from suevites. However, these rocks units are
often absent from small, marine, or deeply eroded
impact structures.

Wetumpka is an approximately 5–7.6 km diameter,
marine-target impact structure located in the inner Gulf
coastal plain of Alabama (Fig. 1a; Neathery et al. 1976;
King et al. 2002, 2006a; King and Ormö 2011). Based on
new a LIDAR study of the crater (King, personal
communication), a diameter of 6.25 km has been
calculated. Paleogeographical studies show that the
Wetumpka impact occurred in shallow marine water
approximately 30–100 m in estimated depth (King et al.
2007), and within approximately 25 km of the local
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barrier-island shoreline (King 1997; King et al. 2002,
2003, 2006a). Similar to the 5.1 km diameter Goat
Paddock impact structure (Milton and Macdougall
2006), Wetumpka is transitional between a simple, bowl-
shaped crater and a complex impact structure, and
possesses only a muted central peak (King et al. 2006a;
King and Ormö 2011). The Wetumpka target materials
consisted of approximately 30–100 m of water, poorly
consolidated sediment, comprising three Upper
Cretaceous stratigraphic units: approximately 30 m of
chalky ooze (Mooreville Chalk), approximately 30 m of
paralic marine sand (Eutaw Formation), and
approximately 60 m of terrestrial clayey sand and gravels
(Tuscaloosa Group), and at the base a pre-Cretaceous
crystalline complex of gneisses and schists (Emuckfaw
Group schists and Kowaliga gneisses; Fig. 1b; King
et al. 2002, 2006a).

Neathery et al. (1976) first mapped and described the
geology of this structure, and suggested that the
physiography and geology of the area were consistent
with a cosmic impact, which they estimated occurred
between the Late Cretaceous and Pleistocene. Later, an
early Campanian stratigraphic age was proposed for the
Wetumpka impact structure based on biostratigraphic
ages of the youngest layers involved in the impact
deformation (i.e., the lower beds of the Mooreville Chalk
[King 1997]). King et al. (2007) again reviewed the
biostratigraphic evidence and estimated that the impact
may have been near the local boundary between two

planktonic foraminiferal biozones: Dicarinella asymetrica
range zone and Globotruncanita elevata interval zone
(regional biozones of Mancini et al. 1988). The age of this
biozone boundary was estimated at approximately
83.5 Ma (King et al. 2006b) using the 1988 global
synthesis of sequence stratigraphy and biostratigraphy
(Haq et al. 1988). This approximately 83.5 Ma age
coincides with the Upper Cretaceous Santonian ⁄
Campanian boundary (Gradstein et al. 2004; Ogg et al.
2008).

In this study, we present the results of a single-
crystal apatite and zircon (U-Th) ⁄He dating project on
five impact breccia samples from drill cores obtained
from the central uplift region. Our results represent the
first radiometric age for the Wetumpka impact structure.
In addition, He diffusion modeling was undertaken to
explain how the Wetumpka (U-Th) ⁄He apatite and
zircon ages may have been partially ⁄ completely reset
during this impact event.

METHODS AND RESULTS

Five samples were obtained from drill cores taken
from two wells (the Schroeder well [98-01] and the
Reeves well [98-02]) at depths ranging from 107.70 to
135.88 m and 112.47 to 136.86 m, respectively (Table 1;
King et al. 2002; Johnson 2007). The samples consisted
of friable, polymict impact breccias, which contained
numerous altered clasts of varying size from the
crystalline Emuckfaw Group schists and Kowaliga
gneisses (King et al. 2002). The friable samples were
pestle and mortar crushed, wet sieved, magnetically and
heavy liquid-separated to yield heavy mineral fractions
of apatite and zircon. Between 2 and 9 individual zircon
and apatite crystals were (U-Th) ⁄He dated from all five
samples (Fig. 2).

Euhedral and inclusion-free (in the case of apatite)
apatite and zircon crystals were selected from the heavy
mineral separates using a Leica MZ16 zoom binocular
microscope with up to ·184 magnification, equipped
with a camera and capable of dark-field illumination
(Fig. 2). Digital images were taken from at least two
different faces of the crystals, and the dimensions of
each crystal were made to allow a-ejection corrections to
be made (Farley et al. 1996). To ensure that the
measurements were correct, each microscope magnification
setting and the camera were calibrated using a traceable
NIST ruler. Each measured crystal was inserted into a
small 0.027¢¢ OD · 0.04¢¢ long Nb tube, which was
placed in a 25 hole stainless steel sample holder, along
with 2 blank Ni tubes, and 3 tubes containing age
standards, using either a shard of Durango apatite (for
apatite unknowns) or a Fish Canyon zircon crystal
(for zircon unknowns) as age standards. The holder was

(a) (b)

Fig. 1. (a) Location map of the Wetumpka impact structure
in Alabama, showing the major geological provinces. (b)
Geological map of the Wetumpka structure. Labels: crt =
crystalline-rim terrain, isu = intra-structure terrain, est =
extra-structure terrain, Ku = Upper Cretaceous undeformed
units, pK = pre-Cretaceous crystalline units unaffected by the
impact structure, Qal = Quaternary alluvium, m = Mooreville
Chalk, b = impact breccias, and black star = drilling
locations of Schroeder and Reeves wells (from King et al.
2002).
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loaded into a sapphire-viewport laser chamber and
extraction line of the Australian Scientific Instruments
Alphachron in the Noble Gas Geochemistry and
Geochronology Laboratories (NG3L) at ASU and pumped
down overnight. 4He was extracted from the samples by
laser heating using a 980 nm infra-red diode laser (11 A
[approximately 4 W] for 5 min for apatite, and 15 A
[approximately 8 W] for 10 min for zircon). This
extracted gas was spiked with 3He and exposed to a
hot SAES NP-10 getter for 2 min. The gas was
expanded into a Pfeiffer-Balzers Prisma quadrupole mass
spectrometer with a 0–100 amu range, a Channeltron
electron multiplier and a Faraday detector, which also
contains a room temperature SAES NP-10 getter in the
vacuum chamber.

Helium blanks were determined by laser heating the
Nb blank tubes following the apatite and zircon
procedures. The long-term average for the 4He blanks
was 0.036 ± 0.010 femtomole for all procedures, and the
blanks for the system during the analytical runs all fell
within that range. 4He abundances for the unknowns
were between 90–2437 times the blank for apatite, and
10,840–433,537 times the blank for zircon analyses. To

analyze the 4He ⁄ 3He composition of the gas, 4 masses
were monitored during analyses: mass 1 as a proxy for
HD contributions to the mass 3 peak, mass 3 for 3He,
mass 4 for 4He, and mass 5 for background. The
hydrogen deuteride (HD) contribution to the 3He peak
ranged from 0.035 to 0.040% for apatite, and from 0.045
to 0.055% for zircon analyses. 4He concentrations were
calculated by comparing the sample 4He ⁄ 3He ratios to a
set of standard analyses run prior to and after the
unknown analyses. Short-term (5–10 standard analyses)
reproducibility was on the order of 0.03–0.05%, while
the long-term complete (sample holder run)
reproducibility was 0.05–0.08%. The composition of the
4He standard gas tank is known to be 1.2%, which
represents that largest contribution to the error in this
part of the analytical analysis. After initial He laser
extraction, all the samples were re-extracted with the
same laser heating analytical procedure. In all cases,
the apatites re-extracted perfectly to blank levels, while
the zircons were re-extracted until He yields were <0.5%
of the originally extracted gas. On occasion, this required
multiple laser heating re-extractions. The reasons for
incomplete He degassing are poorly understood, but it

Fig. 2. Black and white optical microscope photomicrographs of apatite and zircon grains.
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does not appear to negatively affect the final ages
calculated (e.g., Reiners 2005).

Following He measurement, the Nb tubes containing
the grains were unloaded and acid digested for U and Th
analysis on an inductively coupled plasma mass
spectrometer (ICP-MS). The acid digestion procedures
for apatite and zircon are different, and are outlined
below. Apatite crystals and Nb tubes were dissolved in
concentrated HNO3 (Evans et al. 2005), while zircon
crystals and Nb tubes required the use of concentrated
HF, HNO3, and HCl combined with higher temperatures
and pressures (Reiners et al. 2002; Reiners 2005). As the
tubes were dissolved during the acid digestion process,
this precluded the use of Pt tubes as large amounts of Pt
in solution cause severe PtAr interferences on the U peak in
the ICP-MS, hence Nb tubes were used. Nb has a high
melting point, so it does not melt during laser heating
and it has a low atomic mass, which means that NbAr
complexes do not cause interferences on the U peak.

Nb tubes containing apatite crystals were transferred
into 1.5 mL polypropylene microvials and a 25 lL 235U
and 230Th spike solution aliquot (made up in 50%
distilled ultra-pure HNO3) was added. The 235U
and 230Th spike solution had a concentration of 15 and
5 ng mL)1, respectively. Samples were then placed in an
ultrasonic bath for 15 min and rested for 4 h to allow the
apatites to dissolve. After this, the samples were diluted
with 375 lL of MilliQ 18.2 MX polished water to make
up the final solution for ICP-MS analysis.

Zircon crystals were dissolved following general
procedures described by Reiners (2005). The Nb tubes
containing the crystals were transferred into Teflon
microvials (0.50 mL) and 50 lL of the same 235U and
230Th spike solution used for the apatite analyses was
added, together with 300 lL of distilled ultra-pure
concentrated HF. The vials were then put in the Teflon
liners of large 125 mL Parr digestion vessels that each
held 10 vials. To balance the pressure in the Parr vessels,
10 mL of trace metal grade concentrated HF and
0.45 mL of trace metal grade concentrated HNO3 were
added to the Teflon liner. The digestion vessels
were heated at 225 �C for 72 h, after which the
samples were dried at a low heat (60–75 �C). When
the samples in the vials were dry, they were put back into
the Parr digestion vessels, and 300 lL of distilled
ultrapure concentrated HCl was added to each vial, and
9 mL of trace metal grade concentrated HCl was added
to the liner. The Parr vessels were heated at 200 �C for
24 h. Following this, the samples in the vials were again
heated to dryness at 60–70 �C for 30 min, and 12.5 lL of
distilled ultrapure concentrated HF and 100 lL
of distilled ultrapure concentrated HNO3 were then
added to each vial. The sample vials were closed and
gently heated on a hot plate at 60–70 �C for 30 min,

before the contents were transferred to larger 15 mL
polypropylene vials containing 1.5 mL of MilliQ
18.2 MX polished water to make up the final solution of
0.8% HF and 6% of HNO3 for ICP-MS analysis.

The solutions were analyzed on a Thermo X Series
quadrupole ICP-MS in the W. M. Keck Foundation
Laboratory for Environmental Geochemistry at ASU,
using a micro-nebulizer with an uptake rate of
100 lL min)1. The analytical procedure consisted of 7
and 10 cycles for apatite and zircon solutions,
respectively. For each cycle, 150 scans of the following
isotopes were conducted: 230Th, 232Th, 235U, 238U, and
234U, with 234U being used as a proxy for detection of
isobaric interferences on the U mass spectrum due to
PtAr. During the apatite analyses 147Sm, 152Sm, and
154Sm were also analyzed to determine if any of the
apatites have high enough Sm contents to have a
significant effect on the calculated (U-Th) ⁄He age. As
there was no Sm isotope in the spike solution, actual Sm
abundances in the solution could not be calculated.
However, none of the apatites analyzed in this study had
high enough Sm concentrations to affect the (U-Th) ⁄He
ages.

Analyses were standardized by analyzing a spiked
standard (SPST) solution, which was a mixture of the
same spike solution used for the apatite and zircon
solutions, plus a U and Th standard of known
concentration. For SPST solutions run with the apatite
samples, 25 lL of spike was added to 25lL of the
standard solution, which had a concentration of
25 ng mL)1 of U and Th in 4% HNO3, that was then
diluted with 350 lL MilliQ 18.2 MX polished water to
make the final solution. For zircon samples, 50 lL of the
spike was mixed with 50 lL of the standard solution to
which 100 lL of distilled ultra-pure concentrated HNO3

and 12.5 lL of distilled ultra-pure concentrated HF were
added. The solution was then diluted with 1.5 mL of
MilliQ 18.2 MX polished water to make up the final
solution of 0.8% HF and 4–6% HNO3 for analysis. One
SPST solution was also added to each Parr digestion
vessel to monitor for any effects of contamination during
the Parr digestion process. So far, we have not
encountered any major differences between the SPST
solutions that have gone through the Parr digestion
process and those that were prepared without going
through that process. Reproducibility of the spiked
standard analysis was on the order of 0.75% for U and
0.85% for Th.

The total blank analyses were determined by
taking the empty Nb tubes (used to determine the He
blanks) and processing them with the samples through
the acid digestion steps for U and Th analysis.
Average Nb tube blanks for the apatite procedure
were 0.65 ± 0.08 pg (1r) for U and 0.48 ± 0.02 pg
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(1r) for Th, while the average Nb tube blanks for the
zircon procedure were higher at 2.73 ± 0.11 pg (1r)
for U and 3.31 ± 0.27 pg for Th (1r), reflecting the
fact that the tube had totally dissolved during the
zircon digestion procedure.

Ages were iteratively calculated using blank
corrected He, Th, and U values. Raw ages were
corrected for a-ejection effects following methods
described in Farley et al. (1996) and Farley (2002) for
apatite and Hourigan et al. (2005) and Reiners (2005)
for zircon. The long-term average age determined for
Durango apatite in the NG3L was 31.72 ± 1.30 Ma (1r
standard deviation) with a standard error of 0.06 Ma
(n = 408). The equivalent weighted average age
calculated with ISOPLOT 3.7 (Ludwig 2008—with no
rejections allowed) was 31.63 ± 0.15 Ma (95%
confidence, Mean Square Weighted Deviation [MSWD] =
5.8) for Durango apatite, and for Fish Canyon zircon it
was 27.9 ± 1.36 Ma (1r standard deviation) with a
standard error of 0.14 Ma (n = 96). The equivalent
weighted average age calculated with ISOPLOT 3.7
(Ludwig 2008—with no rejections allowed) was 27.71
± 0.26 Ma (95% confidence, MSWD = 35). All the age
standards analyzed with the samples fell within the age
population defined by our long-term running averages.
Analytical errors were propagated throughout the
process and amount to 1.5–2.5% (1r). Errors associated
with the a-ejection correction were not directly
determined, but following discussions in Farley et al.
(1996), Spotila et al. (1998), and Hourigan et al. (2005),
they are estimated to push the total error for the method
to 3–4% (1r). The a-ejection corrections were made
assuming a homogeneous U and Th distribution,
which, especially for zircon, may often not be fully
realistic and can account for significant added scatter
in the age data (e.g., Hourigan et al. 2005). A detailed
description of the analytical procedures is also
provided in van Soest et al.’s (2011) Supplementary Data
File S1 and auxiliary table, which is available online.

Twenty-three zircon grains gave (U-Th) ⁄He ages
ranging from 83.6 ± 2.7 to 254.0 ± 7.7 Ma, and 24
apatite (U-Th) ⁄He analyses yielded ages ranging
from 82.8 ± 5.2 to 242.3 ± 23.7 Ma (2r, Table 1). The
83–242 Ma age range is interpreted to reflect a set of
partially to completely reset (U-Th) ⁄He ages, with an
obvious young cluster of 5 ages at 82.8–86.0 Ma (4
apatite and 1 zircon age; Fig. 3). These five youngest
ages yielded a mean age of 84.4 ± 1.4 Ma (2r internal
errors, MSWD = 0.57; probability = 0.68) using
Isoplot 3.7 (Ludwig 2008), and is therefore estimated to
be the date of the Wetumpka impact event. This
radiometric age agrees very well with the previous
biostratigraphic age of approximately 83.5 Ma for the
Wetumpka impact structure (King et al. 2006b).

HE DIFFUSION MODELING OF IMPACT EVENTS

AT WETUMPKA

During initial impact, i.e., the fireball event,
temperatures of >10,000 K can occur near the impact
point (French 1998; Collins et al. 2005) and much of the
surrounding rocks typically reach 500–3000 �C during
these very short-lived events (French 1998). Shock
metamorphism can also result in significant heating of
the target rocks, depending on the size, trajectory, and
speed of the impactor (French 1998). In addition, post-
impact hydrothermal activity can play a major role in
terrestrial impact structures (e.g., Naumov 2002).

Three impact event processes were modeled with
respect to % He loss from apatite and zircon grains at
Wetumpka (1) the initial fireball event; (2) shock-
metamorphism; and (3) post-impact hydrothermal
processes. The modeling was undertaken using author-
written MathCAD 14 programs assuming the smallest
and largest grains analyzed (radii = 29.6 and 78.5 lm for
apatite, and 33.3 and 71.5 lm for zircon), the minimum
and maximum radii of the 5 reset grains (29.6 and
53.7 lm for the 4 apatite grains, and 34.5 lm for one
zircon), He diffusion parameters, and the spherical
(apatite; Farley 2000) and cylindrical (zircon; Reiners
et al. 2004) diffusion equations of Crank (1975) (Table 2).

To calculate the duration of contact during the
initial, very short, but very hot fireball event
(>10,000 K; French 1998), an approximate size for the
projectile was calculated in two ways. The first
calculation used the online Earth Impacts Effects
program (Marcus et al. 2010), which combined
physically relevant parameters (e.g., a final crater
diameter (6.25 km), impact velocity (17 km s)1), impact
angles (ranging from 10 to 90�), target and projectile
densities (1,000 and 3,000 kg m)3, respectively; Marcus

Fig. 3. Probability density plots of (U-Th) ⁄He apatite (n = 23)
and zircon (n = 24) ages from five Wetumpka drill core
samples.
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et al. 2010), and an average 65 m liquid water depth over
crystalline rock target type), to yield variable projectile
diameters of 363–865 m, with expected projectile
velocities at the surface of 15.1–16.7 km s)1. The second
projectile diameter calculation used the 1 ⁄20th of the

final crater diameter estimate of French (1998), yielding a
projectile diameter of 313 m. Using the equation
s = L ⁄Vi, where s is the duration of contact, L is the
projectile diameter (313–865 m), and Vi is the impact
velocity at the surface (15.1–16.7 km s)1; calculated from

Table 2. Modeled % He losses from fireball, shock metamorphism, and hydrothermal events for Wetumpka.
Fireball event
Mineral r (lm) Temp (�C) Notes Time (seconds) % He loss

Apatite 29.6 1600 Melting temp., min. & reset grain size, 313 m impactor 0.018743 100
Apatite 29.6 1600 Melting temp., min. & reset grain size, 865 m impactor 0.057285 100

Apatite 53.7 1600 Melting temp., max. reset grain size, 313 m impactor 0.018743 100
Apatite 53.7 1600 Melting temp., max. reset grain size, 865 m impactor 0.057285 100
Apatite 78.5 1600 Melting temp., max. grain size, 313 m impactor 0.018743 100
Apatite 78.5 1600 Melting temp., max. grain size, 865 m impactor 0.057285 100

Zircon 34.5 2200 Melting temp., reset grain size, 313 m impactor 0.018743 91.1
Zircon 34.5 2200 Melting temp., reset grain size, 865 m impactor 0.057285 99.8

Zircon 33.3 2200 Melting temp., min. grain size, 313 m impactor 0.018743 92.3
Zircon 33.3 2200 Melting temp., min. grain size, 865 m impactor 0.057285 99.9
Zircon 71.5 2200 Melting temp., max. grain size, 313 m impactor 0.018743 58.5

Zircon 71.5 2200 Melting temp., max. grain size, 865 m impactor 0.057285 84.4
Shock metamorphism event
Mineral r (lm) Temp (�C) Notes Time (seconds) % loss

Apatite 29.6 100 Min. & reset grain size 1000 0
Apatite 29.6 150 Min. & reset grain size 1000 0.4057
Apatite 53.7 100 Max. reset grain size 1000 0

Apatite 53.7 150 Max. reset grain size 1000 0.4047
Apatite 78.5 100 Max. grain size 1000 0.000
Apatite 78.5 150 Max. grain size 1000 0.405

Zircon 33.3 100 Min. grain size 1000 0
Zircon 33.3 150 Min. grain size 1000 0

Zircon 34.5 100 Reset grain size 1000 0
Zircon 34.5 150 Reset grain size 1000 0
Zircon 71.5 100 Max. grain size 1000 0
Zircon 71.5 150 Max. grain size 1000 0

Hydrothermal event
Mineral r (lm) Temp (�C) Notes Time (years) % loss

Apatite 29.6 500 Min. & reset grain size 1 100
Apatite 29.6 250 Min. & reset grain size 30 100
Apatite 29.6 150 Min. & reset grain size 80 58.4

Apatite 53.7 500 Max. reset grain size 1 100
Apatite 53.7 250 Max. reset grain size 30 100
Apatite 53.7 150 Max. reset grain size 80 34.7

Apatite 78.5 500 Max. grain size 1 100
Apatite 78.5 250 Max. grain size 30 100
Apatite 78.5 150 Max. grain size 80 24.4
Zircon 33.3 500 Min. grain size 1 100

Zircon 33.3 250 Min. grain size 30 7.5
Zircon 33.3 150 Min. grain size 80 0.1295
Zircon 34.5 500 Reset grain size 1 100

Zircon 34.5 250 Reset grain size 30 7.3
Zircon 34.5 150 Reset grain size 80 0.1256
Zircon 71.5 500 Max. grain size 1 95.1

Zircon 71.5 250 Max. grain size 30 3.5
Zircon 71.5 150 Max. grain size 80 0.07808
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Marcus et al. 2010), minimum and maximum fireball
event durations of 18.7 and 57.3 ms were calculated.

Modeling of % He losses for apatite and zircon
(minimum of all grains, maximum of all the grains, and
the reset grain sizes) for the fireball event, assuming
maximum temperatures of 1,600 �C for apatite and
2,200 �C for zircon (i.e., the mineral melting
temperatures), yielded % He losses of 100% and 100%
from apatite, and 58.5–92.3% and 84.4–99.9% from
zircon for heating durations of 18.7 and 57.3 ms,
respectively (Table 2). It can be seen that the initial
fireball event may have caused considerable resetting of
the (U-Th) ⁄He systematics, especially for apatite, but it
also may have had a considerable effect on the zircon
grains. However, this event would have been very
localized and temperatures and durations endured would
have been extremely heterogeneous.

For the shock metamorphism event, a maximum
duration of 1000 seconds was estimated (Schwenzer et al.
2008). Maximum temperatures were assumed using the
observed 5–15 GPa shock metamorphism effects at
Wetumpka (King et al. 2002), which would have
produced temperatures of 100–150 �C (French 1998).
These conditions would have yielded % He losses of 0–
0.406% (minimum and reset grain radius) and 0–0.405%
(maximum radius) for apatite, and 0% for minimum,
maximum, and reset grain sizes in zircon, for
temperatures of 100 and 150 �C, respectively (Table 2).
Obviously, the low intensity shock metamorphism event
at Wetumpka had very little effect on the (U-Th) ⁄He
systematics in the apatite and zircon grains, and cannot
be the cause of (U-Th) ⁄He age resetting in the apatite
and zircon grains. The 5–15 GPa low shock levels
observed at Wetumpka (King et al. 2002) may be due to
shock-buffering effects associated with the water-
saturated marine conditions (e.g., Buchanan et al. 1998).
In addition, the samples analyzed are impact breccias,
therefore they will most likely contain strongly mixed
and reworked target rock clasts that have undergone
different heating, cooling, shocking, and possible water
quenching conditions.

Post-impact hydrothermal conditions at Wetumpka
are unknown. However, recent mineralogical and
geothermal modeling has been undertaken on the Kärdla
impact structure in Estonia (Jõeleht et al. 2005; Versh
et al. 2005). This impact structure is very similar to
Wetumpka, as it has a crater diameter of 4 km and was
also a shallow-marine impact event (<100 m water
depth). Therefore, the hydrothermal event of Kärdla
impact structure (Jõeleht et al. 2005) was used as a proxy
for Wetumpka. Using the maximum predicted
hydrothermal temperature of 500 �C for 1 yr duration at
Kärdla, we calculated 4He losses of 100% and 95–100%
in apatite and zircon (minimum, maximum, and reset

grains sizes), respectively. Using more moderate
hydrothermal temperatures of 250 �C for a duration of
30 yr (Jõeleht et al. 2005), % He losses of 100% for
apatite (minimum, maximum, and reset grain sizes), and
3.5–7.5% for zircon (minimum, maximum, and reset
grains sizes) were calculated for Wetumpka grains. Low
temperature hydrothermal temperatures of 150 �C for a
duration of 80 years yielded % He losses of 24–58% for
apatite, and 0.078–0.13% for zircon (Table 2). However,
hydrothermal heating can be an extremely heterogeneous
process, even at a small scale, with observed heat-
shielding of grains and fossils occurring within clasts
(e.g., Gattacceca et al. 2011). Depending on the
hydrothermal conditions undergone by our 5 impact
breccia samples, they could have either endured low-
temperature conditions with low He losses, or complete
or near complete (U-Th) ⁄He age resetting via medium-
to high-temperature conditions.

There were no observable optical microscope
differences between the appearance of the reset, partially
reset, and non-reset grains (Fig. 2). There were no
correlations with U and Th concentrations (expressed as
eU, which weights U and Th for their a particle
productivity (eU = [U] + 0.235[Th]) (e.g., Flowers
et al. 2007) and (U-Th) ⁄He ages in the apatite and zircon
grains (Figs. 4a and 4b). There was no observed
correlation between the apatite and zircon grain
dimensions and (U-Th) ⁄He ages (Fig. 5), which suggests
that the thermal effects in these samples were very
heterogeneous. In addition, there were no correlations
between the (U-Th) ⁄He apatite and zircon ages and well
depth for the five samples obtained from the two drill
core wells (Fig. 6).

Actual % He losses from 21 apatite and 24 zircon
single grain analyses were 0–100% for apatite and zircon.
To calculate the actual % He losses, we estimated initial
zircon and apatite target rock ages for the Piedmont
schists and gneisses. We used an (U-Th) ⁄He target rock
apatite age (from a cluster of 6 old apatite ages) of
155.4 ± 6.2 Ma (2r, Table 1), thereby ignoring two older
apatite ages of 242.3 ± 23.7 and 170.3 ± 15.1 Ma (2r),
which had large errors and low U and Th concentrations
(Table 1). An initial (U-Th) ⁄He target rock zircon age of
254.0 ± 7.7 Ma (2r) was used, the oldest of a cluster of 6
zircon ages (Table 1). These estimated (U-Th) ⁄He target
rock ages are within errors of Piedmont-Coastal Plain
unconformity (U-Th) ⁄He apatite and zircon ages from an
Alabama-Georgia traverse, which preserve metamorphic
cooling ages in the range of 175.3–118.5 and 231.7–
162.7 Ma, respectively (Layfield 2009), following the
Alleghanian orogeny at approximately 300–310 Ma
(Johnson et al. 2006; Layfield 2009). The presence of older
(U-Th) ⁄He ages in 3 apatites (152.1–242.3 Ma) and 5
zircons (238.1–254.0 Ma) in these impact breccias suggests

(U-Th) ⁄He dating of the Wetumpka impact structure, Alabama 1251



that some grains were almost completely undegassed (i.e.,
<10% He loss; Table 1) by the impact event. These older
(U-Th) ⁄He ages agree with regional 40Ar ⁄ 39Ar and
(U-Th) ⁄He metamorphic cooling ages, following the
approximately 300–310 Ma Alleghanian orogeny
(Johnson et al. 2006; Layfield 2009).

Figure 7 shows a histogram of the actual % He
losses from individual apatite and zircon grains. The
analyzed zircons only contained 1 grain that experienced
100% He loss, 4 grains with >50% He loss, and 8 grains
with >25 to <50% He loss. By contrast, the analyzed
apatites contained 4 grains that experienced 100% He
loss, 9 grains with >50% He loss, and 7 grains with
>25 to <50% He loss. This % He loss difference
between zircon and apatite is expected, given the faster
He diffusion rate in apatite versus that in zircon (Farley
2000; Reiners et al. 2004). Modeled versus actual % He
losses from the fireball, hydrothermal, and fireball +
hydrothermal events show comparable results (Table 2;

Fig. 7); however, shock metamorphism appears to have
had very little effect in these rocks during the Wetumpka
impact event. This indicates that although impact and
hydrothermal fluid heating temperatures and durations
in these target rocks may have been extremely
heterogeneous, under the right fireball ⁄hydrothermal
conditions, it is possible to completely reset the (U-
Th ⁄He) ages in apatites and zircons during small marine
impact events, such as occurred at Wetumpka.

In contrast, biotite Ar % losses were also modeled,
assuming a 50 lm radius, activation energy, and
frequency factor values Ar diffusion of (Grove and
Harrison 1996), a cylindrical diffusion geometry, and dry
and wet melting temperatures of 850 and 700 �C,
respectively. They yielded very low losses of 0% for the
fireball event, 0% for a 1000 seconds shock
metamorphism event, 11.4% for the 500 �C for 1 yr
hydrothermal event, and 0% losses for the lower
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temperature 250 �C for 30 yr, and 150 �C for 80 yr
hydrothermal events. This indicates that 40Ar ⁄ 39Ar or
K-Ar dating of non-melted biotite is probably not a
viable technique for dating the Wetumpka impact
structure. The calculated biotite Ar closure temperature
of 300 �C (calculated for a 50 lm radius grain with a
10 �C ⁄Ma cooling rate) is one of the lowest closure
temperatures for the traditionally used geochronometers.
Therefore, the other higher temperature K-Ar, Rb-Sr,
Sm-Nd, and U-Pb geochronometers will probably show
very little to no evidence of resetting during the
formation of small and low-energy impact structures.

DISCUSSION

The 23 (U-Th) ⁄He zircon ages and 24 (U-Th) ⁄He
apatite ages are all younger than the 40Ar-39Ar white mica
approximately 300–310 Ma regional Appalachian
basement deformation age (Johnson et al. 2006; Layfield
2009), and the oldest ages are within error of regional
cooling (U-Th) ⁄He apatite and zircon ages for the
Piedmont-Coast Plain region (Layfield 2009). Some of the
older (U-Th) ⁄He ages could reflect regional Piedmont ⁄
Coastal Plain cooling ages (e.g., Layfield 2009), but the
younger range of ages reflects partial to complete resetting
of the (U-Th) ⁄He zircon and apatite ages, most probably
during the Wetumpka impact event. The Wetumpka
impact event was not high enough in temperature,
shocking pressure, or duration to cause the complete loss of
radiogenic 4He in all the zircon and apatite grains, as
evidenced by the large range of (U-Th) ⁄He ages (82.8–
254.0 Ma) recorded in the 47 grains (Fig. 3).

The mean apatite and zircon (U-Th) ⁄He age of
84.4 ± 1.4 Ma is within error of the latest biostratigraphic

age of approximately 83.5 Ma (King et al. 2006b). As
both the apatite and zircon analyses give the same
youngest age, this young mean age most likely reflects the
age of the formation for the Wetumpka impact structure.
If these young ages had been the result of any other
reheating and ⁄or slow cooling event, the distinctly
different closure temperatures for these two minerals
would not have yielded this overlapping young age cluster.

Schärer and Deutsch (1990) and Deutsch and
Schärer (1994) state that only 10% of the target rocks
and minerals are completely reset during hypervelocity
impact events, and this percentage may be even lower for
low melt ⁄ suevite-producing marine impact structures
(e.g., Buchanan et al. 1998). However, this 10% only
relates to the conditions necessary to allow complete
melting and ⁄or thermal resetting of common high-
temperature geochronometers (e.g., 40Ar ⁄ 39Ar, U-Pb,
K-Ar, Sm-Nd, Rb-Sr, etc.) in the target impact rocks.
This is important, as dating of non-molten rocks would
expand both the amount and type of material available
to date at large impact sites, plus should allow dating of
small- to medium-sized craters, which have not yet
yielded any radiometric ages due to lack of suitable
material for other geochronological techniques. Given
the fast He diffusion properties in apatite and zircon
(Farley 2000; Reiners et al. 2004), modeled impact
thermal events can result in partial and ⁄or total resetting
of the low-temperature (U-Th) ⁄He geochronometers,
whereas common chronometers (e.g., 40Ar ⁄ 39Ar in
biotite) may not be reset or are only reset by very small
amounts. While single-crystal (U-Th) ⁄He dates generally
have lower precision (e.g., 3–10% 2r) than typical
40Ar ⁄ 39Ar and U-Pb ages, multiple replicate analyses of
grain aliquots can be determined relatively easily and can
be very accurate (Hourigan et al. 2005).

CONCLUSIONS

The (U-Th) ⁄He dating technique is proving to be a
potentially powerful tool for dating large (e.g., 90 km
diameter Manicouagan; van Soest et al. 2011), medium
(e.g., 40 km diameter Lake Saint Martin; Wartho et al.
2010), and small impact structures (e.g., 350 m diameter
Monturaqui; Ukstins Peate et al. 2012).

Small and marine impact structures are extremely
difficult to date using conventional geochronological
techniques (e.g., U-Pb, Rb-Sr, Sm-Nd, and 40Ar-39Ar),
which generally rely on high-temperature syn- and post-
impact events to reset most commonly applied isotopic
geochronometers. However, the (U-Th) ⁄He apatite and
zircon geothermometers have the combined unique
properties of (1) low-temperature closure temperatures,
and (2) fast He diffusivity (Farley 2000; Reiners et al.
2004). This results in rapid and more effective resetting of

Fig. 7. Histogram of actual % He losses from individual
apatite and zircon grains (bottom plot), assuming original
target ages of 155.4 and 254.0 Ma, respectively, and an impact
age of 84.4 Ma. The modeled % He loss estimates for the
fireball, shock metamorphism, and hydrothermal events are
shown at the top of the plot.
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the (U-Th) ⁄He grain ages during short-lived impact
events than might be expected for more commonly
utilized chronometers. Although the (U-Th) ⁄He dating
technique does not provide the same precision as other
geochronometers, nevertheless, it can still yield accurate
impact ages, with a typical 2r error single grain age
precision of approximately 3–10%, and in many instances
the precision can be better (Hourigan et al. 2005).

From a total of 47 (U-Th) ⁄He analyzed zircon
and apatite grains, five grains (one zircon and four
apatites) gave the youngest cluster of ages, yielding a
mean (U-Th) ⁄He age of 84.4 ± 1.4 Ma (2r). This
geochronological age is within error of the previous
Wetumpka stratigraphic age estimate of approximately
83.5 Ma (King et al. 2006b), and represents the first
radiometric age obtained for this impact structure. The
successful geochronological dating of the approximately
6.25 km diameter Wetumpka impact structure has
additionally highlighted the viability of the (U-Th) ⁄He
dating technique to date impact structures characterized
by low levels of shock and melting, as is commonly
observed in rocks of marine impact structures (e.g.,
Buchanan et al. 1998; Dypvik and Jansa 2003). In
particular, the (U-Th) ⁄He method appears promising for
absolute dating of impact structures that lack impact melt
lithologies, because of their small size or eroded state.
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the Kärdla impact crater: I. The mineral paragenetic sequence
observation.Meteoritics & Planetary Science 40:3–19.

Wagner G. A. and Storzer D. 1975. The age of the
Rochechouart impact structure. Meteoritics 10:503–504.

Wartho J.-A., van Soest M. C., Cooper F. J., Hodges K. V.,
Spray J. G., Schmieder M., Buchner E., Bezys R. K., and
Reimold W. U. 2010. Updated (U-Th) ⁄He zircon ages for
the Lake Saint Martin impact structure (Manitoba,
Canada) and implications for the Late Triassic multiple
impact theory (abstract #1930). 41st Lunar and Planetary
Science Conference. CD-ROM.

Weber J. C., Poulos C., Donelick R. A., Pope M. C., and
Heller N. 2005. The Kentland impact crater, Indiana
(USA): An apatite fission-track age determination attempt.
In Impact tectonics, edited by Koeberl C. and Henkel D. H.
Berlin: Springer. pp. 447–466.

(U-Th) ⁄He dating of the Wetumpka impact structure, Alabama 1255


