Forschungsfahrt Sonne 41 HYMAS I

18. 1. 1986 - 28. 4. 1986

Fahrtbericht

I. Fahrtabschnitt

Projektleitung

Prof. Dr. H. Puchelt Institut für Petrographie und Geochemie Universität Karlsruhe

Erstellt von Dr. D. Laschek

September 1986

EXP SONNE SO 41

INHALT

		Seite
1.	Zusammenfassung/Summary (H.Puchelt & D.Laschek)	1
2.	Fahrtteilnehmer und Institutionen (D.Laschek)	5
2.1.	Wissenschaftlich-Technisches Personal (D.Laschek)	7
2.2.	Nautisches Personal (D.Laschek)	9
3.	Fahrtverlauf (H.Puchelt & D.Laschek)	10
4.	Stationsverzeichnis (D.Laschek)	17
5.	Fahrtstatistik (D.Laschek)	28
6.	Anreicherung von Spurenelementen aus Meerwasser durch Flüssig-Flüssig Extraktion	30
-	(R.FUCHEIC & R.Baumann)	
7.	Untersuchung von Mangankrusten (D.Eckhardt)	37
8.1.	Quantitative Bestimmung gelösten organischen Kohlenstoffs (DOC) im Meerwasser (T.Reemtsma)	41
8.2.	Organische Biochemie (A.Jenisch)	44
9.	Beryllium- und Heliummessungen an Wasserproben (M.Segl & A.Mangini)	68
10.	Physikalische Ozeanographie (D.Quadfasel)	72
11.	Autoklavwasserschöpfer und Gasanalytik (W.Schmitz-Hartmann)	80
12.1.	Tiefwasserkorallen vom Vavilov- und Palinuro-Seamount (CW.Dullo)	87
12.2.	Kieselschwämme vom Ventotene- und Vavilov-Seamount (T.Brachert, CW.Dullo, B.Lang & P.Stoffers)	95
13.	Sedimentkerne der Kastenlot- und Stoßrohrstationen (J.Scholten, P.Stoffers & CW.Dullo)	109
14.	Biologisch-ozeanographische und biogeo-chemisch/mikrobio- logische Untersuchungen (L.Karbe)	136
14.1.	Zielsetzung im Rahmen des Gesamtprogramms (L.Karbe)	136
14.2.	Stationen mit Einsatz von Multisonde und Kranzwasser- schöpfer (M.Petzold)	138
14.3.	Stationen mit Einsatz des Multicorers (M.Petzold)	147

14.4.	Multisonden-Meßwerte (M.Petzold & N.Verch)	149
14.5.	Chemische Meßwerte	156
14.5.1.	Sauerstoff, Phosphat, Nitrat, Silikat (L.Karbe & S.Burchert)	156
14.5.2.	Schwermetalle (L.Karbe, S.Burchert & R.Zeitner)	168
14.6.	Strahlungsklima und Eindringtiefe des Lichtes (M.Petzold)	170
14.7.	Verteilung von Mikroorganismen (M.Petzold)	172
14.7.1.	Bakterien und Phytoplankton (M.Petzold)	172
14.7.2.	Chlorophyll, Chlorophyllabbauprodukte und akzessorische Pigmente (M.Petzold)	173
14.8.	Aktivität autotropher und heterotropher Mikroorganismen	174
14.8.1.	Primärproduktion (L.Karbe)	174
14.8.2.	CO ₂ -Dunkelfixierung, H-3 Thymidin-Aufnahme, H-3 Leucin- Aufnahme (M.Meyer-Jenin)	177
14.8.3.	Bestimmung von Stoffwechselpotentialen bzw. Enzymaktivi- täten: N_2 -Fixierung, proteolytische Aktivität, Proteinbe- stimmung (A.Freigang)	181
14.9.	Isolation von Bakterien aus Sedimentproben (M.Meyer-Jenin)	186
15.	Dredge- und Fernsehgreiferstationen (D.Laschek)	187
16.	Heatflowmessungen (U.Kramar & J.Scholten)	206
17.	Sulfide und Oxiderze in der Tyrrhenis (H.Puchelt)	209
18.	Bordanalytik mit Röntgenfluoreszenz (RFA) (U.Kramar)	223
19.	Seabeamkartierung (J.Monenschein)	226
20.	TV-Greifer– und Fotoschlitteneinsätze (A.Lange)	255

.II none

she which and an entry of the

1. ZUSAMMENFASSUNG/SUMMARY

H. PUCHELT & D. LASCHEK

In der Zeit vom 18.1.1986 – 28.4.1986 fand unter Federführung des Instituts für Petrographie und Geochemie der Universität Karlsruhe die vom BMFT finanzierte Fahrt SO 41 (HYMAS I) statt, die als Nachfolgefahrt von SO 29 gedacht war.

Aufgrund der kurzfristigen Verweigerung der Arbeitsgenehmigung für saudiarabische Gewässer konnte die Fahrt nicht – wie geplant – ins Rote Meer stattfinden, sondern wurde in ein Programm in der Tyrrhenis bzw. Ägäis umgeändert.

Im ersten Fahrtabschnitt sollten Seamounts in der Tyrrhenis unter Verwendung geochemischer, ozeanographischer und sedimentologischer Methoden auf mögliche hydrothermale Aktivitäten hin untersucht werden, während im zweiten Fahrtabschnitt geophysikalische Untersuchungen in der Ägäis durchgeführt werden sollten.

An der Fahrt nahmen das Geologisch-Paläontologische Institut, das Institut für Hydrobiologie und Fischereiwissenschaft, das Institut für Meereskunde und das Institut für Geophysik (alle Universität Hamburg), das Institut für Petrographie und Geochemie (Universität Karlsruhe), das Paläontologische Institut (Universität Erlangen) sowie die Institute für Sedimentforschung und für Umweltphysik (beide Universität Heidelberg) teil. Außerdem war die Firma Preussag vertreten, die wie üblich technisches know-how und einen Großteil der Geräte zur Verfügung stellte.

Die Fahrt SO 41 begann am 18.1.86 in Callao mit dem Transit ins Mittelmeer. Während der Atlantiküberquerung wurden auf einem Profil quer zum Mittelatlantischen Rücken Wasserprofile genommen sowie Mn-Krusten beprobt.

Nach dem Einlaufen in Neapel am 21.2.86 folgte ein längerer Aufenthalt bis zum 25.2.86. Danach wurden im wesentlichen Kartierungsarbeiten am Vavilov- und Marsili-Seamount durchgeführt, da man sich wegen fehlender Genehmigung auf Tätigkeiten ohne Grundberührung beschränken mußte. Erstmals wurde auch das neue GPS-System routinemäßig eingesetzt. Nach einem kurzen Stop in Neapel am 5.3.86 wurden die Arbeiten am Palinuro und Ventotene fortgesetzt. Am 10.3. folgte ein weiterer Zwischenaufenthalt in Neapel. Danach wurde an Ventotene-, Vavilov- und Magnaghi-Seamount die Seabeamkartierung vervollständigt, so daß von allen Seamounts Karten im Maßstab 1:10000 bzw. 1:50000 vorliegen. Die anschließenden ozeanographischen, sedimentologischen und geochemischen Arbeiten bestätigten insgesamt, daß es sich bei diesen Seamounts um ältere Strukturen ohne Anzeichen hydrothermaler Aktivität handelt.

Dies änderte sich bei den Untersuchungen am Enareta-und Eolo-Seamount. Hier wurden am Eolo-Seamount deutliche Anzeichen hydrothermaler Aktivität in Form von Fe-Mn-reichen Zersetzungsprodukten festgestellt.

Bei den abschließenden Untersuchungen im Palinuro-Gebiet konnten in einigen Stationen die von früheren Explorationen der Italiener beschriebenen Sulfidvorkommen bestätigt, auskartiert und in größerem Maß beprobt werden. Diese Funde stellen den wichtigsten Beitrag dieser Fahrt dar. Anschließend erfolgte die Überfahrt nach Kalamata. Hier wurde die Fahrtleitung am 27.3. an das Institut für Geophysik übergeben, die das Programm mit geophysikalischen Arbeiten in der Ägäis fortsetzten. Die Aktivitäten während des zweiten Fahrtabschnittes sind in einem eigenen Bericht des Institutes für Geophysik zusammengefaßt.

Negreskings, ogs in finteink for Sopphysic, (all, Oniversity, Entersity, Instrume), the dag inserted meri situation (Oniversity) interation (Instrume), the Salison arguments in the Company of the Southern and a construction of the Salison arguments in the Company of the Southern and a construction of the Salison arguments are the first framework and the Southern and a construction tail, Autorited are the first framework for the Southern and a construction of a south and the structure of the Southern and the Southern and a south south and the structure of the Southern and the Southern and the Southern a south and the structure of the Southern and the Southern and the Southern Die Sahr 10 if the Southern and 10.1 and to Caller at the Southern and Altiget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the Southern and the Southern and Mitget all antipates of the Southern and the

bis zum 21.2.65. Osnach an internation die internatione and the internation of Vavilar- und Antaili-Seasonat Jurchaelin. de ann sich bagen feblender Gefehrnigung auf Tätigkeiten öhnt Uramberlächtig en gesamteken buhte ernihuren Stop in Neapel am 5.1.86 werden die kreatten am kaltnor, wer kurren Stop in Neapel am 5.1.86 werden die kreatten am kaltnor, wer Ventotene fortgewerd. Am 10.1 intere and weiteter Deleratione in Ventotene fortgewerd. Am 10.1 intere after streatten in terrente bei Seebenekartierung etwelfering weiteter. Deleration in terrente in Ansternation in State in Ventotene i Terrier und Scientifering in Seebenekartierung etwelferingen verteren in de von allen beseinen in in Ansternation in State in Ventotene i Terrier und Scienten in terrente in Seebenekartierung etwelferingen verteren. Des scientier der eine in terrente in Ansternation in terrente i

- 2 -

SUMMARY

From January 18th to April 28th, 1986 cruise SO 41 (HYMAS I) of the research vessel SONNE took place in the Tyrrhenis under the leadership of the Institut für Petrographie und Geochemie, Universität Karlsruhe. The project was financed by the Bundesminister für Forschung und Technologie (Federal Republic of Germany). The main intension of the first part of this cruise was to look for hydrothermal ore deposits in the surroundings of seamounts in the Tyrrhenis using geochemical, oceanographic and sedimentological methods. During the second part of the cruise geophysical investigations in the Ägäis should take place. In this cruise the following institutions participated:

Geologisch-Paläontologisches Institut Institut für Geophysik Institut für Hydrobiologie und Fischereiwissenschaft Institut für Meereskunde

Institut für Petrographie und Geochemie

Institut für Sedimentologie Institut für Umweltphysik

Institut für Paläontologie

Universität Karlsruhe

Universität Hamburg

Universität Heidelberg

Universität Erlangen

Fa. Preussag

Hannover

The cruise started on January 18th at Callao with the transit to the Mediterranean Sea. While crossing the Atlantic, water samples and manganese nodules perpenticular to the Mid Atlantic Ridge were collected. After a stop of four days in Neapel the activities started on February 25th at the Vavilov- and Marsili-Seamount. After a short stop at Neapel on March 5th work continued at the Palinuro- and Ventotene-Seamount. The geochemical, oceanographic, sedimentologic investigations as well as the TV-observation showed that these seamounts are elder structures without

- 3 -

any sign of hydrothermal activities.

This changed when the Enareta- and Eolo-Seamounts were investigated. At the Eolo-Seamount clear signs of hydrothermal activities were observed. During the final investigations at the Palinuro-Seamount former ore deposits could be confirmed, mapped and at a larger amount be sampled. The finding of these massive sulfides can be regarded as the main success of this cruise.

After reaching Kalamata on March 27th the programm continued with geophysical investigations in the Aegean Sea.

These activities are presented in a seperate cruise report of the Institut für Geophysik.

faitter für Petrographie und

institut für Smilsunthiogis Institut für Ununlichveit

inter the fait Pallaon of the

JURNA STR. 183

The cruise everted on laneary 18th or Callad with the transit to the Hediterraneon Sea. Antis dropping the Atlantic, wares stepled and economic addules percenticales on the Hid Milantic Kidge seco collected. After a stop of four deep in Neapel the societions started on February 25th at the Version and Marthill-Secondary. After a short wrop at Heavel un harde 5th work continued at the February and Vertalere-Secondary. The quoteenics, presencessio, sedimentalities and Vertalere-Secondary. The TV-observation showed that the science of the interaction of the test of the description active the secondary of the secondary of the startes of the secondary of the s

١.

- 4 -

2. FAHRTTEILNEHMER UND INSTITUTIONEN

D. LASCHEK

An der Fahrt HYMAS I waren während des ersten Fahrtabschnittes insgesamt 26 Wissenschaftler und Techniker beteiligt. Während des Fahrtabschnittes I,2 (Neapel-Kalamata) nahmen zwei italienische Gäste an der Fahrt teil. Die beteiligten Institutionen und die Verteilung der Wissenschaftler auf die beiden Fahrtabschnitte geht aus nachfolgender Tabelle hervor.

Institution

Fahrtabschnitt I,1^a I,2^b

1

5

1

3 5

1

Geol.-Paläontol. Institut Universität Hamburg (Prof. Degens)

Institut für Geophysik Universität Hamburg (Prof. Makris)

Institut für Hydrobiologie und Fischereiwissenschaft Universität Hamburg (Dr. Karbe)

Institut für Meereskunde Universität Hamburg (Prof. Sündermann)

Institut für Petrographie und Geochemie Universität Karlsruhe (Prof. Puchelt)

Institution

Fahrtabschnitt I,1^a I,2^b

2

1

7

2

Dis beteiligter -

Institut für Sedimentologie Universität Heidelberg (Prof. Stoffers)

Institut für Umweltphysik Universität Heidelberg (Prof. Roether)

Institut für Paläontologie Universität Erlangen (Prof. Flügel)

Preussag AG

Gäste

a) Callao-Neapel

b) Neapel-Kalamata

An der Auswertung der Daten und Proben sind zusätzlich folgende Institutionen beteiligt:

Istituto di Geologia Marina Bologna (Dr. Savelli)

Samim Ocean Inc. Rom (Dr. Minniti)

2.1. WISSENSCHAFTLICH-TECHNISCHES PERSONAL

Inst.	Funktion	Fahrtab	Fahrtabschnitt		
	standidanty an	I,1ª	I,2 ^b		
IPG	Wasseranalytik	x			
IHF	Autoanalyser		x		
IfP	Sedimente		x		
IPG	Mineralogie	x			
IHF	Mikrobiologie		x		
GPI	Org. Geochemie		x		
IHF	Hydrobiologie		x		
IPG	RFA/Heatflow		x		
PEE	Mechanik		x		
PEE	Elektronik		x		
PEE	TV-Greifer/Ofos		x		
PEE	Mineralogie/Fahrtl.	×	x		
IHF	Mikrobiologie		x		
SOI	Gast		x		
PEE	Geophysik		x		
IHF	Multisonde/Biologie		x		
IPG	Fahrtleiter		x		
GPI	Multisonde	x			
IGM	Gast		×		
IPG	Gasanalytik		x		
IfS	Sedimente/Heatflow		x		
IfU	Wasseranalytik	x			
PEE	Mechanik		x		
PEE	Geophysik		x		
IfM	Multisonde/Ozeanographi	.e	x		
PEE	Elektronik		x		
IfS	Sedimente		x		
IPG	Fotoauswertung		x		
	Inst. IPG IHF IfP IPG IHF GPI IHF PEE PEE PEE IHF SOI PEE IHF IPG GPI IGM IPG IfS IfU PEE IfM PEE IfM PEE	Inst.FunktionIPGWasseranalytikIHFAutoanalyserIfPSedimenteIPGMineralogieIHFMikrobiologieGPIOrg. GeochemieIHFHydrobiologieIPGRFA/HeatflowPEEMechanikPEEElektronikPEETV-Greifer/OfosPEEMineralogie/Fahrtl.IHFMikrobiologieSOIGastPEEGeophysikIHFMultisonde/BiologieIPGFahrtleiterGPIMultisondeIGMGastIPGGasnalytikIfSSedimente/HeatflowIfUWasseranalytikPEEGeophysikIffMultisonde/OzeanographiIFEElektronikPEEElektronikIfMMultisonde/OzeanographiIFSSedimenteIPGFotoauswertung	Inst.FunktionFahrab 1,1ªIPGWasseranalytikxIHFAutoanalyserxIHFSedimentexIPGMineralogiexIHFMikrobiologiexGPIOrg. GeochemiexIHFHydrobiologiexIPGRFA/HeatflowxPEEElektronikxPEEKikrobiologiexIHFMikrobiologiexIHFMikrobiologiexPEEGeophysikxIHFMikrobiologiexIHFMikrobiologiexSOIGastxPEEGeophysikxIHFMultisonde/BiologiexIGMGastxIGMGastxIFGSedimente/HeatflowxIFUWasseranalytikxPEEGeophysikxIfMMultisonde/OzeanographiexPEEElektronikxPEEElektronikxIFSSedimenteXIFSSedimenteXIFSSedimenteXIFSSedimenteXIFSSedimenteX		

a) Callao-Neapel

b) Neapel-Kalamata

GPI: Geologisch-Paläontologisches Institut Bundesstr. 55 2000 Hamburg

- IfG: Institut für Geophysik Bundesstr. 55 2000 Hamburg 13
- IfM: Institut für Meereskunde Heimhuderstr. 71 2000 Hamburg 13
- IfS: Institut für Sedimentologie Berliner Str. 17 6900 Heidelberg
- IfU: Institut für Umweltphysik Im Neuenheimer Feld 366 6900 Heidelberg
- IGM: Istituto di Geologia Marina Via Zamboni 65 40100 Bologna
- IHF: Institut f. Hydrobiologie u. Fischereiwissenschaft Zeiseweg 9 2000 Hamburg
- IPG: Institut für Petrographie und Geochemie Kaiserstr. 12 7500 Karlsruhe
 - PEE: Preussag Erdöl und Erdgas AG Arndtstr. 1 3000 Hannover
 - SOI: Samim Ocean Inc. Piazza Lodovico Cerva 7 00143 Rom

- 8 -

2.2. NAUTISCHES PERSONAL

۲.

	Name	Funktion	Fahrtabs	chnitt
		ROPHER FEEDD OF STREET STREET	I,1 ^a	I,2 ^b
	Müller, Gustav	Kapitän	XIGLERY	x
	Nath, Dietrich	1. Offizier	x 00061	x
	Ahrens, Burkhard	2. Offizier	x	
	Klein, Raimund	2. Offizier	x	x
	Bruhns, Horst	Funkoffizier	x	x
	Kosbi, Gerhard	1. Ingenieur	x a abai	x
	Bochnik, Eberhard	2. Ingenieur	x	x
	Saymanski, Jürgen	2. Ingenieur	x	x
	Damm, Klaus	Elektronik	x	x
	Hoffmann, Hilmar	Elektronik	x	x
	Meyer, Helmut	Elektrik	x hades	
	Konrath, Rolf	Elektrik		x
	Rülke, Uwe	2. Ingenieur	xillenten	x
	Kraatz, Hans-Jürgen	Motorenwärter	x	x
	Koch, Michael	e el aerte ri 100 è - 00	xleangle	x
	Köster, Henry	ennamechenden Stellan •	x	x
	Rosemeyer, Rainer	🔹 a statemente in morrani -	x	x
	Hermann, Klaus	Koch	x	x
	Hoffmann, Kurt	Kochsmaat	x	
	Scheel, Dieter	in al. hill research manufer the		x
	Döttl, Johann	1. Steward	x	x
	Richter, Thomas	2. Steward	x	
	Horzella, Ernst	alisa debuttetatatata dia		x
	Viett, Bernhard	•	x	x of a real r
	Hartwig, Karlheinz	Bootsmann	x	x
	Duschinski, Wolfgang	Matrose		x and the la
	Kubenka, Helge	ebroen Rannen av 10.2.	x	x
	Lude, Günther	an frühen forgen, date	x	x
	Meyer, Thomas	HAD AND . I SMYR ADI.	x	
1	Stelling, Thorsten	sik asoliazokkolm fere		x
	Thiel, Wolfgang	 many managed by 	x	x
	vom Berg, Götz	🖬 él – analorra élat 🔅	x	x
	Bank, Armin	Zimmermann	x	

3. FAHRTVERLAUF

H. PUCHELT & D. LASCHEK

Am 17.1.1986 wurde die SONNE termingerecht vom Charterer von GEOMETEP IV (BGR) für die Kampagne HYMAS I übergeben. Callao wurde am 18.1.1986 am frühen Morgen verlassen. Es schloß sich die Überfahrt nach Panama an, das am 23.1. um 13.00 erreicht wurde. Während der Überfahrt erfolgte keine Probennahme, es wurden lediglich vorbereitende Arbeiten der Gruppe Karlsruhe ausgeführt.

In Panama stiegen zwei weitere Wissenschaftler aus Hamburg und Heidelberg zu. Panama wurde am 24.1. um 20.10 verlassen, die Passage des Panamakanals war am frühen Morgen des 25.1. beendet.

Das Arbeitsgebiet im Atlantik wurde am 30.1. erreicht. Die Arbeiten bestanden aus DC- und MS-Stationen, die auf einer Traverse quer zum Mittelatlantischen Rücken angelegt waren, um Fragen des Einflußes des Mittelatlantischen Rückens auf die Zusammensetzung der Mangankrusten/-Knollen und des Meerwassers (Be, He, etc.) zu klären. Zu diesem Zweck wurden an zehn Stellen im Abstand von ca. 200km Dredgeproben bzw. Wasserprofile entnommen.

Die ersten Dredgen (1 DC - 6 DC) in einer Wassertiefe von ca. 6000m waren leer, obwohl an den entsprechenden Stellen in der Literatur Mn-Knollen beschrieben werden (s. Bericht Eckhardt). Erst in den Dredgen näher zum Mittelatlantischen Rücken wurden Mn-Krusten und alterierte Basalte geborgen. Die Wasserprobennahme wurde dadurch erschwert, daß es gleich auf der ersten Station (2 MS) zu einem Kurzschluß im Bathywindendraht kam, so daß für die weiteren MS-Stationen nur das TV-Kabel zur Verfügung stand.

Welchen Einfluß der improvisierte Umbau (= Anbringen eines Bleigewichts von ca. 2 Tonnen oberhalb der Multisonde) auf die Qualität der Wasserproben hat, bleibt abzuwarten.

Trotz dieser Improvisation und der Tatsache, daß der Zeitplan durch das Ausfallen eines Generators kurzzeitig zu Verzögerungen führte, konnte das Meßprogramm im vorgesehenen Rahmen am 10.2. beendet werden. Nach dem Passieren von Gibraltar am frühen Morgen des 17.2. wurde aufgrund der Änderung des Fahrtplans für HYMAS I, die notwendig geworden war, nachdem die Arbeitserlaubnis für saudiarabische Gewässer nicht vorlag, Neapel angelaufen.

Neapel wurde am 21.2. früh erreicht. In Neapel wurde ein längerer Hafenaufenthalt wegen der anstehenden Arbeiten (Reparatur der Maschine, Einbau des GPS-Empfängers, Auftrommeln des neuen Bathywinden- und TV-Kabels) notwendig.

Desweiteren wurde versucht, die noch ausstehende Arbeitsgenehmigung für die italienischen Gewässer zu erhalten. Nach Abschluß der Reparaturarbeiten wurde am 25.2. gegen 17.00 in Richtung Vavilov-Seamount ausgelaufen (s. Übersichtskarte).

Eine schriftliche Arbeitsgenehmigung, die Arbeiten am Boden einschloß, lag bis zu diesem Zeitpunkt noch nicht vor. Aus diesem Grund mußten sich die Aktivitäten am Vavilov-Seamount vom 26.2. - 28.2. auf eine Seabeamkartierung und MS-Stationen (19, 20, 24 MS) beschränken.

Auf Station 22 MSA wurden die von der Fa. Preussag neu entwickelten Autoklavwasserschöpfer erstmals getestet. Nach der ersten FS-Station (27 FS), die eine starke Sedimentbedeckung an den Flanken und gelegentliche Pillowlaven – allerdings schon stärker alteriert – erkennen ließ, wurde das Gebiet um den Vavilov-Seamount verlassen und das nächste Arbeitsgebiet, der Marsili-Seamount, angelaufen.

Inzwischen war trotz intensiver Bemühung seitens der Fahrtleitung und der Fa. Preussag keine Genehmigung zur Bodenberührung zu erhalten. Unter diesem Handicap litten auch die Arbeiten am Marsili-Seamount, die sich wiederum auf eine Seabeamkartierung und MS-Stationen beschränken mußten. Kurzfristig wurden am 1.3. vormittags die Arbeiten wegen Schlechtwetters eingestellt. Die Zeit bis zum 4.3. war geprägt von dem Bemühen der verschiedensten Stellen (Fa. Preussag, Deutsche Botschaft) um eine Genehmigung zur Bodenberührung, die bisher immer wieder in Aussicht gestellt worden war.

Entsprechend war die Stimmung an Bord. Am 4.3. am Abend wurde der Marsili-Seamount verlassen, um in Neapel einen Vertreter der ENI, Dr. Minniti an Bord zu nehmen. Die Anwesenheit eines ENI-Vertreters war Voraussetzung für Arbeiten im Palinuro-Gebiet, einem Konzessionsgebiet der ENI.

Am Vormittag um 11.00 des 5.3. wurde Dr. Minniti auf der Reede vor Neapel an Bord genommen und in Richtung Palinuro ausgelaufen. Nach der Erteilung der Genehmigung zur Bodenberührung wurden im Palinuro-Gebiet DC-, MS-, FS- und FG-Stationen durchgeführt.

Leider mußte auf Arbeiten im westlichen Bereich des Palinuro, in dem in früheren Kampagnen Sulfidvererzungen gefunden wurden (MINNITI 1974), verzichtet werden, da dieses Gebiet außerhalb des genehmigten Arbeitsgebietes lag.

In 65 DC wurden neben den ersten Vulkaniten mögliche Anzeichen hydrother-

- 11 -

maler Aktivität durch das Auftreten von Nontronit gefunden. Ebenso wurden Nontronitflecken im Sediment von Station 53 FG beobachtet. In sämtlichen Dredgen befanden sich Korallen und Karbonatkrusten, die z.T. mit bis zu 1-2cm starken Mn-Krusten überzogen waren (58 DC).

Die anschließenden KL-Stationen (60-62 KL) erbrachten nur mäßigen Kerngewinn, der aus Normalsediment bestand. Dafür erwies sich die Dredge zunehmend als Sedimentprobenahmegerät; in Station 64 DC steckte eine halbe Tonne zähes, toniges Sediment.

Zwei Kastenlote (68, 69 KL) auf dem Top des Palinurokraters in 80m Tiefe erbrachten keinen Kerngewinn. Auf Station 70 FS wurden im südlichen Teil des Palinurogebietes in ca. 500m Tiefe deutliche Anzeichen hydrothermaler Aktivität und eventuell Sulfide bzw. ihre Zersetzungsprodukte beobachtet. Die anschließende Dredge brachte allerdings keine Probe an Bord.

Danach wurde am 8.3. 03.00 das nächste Arbeitsgebiet, Ventotene-Süd, angelaufen. Die hier durchgeführten Arbeiten (SB, MS, DC, FS, KL) ergaben, daß es sich um ein Gebiet mit starker Sedimentüberdeckung handelt, die keinerlei Anzeichen hydrothermaler Aktivität erkennen läßt. Außer zähem Ton und Normalsediment konnten keine Proben gewonnen werden.

Am 10.3. 03.00 lief die SONNE wieder Neapel an. Hier stiegen am gleichen Tag drei weitere Wissenschaftler aus Hamburg zu. Am Abend des 10.3. fand ein Empfang an Bord der SONNE unter Teilnahme des deutschen Generalkonsuls und Vertreter verschiedener italienischer Institutionen statt.

Leider kam am gleichen Abend noch die Absage einer Arbeitsgenehmigung in griechischen Gewässern, so daß zum wiederholten Male improvisiert und die Fahrtpläne umgeändert werden mußten, was die Motivation an Bord nicht unbedingt stärkte.

Nach Auslaufen aus Neapel am 11.3. gegen 16.00 sollte zunächst die Kartierung in den vorher angelaufenen Arbeitsgebieten vervollständigt werden bzw. Gesteins- und Sedimentproben ergänzt werden. Die Arbeiten am Ventotene (11.3.-12.3.) verstärkten den vorher gewonnenen Eindruck, daß es sich um eine alte Struktur mit starker Sedimentüberdeckung ohne Anzeichen hydrothermaler Aktivität handelt. Nur in 95 DC konnten Stücke vulkanischer Brekzie geborgen werden.

Deswegen wurde beschlossen, das Gebiet am 12.3. um 04.00 zu verlassen, um die eingesparte Zeit auf geologisch interessantere Gebiete zu verwenden. Trotz vorheriger Zusage der italienischen Marine, Arbeitsgebiete nach 24stündiger Ankündigung vorzeitig verlassen zu können, wurde dazu keine Genehmigung erteilt, so daß im Gebiet von Ventotene geblieben wurde, allerdings ohne großen wissenschaftlichen Sinn.

- 12 -

Am 14.3. 00.00 wurde in strenger Einhaltung des Planes die Arbeit am Vavilov-Seamount mit Kern- und Multisondenstationen am Westrand des Berges fortgesetzt. Bei den Kernstationen traten trotz der starken Sedimentüberdeckung (s. 102 FG, Top des Seamounts) Probleme auf. Gegen Mittag wurde erstmals eine PP-Station ausgebracht und die Kernstationen auf der Ostseite (112 KLH, 113 SR) fortgesetzt.

Nach dem ersten Test des Multicorers (118 MC) versuchte man mit einer Reihe von Dredgen im Gipfelbereich, vulkanisches Material zu gewinnen, allerdings mit mäßigem Erfolg (120–123 DC enthielten überwiegend Kalkkrusten). Es konnten nur wenige, blasenreiche Vulkanite geborgen werden. Die anschließenden TV-Stationen (124 FS, 125 FG) bestätigten die erhebliche Sedimentüberdeckung.

Am 16.3. am Abend wurde der Vavilov verlassen und der Magnaghi-Seamount angesteuert, den man gerne zu Gunsten von Palinuro oder Eolo gestrichen hätte, da diese Gebiete in Hinblick auf Hydrothermalismus interessanter erschienen. Es folgte eine Seabeamkartierung auf Grund derer eine FS-Station vom Top nach SW erfolgte, die eine deutliche Sedimentüberdeckung mit gelegentlichen Aschelagen und keinerlei Anzeichen hydrothermaler Aktivität erkennen ließ.

Dies bestärkten die MS-Stationen 131-133 in einem W-E Profil über den Berg und die beiden Kernstationen (134, 135 KL); die zwei Dredgen blieben erfolglos.

Am Nachmittag des 18.3. wurde das Programm beendet, um rechtzeitig am 19.3. 00.00 im nächsten Arbeitsgebiet zu sein. Die Aktivitäten begannen mit einer 15-stündigen, vollständigen Seabeamkartierung des Enareta-Seamounts, die die Grundlage für die weiteren Untersuchungen bildete. Dann folgten kombinierte KLH/MS-Stationen am SW-Fuß des Seamounts und auf dem Top. Die Kerngewinne waren mäßig, da auf Gestein aufgesetzt wurde.

Der anschließende FS (143) vom Top nach N den Hang herunter zeigte im oberen Bereich bis 400m nur wenig Sediment und viel Lava und Lapilli (s. Bericht Lange) und von da an eine sehr starke Sedimentüberdeckung. Im Topbereich wurden auch Anzeichen hydrothermaler Aktivität in Form von gelblich verfärbtem Sediment und Mn-Überzügen beobachtet.

Es folgte eine weitere MS/KLH-Kombination am Nordfuß des Seamounts. Die nächsten Dredgen (147, 149 DC) im oberen Vulkanbereich bei 700m brachten neben blasenreichen Vulkaniten Kalke mit Fe/Mn-reichen Verdrängungen.

In der Nacht zum 21.3. wurde der Eolo-Seamount kartiert. Danach erfolgte eine KLH-, QSP- und PP-Station am östlichen Fuß des Vulkanes. Die Dredge 158,1 DC war voll mit schwach verfestigtem, buntem Sediment, das überwiegend aus Fe/Mn-Hydroxiden bestand. Eingeschaltet waren dünne, grünliche, nontronitische (?) Schichten. Die Station zeigte bis zu diesem Zeitpunkt mit Abstand die deutlichsten Anzeichen hydrothermaler Aktivität. Der nachgeschobene Fotoschlitten (162 FS) bestätigte diesen Eindruck. In ca. 1200m wurden deutliche Sedimentverfärbungen, die auf Zersetzung von Sulfiden zurückzuführen ist (s. Bericht Lange) und Trübung des Wassers beobachtet.

Um das Ausmaß der hydrothermalen Aktivität festzustellen, wurden im gleichen Areal drei Kerne (163-165 KL/SR) abgeteuft. Leider war wegen der schlechten Navigation (keine GPS-Überdeckung) keine exakte Positionierung möglich, so daß die Kerne nur Normalsediment enthielten.

Die Suche nach weiteren Gebieten mit hydrothermaler Beeinflussung in ähnlichen Strukturen im Norden des Seamounts (169DC-173FG) blieb leider erfolglos. Eine abschließende SR-Station (175 SR) innerhalb der GPS-Zeit an der gleichen Lokalität wie 158,1 DC erbrachte zwar 5m Kerngewinn, aber keine Zeichen hydrothermaler Beeinflussung.

Leider mußte die Eingrenzung dieses Vorkommens aus Zeitgründen aufgegeben werden, um termingemäß das Palinurogebiet zu erreichen. Am frühen Morgen des 22.3. wurden zunächst drei Dredgen (176-178 DC) in dem Gebiet, daß sich durch vorherige FS-Stationen als erzhöffig erwiesen hatte, gefahren. Das Ergebnis war toniges Sediment. Auch die nachfolgenden MS- und MC-Stationen blieben erfolglos.

Die beiden FG-Stationen (181, 182 FG) in einem Sattelbereich zwischen drei Vulkankuppen (s. Bericht Lange) bildeten die erfolgreichsten Stationen dieser Fahrt, was die Prospektion auf Massivsulfide anbelangt. In einem olivgrünen, tonigem Sediment steckten poröse, derbe Massivsulfide bis zu 30kg. Hauptbestandteile dieser Sulfide sind Zinkblende und Bleiglanz, Pyrit ist nur untergeordnet vertreten (s. Bericht Puchelt). Daneben waren auch bestimmte Sedimentlagen mit feinkörnigen Sulfiden imprägniert.

Die in diesem Gebiet abgeteuften Sedimentkerne (183KLH-186KL) waren hydrothermal beeinflußt, enthielten aber keine Sulfide. Da die Sulfide anscheinend in Sätteln und Mulden in unmittelbarer Nähe von Vulkankuppen, aber nicht unbedingt im Topbereich angesiedelt sind, wurde an morphologisch ähnlichen Stellen weitergesucht (187 FS). Es folgten MS- und MC-Stationen (189-191) in Kratern und eine Reihe von Sedimentkernen auf dem Top des Zentralkraters des Palinuro in 100m Tiefe.

Dazwischengeschoben wurden am Vormittag des 24.3. QSP- und PP-Stationen. Die letzte Nacht im Palinuro-Gebiet wurde mit Dredgen (201-205) ausge-

- 14 -

füllt. Bei 203 DC verschwand die Dredge mitsamt 750m Kabel. Dafür erbrachten die beiden letzten Dredgen die ergiebigsten Mn-Krusten dieser Fahrt. Die größten der nierig-traubig ausgebildeten Krusten wogen mehrere kg.

In letzte FG-Station (208 FG) im Westen des Palinurogebietes zeigte wiederum deutliche Hydrothermalindikatoren, bei der Probennahme wurde eine solche Stelle knapp verfehlt. Im Greifer befanden sich keine Massivsulfide, sondern nur Sulfidimprägnationen im Sediment. Die abschließende FS-Station (209 FS) am Ostrand des Arbeitsgebietes zeigte eintönige Sedimentüberdeckung.

Am 25.3. gegen 14.30 wurde das Programm beendet und Kalamata angelaufen. Kalamata wurde am 27.3. um 07.00 erreicht. Hier wurde die Fahrtleitung planmäßig an die Geophysik übergeben.

Die Fahrt HYMAS I stand durch die kurzfristige Entziehung der Arbeitserlaubnis in saudiarabischen Gewässern und das dadurch sehr improvisierte Programm für das Tyrrhenische Meer unter keinem guten Stern.

Dadurch war es weit mehr als sonst üblich, das Programm umzustellen. Daß es unter diesen erschwerten Bedingungen trotzdem möglich war, das wissenschaftliche Programm durchzuführen, ist der Bereitschaft aller Beteiligten zur Zusammenarbeit zu verdanken. Ein spezieller Dank gilt Kapitän Müller und seiner Mannschaft, die auf die schwierige Situation hervorragend reagiert haben.

Eine wissenschaftliche Expedition, die innerhalb eines Jahres für das Rote Meer vorbereitet und konzipiert war, läßt sich nicht innerhalb von vier Wochen auf ein gleichwertiges Programm in der Tyrrhenis umstellen. Hinzu kamen erhebliche Schwierigkeiten während der Fahrt hinsichtlich der Arbeitsgenehmigungen, die die Durchführung des vollen Programm behinderten, so daß die wissenschaftliche Ausbeute dieser Fahrt geringer ist als vorgesehen war.

Es sollten daher auf der entsprechenden politischen Ebene alle Vorkehrungen getroffen werden, damit solche – von der Seite der Wissenschaft nicht zu vertretenden – Ereignisse in Zukunft rechtzeitig erkannt werden, man frühzeitig Alternativen ausarbeiten kann, so daß eine optimale wissenschaftliche Nutzung der Schiffszeit gewährleistet ist.

- 15 -

Abb. 1: Übersichtskarte über das Tyrrhenische Meer mit den einzelnen Arbeitsgebieten während der Fahrt SO 41.

4. STATIONSVERZEICHNIS

D. LASCHEK

Für eine Reihe von Geräten wurden der Einfachheit halber Abkürzungen benutzt, die im Lauf des Berichtes immer wieder verwendet werden. Ihre Bedeutung geht aus Tab. 1 hervor.

- FG Fernsehgreifer
- FS Fotoschlitten
- DC Dredge
- KL Kastenlot
- KLH Kastenlot mit Heatflow
 - MC Multicorer
- MS Multisonde
 - MSA Multisonde mit Autoklavwasserschöpfer
 - PP Primärproduktion
 - QSP Lichtmessung (Quantumskalarprofiler)
 - SB Seabeam
 - SR Stoßrohr

- Tab. 1: Stationsabkürzungen, die während der Fahrt So 41 verwendet wurden

Die Stationszeiten beziehen sich auf den Zeitpunkt des Aussetzens bzw. Wiedereinholens des Geräts an Deck. Die angegebenen Koordinaten gelten für den Zeitpunkt des Aussetzens und stellen unkorrigierte Werte dar.

Korrigierte und z.T. aussagekräftigere Koordinaten wie z.B. die eines Kastens oder Multicorers beim Eindringen ins Sediment etc. können den einzelnen Beiträgen entnommen werden.

Die Zeiten sind jeweils in Bordzeit angegeben, die Abweichung zu GMT ist in Klammer angegeben.

- 17 -

Zeit (Bordzeit)	Station	Koordinaten	Tiefe	Bemerkung
17.1. 12.00				Schiffsübernahme
(GMT -5h)				
18.1. 07.50				Auslaufen Callao
23.1. 13.00				Einlaufen Balboa
24.1. 20.10				Auslaufen Balboa
				Pas. Panamakanal
25.1. 06.00				Passage beendet
(GMT -4h)				
30.1. 12.42 - 16.5	0 1 DC	25 10.14N 62 41.31W	5844m	
17.21 - 21.5	3 2 MS	25 10.22N 62 42.10W	5813m	Station abgebr.
				da Kurzschluß im
				Draht;Bathywinde
				n.mehr benutzbar
11.39 - 14.5	5 3 MS/1	25 23.00N 60 12.45W	5586m	
15.35 - 16.5	9 3 MS/2	25 20.93N 60 07.00W	5729m	
17.15 - 18.0	6 3 MS/3	25 21.16N 60 06.90W	5716m	
18.57 - 19.4	9 3 MS/4	25 31.24N 60 06.25W	5716m	
20.00 - 20.4	5 3 MS/5	25 21.01N 60 05.60W	5772m	
20.55 - 21.1	5 3 MS/6	25 21.33N 60 05.42W	5830m	
21.45 - 02.1	3 4 DC	25 21.64N 60 05.28W	5882m	
1.2. 09.15 - 14.2	2 5 DC	26 31.03N 59 52.38W	6138m	
				Überfahrt
2.2. 05.03 - 10.5	0 6 DC	26 19.88N 57 20.18W	6320m	
				Überfahrt
3.2. 02.05 - 05.0	8 7 MS/1	25 29.58N 54 39.95W	5972m	
05.34 - 05.5	0 7 MS/2	25'28.43N 54 40.68W	5835m	
				Überfahrt
4.2. 05.20 - 10.4	0 8 DC	25 41.56N 50 59.39W	4808m	
11.50 - 15.3	0 9 MS/1	25 43.03N 50 57.11W	4968m	
16.00 - 18.1	1 9 MS/2	25 43.47N 50 57.51W	4883m	
18.25 - 19.1	5 9 MS/3	25 44.24N 50 58.12W	5023m	
19.35 - 20.0	9 MS/4	25 44.66N 50 56.71W	5121m	
20.20 - 20.3	2 9 MS/5	25 45.30N 50 56.83W	5056m	
20.45 - 21.3	0 9 MS/6	25 45.95N 50 57.17W	5075m	
				Überfahrt

Zeit	(Bordzeit)	Station	Koordinaten T	iefe Bemerkung
5 2	17 10 - 21 00	10 DC	26 50 35N 47 55 76W 4	653m
5.2.	21.55 - 01.00	10 DC	26 51.85N 47 53.86W 4	136m
6.2.	02.01 - 02.16	11 MS/2	26 50.97N 47 50.60W 3	687m
				Überfahrt
	14.33 - 17.20	12 MS/1	27 09.85N 45 39.92W 3	676m
	17.40 - 19.20	12 MS/2	27 10.08N 45 40.56W 3	579m
	19.43 - 20.32	12 MS/3	27 10.40N 45 40.51W 3	544m
	20.48 - 21.17	12 MS/4	27 11.40N 45 40.79W 3	571m
	21.30 - 21.45	12 MS/5	27 11.44N 45 40.64W 3	597m
	21.53 - 22.35	12 MS/6	27 11.48N 45 40.64W 3	622m
	23.05 - 03.05	13 DC	27 10.00N 45 39.96W 3	676m
				Überfahrt
7.2.	09.55 - 13.55	14 DC	27 26.00N 44 43.88W 2	781m
	15.36 - 18.10	15 MS/1	27 27.87N 44 45.89W 3	267m
	18.53 - 20.02	15 MS/2	27 28.87N 44 45.47W 3	234m
				Überfahrt
	(GMT -3h)			
8.2.	21.10 - 00.25	16 DC	27 44.94N 40 18.79W 4	376m
			rtaitellhanta a Bherr	1.3. 90.00 02.15
9.2.	01.10 - 04.45	17 MS/1	27 46.74N 40 19.41W 4	531m
	05.25 - 05.35	17 MS/2	27 46.69N 40 21.45W 4	531m
				Station abgebr.,
				da MS defekt
10.2.	09.36 - 12.50	18 MS/1	27 59.54N 35 00.16W 5	679m
	13.05 - 15.30	18 MS/2	27 58.68N 34 59.44W 5	338m
	14.42 - 15.30	18 MS/3	27 57.87N 35 00.00W 5	355m
	15.40 - 16.00	18 MS/4	27 57.17N 35 00.47W 5	367m
	16.12 - 16.26	18 MS/5	27 56.85N 35 00.47W 5	348m
				Überfahrt nach
				Neapel
17.2.	08.27			Pass. Gibraltar
21.2.	09.30			Festmachen Neape
25.2.	17.12			Losmachen Neapel

Zeit	(Bordzeit)	Station	n Koordina	ten	Tiefe	Bemerkung	
<u>Vavil</u>	ov-Seamount						
	(GMT +1)						
25.2.	03.18 - 05.	21 19 MS	39 54.28N 12	44.82E	3222m	+ 10.10 (S.a. 1304	
	07.20 - 08.	22 20 MS	39 51.60N 12	39.90E	1259m		
	10.40 - 12.	50 21 SB	Profil 1-2				
	13.16 - 15.	18 22 MSA	39 53.59N 12	31.08E	3266m		
	15.37 - 06.	30 23 SB	Profil 3-9				
27.2.	07.46 - 09.	20 24 MS	39 53.64N 12	35.17E	2283m		
	11.15 - 12.	15 25 SB	Profil 10				
	14.20 - 15.	16 26 MSA	39 52.42N 12	35.89E	1250m		
	15.26 - 22.	24 27 FS	39 51.24N 12	36.52E	952m		
	22.55 - 08.	54 28 SB	Profil 11-16				
Marsi	li-Seamount						
28.2.	19.30 - 24.	00 29 SB	Profil 17-19				
1.3.	00.00 - 09.	18 29 SB	Profil 20-22				
	09.18 - 11.	24				Forschung unter-	
						brochen;Schlecht	
						wetter, MS u. FS	
	ap on ep					n. einsetzbar	
	13.08 - 12.	33 30 SB	Profil 23-31				
2.3.	13.25 - 14.	21 31 MS	39 19.28N 14	24.56E	1403m	- the M	
	15.16 - 15.	55 32 MS	5.39 17.21N 14	23.89E	685m		
	16.53 - 18.	25 33 MS	39 17.14N 14	16.98E	2541m		
	19.40 - 00.	35 34 FS	39 17.09N 14	23.66E	534m		
3.3.	01.56 - 02.	48 35 MS	39 18.84N 14	14.81E	1339m		
	04.40 - 14.	40 36 SB	Profil 32-36				
	15.40 - 15.	47 37 FG	39 16.95N 14	23.44E	600m	Test bei 66m	
	17.15 - 19.	10 38 MSA	39 13.74N 14	29.16E	2953m		
	20.15 - 09.	48 39 SB	Profil 37-42				

.

Zeit (Bordz	ei	t)	Sta	ation	141	Koord	ina	ten	Tiefe	Bemerkung
4.3.	12.25	-	13.18	40	MSA	39	11.28N	14	29.67E	1275m	
	15.35	-	16.58	41	MSA	39	22.54N	14	25.36E	2398m	
	19.15	-	23.55	42	FS	39	07.38N	14	30.46E	3264m	
5.3.	01.19	-	02.31	43	SB	Pro	ofil 43				
	02.31										Abfahrt Neapel
	10.42										Ankunft Neapel
	11.00										Abfahrt Neapel
Palinu	iro										
	19.33	-	19.49	44	FS	39	31.81N	14	43.37E	524m	
											Elektronik def.
											Station abgebr.
	20.32	-	21.19	45	MSA	39	22.37N	14	43.41E	669m	
	22.00	-	00.40	46	FS	39	31.96N	14	43.59E	644m	
			15.8								
6.3.	02.32	-	03.05	47	MS	39	22.66N	14	42.22E	567m	
	04.00	-	05.37	48	DC	39	31.34N	14	42.85E	1197m	
	06.40	-	08.00	49	DC	39	27.69N	14	49.05E	1114m	
	08.48	-	10.33	50	DC	39	29.34N	14	15.40E	1246m	
	11.18	-	13.15	×51	KL	39	30.95N	14	45.13E	1038m	
	14.46	-	15.16	×52	KL	39	28.79N	14	54.27E	763m	
	16.24	-	16.50	53	FG	39	28.91N	14	49.27E	87m	
	17.31	-	19.16	54	FG	39	28.84N	14	49.24E	92m	
	19.50	-	20.05	55	MSA	39	28.94N	14	49.12E	85m	
	20.33	-	20.44	56	MSA	39	29.18N	14	49.96E	89m	
	21.26	11-	21.45	57	MSA	39	28.88N	14	50.86E	260m	
	22.36	-	23.20	58	DC	39	28.26N	14	48.68E	700m	
7.3.	00.29	-	02.06	59	MSA	39	22.92N	14	49.72E	2455m	
	03.15	-	03.26	×60	KL	39	28.95N	14	49.26E	124m	
	04.22	-	04.55	×61	KL	39	30.83N	14	53.45E	1150m	
	05.45	-	06.31	62	KL	39	29.81N	14	56.85E	806m	
	07.52	-	08.41	63	DC	39	30.29N	14	47.09E	644m	
	09.43	-	10.35	64	DC	39	31.78N	14	43.43E	700m	

۲.,

Zeit (Bordze	eit	t)	Sta	ation	0.0	ulter 1	Koord	inat	ten	Tiefe	Bemerkung	=S
7.3.	10.55	-	11.36	65	DC		39	33.97N	14	42.82E	679m		
	12.30	_	13.30	66	DC		39	31.40N	14	43.67E	996m		
	14.15	-	16.09	67	MSA		39	28.85N	14	41.06E	2197m		
	17.08	1	17.32	68	KL		39	28.95N	14	49.26E	94m		
	17.38	-	17.44	69	KL		39	28.94N	14	49.37E	80m		
	19.35	-	22.35	70	FS		39	32.34N	14	43.68E	582m		
8.3.	01.10	-	03.14	71	DC		39	32.00N	14	42.53E	680m		
Ventot	one												
vencov	<u>.ene</u>												
	12.35	-	14.12	72	DC		40	32.50N	13	17.40E	1963m		
	14.45	_	17.33	73	DC		40	32.35N	13	11.27E	2511m		
	18.55	-	20.47	74	MS		40	34.85N	13	06.65E	2646m		
	21.10	2	04.30	75	SB		Pro	ofil 44	-47				
9.3.	05.14	-	06.41	×76	KLH		40	36.09N	13	12.89E	2013m		
	07.07	-	08.15	×77	KL		40	43.26N	13	12.85E	1644m		
	08.28	-	10.03	×78	KL		40	34.02N	13	14.95E	1216m		
	10.55	-	12.35	79	KLH		40	34.33N	13	07.90E	2638m		
	13.50	-	17.14	80	FS		40	34.14N	13	14.39E	1368m		
	17.38	-	19.52	81	DC		40	35.26N	13	14.26E	1970m		
	20.30	-	03.53	82	SB		Pro	ofil 48	-51				
	03.53											Abfahrt	Neapel
10.3.	08.30											Einlaufen	Neapel
							`	67 es 1					
11.3.	15.48											Auslaufen	Neapel
							1 1						
Vento	tene												
	21.25	-	00.28	83	FS		40	24.23N	13	11.80E	1460m		
12.3	01.01	-	03.02	84	DC		40	24.56N	13	12.54E	2105m		
	03.25	-	05.16	85	DC		40	22.83N	13	09.69E	2130m		

Zeit (Bordzeit)	Station	Koordinaten	Tiere Bemerkung
12.3. 06.25 - 07.21	86 KL	40 24.30N 13 08.54E	1486m
08.35 - 10.00	87 KL	40 25.72N 13 14.86E	2274m
10.45 - 11.12	88 MS	40 21.39N 13 17.44E	2617m
11.50 - 13.18	89 MS	40 21.52N 13 17.07E	2631m
13.33 - 15.08	90 KLH	40 21.22N 13 16.67E	2644m
16.05 - 17.32	91 MC	40 21.34N 13 17.43E	2616m
18.24 - 19.15	92 KL	40 24.03N 13 11.13E	1315m
19.55 - 05.44	93 SB	Profil 52-56	
13.3. 07.35 - 09.50	94 DC	40 24.78N 13 12.20E	2190m
10.30 - 13.40	95 DC	40 22.44N 13 12.42E	2125m
14.52 - 15.52	96 SR	40 26.78N 13 10.91E	2523m
16.30 - 17.56	×97 KL	40 24.29N 13 10.82E	1348m
Vavilov-Seamount			
14.3. 00.01 - 02.35	98 KLH	39 51.61N 12 31.77E	3173m
03.05 - 04.59	99 SR	39 54.29N 12 31.09E	3296m
05.30 - 05.55	100 MS	39 53.05N 12 30.98E	3245m
06.35 - 08.46	101 MS	39 53.01N 12 31.09E	3248m
09.52 - 11.48	102 FG	39 51.21N 12 36.72E	761m
12.00 - 12.24	103 MS	39 52.03N 12 36.22E	1148m
12.30 - 12.40	104 QSP	39 52.03N 12 36.22E	1148m
13.15 - 14.15	105 PP	39 52.03N 12 36.22E	1148m
14.44 - 16.55	106 DC	39 53.55N 12 35.08E	2360m
17.26 - 17.55	107 PP	Aufnahme 105 PP	
18.17 - 19.54	108 DC	39 53.37N 12 35.92E	1391m
20.35 - 21.42	109 MS	39 49.64N 12 35.57E	1415m
22.12 - 01.06	110 FS	39 51.54N 12 36.47E	929m
15.3. 01.40 - 03.30	111 DC	39 49.66N 12 36.00E	1443m
04.45 - 06.50	×112 KLH	39 48.73N 12 43.07E	3503m
07.20 - 09.20	×113 SR	39 51.52N 12.44.73E	3496m
09.26 - 12.20	¥114 SB	Profil 57-59	
13.06 - 15.05	×115 KLH	39 54.41N 12 31.14E	3306m
15.35 - 17.20	116 SR	39 51.25N 12 31.31E	3162m

Zeit (Bordzeit) Station Koordinaten Tiefe Bemerkung

15.3.	18.09	-	19.05	117	MS	39	54.33N	12	37.24E	1128m	
	18.54	-	20.57	118	MC	39	52.69N	12	36.87E	1250m	
	21.00	-	22.00	119	KL	39	52.48N	12	36.64E	1194m	
	22.50	-	01.00	120	DC	39	50.35N	12	36.24E	1375m	
			estels								
16.3.	01.32	-	03.55	121	DC	39	54.33N	12	37.02E	957m	
	04.32	-	06.06	122	DC	39	54.53N	12	37.61E	1520m	
	06.57	-	09.17	123	DC	39	56.24N	12	37.80E	1644m	
	10.07	-	14.50	124	FS	39	53.16N	12	36.59E	1036m	
	16.45	-	18.22	125	FG	39	50.62N	12	36.51N	1210m	
	18.53	-	19.21	126	MS	39	50.34N	12	35.60E	1365m	
	20.13	_	20.58	127	MC	39	50.07N	12	36.07E	1398m	

Magnaghi-Seamount

	21.00	-	14.09	128	SB	Pro	ofil 60.	-70			
17.3.	15.55	-	18.38	129	FS	39	53.61N	11	46.30E	1281m	
	19.18	-	21.11	×130	KLH	39	53.09N	11	42.51E	3051m	
	21.43	-	23.26	131	MS	39	54.59E	11	43.49E	2445m	
18.3.	00.01	-	01.00	132	MS	39	54.36E	11	46.11E	1550m	
	01.33	-	02.58	133	MS	39	54.43N	11	49.75E	2550m	
	03.25	-	04.45	×134	KL	39	55.69N	11	48.31E	2087m	
	05.49	-	06.55	135	KL	39	51.49N	11	45.20E	1826m	
	07.52	-	11.01	136	DC	39	52.10N	11	44.01E	2421m	
	11.49	-	13.33	137	DC	39.	54.72N	11	47.82E	2121m	
	14.08	-	00.00	138	SB	Pro	ofil 71-	-89			

Enareta- und Eolo-Seamount

19.3.	00.00	-	15.55	138	SB	Profil 71-89	
	16.08	-	17.18	139	MS	38 37.30N 14 02.78E 1760m	
	17.31	-	18.55	×140	KLH	38 37.40N 14 02.70E 1755m	
	19.32	-	20.00	141	MS	38 38.56N 14 00.06E 273m	

Zeit (Bordzeit)	Station	Koordinaten	Tiefe Bemerkung
19 3 20 20 - 20 30	142 VI	39 39 92N 13 50 06F	268m
19.3. 20.20 - 20.30	142 KL	30 30.02N 13 59.00E	200m
21.15 - 03.02	143 FS	38 38.62N 13 59.24E	577m
20.3. 03.07 - 04.58	\times 144 KLH	38 43.92N 14 03.33E	2598m
05.13 - 06.50	145 MS	38 44.21N 14 03.60E	2595m
07.47 - 08.40	146 DC	38 38.60N 14 00.36E	741m
08.48 - 09.50	147 DC	38 38.34N 14 00.97E	798m
10.23 - 12.29	148 DC	38 38.95N 13 58.78E	679m
11.46 - 13.35	149 DC	38 37.57N 14 00.21E	1260m
13.53 - 15.00	150 MS	38 36.60N 13 57.48E	1707m
15.19 - 16.20	×151 SR	38 36.71N 13 56.76E	1723m
17.38 - 18.09	152 MS	38 39.78N 13 58.63E	590m
18.35 - 08.04	153 SB	Profil 90-106	
21.3. 08.29 - 09.30	×154 KLH	38 32.49N 14 15.05E	1662m
09.45 - 10.14	155 MS	38 32.59N 14 14.96E	1345m
10.20 - 10.30	156 QSP	38 32.59N 14 14.96E	1345m
11.00 - 11.35	157 PP	38 31.11N 14 16.36E	1345m
12.25 - 14.16	158.1 DC	38 33.81N 14 13.17E	1211m
14.30 - 15.10	158.2 DC	38 33.86N 14 09.83E	927m
16.05 - 16.59	159 MS	38 30.88N 14 16.97E	1332m
17.45 - 18.00	160 PP	Aufnahme 157 PP	08.50 -08.62
19.06 - 21.03	161 SB	Profil 107-109	
20 55 - 00 55	162 FS	38 33 16N 14 11 54E	1263m
20.33 (00.33	1.51.256		
22 3 01 42 - 02 42	163 KLH	38 32 99N 14 12 38E	1262m
03 00 - 04 00	164 SR	38 34 43N 14 12 29F	1369m
04 12 - 05 09	165 CD	38 33 60N 14 13 20F	1365m
06.20 - 07.05	166 MC	38 33 89N 14 12 03F	1108m
07.56 - 09.36	167 MC	20 25 25N 14 12.03E	770m
07.58 - 08.58	160 MC	20 25 16N 14 00.97E	773m
08.32 - 09.33	160 PC	38 33.16N 14 07.06E	773m
10.29 - 11.36	120 DC	30 34.04N 14 07.39E	750m
12.00 - 13.24	170 DC	38 34.40N 14 09.90E	/SUM
14.03 - 15.12	171 DC	38 38.33N 14 07.56E	1200 m
16.00 - 17.20	172 DC	38 37.41N 14 09.10E	1000m
18.11 - 20.25	173 FG	38 39.12N 14 09.34E	1832m
20.42 - 22.02	174 SB	Profil 110-111	

Zeit (Bordzeit) Sta	tion	Koordina	ten	Tiefe	Bemerkung
22.3. 22.31 -	23.30 ×175	SR 38	33.72N 14	12.66E	1030m	
<u>Palinuro</u>						
23.3. 06.00 -	06.59 176	DC 39	32.46N 14	41.49E	720m	
07.24 -	08.20 177	DC 39	31.99N 14	41.04E	963m	
08.42 -	09.52 178	DC 39	33.08N 14	42.31E	965m	
10.35 -	11.10 179	MS 39	32.21N 14	42.31E	613m	
11.26 -	12.00 180	MC 39	32.55N 14	42.07E	626m	
13.00 -	15.00 181	FG 39	32.44N 14	42.06E	631m	
15.05 -	16.04 182	FG 39	32.28N 14	42.35E	593m	
16.54 -	17.37 ×183	KLH 39	32.73N 14	42.47E	634m	
17.55 -	18.28 184	SR 39	32.57N 14	42.21E	613m	
18.54 -	19.05 ×185	KL 39	32.68N 14	42.23E	644m	
19.21 -	20.03 ×186	KL 39	32.70N 14	41.67E	757m	
21.25 -	01.10 187	FS 39	28.73N 14	50.52E	299m	
24.3. 02.37 -	03.13 188	MS 39	29.38N 14	54.32E	671m	
04.25 -	04.43 189	MC 39	29.03N 14	53.81E	565m	
05.40 -	06.00 190	MC 39	29.88N 14	49.25E	100m	
06.50 -	08.02 191	DC 39	30.45N 14	53.55E	901m	
08.59 -	10.22 192	DC 39	29.73N 14	57.03E	1137m	
11.15 -	11.46 193	MS 39	29.61N 14	51.88E	713m	
11.51 -	12.02 194	QSP 39	30.39N 14	51.75E	713m	
12.43 -	13.23 195	PP 39	30.39N 14	51.75E	713m	22.7.01.42 -
15.14 -	15.33 196	KLH 39	20.28N 14	49.63E	90m	
15.46 -	15.55 197	SR '99	30.66N 14	49.84E	111m	
16.14 -	16.30 198	KL 39	29.62N 14	49.12E	85m	
17.15 -	17.29 199	PP Au	fnahme 195	PP		
20.09 -	20.47 200	DC 39	32.68N 14	42.69E	613m	
21.10 -	21.53 201	DC 39	32.42N 14	42.89E	700m	
23.15 -	23.55 202	DC 39	32.59N 14	43.03E	694m	
25.3. 01.30 -	02.06 203	DC 39	27.93N 14	50.80E	838m	DC mit 750m Kabel
						abgerissen
04.05 -	04.48 204	DC 39	28.01N 14	51.19E	638m	- 29 - 22 -

Zeit (Bor	dzei	.t)	Sta	tion		Koord	inat	ten	Tiefe	Bemerkung
25.3. 05.	32 -	06.50	205	DC	39	28.20N	14	59.86E	805m	
08.	21 -	08.44	206	MSA	39	32.71N	14	41.62E	674m	
09.	06 -	09.43	207	MSA	39	32.77N	14	42.36E	593m	
10.	20 -	11.17	208	FG	39	33.07N	14	43.14E	741m	
12.	58 -	14.26	209	FS	39	29.41N	14	57.34E	603m	
14.	27									Abfahrt Kalamata
27.3. 07.	00				0,8					Ankunft Kalamata
12.	00									Übergabe an das
										Inst. f. Geophys.
				22=119						
	1									
S.E.,										
				han f						
										Fahrzetti

5. FAHRTSTATISTIK

D. LASCHEK

Die Aufteilung des ersten Fahrtabschnittes der Fahrt SO 41 von Lima (17.1.86; 12.00) bis Kalamata (27.3.86; 12.00) ist in nachfolgender Tabelle und Abb. 1 dargestellt. Die Stationszeiten stammen aus Kap. 4..

<u>Gerät</u>		Zahl d	ier St	tatione	n	Z	<u>eit</u>	% d	er Gesamtzeit
	nEmrg.								60.81
FG	dint		9			12h	1min		0,73
FS			15			57h	56min		3,50
DC			54			109h	29min		6,61
KL			20			15h	22min		0,93
LH			13			19h	31min		1,18
MC			7			6h	55min		0,42
MS			40			79h	10min		4,78
MSA			13			14h	6min		0,85
PP			6			2h	23min		0,14
QSP			3				31min		0,03
SB			18			176h	8min		10,64
SR			9			11h	9min		0,67
									30,48

Lieq	ezei	ten:
_		

Lima		19h 50min	1,20
Panama	947 Shi 🔨 🖄	31h 10min	1,89
Neapel		135h 8min	8,16
Kalamata		5h	0,30
			11,55
			=====
Fahrzeit:		959h 59min	57,97
			Terrer Collar Tribal

Abb. 1: Graphische Aufteilung der Stationszeiten während des ersten Fahrtabschnitts der Fahrt SO 41.

Die Bisienshas willige mittele Krant Wasserschipter Hiller, Anklin Schöpfert. Burch den Knatt der Multisunde konnen folgende Paraester unsittelt wirdent. Druck, Temperatur, Luitfähligkaft, Tröburg, Ug-Gehalt und Jaltritat.
2. Gehalt und Jaltritat.
3. Berprüfung der anorgebenen Szuerstoffgehalte der Af Hurdon, mitteln genenaenen Saunratoffkoms, mit D. zu Gg/1 gegenüber den Af Hurdon, mitteln genenaenen Saunratoffkoms, mit D. zu Gg/1 gegenüber den Af Augeb die Station 1 die Sauerstoffsong und Saliritateden Versichter Bat Hultisande zu dienen zeitenstellen und Saliritateden Versichter Bat Multisande zu dienen zeitenstellen ein Hultische Versichter Bat gefült. 6. ANREICHERUNG VON SPURENELEMENTEN AUS MEERWASSER DURCH FLÜSSIG-FLÜSSIG EXTRAKTION

R. BAUMANN & H. PUCHELT

Zielsetzung

Ziel der Untersuchungen während des ersten Fahrtabschnittes der Fahrt SO 41 war es, entlang einer Traverse quer zum Mittelatlantischen Rücken Wasserproben von der Oberfläche bis hin zum Meeresboden zu nehmen.

Anhand dieser Proben sollte der Frage nachgegangen werden, inwieweit sich die Nähe des Mittelatlantischen Rückens auch in der Erhöhung bestimmter Spurenelemente in der Wassersäule ausdrückt. Dabei war in erster Linie an Spurenelemente gedacht, die in hydrothermalen Lösungen aktiver Rücken stark angereichert sind.

Außerdem sollte untersucht werden, wie sich die Konzentration dieser Elemente in der Wassersäule ändert und ob zwischen den Gehalten bestimmter Spurenelemente in Mn-Knollen und ihrer Konzentration in bodennahen Wasserschichten eine Beziehung besteht.

Zu diesem Zweck wurden die Elemente Co, Ni, Cu, Pb, Zn, Cd, Tl durch Flüssig-Flüssig-Extraktion angereichert und an Land gemessen. Gleichzeitig sollte damit festgestellt werden, ob diese analytisch aufwendige Methode unter Bordbedingungen sinnvoll eingesetzt werden kann.

. li Graphiache Atfinitung der Stationszeitan während des «

Probennahme

Die Probenahme erfolgte mittels Kranz-Wasserschöpfer (12x51 Niskin Schöpfer). Durch den Einsatz der Multisonde können folgende Parameter ermittelt werden: Druck, Temperatur, Leitfähigkeit, Trübung, 02-Gehalt und Salinität.

Zur Überprüfung der angegebenen Sauerstoffgehalte der MS wurden mittels Merck-Test-Standards externe O_2 -Messungen durchgeführt. Im Test lagen die gemessenen Sauerstoffkonz. mit 8,5mg $O_2/1$ gegenüber den MS-Angaben mit 21,9mg $O_2/1$ deutlich niedriger.

Somit wurde auf die Sauerstoffangaben der Multisonde verzichtet. Bei Station 17 MS sind die Temperatur- und Salinitätsdaten falsch, da die Multisonde zu diesem Zeitpunkt defekt war. Die Proben wurden in mit HNO₃gereinigte und zweimal mit Meerwasser gespülte Kunststofflaschen (PE) gefüllt. Ab Station 9 MS wurden die Froben direkt nach der Probenahme mit HNO₃ conc. suprapur angesäuert (pH 2,5) und vor der Spurenelementanreicherung über gereinigte 0,45 µm Zellulosenitrat-Membranfilter (durchgespült mit 11 0,01m HNO₃) mit Hilfe einer Vakuumfiltrationsapparatur (Sartorius SM 16309) filtriert. Die jeweils ersten beiden 100ml-Filtrate wurden verworfen.

Flüssig-Flüssig-Extraktion

Um ein Metallelement in ein organisches Medium extrahieren zu können, müssen seine Ionen zuerst in einen Komplex überführt werden (GRASSHOFF et al. 1983). Die meisten Metallelemente sind in der Lage stabile, neutrale und extrahierbare Komplexe mit einem oder mehreren Liganden, sog. Chelatbildnern zu bilden. Häufig benutzte Chelatreagenzien sind Pyrrolidin-Derivate der Dithiocarbamin-Säuren

Bei der hier durchgeführten Extraktion wurde eine Mischung aus gleichen Teilen aus APDC/DDDC benutzt. Es wurde im pH-Bereich zwischen 4-5 gearbeitet, der mit Hilfe eines Citratpuffers eingestellt wurde.

Als organische Phase wurde 1,1,2-Freon verwendet. Freon wurde wegen seiner rel. geringen Toxizität, seiner sehr geringen Löslichkeit in Wasser und nicht zuletzt wegen der kurzen Separationszeit der wässrigen Phase in Freon gewählt. Die anschließende Rückextraktion erfolgte mit HNO3 conc..

Reinigung der Reagenzien

Ammoniumpyrrolidin-1-dithiocarbaminat/Diethylammonium-N,N-diethyldithiocarbaminat (APDC/DDDC):

Die 2%-ige Lösung muß täglich frisch angesetzt (je 1g/50ml), durch Weißbandfilter abfiltriert und mit 2x20ml Freon extrahiert werden, um vorhandene, unlösliche Bestandteile einiger Carbaminate zu entfernen. Die Lösung muß bei 0-6° C aufbewahrt werden.

Di-Ammoniumhydrogencitrat 20%-ig (Puffer):

Für looml Puffer müssen 2 Extraktionsabläufe durchgeführt werden: 100ml Pufferlsg. + 1ml ger. APDC/DDDC 20%-ig + 20ml Freon ausschütteln, die org. Phase verwerfen und mit weiteren 10ml Freon noch einmal ausschütteln. Ablauf wiederholen.

Es wurden Chemikalien der Fa. Merck (p.A. Qualität) verwendet.

Extraktionsdurchführung

1000ml angesäuertes, (HNO₃ pH 2,5) filtriertes Meerwasser wird in zwei 500ml Teflon-Scheidetrichter (I + II) zu gleichen Teilen gegeben. Alle weiteren Angaben beziehen sich auf einen Scheidetrichter:

Zugabe von 2,5ml Citratpuffer 20%-ig, von Hand kurz schütteln. Da die Probe angesäuert wird, muß nun mit NH_3 conc.(500µl/500ml) ein pH-Wert von 4,5 eingestellt werden. Auch hier ist nach der Zugabe kurz von Hand zu schütteln.

Danach werden hintereinander 1,5ml APDC/DDDC und 20ml Freon zugegeben und 2 Min. auf der Schüttelmaschine geschüttelt.

Nach der Phasentrennung wird die untere Freonphase in einen 125ml Scheidetrichter abgelassen. Der Freonextrakt soll frei von Meerwasser sein. Weitere 10ml Freon werden in den 500ml Scheidetrichter gegeben und nochmals 2 Min. geschüttelt. Nach einer Separationszeit von 5-10 Min. werden beide Freonextrakte im 125ml Scheidetrichter vereinigt. Um die Metallcarbaminate zu zerstören, gibt man 1ml HNO3 conc. suprapur zu, schüttelt 2 Min. und läßt das Ganze 15 Min. stehen. Nach Zugabe von 6ml Bidest und einer Schüttelzeit von 2 Min. erhält man eine vollständige Rückextraktion. Nach der Separation wird die untere Phase (Freonphase) verworfen. Die saure Phase (7ml) enthält die zurückextrahierten Metalle. Der Extrakt wird in einen Teflonbecher (30ml) abgelassen, der Scheidetrichter wird mit 1m HNO3 suprapur gespült (1x500µl, 2x1ml und 1x500µl).

Extrakt I + II und Spüllösung werden bei 100-130° C auf dem Sandbad zur Trockene eingedampft. Die Teflonbecher werden mit Parafilm verschlossen

Terrach anderatel

Probenverarbeitung und Auswertung

Die Weiterverarbeitung erfolgt am Institut für Petrographie und Geochemie, Uni Karlsruhe.

Hier wird der eingedampfte Extraktionsrückstand quantitativ in ein bestimmtes Volumen (1 oder 2ml) überführt. Bei 1000ml Probeneinsatz und nach Aufnahme in ein 2ml Kölbchen erhält man einen Anreicherungsfaktor von 500.

Für die geringe Ausgangskonzentration der zu untersuchenden Elemente

(ppt-Bereich) können damit gute Meßbedingungen für die flammenlose AAS mit Graphitrohrtechnik geschaffen werden.

Die Messung erfolgt bei Matrixanwesenheit nach dem Additionsverfahren. Standard-Simultan-Bestimmungen (wässrige und rückextrahierte Standards) werden durchgeführt, um sicher zu gehen, daß Meersalze nicht mitextrahiert werden und somit in die Endlösung gelangen.

Salzinterferenzen bringen Schwierigkeiten bei einigen Spurenelementbestimmungen.

Blindwerte erhält man durch sorgfältig durchgeführte Parallelextraktionen (pro Station ein Blindwert).

Die Wiederfindungsraten für die Elemente Cd, Co, Cu, Ni, Pb u. Zn bei dieser Anreicherungsmethode liegen lt. Literatur (DANIELSSON et al. 1978) zwischen 90-100%.

Ergebnisse

Bis zur Berichtserstellung wurden drei ausgewählte Profile (3 MS, 11 MS und 15 MS) auf die Spurenelemente Pb, Cd und Tl hin untersucht, um einerseits vertikale Konzentrationsänderungen als auch mögliche Veränderungen in Richtung auf den Mittelatlantischen Rücken festzustellen. Die Ergebnisse sind in Tab. 1 zusammengestellt.

Generell läßt sich sagen, daß die Methode trotz ungünstiger Laborbedingungen an Bord zu Ergebnissen führt, die innerhalb einer Meßserie signifikante und reproduzierbare Unterschiede erkennen läßt. Selbst eine erkennbare, systematische Beeinflussung der Meßwerte z.B. durch den Schiffskörper knapp unter der Wasseroberfläche ist nicht zu beobachten. Es wurden folgende Ergebnisse festgestellt:

- Für alle untersuchten Elemente ist kein Unterschied in Abhängigkeit zur Entfernung zum Mittelatlantischen Rücken festzustellen. Selbst in geringer Entfernung vom aktiven Rücken ist die Verdünnung so hoch, daß man eine Erhöhung der in den Hydrothermen angereicherten Elemente wie z.B. Tl nicht mehr nachweisen kann. Dies ist nur in unmittelbarer Bodennähe (cm-Bereich, s. Untersuchung der MC-Proben, Ber. Karbe) oder in der Nähe von hydrothermalen Austrittsstellen (s. eigene Wasseruntersuchungen So 40) der Fall.
- Tl zeigt weder einen horizontalen noch vertikalen Gradienten, die Werte liegen mit 2-25 ppt alle im Bereich, der auch in der Literatur für Meerwasser angegeben wird (MATTEWS & RILEY 1970, MCGOLDRICK et
| <u>Tiefe</u> | | <u>3 MS</u> | | andres | <u>11 M</u> | <u>s</u> | | <u>15 M</u> | <u>s</u> |
|--------------|--------------|-------------|----------------------|------------|-------------|-----------------|------|-------------|----------|
| [dbar] | РЬ | Cd | Tl | Рb | Cđ | Tl | РЬ | Cd | 10
T1 |
| | dota | [ppt] | abus briv
ah Bish | ins lug in | [ppt] | unations
and | | [ppt] | |
| 10 | 204 | 5,1 | 12,2 | 64 | 0,6 | 8,6 | 56 | 0,5 | 18,0 |
| 20 | - | - | 1.0 | 36 | 4,9 | 2,6 | 20 | 0,0 | 16,6 |
| 50 | 78 | 0,8 | 13,4 | 16 | 0,7 | 5,2 | 12 | 1,4 | 17,0 |
| 100 | 100 | 7,0 | 13,2 | 30 | 0,0 | 7,4 | 64 | 0,5 | 18,8 |
| 200 | 0 | 0,0 | 12,4 | 142 | 2,2 | 8,6 | 24 | 1,8 | 18,2 |
| 300 | 80 | 4,5 | 13,0 | 140 | 2,3 | 4,4 | 98 | 3,9 | 16,0 |
| 500 | 30 | 12,6 | 3,8 | 134 | 6,1 | 3,6 | 28 | 6,5 | 24,4 |
| 800 | 162 | 52,4 | 16,8 | 52 | 14,0 | 7,4 | 202 | 17,7 | 21,8 |
| 1000 | 18 | 57,2 | 20,4 | 46 | 19,1 | 8,6 | 2260 | 28,4 | 23,0 |
| 2000 | 22 | 37,5 | 10,4 | 186 | 15,1 | 2,2 | - | - | - |
| 2200 | 200 | 1.1.5 | | - | - | 1.17 | 52 | 14,7 | 24,6 |
| 3000 | 140 | 59,2 | 14,4 | 48 | 12,5 | 4,4 | 32 | 16,0 | 28,8 |
| 3280 | - | | - | - | | - | 0 | 7,1 | 19,2 |
| 3310 | - | - | | - | 7.1 | - | 748 | 19,4 | 22,6 |
| 3320*) | - | | - 18 - 67 | | - | - | 286 | 14,2 | 22,6 |
| 3500 | | | Sec. 2 | 708 | 19,1 | 5,8 | | - | - |
| 4140 | | 1.0.7 | -1.1 | 42 | 17,3 | 9,0 | - | | - |
| 4180 | - | | K | 84 | 21,1 | 8,2 | - | - | |
| 4210 | in the later | 110 - 11 | - | 0 | 19,9 | 2,2 | - | Sec | 0-0 |
| 4230*) | - | 14.65 | dovrati and | 142 | 19,1 | 2,6 | | - | - |
| 4500 | 72 | 44,9 | 11,8 | - | | - | | -265 | |

*) entspricht 10m über Grund

Standardabweichung	Stationen:	Blindwerte:
der AAS-Messung:		

Pb	S _{rel} .	=	±	2,7%	3	MS:	960	Sm	w	von	15	MS	72	ppt	Pb;	4,7	ppt	Cd
Cd	S _{rel} .	=	±	3,6%	11	MS:	180	Sm	W	von	15	MS	60	ppt	Pb;	3,5	ppt	Cd
Tl	S _{rel} .	=	±	3,8%	15	MS:	Mitt	ela	at	l. Ri	ick	en	52	ppt	Pb;	2,6	ppt	Cd

Tab. 1: Ergebnisse der Wasserprofiluntersuchungen während der Atlantiküberfahrt SO 41 (HYMAS I)

- 3. Pb zeigt in allen Profilen die stärkste Streuung, so daß nur anhand einer Meßserie und nicht über den Einzelwert eine Aussage gemacht werden kann. Es deutet sich in allen Profilen eine leichte Abnahme der Pb-Konzentration in den obersten 200m an. Die Meßwerte lassen sich mit den Literaturdaten vergleichen.
- 4. Cd zeigt die besten Ergebnisse. In allen drei Profilen läßt sich eine deutliche Abnahme der Cd-Gehalte von ca. 20 ppt auf Werte < 5 ppt in den ersten 500m der Wassersäule beobachten, die auf den Einbau des Cd in organisches Material zurückzuführen ist.
- Bei Pb und Cd schwankten die einzelnen Blindwerte in den Serien bzw. Profilen. Jeweils die niedrigsten Meßwerte wurden als Blindwerte genommen und von allen weiteren Werten abgezogen.

Eine Erklärung für die hohen Blindwerte kann zur Zeit nicht gegeben werden, möglicherweise ist dies auch auf eine statistisch noch nicht abgesicherte Zahl von Blindmeßwerten zurückzuführen.

Auf jeden Fall wird die Aussagekraft der Cd-Messungen (Abnahme nach oben) unserer Meinung dadurch nicht beeinflußt.

Schlußbetrachtung

Die Spurenelementanreicherung wurde an Bord in einem Durchgangslabor durchgeführt, das für solche empfindlichen Arbeiten nicht unbedingt geeignet ist. Trotzdem zeigte sich, daß bei sorgfältigem Arbeiten die Extraktion durchaus vernünftige Werte liefert; eine einseitige systematische Beeinflussung der Meßwerte (z.B. durch den Schiffskörper) wurde nicht festgestellt.

Die Untersuchung von drei Profilen mit unterschiedlicher Entfernung zum Mittelatlantischen Rücken auf ausgewählte Spurenelemente (Pb, Cd, Tl) erbrachte keine Abhängigkeit dieser Elemente zur geographischen Lage. Vertikal zeigt sich für Tl keine, für Pb eine leichte und für Cd eine deutliche, signifikante Abnahme in den obersten 500m der Wassersäule.

Zur praktischen Durchführung ist zu sagen, daß die Extraktionsmethode äußerst zeit- und arbeitsintensiv ist und bei täglichem Einsatz der Multisonde nur mit zwei Personen zu bewerkstelligen ist. Ebenso ist der notwendige Geräte- und Laborbedarf sehr hoch. Es wäre daher zu über-

- 35 -

legen, ob weitere Anreicherungen an Bord nicht mit einer anderen Methode durchgeführt werden sollten, wie z. B. mit CHELEX 100-Harz in Austauschersäulen und anschließender Elution mit HNO₃ (RASMUSSEN, 1981).

- The Comparison of the Annahara 2000 and 110 Mallements 14

Literatur

it's dealer .

- DANIELSSON, L.-G., MAGNUSSON, B. & WESTERLUND, S. (1978): An improved metal extraction procedure for the determination of trace metals in seawater by atomic adsorption spectrometry with elektrothermal atomisation. - Anal. Chim. Acta, <u>98</u>, 47-57.
- GRASSHOFF, EHRHARDT & KREMLING (1983): Methods of seawater analysis.-Verlag Chemie, Weinheim.
- MATTHEWS, A.D. & RILEY, J.P. (1970): The occurence of thallium in seawater and marine sediments. - Chem. Geol., <u>6</u>, 149-152.
- MCGOLDRICK, P.J., KEAYS, R.R. & SCOTT, B.B. (1979): Thallium a sensative indicator of rock/seawater interaction and of sulfur saturation of silicate melts. - Geochim. Cosmochim. Acta, <u>43</u>, 1301-1311.
- RASMUSSEN, L. (1981): Determination of trace metals in seawater by chelex 100 or solvent extraktion technique and atomic absorption spectrometry. - Anal. Chim. Acta, <u>125</u>, 117-130.

STURGEON, R.E., BERMAN, S.S., DESAULNIERS, A. & RUSSEL, D.S. (1979): Preconcentration of trace metals from seawater for determination by graphite furnace atomic absorption spectrometry.- Talanta, <u>27</u>, 85-94.

 Vertiki zeldt sich für 11 keine, für 25 eine leichte und für 06 eine deutlicher signifikants Absahme in den obersten 500e der Vaserfähle i tel 2 deutlicher signifikants Absahme in den obersten 500e der Vaserfähle i zeit 2 der praktischen Durchtühring ist is sagen, dab die Extraktionsmethode Bußerst seit und arheiteintenety ist und mei fägliches Einestz der signifikannde zur sit zent Forsonen zu bewerzeinligen ist. Ebenen ist der totwondtje Geröter und Laborbedarf meht hach. Es wire daher zu 16er-

7. UNTERSUCHUNG VON MANGANKRUSTEN

D. ECKHARDT

Einleitung und Zielsetzung

Anhand eines Profiles ungefähr senkrecht zum Streichen des Mittelatlantischen Rückens (MAR) sollen Manganknollen bzw. -krusten untersucht werden. Änderungen in der Zusammensetzung der Haupt- und besonders der Spurenelemente, die möglicherweise einen Gradienten zum MAR bilden, sind herauszuarbeiten. Die Untersuchungen an Bord mit RFA und ergänzend mit RDA sollen zunächst einen Überblick liefern, um später in den Labors der Uni Karlsruhe überprüft, erweitert und ausgewertet zu werden.

Zusätzlich zu diesen Untersuchungen sollen eventuelle Zusammenhänge zwischen dem Inhalt des Meerwassers und der Zusammensetzung der Manganknollen und -krusten festgestellt werden. Für diesen Zweck war vorgesehen, an den Dredge-Stationen ein Wasserprobenprofil zu nehmen, das am Grund verdichtet ist und bis zum Meeresspiegel reicht. Die Wasserproben wurden an Bord konzentriert, um in den Labors in Karlsruhe analysiert zu werden (s. Ber. R.Baumann).

Probennahme

Das für Beprobung auf Manganknollen höffige Gebiet wurde anhand von Literaturdaten festgelegt. Hierbei zeigte sich, daß der Atlantik im Vergleich zum Pazifik wesentlich lückenhafter untersucht ist, und man sich auf nur wenige Angaben über Vorkommen von Manganknollen stützen muß. Es zeigte sich aber auch, daß große geschlossene Felder von Manganknollen nicht zu erwarten sind und meist die Belegungsdichte des Bodens geringer ist als in entsprechenden Vorkommen des Pazifiks. Aus den gewonnenen Daten wurde ein Profil senkrecht zum MAR festgelegt, auf dem Hoffnung bestand, Manganknollen dredgen zu können. Das gut 2500 km lange Profil wurde bei 62° W begonnen und endete planmäßig bei 40° W, es folgte mit leichter Nordabweichung dem 25. Breitengrad N (s. Tab. 1 und Abb. 1). Aufgrund der nur begrenzt zur Verfügung stehenden Stationszeit mußte die Anzahl der Dredgezüge auf maximal 10 begrenzt werden, so daß die Distanz der Stationen bei knapp 300 km liegt.

Sta	ation	An	fang						End	de						
1	DC	25	10.14	N	1	62	41.31	W	25	10.45	N	1	62	43.07	W	
4	DC	25	21.64	N	1	60	05.28	W	25	21.31	N	1	60	00.77	W	
5	DC	26	31.03	N	1	59	52.38	W	26	37.07	N	1	59	56.59	W	
6	DC	26	19.88	N	1	57	20.17	W	26	26.38	N	1	57	14.65	W	
8	DC	25	41.56	N	1	50	59.39	W	25	42.93	N	1	50	57.40	W	
10	DC and	26	50.35	N	1	47	55.76	W	26	51.89	N	1	47	53.70	W	
13	DC	27	10.00	N	1	45	39.96	W	27	10.15	N	1	45	37.50	W	
14	DC	27	26.00	N	1	44	43.88	W	27	26.81	N	1	44	50.06	W	
16	DC	27	44.94	N	1	40	18.79	W	27	46.27	N	1	40	18.84	W	

Tab. 1: Positionen (unkorrigiert) der Dredgezüge. Die Koordinaten beziehen sich auf die erste und letzte Bodenberührung der Dredge.

Die Probennahme erfolgte anfänglich in Bereichen ebenen, mit Sediment bedeckten Meeresbodens mit der großen Kettendredge (DC). Näher zum MAR, wo stärkeres Relief zu erwarten war, wurde auf eine kleinere DC umgerüstet. Tab. 2 gibt einen Überblick über das gewonnene Probenmaterial während der Atlantiküberfahrt.

1 DC: am Boden, aber leer.

4 DC: am Boden, aber leer.

5 DC: am Boden, aber leer.

6 DC: am Boden, aber leer.

8 DC: 1 Stück knotige Mangankruste, 30x20x15 cm.

10 DC: am Boden, aber leer.

13 DC: 1 Stück zersetzter Basalt mit knotiger Mangankruste,

60x40x30 cm. delbachupeled with inter boy bais deltarts as inclu-

14 DC: Dredge ca.1/4 gefüllt. Hangschutt, Stücke meist 15x15x10 cm. Der Basalt ist weitgehend alteriert und z.T. mit 1 – 5 mm dicker knotiger Mangankruste belegt. Außerdem einige Karbonatkonkretionen, löchrig, mürbe, 5x5x5 cm.

16 DC: 3 Stücke alterierter Basalt, 15x10x10 cm außen teilweise glasig ausgebildet und z.T mit dünner Mangankruste belegt.

Tab. 2: Ausbeute der Dredgezüge

Arbeiten im Bordlabor

Zunächst wurden für Untersuchungen mit der RFA bereits vorhandene Meßprogramme bzw. Software für die Hauptelementanalyse an den Mangankrusten modifiziert.

Als Probenmaterial diente die von den Basaltstücken entfernte mm-dicke Mangankruste. Bei der 15 cm dicken massiven Mangankruste K 1, an der deutlich die 6-15 Ma Diskontuinität erkennbar ist, wurden die Schichten getrennt und zu einzelnen Proben verarbeitet. Folgende Proben wurden bereits an Bord analysiert:

8 DC: K1 < 6 Ma , K1 6 - 15 Ma , K1 > 15 Ma 13 DC: K2 14 DC: K5

Nach gründlicher Wässerung und Trocknung wurden die Proben mit der Scheibenschwingmühle zerkleinert, dem so gewonnenen Pulver wurde für die Herstellung der Preßtabletten 8-10 Tropfen Mowiollösung (2.5%) zugesetzt. Die Erstellung von exakten Eichgeraden bereitete Schwierigkeiten, da reine Manganknollen-Standards für die Haupt- und Spurenelelementanalyse nicht in ausreichendem Maße vorhanden waren. Die Untersuchungen mußten auf die Hauptelemente beschränkt werden.

Die in Tab. 3 dargestellten Untersuchungsergebnisse weisen vermutlich Ungenauigkeiten um 10% auf (genaue Überprüfung erfolgt zu Hause), einerseits aufgrund der oben erwähnten Problematik der Eichung, zum anderen bietet eine RFA an Bord eines Schiffes längst nicht die notwendige Gerätekonstanz. Trotz guten Wartungszustandes kam es mehrfach zu Unregelmäßigkeiten wie starken Intensitätsschwankungen, die auch über Monitorproben nicht auszuschalten waren. Mehrfach traten auch Defekte an den Geräten auf. Weiterhin ist es notwendig, Justierungen (z.B Hochspannung der Detektoren) regelmäßig zu überprüfen und nachzueichen.

	K1 <6 Ma	K1 6-15 Ma	K1 > 15 Ma	K2	K5	
MgO	2.5	2.6	1.9	2.6	4.6	
A1203	3.9	4.1	3.3	3.6	3.4	
Si02	10.2	9.6	7.7	6.8	5.7	
CaO	1.4	1.0	1.0	4.1	11.5	
Ti02	0.6	0.5	0.5	0.9	0.8	
MnO	22.3	17.7	17.3	17.7	13.8	
Fe-tot	28.6	33.2	35.8	23.4	22.8	

Tab. 3: Ergebnisse der Bord-RFA. Angaben in Gew.%.

Zusätzlich wurden Diffraktometeraufnahmen sowohl an Fe/Mn-Krusten als auch an verschieden stark alterierten Basalten sowie Sedimenten durchgeführt. Bei den Mangankrusten zeigte sich ein Vorherrschen röntgenamorpher oder schlecht kristallisierter Minerale, die röntgenographisch nicht eindeutig identifiziert werden konnten. Aufgrund der – mit der RFA ermittelten – hohen Fe-Gehalte handelt es sich wahrscheinlich um Fe/Mn-Hydroxide.

Die is für für Generation internationingegenergeliefen vonnen versionen versionen versionen versionen versionen erenden er

- 40 -

8.1. QUANTITATIVE BESTIMMUNG GELÖSTEN ORGANISCHEN KOHLENSTOFFS (DOC) IM MEERWASSER

awhit Si-Niskin-Newserschüpfern (Nystrobies)

T. REEMTSMA

Grundlagen

Der in Wässern vorhandene organische Kohlenstoff wird unterteilt in gelösten organischen Kohlenstoff (DOC) und partikulären organischen Kohlenstoff (POC). Die aus der Praxis stammende Unterscheidung trennt diese beiden Fraktionen wie folgt: die durch einen Filter von 0.4 bis 1.0 µm hindurchtretenden Kohlenstoffverbindungen repräsentieren den gelösten organischen Kohlenstoff, der Filterkuchen den partikulären organischen Kohlenstoff. Dabei macht der DOC gewöhnlich 80-95% des Gesamtkohlenstoffs (TOC) aus.

Der DOC der Ozeane stellt nach den Porenwässern der Sedimente das zweitgrößte Kohlenstoff-Reservoir der Erde dar, auch wenn die Konzentration mit ca. 0.7 mg/l recht niedrig ist (DEGENS & ITTEKKOT 1983). Da die Hauptquelle des DOC das Phytoplankton ist, folgt die vertikale Verteilung des DOC der mikrobiologischen Aktivität. Die Konzentration im Oberflächenwasser bis 300 m beträgt 0.7 bis 2.0 mgC/l, darunter ca. 0.5 mgC/l (MOPPER & DEGENS 1979; SKOPINTSEV 1981). Die gemessenen Absolutwerte des DOC sind stark abhängig von der analytischen Methode (naßchemische Oxidation, naße Hochtemperaturverbrennung, trockene Verbrennung, Photo-Oxidation).

Die weitgehende Konstanz des DOC-Gehaltes im Tiefseewasser ist Folge der geringen mikrobiologischen Aktivität und physikalischer Durchmischung.

zeltlichen Anstand von senhe Stunden gezogen, van alser Inflernung <u>Ziel</u> Prosenpinkte van 100 bis 120 km entepricht. So kamen rund 93 Pros

Es sollte sowohl der Gehalt an DOC des Oberflächenwassers entlang der Fahrtroute quer über den Atlantik bestimmt werden, als auch an den vom Institut für Petrographie und Geochemie der Universität Karlsruhe ausgewählten Stationen quer zum Mittelatlantischen Rücken das vertikale Konzentrationsprofil aufgenommen werden.

Probenahme

Zur Wasserentnahme an den Tiefenprofilen kam ein Kranzwasserschöpfer mit zwölf 51-Niskin-Wasserschöpfern (Hydrobios, Kiel) kombiniert mit einer Multisonde (ME, Kiel) zum Einsatz.

Es wurde auf eine hohe Auflösung im Bereich der Thermokline Wert gelegt. Wiewohl die von der Multisonde gelieferten hydrographischen Daten recht unsicher waren, ließ sich doch die untere Grenze der Thermokline deutlich erkennen (i.a. 800 m). Bis zu dieser Tiefe wurden acht Proben genommen (10, 20, 50, 100, 200, 300, 500, 800 dbar), desweiteren bei 1000, 2000, 3000 und 4000 (bzw. 10 m über Grund) dbar.

Die Proben wurden in vorher säuregespülte, dann zweifach mit Probenwasser gereinigte PE-Flaschen abgefüllt und anschließend weiterverarbeitet. Insgesamt wurden acht Profile an folgenden Positionen beprobt:

Stat	tion	Ko	ordinater	1		<u>Tiefe</u>	1
2	MS	25	10.22N	62	42.10W	5813	m
3	MS	25	23.00N	60	12.45W	5586	m
7	MS	25	29.58N	54	39.95W	5972	m
9	MS	25	43.03N	50	57.11W	4968	m
11	MS	26	51.85N	47	53.86W	4136	m
12	MS	27	09.85N	45	39.92W	3676	m
15	MS	27	27.87N	44	45.89W	3267	m
17	MS	27	46.74N	40	19.41W	4531	m

wordd iwl iasrnwaesinii mi

Die Proben des Oberflächenwassers wurden mit einer Schlagpütz in einem zeitlichen Abstand von sechs Stunden gezogen, was einer Entfernung der Probenpunkte von 100 bis 120 km entspricht. So kamen rund 90 Proben zustande. Auch diese Proben wurden sofort aufgearbeitet.

Aufarbeitung der Proben

Die Proben wurden auf einer Keramikfritte über ausgeglühte Glasfaserfilter filtriert (Saugleistung 200 ml/min). 50 ml des Filtrats wurden in eine ausgeglühte Ampulle gefüllt, mit zwei Tropfen einer kalt gesättigten Quecksilber(II)chlorid-Lösung versetzt und zugeschmolzen.

Analytik

Die Bestimmung des DOC-Gehalts erfolgt im Labor. Sie geschieht infrarotspektrometrisch anhand des durch Photooxidation (UV-Bestrahlung, 60°C) der organischen Verbindungen erhaltenen Kohlenstoffdioxids. Die Methode ist außerordentlich empfindlich, so daß nur wenige Milliliter der Probe benötigt werden. Außerdem kann auch bei sehr geringen Gehalten an DOC der die Oxidation beeinträchtigende hohe Salzgehalt durch Verdünnung herabgesetzt werden.

Literatur

- DEGENS, E.T. & ITTEKKOT, V.: Dissolved Organic Carbon An Overview.- In Mitt.Geol.-Paläont.Inst., Univ. Hamburg, SCOPE/UNEP 55, 21-38, 1983.
- MOPPER, K. & DEGENS, E.T.: Organic carbon in the ocean: nature and cycling.- In "The Global Carbon Cycle" (Eds. B. BOLIN, E.T. DEGENS, S. KEMPE & P. KEPNER), SCOPE-Report 13, 293-318, John Wiley and Sons, Chichester, 1979.
- SKOPINTSEV, B.A.: Decomposition of organic matter of plankton, humification and hydrolysis.- In "Marine Organic Chemistry" (Eds. E.K. DUURSMA & R. DAWSON), Elsevier Oceanography Series, 13, 125-414, Amsterdam, 1981.

Problemente of Mariadan (a) Schwerpunkte der Krower lagen an ingenint seche Sepreten, Goon die (b) Schwerpunkte der Krower lagen an ingenint seche Sepreten, Goolgentyne, (c) The Peniettinen o soler geste Gerarien oping twinden. Sollentyproom (c) And Peniettinen Gotteten wird in Sweiten Seinrichschnicht gesonen (c) And eiler Starfonen ein Seriefte von Nonserprobal wirden GF gistfinervor (c) Therefore Proban objordility die an Sordiette Highlig finter: wieden Sta (c) Therefore Container, des Schalten in Sordiette Organization Sta (c) Therefore Container, des Schalten in Sordiette Organization Sta (c) Therefore (c) Schwerzen (c) Schalten in Sordiette Organization (c) States (c)

- 43 -

8.2. ORGANISCHE BIOGEOCHEMIE

A. JENISCH

<u>Obersicht</u>

Da die Planung der geochemischen Untersuchungen im Rahmen der Forschungsfahrt SO 41 (HYMAS I) auf das Rote Meer ausgelegt waren, ein Einsatz in diesem Gebiet aber nicht möglich war, mußte auf das Tyrrhenische Meer ausgewichen werden. Die Genehmigungen für Arbeiten in Teilbereichen des Mittelmeeres wurden z.T. erst während der laufenden Fahrt erteilt, so daß das Programm kurzfristig umgestellt werden mußte.

Aufbauend auf den während der Meteor-50 Fahrt gewonnenen Ergebnissen sollte durch Beprobung des Tyrrhenischen Meeres eine Modellierung der Sedimentationsprozeße und der Diagenese des organischen Materials erfolgen.

Es bestand die Hoffnung, im Tyrrhenischen Meer hydrothermal beeinflußte Sedimente zu finden. Besonders an rezent bis subrezent tätigen Seamounts wurde nach kleineren Tiefgebieten und Senken gesucht, die unter Umständen nicht nur im Sediment sondern auch in der überlagernden Wassersäule Anzeichen hydrothermaler Aktivität aufweisen.

Andererseits wurde nach tiefliegenden Bereichen gesucht, in denen anoxische oder zumindest reduzierende Bedingungen eine gute Konservierung organischer Materie ermöglichen.

Neben diesem Vorhaben wurde während der Fahrt versucht, das Tyrrhenische Meer mit einem engmaschigen Netz von biologischen, hydrographischen und organisch-geochemischen Daten zu belegen.

Probennahme und Methoden

Die Schwerpunkte der Arbeit lagen an insgesamt sechs Seamounts, über die für die Wasserchemie meist zwei Traversen gelegt wurden. Sedimentproben konnten aus diesen Gebieten erst im zweiten Fahrtabschnitt gewonnen werden.

A service of the serv

1. Wassersäule:

Auf allen Stationen mit Entnahme von Wasserproben wurden GFF-glasfasergefiltrierte Proben abgefüllt, die an Bord mit HgCl₂ fixiert wurden. Sie dienen der Bestimmung des Gehaltes an gelöster organischer Substanz (DOC). Insgesamt sind 326 DOC-Proben von 44 Vertikalprofilen mit der Multisonde und von 8 Multicorereinsätzen genommen worden. Die Analyse dieser Proben erfolgt in Hamburg mit einem Carlo Erba Total Carbon Monitor Model 400. Die Methode beinhaltet eine Hochtemperaturverbrennung der flüssigen Probe. Das dabei freigewordene Kohlendioxid wird katalytisch zu Methan reduziert und von einem Flammenionisationsdetektor quantifiziert. Erste Meßdaten sind aus der Anlage ersichtlich (s. Tab. 2 u. Abb. 1-10). Außerdem sind vier großvolumige Schwebstoffproben gewonnen worden. Sie wurden über vorgeglühte GFF-Whattmanfilter filtriert, mit Bidest. entsalzt und bei 40°C getrocknet. Im Labor des GPI können damit durch organisch-geochemische Untersuchungen anhand von Biomarkern, wie z.B. Sterolen, Aussagen über die Herkunft des organischen Materials gemacht werden. Ebenso können über Aminosäure- und Zuckeranalysen die in der Wassersäule vorhandenen Organismengruppen charakterisiert werden.

Als Beitrag zur Erstellung allgemeiner hydrographischer und hydrochemischer Daten wurden die Alkalinität, der pH-Wert wie auch das Redoxpotential bestimmt. Die Messungen von pH- und Eh-Werten erfolgt nach Dreipunkteichungen gegen temperierte Präzisionsstandards der Firma Merck. Diese beiden Parameter liegen von jeder Probe vor (s. Anhang). An ausgewählten Proben wurde die Alkalinität in leicht modifizierter Form nach der Methode von Gripenberg (GRASSHOFF 1983) jeweils doppelt bestimmt. Dazu wurden 100ml der Probe mit 30ml einer 0,01n Salzsäure versetzt und anschließend ca. 5 Minuten gekocht, um im Meerwasser gelöstes CO2 zu entfernen. Nach Abkühlung auf 20° bis 25°C erfolgte die Rücktitration mit 0,36n Natronlauge. Der Endpunkt der Titration wurde durch Farbumschlag von Bromthymolblau bestimmt bzw. mit einer pH-Sonde gemessen. Nach dieser Methode ist bei 50 Proben vorgegangen worden. Die gewonnenen Resultate sind in Tab. 1 zusammengefaßt.

2. Sedimente:

Für organisch-geochemische Analysen sind von den insgesamt 24 Sedimentund 8 Multicorerstationen 75 Proben genommen worden. Sie wurden auf dem Schiff kühl gelagert und liegen jetzt in Hamburg tiefgefroren für die Charakterisierung der organischen Substanzen vor. Besonders die Proben aus dem anoxischen Becken (181FG, 182FG, 183KLH) sind vermutlich wegen ihrer relativ hohen organischen Gehalte von besonderem Interesse. Ebenso sollen die Pteropodenschichten auf ihre organische Zusammensetzung näher untersucht werden. Außerdem dürften die gedredgten Massivsulfide ein interessantes Vergleichsmaterial zu den Sulfiden des Kebrit-Tiefs darstellen.

Bei dem größten Teil der Proben handelt es sich um junge Sedimente, an

- 45 -

denen frühdiagenetische Prozesse zu untersuchen wären, besonders im Hinblick auf Vorgänge der bakteriellen Degradation und Dekomposition, als auch Kondensationserscheinungen des Protokerogens. Außerdem sollen Lösungserscheinungen, die an frühdiagenetischen Sedimenten auftreten, untersucht werden. Anhand der Massivsulfide könnten unter Umständen Prozesse hydrothermaler Alterierungen der organischen Substanz studiert wie auch Transportmechanismen erkannt werden. Für diese Untersuchungen werden Zucker- und Aminosäurespektren wie auch Lipidanalysen herangezogen. Einige Substanzen können als Biomarker für Quellen des C_{org} benutzt werden. Andere Markersubstanzen können Indikatoren für diagenetische Reife sein, die gerade im Zusammenhang mit hydrothermaler Aktivität interessant sein dürften.

Für die Bestimmung des C_{org}-Gehaltes in Porenwässern wurden aus drei Kernen je sechs Proben genommen. Mit einer Porenwasserpresse wurde durch Glasfaserfilter die Interstitialflüssigkeit aus dem Sediment gepreßt. Zur Nachreinigung wurde das Wasser mit einer Spritze, der ein weiterer Glasfaserfilter vorgeschaltet ist, aufgesogen. Zur Aufbewahrung wurde die so gewonnene Probe in eine Spießampulle überführt, mit HgCl₂ fixiert und eingeschweißt. An diesen Proben wird der DOC-Gehalt bestimmt.

bootiert, Dazu vorden 100001 den Große attilfen einer, U.G.D. Lalagäure bergerestet det enschlaubendel nas die Atomest gekoeften un die Menemanner pogeresten tog to entrerionen bein Abeliand auf 20% bie 25% ettbligte die Rückttrischen alt 0.360 Nationiange. Der Eudpunkt des Eitsteiten, geste edgewensend ginzen Brissingroebtan beschiet bawer eit ester pie Sonde begeneurend ginzen Brissingroebtan beschiet bawer eit ester pie Sonde gewonnen Braultate sins in fabrie vierenengelen under Strangenen vorden. Die gewonnen Braultate sins in fabrie vierenengelen beschiet bewer eit under versen.

Für organisch-geochesische Auslysen sind von den innoenen 24 Gigdientund 8 Auftrecherungeinnen is iroben gegenenn wurden. Sie wurden auf des alledner kehre wiedertrund altrem jetatien Henburg siefesteren ehre, die nechtiebereinisteren vor der megenischen Sabetenten vor eidenschen die Proben der merden enortechen Beiten (1816). In 1818 und 300000 und vergief lich vergen ihret relativ hohen organischen Gabeten von henroderen latertere aufsahen sollten die Protonobenschichten auf ihre organische Zusassammentaum nicht abtertesente Verden versiehen auf ihre organische Zusassammentaum nicht sollten die Protonobenschichten auf ihre organische Zusassammentaum nicht anderetesente Verdenschichten auf ihre organische Zusassammentaum nichter staderetesente Verdenschichten und den Stättischen die Mastiveliefer eisteretesente Verdenschichten ein den Stättischen diese Kohestiveliefer staderetes beschichten verden ein den Stättischen diese Kohestiveliefer eisteretesente Verdenschier eine eine den Stättischen des Kohestiveliefer

- 46 -

Tab. 1: pH-, Eh- und Alkalinitätsmessungen an Proben der Fahrt So 41

Stat	<u>tion</u> dinaten	<u>Tiefe</u> dbar	<u>pH-</u> Wert	<u>Eh-</u> Wert	Alkalinit	<u>tät</u>	
ROOT	uindeen	abar	ner c	1010	(Incq/1/		treation in
19 M	15	2.8	8.20	463	2,652		
39 5	54.28N	58.4	8.17	470	2.676		
12 4	44.82E	513.2	8.14	466	2.688		
		2040.8	8.13	467	2,690		
		3221.0	8.15	466	2.710		
			0.20		4224 41 4		
20 N	15	52.2	8.14				
39	51.6N	408.8	8.13				
12 :	39.9F	615 2	8 11		X 24 42 X		
12 .	55.56	1276 0	8 09				
		12/0.0	0.05				
22 1	ASA	2 2	8 14				
20 1	53 59N	1030 6	8 09				
12 3	31 08F	3407 0	8 09				
16 .	001	5407.0	0.05				
24 1	AC .	2 1	0 11	449	2 643		
20 1	13 2 6 A N	104 6	0.11	441	2.045		
12 3	DE 17E	155 /	0.05	452	2.001		
12 3	55.1/E	155.4	0.00	455			
		200.2	0.07	403	2 606		
		307.8	8.07	403	2.080		
		512.2	8.07	403	2 6 0 1		
		1028.0	8.07	463	2.681		
		1541.4	8.05	453			
		2057.0	8.04	450			
		2308.0	8.05	446			
		2319.2	8.03	442	2.684		
						1350 6	
26 M	15A	3.4	8.15	356		1361.4	
39 5	52.42N	103.4	8.17	366			
12 3	35.89E	500.6	8.15	372			
		1006.6	8.17	375			
		1099.2	8.08	377			
		1149.6	8.20	378			
		1170.2	8.14	385			
		1181.6	8.14	385			
		1192.4	8.12	389			
	1. N. 1.	1203.3	8.12	391	0.17 349		
31 N	15	2.0	8.22	418	2.663		
39 1	L9.28N	56.2	8.20	419			
14 2	24.56E	107.2	8.19	392			
		156.3	8.20	394			
		303.4	8.19	410	2.724		
		492.2	8.19	396			
		996.8	8.17	397	2.688		
		1207.0	8.16	400			
		1441.6	8.15	401	2.708		

١.

V1.8 0.1

Stat	ion	Tiefe	pH-	Eh-	Alkalinit	tät		
Koor	dinaten	dbar	Wert	Wert	(meg/1)			
32 M	IS	2.4	8.23	424	2.636			
39 1	7.21N	15.2	8.22	430				
14 2	3.89E	25.2	8.24	429				
		35 6	8 22	426				
		47.0	0.22	420	2 850			
		47.0	0.23	430	2.830			
		00.4	8.21	428	0.007			
		80.4	8.19	424	2.82/			
		108.0	8.19	430				
		158.6	8.17	422			*	
		738.8	8.16	421	2.843			
33 M	15	4 0	9 23	440	2 772			
20 1	7 141	55 6	0.20	115	2.112			
14 1	6 005	106 6	0.24	440				
14 1	.0.98E	100.0	0.10	440				
		157.4	8.19	430				
		310.4	8.19	427	2.707			
		513.4	8.19	427	2.785			
		1030.2	8.15	419	2.755			
		1541.4	8.15	419				
		2056.4	8.14	418				
		2623.4	8.13	412				
		2623.0	8.12	411	2.725			
25 N	C	1 0	0 00	400				
35 F	0.041	1250 (0.23	400				
39 1	0.94N	1350.6	8.15	402				
14 2	4.81E	1361.4	8.18	404				
		1374.0	8.17	409				
		1376.6	8.15	411				
25 1	10	1.0	0 00	400				
35 F	15	1.8	8.23	408				
39 1	8.94N	1350.6	8.15	402				
14 5	57.84E	1361.4	8.18	404				
		1374.0	8.17	409				
		1376.6	8.15	411				
38 M	IS	6.0	8.23	457				
39 1	3.74N	57.8	8.19	450				
14 2	29.16E	108.0	8.15	443				
		159.0	8.19	331				
		313.8	8.15	336				
		515.8	8.17	349		E.0017		
		1023.0	8.16	364				
		2063.8	8.14	369				
		2581.8	8.15	376				
		3063.8	8.13	380				
		3073.0	8.14	382				
			320					
40 M	ISA	2.6	8.22	435	2.709			
39 1	1.28N	52 6	8 24	430	21705			
14 2	1 67F	72 0	8 21	427				
17 2	-1.0/E	102 6	0.21	422	2 424			
		103.0	0.20	433	2.424			
		154.6	0.1/	431	2 705			
		309.0	8.19	427	2.795			
		510.6	8.19	416				
		1026.4	8.16	414				

Station		<u>Tiefe</u>	pH-	Eh-	Alkalini	tät	
Kod	ordinaten	dbar	Wert	Wert	(meq/1)		
		1244.0	8.16	412	2.779		
12							
41	MSA	2.0	8.22	411			
39	22.54N	105.0	8.19	412			
14	25.36E	155.2	8.15	413			
		310.0	8.17	415			
		510.0	8.18	415			
		1028.8	8.15	418			
		1545.0	8.15	418			
		2061.8	8.13	422			
		2481.8	8.15	424			
45	MSA	1.8	8.25	465			
39	22.37N	20.8	8.26	451			
14	43 41F	52 2	8 25	449			
	10.110	103.6	8.24	444			
		307.0	8 20	444		2.121	
		507.0	8 20	444			
		653 0	8 23	446			
		673 2	8 20	450			
		679 9	0.20	430			
		070.0	0.10	44/			
17	MC	1 6	0 26	161			
20	22 661	20.2	0.20	404			
14	32.00M	20.2	0.20	457			
14	41.22E	101 0	0.24	433			
		101.0	8.24	445			
		152.0	8.22	430			
		307.0	8.21	438			
		508.6	8.21	439			
		543.0	8.20	434			
		563.2	8.20	435			
		567.2	8.20	433			
				44.0			
55	MSA	2.2	8.22	416			
39	28.94N	70.2	8.22	416			
14	49.12E	79.4	8.21	452			
		83.2	8.18	450			
56	MCA	0.0	0 22	402			
20	20 10N	50.0	0.22	405			
14	40 06F	72 0	0.22	403			
14	49.906	/3.8	0.22	414			
		80.4	0.22	414			
57	MCA	1.0	0.24	204			
20	DO DON	1.0	8.24	384			
39	20.09N	50.8	0.22	38/			
14	38.80E	81.2	0.23	391			
		101.8	0.21	388			
		151.4	8.20	395			
		209.8	8.19	396			
		262.0	8.20	395			
		275.6	8.19	383			

<u>Station</u> Koordinaten		<u>Tiefe</u>	pH-	Eh-		Alkalinität					
KOOI	uinacen	dbar	Merc	Merc		(med/1)					
59 M	SA	0.2	8.24	460							
39 23	2.92N	54.0	8.25	426							
14 49	9.72E	104.4	8.23	424			2.0				
		154.8	8.20	423							
		305.8	8.19	422	110			15			
		507.4	8.13	404							
		1023 8	8 13	414							
		2049 4	0.15	412							
		2040.4	0.10	413							
		2547.8	8.17	411							
		2556.4	8.15	406							
74 M	s	22.0	8.27	453							
40 3	4.85N	52.2	8.27	445							
13 0	6 65F	103 2	8 25	425							
10 0	0.035	152 6	0.23	423							
		155.0	0.22	422							
		307.2	8.22	412							
		513.8	8.21	403							
		1025.8	8.20	402							
		1542.6	8.18	403							
		2058.6	8.18	401							
		2745.4	8.17	398							
88 M	S	1.2	8.25	425							
40 2	1.39N	20.4	8.24	419							
13 1	7.44E	50.0	8.25	413							
		76.2	8.22	410		8.22					
		103.2	8.21	401							
89 M	s	310 0	8 20	385		2 784					
40 2	1 521	512 4	9 20	205		2.704					
12 1	7 075	1020 6	0.10	205		2 772					
13 1	/.0/6	1029.0	0.10	305		2.775					
		2037.0	8.1/	386							
		2/16.6	8.16	388		2.748					
		2729.6	8.16	390		2.777	A				
						3.0.10					
91 M	C	20 cm üGnd	8.15	390		2.773					
40 2	1.43N										
13 1	7.43E										
100	MS	1.2	8.23	402							
39 5	3.15N	19.8	8.23	397							
12 3	0.98E	51.4	8.21	395		2.703					
		70.4	8.22	394							
		102.2	8.21	393							
		153.2	8.16	394		2.443					
		20012				15.1					
101	MS	307 4	8.20	300		2 767					
30 5	3 01 N	506 3	9 10	307	186	2.70/					
10 0	4 000	1007.4	0.10	397		2.//0					
12 3	4.09E	1027.4	8.18	370							
		2060.0	8.17	3/3		2.744					
		3373.6	8.17	378		2.753					
		3385.0	8.16	381		2.744					

Station	Tiefe	pH-	<u>Eh-</u> di <u>P</u>	Alkalini	tät	Stat (un		
Koordinaten	dbar	Wert	Wert	(meg/1)	YEDD	1001611161007		
109 MS	1.4	8.22	464					
39 49.64N	52.6	8.22	455					
12 35.57E	103.6	8.20	450					
	154.0	8.19	445					
	307.2	8.18	442					
	510.8	8.19	435					
	1026.0	8.18	427					
	1423.6	8.16	421					
	1445.0	8.18	437					
117 MS	1.4	8.27	434					
39 54.33N	103.4	8.22	464					
12 37.24E	153.9	8.21	468					
	306.4	8.21	463	es.h				
	1027.4	8.19	463					
	1138.4	8.18						
	1149.0	8.18						
	1157.0	8.18						
118 MC	20cm üGnd	8.18	460					
39 52.70N								
12 36.87E								
126 MS	0.6	8.16						
39 50.24N	6.2	8.19						
12 35.60E	10.4	8.18						
	20.4	8.20						
	29.8	8.19						
	41.2	8.15	ALT OLL					
	52.0	8.17	440					
	62.0	8.18	439					
	81.6	8.18	235					
	103.4	8.15	423					
	121.8	8.14	422 200					
	153.8	8.14	424					
107 10	00 "O	0.15	457					
12/ MC	20cm uGna	8.15	45/					
39 30.07N								
12 30.07E								
121 MC	2.4	0 25	452					
131 MB	52.4	0.25	455					
11 A2 AOF	72 0	0.20	445					
11 43.496	104 4	0.20	441					
	155 6	0.20	430					
	206 9	0.23	432					
	500.0	8.22	429					
	1027 0	8 20	427					
	1542 9	8 19	428					
	2050 2	8 19	426					
	2524 0	8 18	421					
	2534 4	8.16	412					
	2331.1	0.10	112					

Station	Tiefe	pH-	Eh-	Alkalini	tät	
Koordinaten	dbar	Wert	Wert	(meg/1)	andh	
132 MS	1.8	8.28	380			
39 54.36N	12.4	8.29	376	2.699		
11 46.11E	32.2	8.29	376	A. 20 A		
	53.6	8.28	368			
	72.2	8.27	365			
	104.4	8.27	363	2.733		
	155.0	8.26	364	21700		
	308.6	8.23	366	2.737		
	513.6	8.22	366	21707	0 /887	
	1036.2	8.22	364			
	1728.6	8 20	368			
	1738 0	8 20	368	2 744		
	1/00.0	0.20	500	8.22		
133 MS	1.4	8.29	372			
39 54.43N	55.8	8.28	371	2.721		
11 49.75E	75.0	8.27	375	01.0		
	106.4	8.27	377			
	157.0	8.26	379			
	308.8	8.24	373	2.742		
	503.4	8.23	374	8.18		
	1001.2	8.23	371	2.760		
	1514.4	8.22	372	21700		
	2037.6	8.19	372	2.403		
	2606.8	8.21	373	21100		
	2622.0	8.20	372	2.383		
	202210	0.20	0/2	81.8		
139 MS	0.8	8.24	423			
38 37.30N	32.4	8.23	422			
14 02.78E	54.4	8.24	417			
	72.4	8.23	416			
	103.8	8.23	416			
	155.4	8.22	416			
	307.0	8.20	416			
	511.2	8.20	405			
	1029.0	8.18	405	A IA		
	1540.4	8.17	403			
1.00	1782.2	8.15	402			
	1793.0	8.14	403			
141 MS	1.2	8.26	× 403			
38 30.56N	10.6	8.27	404			
14 00.06E	20.2	8.26	402			
	41.4	8.24	378			
	52.4	8.23	381			
	62.0	8.24	381			
	80.8	8.23	383			
	102.0	8.23	383		5.23.2	
	154.4	8.22	393			
	259.0	8.21	394			
	270.0	8.21	393			
			181			

Station	Tiefe	pH-	Eh-	Alkalini	tät	
Koordinaten	dbar	Wert	Wert	(meg/1)	TAD	
145 MS	2.6	8 20	385			
39 44 22N	52.2	9 22	393			
14 02 60F	105 0	9 20	303	141.00		
14 03.000	165.0	0.10	302			
	200 0	0.19	3/0			
	508.8	0.10	302 30	15.8	5.85	
	514.0	8.17	383			14 06.978
	1028.8	8.16	382	0 S .B		
	2024.0	8.15	368		≫a02	
	2669.0	8.13	372			
	2687.6	8.14	376			
150 MS	12.4	8.23	380			
39 36.60N	31.4	8.24	368	2.644		
13 57.48E	71.6	8.23	358			
	104.6	8.21	358			
	155.4	8.20	361			750 03 48
	307.0	8.20	362	2.765		
	511.2	8.19	362			
	1025.2	8.17	365			
	1775.4	8.14	367			33 32.710
	1789.4	8.13	367	2.793		
		0.044				
152 MS	1.0	8.24	378			
38 39.78N	20.2	8.23	379			
13 58.63E	61.0	8.21	379			
10 001000	881.0	8.20	381			
	101 8	8 22	380			
	153 2	9 21	376			
	205 2	0.21	390			
	510 0	0.19	380			
	510.8	0.19	303		2	
	590.2	0.19	205			
	001.4	0.10	305			
155 MS	1.0	8.20		2.639		
38 32.59N	5.8	8.23				
14 14.96E	10.0	8.23		2.635		
	20.0	8.23				
	30.0	8.22		2.651		
	40.8	8.22				
	51.6	8.22		2.646		
	61.0	8.23		1000 A 100 A 10		
	81.2	8.22		2.670		
	102.8	8.22				
	121.8	8.22		2.694		
	154.2	8.20		2.719		
159 MS	0.8	8.17	379	2.660		
38 30.88N	53.4	8.20	384			
14 16.97E	72.0	8.18	381			
	104.2	8.18	381			
	155.0	8.17	378	2.803		
	508.0	8.18	372			
	814.6	8.18	372	2.785		
	1017.8	8.15	677			

۲.

Station	Tiefe	pH-	Eh-	Alkalini	tät	
Koordinaten	dbar	Wert	Wert	(meg/1)	7.840	
				A		
	1376.0	8.16	381	C		
	1387.6	8.14	384	2.772		28.441.223
			382			
167 MS	5.4	8.21	437		1.587.1	
38 35.35N	24.2	8.21	426			
14 06.97E	56.4	8.21	424			
	74.8	8.20	415			
	106.4	8.18	412			
	310.4	8.17	409			
	515.8	8.16	387			
	778.2	8.16	388			
	789.2	8.16	388			
				8.23		
		. bba.s				
180 MC	20cm üGnd	8.12	384			
39 32.55N				25.8		
14 42.06E						
			362			
206 MSA	305.8	8.16	437			
39 32.71N						
14 41.62E			387 111			
207 MSA	10.8	8.24	407			
39 32.07N	605.8	8.17	414			
14 42.36E	0.000	8.21	111.042			
		1,609.5				
		1.080				
		0.00.2				
		5.1X -7				
		2.7782				

Tab. 2: DOC-Me	essungen a	n Proben	der Fahrt So	41	starr	- astrott
				MCO	Tedb	(cordinates)
				58.6		
Station	Tiefe	DOC				
Koordinaten	dbar	ppm				
					O BETT	
100 MS	1.2	0.75		10 - V.		
39 53 15N	19.8	0.69				
12 20 005	51 4	0.00				
12 30.905	70.4	0.66			Pr - I	
	102.2	0.00				
	102.2	0.82				
	153.2	0.57				
1. 6. 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	San 1992	1250 1422512			137-0	
101 MS	307.4	0.62				
39 53.01N	506.2	0.43				
12 34.09E	1027.4	0.38				
	2060.0	0.38				
	3373.6	0.47			0.2630	
	3385.0	0.49				
109 MS	1.4	0.91				
39 49.64N	52.6	0.67				MUL, NE SE
12 35 57F	103 6	0.59				
12 00.071	154 0	0.74				
	207.2	0.73				
	510.0	0.73				
	510.8	0.60				
	1026.0	0.56				
	1423.5	0.67				
	1445.0	0.65				
				0.48		
126 MS	0.6	0.87			4.14	
39 50.24N	6.2	0.93				
12 35.60E	20.4	0.57				
	41.2	0.61				
	52.0	0.72				
	62.0	0.71				
	81.6	0.51				
	103.4	0.64				
	153.8	0.83				
	20010					
131 MS	2.4	1.22				
39 54 59N	52 4	1 10				
11 A2 AOF	72 0	0.00				
11 43.496	104 4	1 22				
	104.4	1.22				
	155.0	1.10				
	306.8	0.87				
	1027.0	0.89				
	2059.2	0.74				
	2534.4	0.79				
	1000					
132 MS	1.8	0.94				
39 54.36N	12.4	0.90				
11 46.11E	32.2	0.85				
	53.6	0.89				
	72.2	0.96				
	104.4	0.83				
	155 0	0.72				

- 55 -

Station	Tiefe	DOC	dan Fahrit		
Koordinaten	dbar	ppm			
	5				
	513.0	0.62			
	1026.2	0.54			
	1728.6	0.54			
	1738.0	0.62			
100 40	1.2.4				
133 MS	1.4	0.88			
39 54.43N	55.8	1.24			
	106.0	1.22			
	106.4	1.15			
	157.0	1.12			
	503.4	1.03			
	1001.2	0.96			
	1514.4	1.03			
	2037.6	1.01			
	2022.0	0.83			
120 MC	0.0	0 65			
20 27 200	72.4	0.05			
14 02 79F	155 4	0.91			
14 02.706	207 0	0.61			
	511 2	0.63			
	1540 4	0.05			
	1793 0	0.50			
	1793.0	0.50			
141 MG	1 2	0 69		10.67	
38 30 56N	10.6	0.61			
14 00 06F	20.2	0.45			
14 00.001	41.4	0.67			2M 851
	52.4	0.75			
	80.8	0.50			
	102.0	0.61			
	154.4	0.54			
	259.0	0.68			
	270.0	2.75			
8					
145 MS	2.6	0.69			
38 44.22N	53.2	0.69			
14 03.60E	105.0	0.71			
	155.2	0.64			
	308.8	0.66	`		
	514.0	0.55	•		
	1028.8	0.37			
10 C	2024.0	0.28			
0	2669.0	0.35			
	2687.6	0.43			
				s 935-0	
*					

Abb. I: DOC- und pR-gradil Station 100/101 MS

- 82 - 57 -

Abb. 2: DOC- und pH-Profil Station 109 MS -000 -0

Abb. 4: DOC- und pH-Profil Station 131 MS

Abb. 5: 300- and pH-Provil Station Lik WS

Abb. 7: DOC- und pH-Profil Station 139 MS

Abb. 9: DOC- und pH-Profil Station 145 MS

Nessungun im San Nicolan Stain vor Kalifornien von KUSAKASE et al. (1982) novie Monnungen än Sedimenten vor det westulrikanischen Küste (MANGINI et al. 1984) seigen, daß Se in Idatenneben Gebioten eine sihr viel geringere

- 67 -

9. BERYLLIUM- UND HELIUMMESSUNGEN AN WASSERPROBEN

M. SEGL & A. MANGINI

Zielsetzung

Das Programm des Instituts für Umweltphysik umfaßte die Entnahme von Wasserproben zur Be-10 und Be-9 Bestimmung sowie zur He-3/He-4 Messung. Dazu wurden an sieben Stellen in einem Profil quer zum Mittelatlantischen Rücken Proben genommen (s. Tab. 1).

Station La		Lat.	Long.	Proben
3	MS	25 23.00N	60 12.45W	Be-10, Be-9
9	MS	25 43.03N	50 57.11W	Be-10, Be-9
11	MS	26 51.85N	47 53.86W	Helium
12	MS	27 09.85N	45 39.92W	Be-10, Be-9
15	MS	27 27.76N	44 45.89W	Helium, Be-9
17	MS	27 46.74N	40 19.41W	Helium
18	MS	27 59.54N	35 00.16W	Be-10, Be-9

Tab. 1: Koordinaten der Probenstationen

<u>Be-10</u>

Das radioaktive Isotop Be-10 wird durch die kosmische Höhenstrahlung gebildet und – an Partikel gebunden – auf der Meeresoberfläche ausgeregnet. Aus den Ozeanen wird es schließlich in die Sedimente abgelagert; über das Verhalten in der Wassersäule ist jedoch sehr wenig bekannt.

Im Tiefenwasser sind Konzentrationen zwischen 2200 Atomen/g im Mozambique Kanal (RAISBECK et al. 1980) und 6000 Atomen/g im Zentralpazifik (KRISHNASWAMI et al. 1982) gemessen worden. Mit einer Produktionsrate von 0,018 Atomen/cm²s (AMIN et al. 1976) folgt daraus eine Aufenthaltsdauer in der Wassersäule von mehreren 100 Jahren.

Messungen im San Nicolas Basin vor Kalifornien von KUSAKABE et al. (1982) sowie Messungen an Sedimenten vor der westafrikanischen Küste (MANGINI et al. 1984) zeigen, daß Be in küstennahen Gebieten eine sehr viel geringere Aufenthaltsdauer in der Wassersäule hat. Hohe Produktivität bedingt in diesen Gebieten eine hohe Sedimentationsrate, die absinkenden Teilchen reißen Be mit in die Sedimente (scavenging-Effekt), die Wassersäule wird sozusagen "leergefegt".

Es kommt zu einem Konzentrationsgefälle zwischen dem offenen Ozean und der Küste, was horizontalen Transport des Be in Richtung der Senke zur Folge hat. Der Einflußbereich einer solchen Senke ist um so größer, je länger die Aufenthaltsdauer in der Wassersäule ist.

Während der Atlantiküberquerung der Fahrt SO 41 wurden zwischen 60° W und 35° W fünf Profile in einem Abstand von jeweils ca. 10° genommen. Ein weiteres Profil von der Fahrt Meteor 56/5 lag bei 25° W vor. Die Profile liegen im Bereich zwischen 25° und 29° N.

Die Ergebnisse der Be-10 Messungen sind in Abb. 1 dargestellt.

Probennahme

Da die Be-10 Konzentration im Wasser nur einige 100 bis einige 1000at/g beträgt, sind für eine Messung Wassermengen von mindestens 301 erforderlich. Da an Bord nur ein Kranzwasserschöpfer mit 12 Niskin-Schöpfern a 51 vorhanden war, erforderte die Entnahme eines Profils aus 10 Tiefen ein 5-maliges Aussetzen des Gerätes.

Das Wasser wurde in 301 PE-Kanister abgefüllt, die mit HCl und Meerwasser gereinigt waren. Die Proben wurden mit 8n HCl auf pH 1-2 angesäuert. Die Weiterverarbeitung erfolgt im Labor, wo das Be als BeO dargestellt wird. Der Be-10 Gehalt wird am Beschleuniger der ETH Zürich massenspektrometrisch gemessen.

Be-9

Für das stabile Isotop Be-9 im Ozean gibt es im wesentlichen zwei Quellen: Auswaschen von den Kontinenten und hydrothermale Lösung. Die Flußfracht wird auf 33 x 10^6 mol/a geschätzt, von denen jedoch nur 4.5 x 10^6 mol/a in den offenen Ozean gelangen, der Rest wird in den Ästuar-Zonen gebunden.

Der hydrothermale Eintrag wurde aus einer Messung am Ostpazifischen Rücken auf 3 x 10^6 mol/a abgeschätzt (MEASURES & EDMOND 1984). Um den hydrothermalen Eintrag im Atlantik zu bestimmen, wurden an den Be-10 Stationen zusätzlich Proben zur Be-9 Messung genommen, sowie ein weiteres Profil direkt am Mittelatlantischen Rücken.

- 69 -
Probennahme

Für eine Be-9 Messung sind 250ml Wasser erforderlich. Die Proben wurden in sorgfältig mit Isopropylalkohol und HNO₃ gereinigte PE-Flaschen abgefüllt und mit destillierter HCl auf pH 1-2 angesäuert. Die Weiterverarbeitung erfolgt im Labor.

Cohisten time bolk-beith

- 70 -

He-3/He-4

Das He-3/He-4 Verhältnis dient als Indikator für hydrothermale Aktivität. Heliumproben wurden an drei Stationen am Mittelatlantischen Rücken genommen.

Die Wasserproben müssen unter Luftabschluß abgefüllt und ins Labor transportiert werden, um Gasaustausch mit der Atmosphäre zu verhindern. Dazu wurden sie unmittelbar nach dem öffnen des Wasserschöpfers unter Vermeidung von Luftblasen über einen Silikonschlauch in 1m lange Kupferrohre abgefüllt, die dann mit Spezial-Klemmwerkzeugen verschlossen wurden. Im Labor wird das Wasser in eine Vakuumpumpe überführt, entgast und das He-3/He-4 Verhältnis massenspektrometrisch gemessen.

Die Be-10 Messungen wurden am Tandem-van-de-Graaff Beschleuniger der ETH Zürich durchgeführt. Wir danken den Herren Drs. Bonani und Suter sowie Herrn Prof. Wölfli, die uns die Messungen ermöglichten.

a Literatur 2 and and all plushes been as finitized and plusted and

AMIN, B.S., LAL, D., SOMAYAJULU, B.L.K.: Geochim. Cosmochim. Acta, 39, 1187-1192, 1975.

KRISHNASWAMI, S., MANGINI, A., THOMAS, J.H., SHARMA, P., COCHRAN, K., TUREKIAN, K.K., PARKER, P.D: Earth Planet. Sci. Lett., 59, 217-234, 1982.

KUSAKABE, M., KU, T.L., VOGEL, J., SOUTHON, J.R., NELSON, D.E., RICHARDS, G: Be-10 in seawater. - Nature, 299, 712-714, 1982.

MANGINI, A., SEGL, M., BONANI, G., HOFMANN, H.J., MORENZONI, E., NESSI, M., SUTER, M., WÖLFLI, W., TUREKIAN, K.K.: Mass-spectrometric Be-10 dating of deep sea sediments applying the Zurich tandem accelerator. - Nucl. Instr. and Meth. in Phys. Res., B5, 353-358, 1984.

MEASURES, C.I., EDMOND, J.M.: The geochemical cycle of Be-9: a reconnaisance.- Earth and Plan. Sci. Lett., 66, 101-110, 1983.

RAISBECK, G.M., YIOU, F., FRUNEAU, M., LOUISEAUX, J.M., LIEUVIN, M., RAVEL, J.C., REYSS, J.M., GUICHARD, F.: Be-10 concentration and residence time in the deep ocean.- Earth and Plan. Sci. Lett., 51, 275-278, 1980.

10. PHYSIKALISCHE OZEANOGRAPHIE

D. QUADFASEL

Einleitung

Im Rahmen der SONNE Fahrt 41 in das Tyrrhenische Meer wurden vom Institut für Meereskunde räumlich hochauflösende Messungen der vertikalen Verteilung hydrographischer Parameter durchgeführt. Die Arbeiten konzentrierten sich dabei auf die nähere Umgebung der in den geologischen Programmen untersuchten Seamounts.

Das ursprünglich für das Rote Meer vorgesehene physikalische Untersuchungsprogramm konnte nicht in das Tyrrhenische Meer übertragen werden. Damit beschränkten sich die durchgeführten Messungen auf die Erfassung des hydrographischen Umfeldes für die biologischen Untersuchungen der Gruppe Karbe.

Mit dem gewonnenen Datenmaterial sollen jetzt aber auch physikalischozeanographische Fragestellungen bearbeitet werden. Dazu gehört die Abschätzung der vertikalen Vermischung in der Bodengrenzschicht im Einflußbereich von Tiefseehügeln, die für die Betrachtung von Aufwirbelung und Transport von Sediment und/oder von am Boden gelagerten (Schad-) stoff relevant ist.

A THIRD ... THREE ... C TRADULT ... THIRD TO BE TO B

Technische Bemerkungen

Die hydrographischen Messungen wurden mit einer CTD-O₂-Sonde (Kiel-Multisonde, ME) sowie einem Kranzwasserschöpfer durchgeführt. Dieser war mit zwölf 5-Liter Schöpfern bestückt von denen vier mit Kippthermometern ausgerüstet waren. Auf einigen Profilen wurde an der Rosette auch Autoklavschöpfer gefahren (Gruppe Puchelt). Die Datenerfassung und Bearbeitung wurde mit einem Kleinrechner PSI-82 und angeschlossenem Magnetbandgerät durchgeführt, für die Analyse der Wasserproben stand ein Guildline Salinometer sowie ein Winkler-Titrierstand zur Verfügung. Technische Probleme, die zu einer Einschränkung des Meßprogramms führen, gab es mit dem Sauerstoffsensor der Multisonde. Die neuen Membrankappen lieferten nur bedingt einen Druckausgleich, so daß die Sauerstoffmessungen oft schon in geringen Tiefen unbrauchbar wurden. Es muß hier also auf die titrierten Proben zurückgegriffen werden, die natürlich vertikal nur eine geringe Auflösung haben. Insgesamt wurden 44 hydrographische Stationen gefahren wobei 414 Wasserproben gewonnen und 88 Temperaturmessungen mit Kippthermometern durchgeführt wurden. Die Stationspositionen sind in Abb. 1 sowie in Tab. 1 angegeben.

Meßtagebuch (N. Verch)

24.02.86

Nachmittags übernahme der Container und Beginn des Entladens

25.02.86

Nach Beendigung der Entladearbeiten aus dem Container und Auspacken der Ausrüstung Aufbau der Multisondenstation und Herstellung der mechanischen und elektrischen Verbindung am Einleiterkabel. Beim ersten Test der Multisonde wurde ein Defekt an der Auslöserzentrale festgestellt. Ein Steckerkontakt war abgebrochen und eine kalte Lötstelle auf der Platine. Beides wurde vom PREUSSAG-Elektroniker beseitigt.

26.02.-28.02.86 Vavilov-Seamount

Es wurden 5 Stationen durchgeführt, an 2 Stationen wurde ein Autoklavschöpfer an der Rosette gefahren. Zunächst traten einige kleinere Probleme beim Schließen der Schöpfer auf. 2 defekte Magnetauslöser, ein gebrochenes Souriokabel, sowie eine Auslösespannfeder wurden ausgewechselt.

28.02.-03.04.86 Marsili-Seamount

7 Stationen wurden durchgeführt, 3 mit Autoklavschöpfer. Am 01.03.86 konnte aufgrund schlechter Wetterverhältnisse keine Station durchgeführt werden. An den Stationen 31, 32 und 40 wurden jeweils die Sauerstoffmembrankappen am O_2 -Sensor erneuert. Am 28.02. wurden Sonde und Auslösezentrale zur Reparatur des Fluormeters der PREUSSAG-Elektroniker ausgebaut. Das Fluorometer konnte nicht repariert werden.

05.03.-08.03.86 Palinuro

7 Stationen mit Autoklavschöpfer wurden durchgeführt. Vor der Station 67 MSA wurde die 0_2 -Membrankappe ausgewechselt. Station 67 MSA war Teststation für den 0_2 -Sensor, d.h., die Sonde verweilte in mehreren Tiefenstufen (bis 2000m) längere Zeit, und es wurde die Drift des Sauerstoffes

registriert. Der Druckausgleich funktionierte in größerer Tiefe jedoch bei dieser Membrankappe ebenfalls nicht. Beim Hieven ging durch einen Bruch der Feder am Bodenmelder das Bodenmeldegerät verloren. Feder und Gewicht wurden durch neue ersetzt.

08.03.-09.03.86 Ventotene-Süd

Es wurde 1 Station durchgeführt. Erste Auswertungen der Daten wurden vorgenommen.

11.03.-13.03.86 Ventotene-Süd

Es wurden 2 Stationen durchgeführt, wobei die Station 88 MS Fluorometerteststation (bis 150m) war, jedoch zeigte sich, daß der vorangegangene Versuch der Reparatur mißlungen war. Deshalb wurde nach der Station 89 MS die Multisonde erneut ausgebaut und demontiert, nach mißglücktem Versuch der Reparatur wieder ohne Fluorometer eingebaut. Ein ausgebrochener Abfüllhahn eines Wasserschöpfers wurde neu eingeklebt und ein defekter Magnetauslöser ausgewechselt und repariert.

14.03.-16.03.86 Vavilov-Seamount

6 Multisondenstationen. An Station 100 MS wurde eine neue 0₂-Membrankappe eingesetzt, die jedoch nicht funktionierte. Station 101 MS wurde bis 150m gefiert, um Proben für Primärproduktionsmessungen zu nehmen. Nach Station 109 MS wurde die Sonde zur Reparatur des Fluorometers erneut ausgebaut und demontiert, an der Rosette alle Kabel und Steckerkontakte gereinigt und gefettet.

Station 126 MS wurde bis 150m gefiert (Fluorometertest - negativ).

16.03.-18.03.86 Magnaghi-Seamount 3 Multisondenstationen

19.03.-22.03.86 Enareta- und Eolo-Seamount

8 Stationen wurden durchgefiert, vor Station 139 MS 0_2 -Membrankappe ersetzt, Station 155 MS bis 150m gefiert für Proben für Primärproduktion.

23.03.-25.03.86 Palinuro

5 Multisondenstationen

Beim Hieven der Station 188 MS war die Halterung am Einleiterkabel verrutscht, was einen Bruch des Einleiters zur Folge hatte, ein Neuanschluß des Einleiters war notwendig.

- 74 -

Auf Station 193 MS wurde für Proben der Primärproduktion bis 150m gefiert. Auf Station 206 MSA wurde nochmals das Fluorometer getestet. Mit 301-Schöpfern wurden Proben für das Geologisch-Paläontologische Institut genommen. Auf Station 207 MSA wurden 6 Autoklavschöpfer des Instituts für Petrographie und Geochemie der Universität Karlsruhe sowie ein 301-Schöpfer und ein 201-Ruthnerschöpfer für Wasserproben für das Geologisch Paläontologische Institut gefahren.

25.03.-14.30 Uhr Abfahrt Richtung Kalamata

Vorläufige Ergebnisse

Eine endgültige Analyse der Beobachtungen ist erst nach sorgfältiger Eichung der CTD-Daten mit den Temperatur- und Salzgehaltswerten der Proben möglich. Dies wird erfahrungsgemäß einige Monate in Anspruch nehmen. Es ist vorgesehen, einen Datenreport über sämtliche hydrographischen Messungen zu erstellen und allen Fahrtteilnehmern und weiteren Interessenten zur Verfügung zu stellen.

Als Beispiel für die vertikale Struktur der Wasersäule im Tyrrhenischen Meer sind in Abb. 2 für den Tiefenbereich 500 bis 1200m vier Temperaturprofile von der Nordostflanke des Marsili-Seamounts dargestellt. Sie sind gekennzeichnet durch bis zu 200m dicke Schichten nahezu konstanter Temperatur, die durch schmale Zonen hoher Temperaturgradienten voneinander getrennt sind. Diese Schichten entstehen unter dem Einfluß winterlicher Abkühlung an der Meeresoberfläche, die eine Zunahme der Oberflächendichte bewirkt und damit tiefreichende Vertikalkonvektion auslöst. Die Tiefe dieser Konvektion kann regional und auch von Jahr zu Jahr unterschiedlich sein. Durch horizontale Strömungen, die vertikal geschert sind, werden die so entstandenen Wasserkörper nun verfrachtet, und es entsteht die für Konvektionsgebiete typische Treppenstruktur.

Interessant ist nun die unterschiedliche Horizontalausdehnung dieser Schichten in verschiedenen Tiefen. Unterhalb 750m sind die Schichten in den drei tiefen Profilen etwa gleich mächtig und haben die gleiche Temperatur. Oberhalb dieser Tiefe ist die horizontale Kohärenzskala der Schichten jedoch weitaus geringer und weist starke Unterschiede sowohl in der Dicke als auch in der Temperatur auf. Eine mögliche Ursache dafür sind Vermischungsprozesse, die durch Reibungseffekte am Seamount hervorgerufen werden. Zur Klärung dieser Frage müssen jedoch die Daten zunächst geeicht und weiteraufbereitet werden.

- 75 -

Abb. 1: Lage der hydrographischen Stationen im Tyrrhenischen Meer. Kreuze bezeichnen Positionen vom ersten Fahrtabschnitt, Dreiecke Positionen vom zweiten Abschnitt.

Schlahten jedoch weitzus geringer und weist statke Unterersiede sowohl in der Dicke als auch in der Temperatur auf. Esne abgliche Ursäche Odefürsind Verstachungen ozenne, die durch Teibungsoffditelanföenneunt hefvorgefiften weiden. Dir Kilfford ofeller Erege allesen jedoch die Datenizunäonst gestoht und witterit ereitet-auton.

Abb. 2: Vertikalprofile der Temperatur an der Nordostflanke des Marsili-Seamounts im Tiefenbereich 500 bis 1200m. Die Lage der Stationen ist in der oberen Hälfte angegeben.

Stat	cion	Datum	Zeit	Position (G	Tiefe (m)	
			(MEZ)			
			GMT+1	Breite	Länge	
						M.
19	MS	26.02.86	04.10	39 52.19N	12 43.21E	3222
20	MS		07.47	39 50.52	12 .36.51	1259
22	MSA		14.16	39 53.90	12 31.12	3266
24	MS	27.02.86	08.31	39 53.64	12 35.03	2283
26	MSA		13.50	39 52.07	12 35.95	1250
31	MS	02.03.86	13.52	39 20.30	14 24.75	1403
32	MS		15.32	39 17.50	14 24.01	685
33	MS		17.36	39 17.00	14 17.04	2541
35	MS	03.03.86	02.29	39 19.25	14 24.59	1339
38	MSA		18.11	39 12.84	14 28.87	2953
40	MSA	04.03.86	12.51	39 10.93	14 20.94	1275
41	MSA		16.19	39 22.49	14 24.95	2398
45	MSA	05.03.86	20.48	39 32.45	14 43.46	669
47	MS	06.03.86	02.47	39 32.19	14 42.14	567
55	MSA		19.56	39 28.89	14 49.86	85
56	MSA		20.37	39 29.23	14 49.96	89
57	MSA		21.34	39 28.89	14 51.00	283
59	MSA	07.03.86	01.26	39 22.84	14 49.69	2455
67	MSA		14.20	39 28.37	14 40.39	2197
74	MS	08.03.86	19.46	40 34.85	13 06.65	2646
88	MS	12.03.86	11.02	40 21.44	13 17.65	2617
89	MS		12.39	40 21.70	13 17.07	2633
100	MS	14.03.86	05.44	39 52.89	12 31.19	3245
101	MS		07.40	39 52.95	12 30.95	3248
103	MS		12.06	39 51.93	12 36.10	1148
109	MS	14.03.86	21.06	39 49.82	12 35.96	1415
117	MS	15.03.86	18.35	39 54.45	12 37.28	1128
126	MS	16.03.86	19.07	39 50.06	12 35.33	1365
131	MS	17.03.86	22.32	39 54.59	11 43.49	2445
132	MS	18.03.86	00.33	39 54.68	11 50.10	1550
133	MS		02.14	39 54.54	11 50.30	2550
139	MS	19.03.86	16.39	38 37.26	14 03.69	1760
141	MS		19.44	38 38.56	14 00.06	273
145	MS	20.03.86	06.00	38 43.52	14 04.08	2595

Station		Datum	Zeit		Position		(Grad/Minuten)		Tiefe	(m)
			(MEZ)							
			GMT+1		Bre	eite	Lä	nge		
150	MS		14.24		38	36.62	13	57.47	1707	
152	MS		17.50		38	38.76	13	59.64	590	
155	MS	21.03.86	09.56		38	32.59	14	14.95	1345	
159	MS		16.30		38	30.79	14	16.91	1332	
167	MS	22.03.86	08.14		38	35.35	14	07.06	779	
179	MS	23.03.86	11.30		39	32.21	14	42.31	613	
188	MS	24.03.86	02.55		39	29.42	14	54.30	671	
193	MS		11.31		39	29.41	14	51.83	731	
206	MSA	25.03.86	08.34		39	32.58	14	42.20	674	
207	MSA		09.23		39	32.55	14	42.32	593	

Tab. 1: Liste der Multisondenstationen (MS). Bei den Koordinaten handelt es sich um die endgültigen, korrigierten Werte.

Desphase subvitten bas beet der Begrobung serescher Schutgen in der flete Aurone Anthälb vom der Fa Hensend operatie Antöhiserskonsenbörter entwirkelit, in annes ern krunkarfas arch Greiteloog einer Garphase bei Druckantiastung vertindert verden Voncen Die Gauptexe unde die Vassarprohe multen direkt in Berd konstennen und ant kilte einer Matchroscograghen geboppelt eine Entgraungeangesteut natyestert verden verden Voncen in Gauptere einer Giber einer Karteloog einer Fetgraungedie Sättigenen Besungen in Konnellte oder Vonsensender einer Entgraunge in Konnellte Geboppelt einer Entgraungedie Sättigenen Besungen in Konnellte Geboppelt einer Entgraunge-Gaupteren Besungen in Konnellte Giber in Streassengenom veren die Sättigenen Besungen in Konnellten Schriften Konlanwasseratoffe Baber dan Kohlnessereringten auffrah ein strikten Konlanwasseratoffe Baber dan Kohlnessereringten sollten ein Striktes in Agel CO2 und Aufgrund der Verlegering die Konlanderen unter einer die Schrifte verschaft het grund der Verlegering die Konstreassen unter einer die Schrifte verschaften het grund der Verlegering die Konstreassen unter einer die Schrifte verschaften het grund der Verlegering die Konstreassen unter einer die Schrifte verschaften het grund der Verlegering die Konstreassen unter einer einer einer einer die het grund der Verlegering die Konstreassen unter einer ein

- 79 -

11. AUTOKLAVWASSERSCHOPFER UND GASANALYTIK

W. SCHMITZ-HARTMANN

Zielsetzung

Im Rahmen der Forschungsfahrt SO 41 sollte versucht werden, eine Methode zur Prospektion von Sulfidmineralisationen am Meeresboben anhand der im Wasser gelösten Kohlenwasserstoffe auszutesten. Ausgangspunkt waren frühere Arbeiten im Roten Meer (SACKETT et al. 1981), bei denen hohe Konzentrationen an leichten Kohlenwasserstoffen in den hochsalinen Wässern der Brines gemessen wurden. Im Verlauf von SO 29 konnte dann erstmals rezente Hydrothermalaktivität im Roten Meer entdeckt werden. Wie Untersuchungen hydrothermaler Lösungen vom East Pacific Rise (WELHAN & CRAIG 1981 sowie LILLEY et al. 1979) ergaben, wiesen diese Lösungen extreme Konzentrationen an Methan auf.

Unter Berücksichtigung der größeren Gaslöslichkeit bei höheren Drucken sollten hochkonzentrierte Lösungen in der Tiefe unter Oberflächenbedingungen infolge Druckentlastung übersättigt sein und eine Gasphase ausbilden. Zum Zweck der Beprobung gasreicher Lösungen in der Tiefe wurden deshalb von der Fa. Preussag spezielle Autoklavwasserschöpfer entwickelt, in denen ein Druckaufbau durch Entwicklung einer Gasphase bei Druckentlastung verhindert werden konnte.

Die Gasphase sowie die Wasserprobe sollten direkt an Bord abgenommen und mit Hilfe eines Gaschromatographen gekoppelt mit einer Entgasungsapparatur analysiert werden.

Aus früheren Messungen an künstlich gesättigten Meerwasserproben waren die Sättigungskonzentrationen für die leichten Kohlenwasserstoffe bekannt. Damit konnte die Einstellung eines Gleichgewichts zwischen Gasphase und Lösung kontrolliert werden.

Neben den Kohlenwasserstoffen sollten die Gehalte an $\rm H_2S$, CO_2 und $\rm N_2$ bestimmt werden.

Aufgrund der Verlagerung des Arbeitsgebietes ins Tyrrhenische Meer waren diese Untersuchungen von der Entdeckung aktiver Hydrothermalfelder abhängig.

Bordtagebuch

26.2. Beim Auspacken der Probenehmer fanden sich im Probenraum der Autoklavwasserschöpfer ölschlieren auf der Kolbenführung. Es wurde versucht, die ölschlieren mit Aceton zu beseitigen. Die ersten beiden Einsätze der Autoklavwasserschöpfer deckten mehrere Mängel am Einsatzgerät auf.

Der erste Probenehmer löste infolge eines Fehlers an der Auslösemechanik nicht aus. Der zweite Einsatz brachte eine Wasserprobe, die Gasblase aber, die in den aufgesetzten Appendix aufsteigen sollte, konnte nicht in letzteren überführt werden. Diesen Mangel zeigten auch alle anderen Wasserschöpfer. In Zusammenarbeit mit den Technikern der Fa. Preussag konnte dieser Mangel behoben werden, indem die Bohrung zum aufgesetzten Appendix von 3mm auf 6mm aufgebohrt wurde.

Ein weiterer, gravierender Mangel zeigte sich nach mehreren Stunden im meerwassergefüllten Wasserschöpfer. Das Einlaßventil korrodierte schon nach kurzer Zeit sehr stark und nach ca. sechs Stunden führte dies zu Ausflockungen von Eisenhydroxiden im Probenraum.

Dieser Mangel ließ sich mit Bordmitteln nicht beheben. Die nicht aus Edelstahl gearbeiteten und somit korrosionsgefährdeten Teile am Autoklavprobenehmer waren:

- 1. Einlaßventil
- 2. Spannfeder
- 3. Auslösemechanik
 - 4. nicht gesandstrahlte Schweißstellen
 - 02.3. Nachdem mehrere Probenehmer hintereinander nicht ausgelöst hatten, wurde die Befestigung der Autoklavschöpfer an den Schienen des Kranz-Wasserschöpfers geändert.

Bei zwei folgenden Einsätzen zeigten sich Schäden am Glaskörper. Im ersten Fall wurde der Wasserschöpfer mit zerborstenem Glaskörper an Bord gehievt. Beim zweiten Schöpfer zeigte sich ein Riß im Glaskörper nach Wiedereinholen.

Da fünf Ersatzglaskörper mitgeliefert waren, konnten die beschädigten Gläser ausgewechselt werden.

04.3 Die folgenden Einsätze der Wasserschöpfer brachten Wasserproben

nebst Gasphase. Beim Abnehmen der Gasphase wiesen die Wasserschöpfer folgende Probleme auf: Zum einen war das Septum für die Abnahme der Gasphase mit einer Spritze sehr unzugänglich. Dies führte zu Schäden an den Nadeln der Spritzen. Zum anderen wurde durch das schräge Einführen der Nadel das Septum stark beansprucht und hätte nach wenigen Einsätzen ausgewechselt werden müssen. Dies war kurzfristig nicht möglich, da das Septum erst nach Ausbau und Zerlegen des Appendix gewechselt werden konnte.

Ebenso problematisch gestaltete sich die Abnahme einer Wasserprobe. Da eine Abnahmemöglichkeit in Form eines Absperrhahns nicht vorhanden war, mußte die Lösung über eine seitliche Bohrung bei gleichzeitigem Drücken des Einlaßventils abgenommen werden. Die dabei durch das Einlaßventil einströmenden Gasblasen führen aber zur Kontaminierung der Proben durch Luft.

06.3. Die Gasanalyse der fünf folgenden Proben ergab jeweils Atmosphärenzusammensetzung. Bei der Untersuchung des Wasserschöpfers auf eine eingeschlossene Gasphase nach dem Füllen des Appendix und Spannen der Feder zeigten sich kleine Gasblase zwischen Glaskörper und Edelstahlfassung. Diese waren auch durch mehrmaliges Entspannen und Spannen nicht zu beseitigen.

> Bei den folgenden Einsätzen wurde versucht, diese Luftkontamination durch Spülen der Wasserschöpfer zu beseitigen, was aber infolge einer fehlenden Spüleinrichtung nicht gelang.

> Da eine Atmosphärenkontamination durch eingeschlossene Gasphase nicht ausgeschlossen werden konnte, wurde zunächst auf den weiteren Einsatz der Autoklavwasserschöpfer verzichtet.

25.3. Bei der letzten MSA-Station (207 MSA) wurde der Kranzwasserschöpfer mit sechs Autoklavprobenehmer bestückt. Ziel war die Beprobung eines kompletten Profils. Aufgrund der nachfolgenden aufgeführten Probleme war dies jedoch nicht möglich.

Von den sechs Probenehmern lösten zwei nicht aus. Zwei weitere waren nur zur Hälfte gefüllt. Die zwei verbleibenden Probenehmer führten jeweils ca. 30 ml Gasphase, wobei einer der beiden einen Sprung im Glaskörper hatte.

Die Analyse der Gasphasen in den vier gefüllten Probenehmern ergab jeweils die Zusammensetzung der Atmosphäre. Die Fehlerursachen waren: 1. Bei einem der nicht ausgelösten Probenehmer entriegelte der Magnetschalter nicht.

2. Beim zweiten nicht ausgelösten Probenehmer hatte zwar der Magnetschalter entriegelt, die Sperrscheibe war jedoch nicht weggeschlagen worden.

3. Bei den beiden nur zur Hälfte gefüllten Probenehmer handelt es sich um diejenigen, die von Fahrtbeginn an eingesetzt wurden. Diese waren daher auch am Stärksten korrodiert. Die Ursache lag in der Schwergängigkeit der Ventile.

4. Der Sprung im Glaskörper des Probenehmers ist auf einen Fertigungsfehler an der unteren Führung zurückzuführen.

5. Der noch verbleibende sechste Probenehmer hatte scheinbar korrekt ausgelöst und führte ca. 30 ml Gasphase. Die Atmosphärenzusammensetzung und das Volumen der Gasphase legen den Schluß nahe, daß der Probenehmer schon beim Einlassen ins Wasser ausgelöst hat.

Gasanalytik

Aufbau

Für die Gasanalytik wurde ein Gaschromatograph vom Typ HP 5890 verwendet, welcher mit einem Flammenionisationsdetektor und einem Wärmeleitfähigkeitsdetektor ausgerüstet war. Zwei Gasdosierventile ermöglichten wahlweise entweder die Aufgabe einer Gasprobe über einen Injektor, oder die Hinzuschaltung einer Entgasungszelle für wässrige Proben. Die Signalauswertung erfolgte über zwei Integratoren vom Typ HP 3390A. Der für die Entgasung von wässrigen Proben entwickelten Entgasungszelle liegt eine 1962 von SWINNERTON veröffentlichte Analysenmethode für O₂ zugrunde, welche 1983 von OBERMANN an der Ruhruniversität weiterentwickelt wurde und in der jetzigen Ausführung seit 1985 besteht. Die Gasmessung geschieht in der Weise, daβ

- zur Füllung der Entgasungszelle 5ml Probewasser aus einer gasdichten Spritze über ein Septum eingespritzt werden
- zur Vorbereitung der Messung die Probe in der Zelle aufgeheizt wird
- zur Entgasung und Messung der Trägergasstrom über eine Glasfritte von unten durch die gefüllte Entgasungszelle geleitet wird
- zur Entleerung der Trägergasstrom in umgekehrter Richtung über die Zelle geleitet, und die Füllung über die Rückspülleitung in den

Auslauf geleitet wird.

Für die Eichung wurde entgastes Meerwasser verwendet, welches mit dem jeweils zu messenden Gas gesättigt wurde. Bei den für die Trennung der einzelnen Gasspezies verwendeten Trennsäulen handelte es sich um:

- Porapak N Länge 2m 60/80 mesh ø 1/4"
 - Porapak Q Länge 2m 80/100 mesh Ø 1/4"
 - Molekularsieb 5Å Länge 2m Ø 1/4"

Meßergebnisse

In den während der Fahrt untersuchten Gebieten konnten keine Anzeichen für rezente hydrothermale Aktivitäten gefunden werden. Dadurch beschränkte sich der Einsatz des Gaschromatographen und der Entgasungszelle auf die Analyse der Gasphase den in Autoklavwasserschöpfern. Wie die Analysen zeigten, handelte es sich bei der Gasphase in den Probenehmern immer um Luft. Zusätzlich wurde jedoch immer eine Spur von Methan registriert. An einer Gasprobe, die einem noch unbenutzten Probenehmer entnommen wurde, konnte eine höhere Methankonzentration gemessen werden. Hier liegt wohl die Ursache für die im weiteren immer registrierte Spur von Methan.

Ferner wurden Messungen zur Bestimmung der Sättigungskonzentration von Methan an Proben der Stationen 145 MS, 167 MS, 193 MS und 207 MSA durchgeführt. Diese wurden aus den 51 Niskin-Schöpfern des Kranzwasserschöpfers entnommen. Die Sättigungskonzentrationen sind in Tab. 1 aufgeführt.

Station	<u>Temperatur\bei</u>	<u>Tiefe bei</u>	<u>Salinität</u> *	<u>Sättiqungs-</u> <u>konzentration</u>		
	Probenahme*	Probenahme	alashi bashi a			
	[°C]	[m]	[%.]	[ml/l]		
145 MS	13.24	2595	38.348	34.88		
167 MS	13.94	778	38.638	34.37		
193 MS	14.08	150	38.248	34.22		
207 MSA	13.80	605	38.604	34.45		

Tab. 1: Entnahmebedingungen der untersuchten Gasproben * Multisondendaten Bei Station 181 FG konnte nach Schwefelwasserstoff riechendes Sediment mit Sulfidmineralanteilen gegriffen werden. Da das Sediment stark entgaste, wurde eine Probe in einen Witt'schen Topf gegeben. Dieser wurde mit Stickstoff atmosphärenfrei gespült. Anschließend wurde durch einen Septenstopfen im Deckel des Witt'schen Topfs mit einer gasdichten Spritze eine Gasprobe entnommen. Die gaschromatographische Analyse hatte das folgende qualitative Ergebnis:

- Hauptbestandteile waren 56% H₂S, 33% CO₂ und 10% N₂

- als Spuren wurden CH_4 und C_2H_6 im Verhältnis ca. 1000:1 gefunden . Der hohe Stickstoffanteil ist auf die Spülung des Probegefäßes zurückzuführen.

Aufgrund des Wassergehaltes und der Sulfidmineralanteile der Probe ließ sich das Probevolumen nicht exakt bestimmen, weshalb eine Quantifizierung nicht möglich war.

Zusammenfassung

Die beabsichtigten Arbeiten konnten während des Einsatzes im Tyrrhenischen Meer nicht durchgeführt werden. Grund hierfür ist das Fehlen von rezent aktiven Hydrothermalfeldern in den untersuchten Gebieten. Ferner waren die noch bis zu diesem Zeitpunkt ungetesteten Autoklavwasserschöpfer nicht für die angestrebten Arbeiten einsetzbar. In Zusammenarbeit mit den an Bord befindlichen Technikern der Fa. Preussag konnten die Fehlerquellen am Gerät erkannt und teilweise beseitgt werden. Die verbliebenen Mängel konnten im Nachhinein beim Hersteller beseitigt werden.

Das gemeinsame Auftreten von sulfidischen Erzen und den leichten Kohlenwasserstoffen war für die angestrebte Prospektionsmethode eine wichtige Erkenntnis, da speziell die leichten Kohlenwasserstoffe Ziel der Untersuchungen waren. Nach den analytischen Befunden der Sedimentproben von 181 FG und den im Nachhinein vorgenommenen Verbesserungen an den Autoklavprobenehmern sollte das Konzept der Probenahme für den Bereich des Kebrit-Tiefs im Roten Meer zu aussagekräftigen Ergebnissen führen (s. Fahrtbericht SO 29 S. 207). Auf jeden Fall hätten die Beobachtungen aus dem Kebrit-Tief (s. Fahrtbericht SO 29 S. 207-219) bestätigt und quantifiziert werden können.

Hier liegt auch der Ansatzpunkt für weitere Untersuchungen in Gebieten verstärkter hydrothermaler Aktivität.

- 85 -

Literatur de la constant de la const

LILLEY,M.D., BAROSS,J.A. & GORDON,L.I. (1979): Reduced gases and bacteria in hydrothermal fluids: the Galapagos Spreading Center and 21°N East Pacific Rise. - Hydrothermal Processes at Seafloor Spreading Centers, 411-449.

OBERMANN, P. (1983): Vom Wasser, <u>60</u>, 85-93.

SACKETT, W.M., BROOKS, J.M. & BURKE, R.A. (1981): Light hydrocarbons in Red Sea brines and sediments. - Geochim. Cosmochim. Acta, <u>45</u>, 627-634.

SWINNERTON, V.J. (1962): Determination of dissolved gases in aqueous solutions by gaschromatographie. - Analytical Chemistry, <u>34</u>, 483-485.

WELHAN,J.A.& CRAIG,H. (1981): Methan, Hydrogen and Helium in hydrothermal fluids at 21°N on the East Pacific Rise. - Hydrothermal Processe at Seafloor Spreading Centers, 391-409.

bits satisficantitan attaiten kunstan attrend des kinnertes 10 toruntum nomen des kinnertes 10 toruntum nomen des autor des attracts von seven des autors autors

12.1. TIEFWASSERKORALLEN VOM VAVILOV- UND PALINURO-SEAMOUNT

W.-C. DULLO

Systematik

Bestimmbare Korallen konnten nur vom Vavilov- und Palinuro-Seamount geborgen werden. Insgesamt liegen fünf Arten vor, die mit Ausnahme von <u>Madrepora oculata</u> und <u>Trochocyathus mediterraneus</u> mit großer Individuenzahl vertreten sind.

Stamm Coelenterata FREY und LEUCKHART, 1847 Klasse Anthozoa EHRENBEG, 1843 Ordnung Scleractinia BOURNE, 1900 Unterordnung Faviina VAUGHAN und WELLS, 1943 Familie Oculinidae GRAY, 1847 Unterfamilie Oculininae GRAY, 1847 Gattung <u>Madrepora</u> LINNE, 1758 <u>Madrepora oculata</u> VERRIL, 1902

(So41 102FG, Vavilov-Seamount) (Taf. 1, Fig. 7,8)

Die gedrungenen und alternierend verzweigten Stämmchen besitzen einen Durchmesser von maximal 14mm. Das längste Exemplar mißt 60mm. Die dickwandigen Kelche sind tief eingesenkt, eine Columella fehlt, ebenso wie palliale Loben an den Septen. Die von WELLS (1965) angegebene globale Tiefenverbreitung von 183 – 1554m stimmt mit unseren Beobachtungen gut überein. ZIBROWIUS (1980) gibt für die Verbreitung dieser Art im Mittelmeer sogar eine Reichweite von mehr als 2000m an.

Unterordnung Caryophylliina VAUGHAN & WELLS, 1943 Familie Caryophylliidae GRAY, 1847 Unterfamilie Caryophylliina GRAY, 1847 Gattung <u>Trochocyathus</u> MILNE-EDWARDS und HAIME, 1843 <u>Trochocyathus mediterraneus</u> ZIBROWIUS, 1980

(So41 102FG, So41 123DC, Vavilov-Seamount) (Taf. 1, Fig. 3,4)

- 87 -

Nur zwei Exemplare dieser solitären Koralle konnten geborgen werden. Die Wuchsform ist gedrungen ceratoid und der Kelch erreicht einen Durchmesser von 13mm. In beiden Fällen sind die eingesenkten Kelche mit zementiertem Mikrit verfüllt, so daß die Columella nicht zu sehen ist. Paliale Loben auf den Septen sind spärlich entwickelt. Diese Art gehört auch zu den bis in große Wassertiefen verbreiteten Scleractinia des Mittelmeeres (ZIBROWIUS, 1980), gleichwohl sie heute nicht mehr lebend vorkommt (1.c.).

> Unterfamilie Desmophylliinae VAUGHAN und WELLS, 1943 Gattung <u>Desmophyllum</u> EHRENBERG, 1843 <u>Desmophyllum cristagalli</u> MILNE-EDWARDS und HAIME, 1848

(So41 27FS, 122DC, 123DC, Vavilov-Seamount) (Taf. 1, Fig. 1,2,5)

Diese Art ist die häufigste unter den geborgenen Tiefwasserkorallen. Das größte Exemplar erreicht einen Durchmesser von 50mm und eine Höhe von 70mm. Charakteristisches Merkmal sind die hahnenkammartigen Septen, die in der Nähe der Kelchöffnung als deutliche Costae entwickelt sind, während sie an der Basis fast verschwinden oder durch das Stereom verdeckt sind. Spärlich entwickelte, endothecale Dissepimente treten mitunter auf. Die Wuchsform der solitären Koralle variiert beträchtlich; sie reicht von turbinaten über trochoide bis hin zu ceratoiden Formen, wobei im vorliegenden Material letztere deutlich überwiegt. Bemerkenswert ist ferner die Art des Übereinanderwachsens, was nicht durch Knospung sondern durch einzelne Larvenansiedlung (geschlechtliche Vermehrung) geschieht. Die Besiedlung erfolgt stets am oberen Kelchrand nachdem die darunter lebende Koralle bereits abgestorben ist. Dies führt zu perlschnurartig zusammengesetzten Gebilden einzelner Polypen (Taf. 1, Fig. 5). Auch diese Art scheint heute im Mittelmeer nicht mehr lebend zu existieren (PUDSEY 1981), was von DELIBRIAS und TAVIANI (1985) auf die markante et al. Pseudohomothermie der Wassersäule zurückgeführt wird. Das Verschwinden dieser Art wird zeitlich mit dem Ausklang des letzten Glazials angesetzt (1.c.). "ENAL JANIAK DAW EGRANDERBAILY EURIANDONDOOT prottab

trochocysthus meditarisations 218209106, 19

3041 10280, Sc41 12300, Vavilov-Secenari

Gattung <u>Lophelia</u> MILNE-EDWARDS und HAIME, 1849 Lophelia pertusa (LINNE, 1758)

(So41 50DC, 58DC, Palinuro) (Taf. 1, Fig. 6,11)

Die Kelchmorphologie dieser dendroid verzweigten Korallenkolonie ist derjenigen von Desmophyllum sehr ähnlich, wenngleich ihre Dimensionen mit maximal 5mm Durchmesser deutlich kleiner sind. Die Äste messen maximal 10mm im Durchmesser und erreichen eine Höhe von 15cm. Die Verzweigung erfolgt ungleich, intratentacular und monostomat. Costae am Kelchrand sind nur undeutlich entwickelt ebenso wie endothecale Dissepimente.

Unterordnung Dendrophylliina VAUGHAN und WELLS, 1943 Familie Dendrophylliidae GRAY, 1847 Gattung <u>Dendrophyllia</u> BLAINVILLE, 1830 <u>Dendrophyllia</u> cf. <u>ramea</u> (LINNE, 1758)

(So41 49DC, 50DC, 58DC, 65DC, Palinuro) (Taf. 1, Fig. 9,10; Taf. 2, Fig. 1,2)

and in the second and a second start in the start and the second start of the second start and the second start

Die bis zu 90mm Höhe erreichenden Äste dieser dendroiden Koralle messen maximal 14mm im Durchmesser. Am Kelchrand sind sehr feine Costae entwickelt. Die Kelche sind leicht eingesenkt und weisen im Zentrum eine kräftige und spongiöse Columella auf. Die Verzweigung erfolgt durch extratentaculäre Knospung.

Die Zuordnung des vorliegenden Materials zur Art <u>ramea</u> ist etwas unsicher, da die Dimensionen der Kelche und Zweige größer sind. Die andere im Mittelmeerraum verbreitete Art <u>cornigera</u> ist aber deutlich kleiner und auffallend dichter verzweigt (ZIBROWIUS, 1980), so daß eher eine Zuordnung zur Art <u>ramea</u> gegeben ist.

Bemerkung zur Erhaltung der Korallen

Alle fünf Korallenarten reichen in ihrer Tiefenverbreitung nach ZIBROWIUS (1980) bis in die untere bathyale Zone (> 2000m), wobei <u>Dendrophyllia</u> <u>ramea</u> in ihrer Verbreitung etwas eingeschränkter ist. Keine der nachgewiesenen Arten konnte lebend geborgen werden. Alle Exemplare weisen mehr oder weniger gut entwickelte hellbraune bis schwarze Überzüge aus Eisenund Manganoxiden auf. Alle Exemplare sind auch deutlich durch die unterschiedlichsten endolithischen Organismen angebohrt, wobei Bohrschwämme und offensichtlich sipunculide Würmer (det. KLEEMANN, Wien) überwiegen. Gleichermaßen ist eine sekundäre Besiedlung durch den Kalkröhrenwurm <u>Filigranula stellata</u> (Taf. 1, Fig. 5,6,7) fast immer festzustellen. Diese Beobachtungen decken sich auch mit den mittels des Fotoschlitten gewonnenen Informationen. Nur während eines Einsatzes im Palinuro-Gebiet konnten Vertreter der Art <u>Dendrophyllia</u> cf. <u>ramea</u> beobachtet werden, die sich durch lebendes Gewebe auszeichneten (So41 187FS, vgl. Bericht LANGE; Taf. 2, Fig. 1,2).

Von den geborgenen Arten liegen Madrepora oculata, Lophelia pertusa, Trochocyathus mediterraneus und Dendrophyllia cf.ramea als isolierte Stücke vor. Der Interseptalraum ist nur geringfügig mit mikritischem Sediment verfüllt. Karbonatische Zemente fehlen weitgehend und sind wenn sie auftreten - als dünne aus Mg-Kalzit bestehende Tapeten entwickelt (vgl. Bericht BRACHERT et al.). Syntaxiale Zementaufwüchsethifizierte Mikrite eingebettet. Der Mikrit setzt sich sowohl aus sedimentierten Anteilen in Form von kalkigem Nannoplankton als auch autochthonem mikritischen Mg-Kalzitzement zusammen (SARTORI, 1974). Die Lithifizierung ist dabei sehr unterschiedlich. Im Bereich der durch Eisen- und Manganoxide imprägnierten Oberfläche ist die Lithifizierung vollständig, nimmt jedoch im Bereich von wenigen Zentimetern rasch ab und kann lokal so schwach sein, daß der Mikrit mit lithifizierte Mikrite eingebettet. Der Mikrit setzt sich sowohl aus sedimentierten Anteilen in Form von kalkigem Nannoplankton als auch autochthonem mikritischen Mg-Kalzitzement zusammen (SARTORI, 1974). Die Lithifizierung ist dabei sehr unterschiedlich. Im Bereich der durch Eisen- und Manganoxide imprägnierten Oberfläche ist die Lithifizierung vollständig, nimmt jedoch im Bereich von wenigen Zentimetern rasch ab und kann lokal so schwach sein, daß der Mikrit mit dem Fingernagel entfernt werden kann. Diese Beobachtung deckt sich mit den von MüLLER und FABRICIUS (1974) und PUDSEY et al. (1981) publizierten Befunden entsprechender Mikritkalke aus dem Hellenengraben.

Während die Korallenmikrite vom Vavilov-Seamount mit <u>Desmophyllum</u> <u>cristaqalli</u> als weitere Faunenelemente außer dem sessilen Kalkröhrenwurm <u>Filoqranula stellata</u> nur pelagische Organismen, vertreten durch Foraminiferen und Pteropoden, aufweisen, sind in den wenigen zementierten Korallenproben vom Palinuro-Seamount mit <u>Lophelia pertusa</u> größere Mollusken vorhanden. Hierbei handelt es sich um die Bivalvier <u>Spondylus</u> gussoni und Delectopecten vitreus sowie um die Gastropode Amplissa <u>costulata</u>, die jedoch nur in einem Exemplar vorliegt. Eine derartige Vergesellschaftung wird von TAVIANI und COLANTONI (1984) vom Malta-Syracus-Escarpment als typische Biozönose des tieferen Mittelmeeres beschrieben.

Literatur

- DULLO, W.-Chr. (1984): Korallen und Pteropodenproben. In PUCHELT, H. (ed): Fahrtbericht Forschungsfahrt Sonne 29.- 160-180, 5 Taf., Karlsruhe.
- MULLER, J. & FABRICIUS, F. (1974): Magnesian-calcite nodules in the Ionian deep sea.- In: HS], K.J. & JENKYNS, H.C. (eds.): Pelagic sediments on land and under the sea. IAS Spec. Publ. 1, 235-247, 11 Figs., Oxford.
- PUDSEY, C.J., JENKINS, D.G. & CURRY, P. (1984): Sedimentology and palaeontology of samples from the Hellenic Trench. Marine Geology, 44, 273-288, 7 Figs., Amsterdam.
- SARTORI, (1974): Modern deep sea Magnesian-calcite in the central Tyrrhenian Sea. J. Sed. Petrol. 44, 1313-1322, 10 Figs., Tulsa.
- TAVIANI, M. & COLANTONI, P. (1984): Paleobiocoenoses profondes a scleractinaires sur l'escarpement de Malte - Syracuse (Mer Mediterranee): Leur structure, leur age et leur signification.-Rev. Inst. Franc. du Petrole, 39, 547-558, 8 Figs. Paris.
- ZIBROWIUS, H. (1980): Les Scleractinaires de la Mediterranee et de l'Atlantique nord-oriental.- Mem. Inst. oceanogr. Monaco 11, 284 p., 107 pls., Monaco.

Tafelerläuterungen

Tafel 1:

Fig. 1,2: <u>Desmophyllum cristagalli</u> MILNE-EDWARDS und HAIME. Fig. 1: 0,7x; Fig. 2: 0.5x.

Fig. 3,4: <u>Trochocyathus mediterraneus</u> ZIBROWIUS. Fig. 3: 1x; Fig. 4: 1,1x.

Fig. 5 : Desmophyllum cristagalli M.-E. & H. Man achte auf das perl-

schnurartige Übereinanderwachsen. Die Kelche weisen eine spärliche Sekundärbesiedlung durch den Kalkröhrenwurm <u>Filigranula</u> <u>stellata</u> auf. 0,9x.

Fig. 6,11:Lophelia pertusa LINNE mit deutlichem Sekundärbewuchs durch Filigranula stellata. Fig. 6: 0,7x; Fig. 11: 0,7x.

Fig. 7,8: Madrepora oculata VERRIL. Fig. 7: 0,9x; Fig. 10: 1,7x.

Fig. 9,10:Dendrophyllia cf. ramea (LINNE). Fig. 9: 0,9x; Fig. 10: 1,7x.

Fig. 1: Lebende Korallenkolonien von <u>Dendrophyllia</u> cf. <u>ramea</u>. In der rechten oberen Bildhälfte sind deutlich die gelb gefärbten Tentakeln des Polypen zu sehen. (So41 187FS).

Fig. 2: Abgestorbene Äste der Koralle <u>Dendrophyllia</u> cf. <u>ramea</u>, teilweise schon mit mikritischem Schlamm (hell) und Asche (?) (dunkel) bedeckt. (So41 187FS).

3.1. Supersonally and an analysis of the superson of the second secon

Pingerhoge, attente ender Arte. Piene Beabrance a purkt stohungt den

12.2. KIESELSCHWAMME VOM VENTOTENE- UND VAVILOV-SEAMOUNT T. BRACHERT, W.-C. DULLO, B. LANG & P. STOFFERS

Einleitung

Zwei Dredgen erbrachten mehrere isolierte und im Verband befindliche hexactinellide Kieselschwämme. Während vom Vavilov-Seamount (120 DC, 1375m; vgl. Bericht Dredgestationen) nur zwei Exemplare von 30cm Länge und maximal 10cm Durchmesser vorliegen, wurden im S' Bereich des Ventotene-Seamounts (95 DC, 2125m) fünf isolierte Exemplare geborgen, von denen das längste 35cm erreicht. Zusätzlich enthielt diese Dredge einen Block von 35 x 30 x 20cm mit drei gut erhaltenen, untereinander zementierten Schwammkörpern sowie mehreren Schwammfragmenten.

Die Altersstellung des Probenmaterials ergibt sich aus spärlichen Coccolithen im zementierten Gastralraum eines Schwammexemplares vom Ventotene Seamount. Hier konnten <u>Coccolithus pelagicus</u> und <u>Emiliana huxleyi</u> (Taf. 1/6) nachgewiesen werden, die die Nannoplanktonzone 21 belegen (Jungpleistozän und Holozän). Dieses Alter kann für die anderen Kieselschwämme der gleichen Dredgestation (95 DC) ebenfalls angenommen werden. Für die Funde vom Vavilov-Seamount liegen keine Daten zur Stratigraphie vor, doch scheint hier ein pleistozänes Alter ebenfalls sehr wahrscheinlich (SELLI et al., 1977). Vergleichbare Schwammfunde aus dem Hellenengraben werden von ZIBROWIUS (1981) in das Pleistozän eingestuft.

Makroskopische Beschreibung

Alle Exemplare sind von länglicher, spitzkegeliger Gestalt (Taf. 1/1,3) und sind in ihren Dimensionen den von ZIBROWIUS (1.c.) beschriebenen Schwämmen ähnlich. Alle Proben weisen einen dünnen Überzug aus schwarzen Eisen- und Manganoxiden auf (Taf. 1/4,5). Auffallend ist die unterschiedliche Erhaltung der Fossiloberflächen. Die bei der Bergung noch mit pelagischem Mikritschlamm bedeckten Flächen sind weitestgehend glatt, zeigen nur äußerst geringen Bewuchs und Anbohrungen. Die freiliegenden Flächen sind intensiv angebohrt und von Kalkröhrenwürmern der Gattung <u>Serpula</u> und der Art <u>Filogranula stellata</u> sowie kleinen Scleractiniern der Gattung <u>Caryophyllia</u> besiedelt (Taf. 1/4). Teilweise fehlende Mn-Überzüge auf diesen Sekundärsiedlern lassen ein sehr junges Alter (± rezent) vermuten. Ein weiteres Charakteristikum der freiliegenden Flächen ist die durch Anbohrung bedingte, großflächigere Bioerosion und Korrosion, die morphologisch an Mikrokarst erinnert (Taf. 1/2,4).

Bei zwei Exemplaren könnte eine leichte Einsenkung im Bereich des Osculums (Taf. 1/1) die öffnung des Gastralraum repräsentieren. Aufgrund der Bioerosion und Korrosion sind exakte Angaben über die Wandstärke kaum möglich. Bei allen Exemplaren liegt sie unabhängig von der Größe um 1cm. Im Unterschied zu den isolierten Schwämmen sind die Oberflächen der in einem Block zementierten Exemplare nicht so stark zerbohrt und korrodiert, was offensichtlich durch eine mächtigere Sedimentüberdeckung, die der Probe bei der Bergung noch anhaftete, bedingt ist. Die intakten und fragmentierten Schwämme dieser Probe sind ± parallel ausgerichtet, wobei die Oscula benachbarter Individuen gegensätzlich orientiert sind. Dies läßt eine parautochthone Einbettung vermuten und scheint für die Tiefwasserhexactinelliden des Mittelmeeres nicht ungewöhnlich zu sein (vergl. ZIBROWIUS, 1981).

Mikroskopische Beschreibung

Der Gastralraum und der nach der Mazeration des Zellverbandes freigewordene Interspicularraum sind mit zementierten, pelagischen Mikriten verfüllt. Die Farbe dieser Mikrite variiert zwischen oliv, olivgrau, olivbraun und hellbraun. Diese unterschiedliche Färbung deutet auf wiederholte Sedimentations- und Zementationsphasen hin (PUDSEY et al. 1981), wobei hellbraune Verfüllung eindeutig die jüngste Generation darstellt, mit Ausnahme der noch unverfestigten Schlämme. Zwischen den einzelnen Sedimentgenerationen kann es mehrfach zu Unterbrechungen gekommen sein, die entweder durch auffallende Mn-Auskleidungen oder zarte, dendritische Imprägnationen auf der zu dieser Zeit gegebenen Sedimentoberfläche gekennzeichnet sind⁵ (Taf. 1/2, Taf. 3/3-5).

Auf der anderen Seite zeichnen die verschiedenen Mikritfärbungen Bioturbationsmuster im noch unverfestigten Schlamm nach (Taf. 1/2, Taf. 3/1), wodurch sedimentäre Strukturen wie sie bei der Füllung von Schwammgastralräumen beobachtet werden können (LANG & STEIGER, 1985) vollkommen verloren gegangen sind. Während PUDSEY et al. (1981) in pleistozänen Karbonaten aus dem Hellenengraben ähnliche Bioturbationsmuster beobachteten, die mit helleren Mikriten verfüllt sind, sind in dem uns vorliegendem Material auch Bioturbationsmuster mit deutlicher dunkler Färbung zu beobachten (Taf. 1/2), was offensichtlich auf höhere Gehalte an organischer Substanz zurückzuführen ist (FLÜGEL, 1982).

Rasterelektronenmikroskopische Untersuchungen sowie energiedispersive Elementanalysen (ORTEC) ergaben folgendes Bild: Der Mikrit ist durch ein e auffallend kleine Korngröße gekennzeichnet (Taf. 2/1). Der erkennbare Anteil an kalkigem Nannoplankton ist gering. Zwischen dem Mikrit und den Zementen in Foraminiferenkammern (Taf. 2/2) treten Mg-Konzentrationsunterschiede auf. Während in den Kammern ein Mg-Gehalt von 12,5 Mol% MgCO3 nachgewiesen werden konnte und sich diese Kristalle somit als eindeutige Mg-Kalzitzemente ansprechen lassen (ALEXANDERSSON 1972), ist die Mg-Verteilung in den Mikriten heterogener. Sie schwankt zwischen 8,5 und 12,5 Mol%. Diese Ergebnisse decken sich mit den Angaben von MüLLER & FABRICIUS (1973) und SARTORI (1974). Die Mg-kalzitische Mineralogie läßt daher einen großen Teil dieser Mikrite auch als Zemente erscheinen (1.c.). Der geringere Mg-Gehalt läßt sich durch eine Vermischung mit pelagischem, mikritischem Sediment erklären, das sich von nicht Mghaltigen, kalkigen Planktonen (Coccolithen, Foraminiferen und Pteropoden) herleiten läßt. Daneben konnten aber auch Areale beobachtet werden, die offensichtlich Bereichen stärkerer Bioturbation entstammen mit weitaus geringeren MgCO3 Konzentrationen (4-6 Mol%). Hierbei überwiegt also der Anteil an pelagischem mirkritischem Sediment.

Der erkennbare biogene Anteil im mikritischen Sediment wird zum größten Teil durch planktonische Foraminiferen eingenommen, die durch Mangelsedimentation in Bohrlöchern angereichert sind. (Taf. 3/4). Untergeordnet finden sich auch Pteropoden (Taf. 3/2), deren aragonitische Schalen noch unzerstört vorliegen, mit Ausnahme von wenigen Mikritisierungserscheinungen und endolithischen Anbohrungen (BANDEL & DULLO, 1985).

Diagenese

In allen untersuchten Schwämmen wurde die ursprüngliche Nadelsubstanz durch allochemische Diagenese verändert. Nur in sehr wenigen Fällen wurden Relikte des kieseligen Skeletts nachgewiesen (Taf. 2/7). Im Unterschied zu den bisher beschriebenen diagenetischen Veränderungen an hexactinelliden Schwämmen aus dem Jura (FLÜGEL & STEIGER, 1981; GAILLARD, 1983; LANG & STEIGER, 1985), fehlen beim vorliegenden Material Algen-Bakterien-Krusten, die als externe Stütze des Schwammkörpers fungieren. Vergleichbare Erhaltungszustände finden sich dagegen bei Kieselschwämmen jurassischer Schwammergel (BRACHERT, 1986).

Die Fossilisation der Schwammkörper muß demnach so vonstatten gehen, daß

nach dem Abbau des organischen Zellverbandes zwischen den Nadeln pelagisches Sediment, angezeigt durch planktonsiche Foraminiferen (Taf. 2/5) eingefangen wird und anschließend durch rasche Zementation mikritischer Mg-Kalzite im Sinne von SARTORI (1981) lithifiziert wird. Dieser Vorgang beschränkt sich weitestgehend auf den Schwammkörper, nur geringe Teile des Gastralraumes werden davon mitbeeinflußt, was sich aus dünnen Mn-Krusten innerhalb des Gastralraumsediments ableiten läßt. Hier ist auch die Zementation nicht so rasch erfolgt, wie Bioturbationsgefüge belegen. Die rasche Lithifizierung ist Voraussetzung für die körperliche Erhaltung der Schwämme. Nicht lithifizierte Areale treten heute in Form großer Löcher in Erscheinung, da hier durch die nachfolgende SiO2-Lösung der Schwammnadelverband der Überlieferung entzogen wurde (Taf. 1/2-4). Skelettopallösung ist im flachmarinen Milieu auf Grund der Untersättigung des Meerwassers hinsichtlich SiO₂ (CALVERT, 1976; von RAD et al. 1977) weitverbreitet. Nach BERGER (1975) reicht diese "silica corosion zone" bis 1000m hinab. Unter all den diese Lösungszone beeinflussenden Faktoren (vgl. LASCHET, 1984) scheint die Wassertemperatur für das Mittelmeer eine wichtige Rolle zu spielen. Höhere Temperaturen begünstigen SiO2-Lösung. Das heutige Mittelmeer weist eine nahezu homotherme Wassersäule auf. Bis in Wassertiefen um 3000m können Temperaturen um 12°C gemessen werden (RYAN et al. 1966; vgl. Bericht KARBE et al.: 88 MS, 89 MS, 126 MS). Daraus läßt sich ein größerer Tiefenbereich der Silikatlösungszone fordern.

Die Diagenese der Schwammnadeln erfolgte auf verschiedenen Wegen; selbst an einem Exemplar sind unterschiedliche Erhaltungsweisen zu beobachten. Im wesentlichen können aber zwei verschiedene Grundtypen unterschieden werden. Ein Ersatz des Skelettopals durch Mg-Kalzitzemente oder Eisen-Mangan-Oxide.

In vielen Fällen tritt vor der Lösung des Skelettopals eine Verfüllung des Achsenkanals mit Sediment (Taf. 2/3,6,7) oder Eisen-Mangan-Oxiden (Taf. 2/4) auf. Der durch nachfolgende Lösung des Skelettopals freigewordene Hohlraum wird entweder weiter mit Sediment gefüllt und die frühere Existenz der Nadeln verschleiert (Taf. 2/5) oder aber es bilden sich um den bereits zementierten Achsenkanal Hohlraumzemente (Mg-Kalzit) (Taf. 2/3,6,8-10) oder aber Eisen-Mangan-Abscheidungen (Taf. 2/5). Wird der Achsenknal nicht verfüllt und tritt nur Lösung auf, so kann der dabei entstandene Hohlraum eine dünne Mn-Lage zwischen der nachfolgenden Mgkalzitischen Hohlraumzementbildung aufweisen (Taf. 2/8), was auf eine Zeitlücke zwischen Lösung und Zementation schließen läßt.

- 98 -

In den meisten Fällen ist diese Mn-Lage jedoch nicht entwickelt und der Hohlraum direkt mit Mg-kalzitischen Zementtapeten ausgekleidet (Taf. 2/8,9), wobei die gegen den Achsenkanal zugewandten Kristallspitzen einerseits unregelmäßig vergröbert und andererseits zahnartig zugespitzt sind. Diese drusige oder hundezahnartige Kristallmoprphologie (Taf. 1/7, 2/10) ist eher einer Bildung im Süßwasserdiagenesebereich zuzuordnen (LONGMAN, 1980). Die eindeutige Mg-kalzitische Mineralogie der Zemente sowie die Herkunft des Probenmaterials schließen dies aber vollkommen aus. Mg-kalzitische Zementation im Tiefwasser kann also morphologisch Bildungen der Süßwasserdiagenese vortäuschen. Durch inkongruente Lösung der Mg-Kalzite im Süßwasser kann diese Morphologie vollständig erhalten bleiben (BATHURST, 1972). Derartige aus Mg-Kalzit bestehende "Hundezahnzemente" finden sich auch in den Zementtapeten an den Wänden von Bohrgängen (Taf. 1/7).

Die in allen Exemplaren häufigen Bohrmuster endolithischer Organismen können erst nach der allochmeischen Umwandlung des Schwammskeletts erfolgt sein (PALMER & FURSICH, 1981). Als Erzeuger der unregelmäßig gewundenen Bohrgänge kommen in erster Linie annelide und sipunculide Würmer in Frage (MACINTYRE, 1984). Das Verteilungsmuster hält sich an keinerlei Grenzen und greift sowohl über Sedimentgrenzen, Mn-Krusten als auch umgewandelte Schwammnadeln und auch älteren Bohrgängen hinweg (Taf. 3/1,5). Dies belegt die Mehrphasigkeit der Anbohrungen. Die Bohrgänge weisen oft dünne Mn-Tapeten (EDX) auf (Taf. 3/3,4). Teilweise sind diese Bohrgände nur unvollständig verfüllt und sind heute noch offen (Taf.1/2). In anderen Fällen kann zwischen der Anbohrung und der nachfolgenden Verfüllung mit Sediment auch ein Mg-kalzitischer Zementsaum mit mehreren Generationen entwickelt sein (Taf. 3/2), wobei derartig verfüllte Bohrgänge erneut von kleineren, endolithischen Organismen angebohrt werden können (Taf. 3/2). Solche Phänomene sind auch im flachmarinen Bereich sehr häufig (SCHRÖDER & ZANKL, 1974).

Diskussion

Der Ablauf der Schwammnadeldiagenese in dem uns vorliegenden Material entspricht der von (PALMER & FÜRSICH, 1981; GAILLARD, 1983; LANG & STEIGER, 1985) geschilderten Art und Weise. Neu ist ein allochemischer Schwammnadelersatz durch Manganoxide.

Aufgrund des pleistozänen Alters können flachmarine Diagenesemilieus

ausgeschlossen werden. Von den hier beschriebenen Phnomenen sind drei Merkmale herauszugreifen, die eher für flachere und mittlere Ablagerungstiefen gelten, aber offensichtlich aufgrund der ozeanographischen Verhältnisse des Mittelmeeres (RYAN et al., 1966; LACOMBE & TCHERNIA, 1972) auch in weitaus größeren Wassertiefen vorkommen:

- 1) Die größere Tiefenausdehnung der Silikatlösung
- 2) Intensive "Bohrgang in Bohrgang"-Strukturen
- Drusige und Hundezahnzemente aus Mg-Kalzit

Im Hinblick auf die in der Erdgeschichte zu bestimmten Zeiten auftretenden Kieselschwammstrukturen und deren Ablagerungstiefe erscheinen diese vorläufigen Ergebnisse wichtig für deren genetische und diagenetische Interpretation.

Literatur

- ALEXANDERSSON, E.T. (1972): Intragranualr growth of marine aragonite and Mg-calcite: evidence of precipitation from supersaturated seawater.- J. Sed. Petrol 42, 441-460, 7 Figs., Tulsa.
- BANDEL, K. & DULLO, W.-Chr. (1985): Biogene Schalenumwandlung an subfossilen, pelagischen Gastropoden des Roten Meeres.- N. Jb. Geol. Paläont. Mh. 1985, 321-328, 8 Abb., Stuttgart.
- BATHURST, R.G.C. (1971): Carbonate sediments and their diagenesis .- Dev. Sed. 12, 620 S. 359 Figs., 24 Tabs., Amsterdam - London - New York (Elsevier).
 - BRACHERT, T. (1986): Die Bildung von Schwammergeln und Schwambiohermen als Ergebnis von Meeresspiegelschwankungen.-Facies 15, Erlagen, im Druck.
- CALVERT, S.E. (1974): Deposition and diagenesis of silica in marine sediments. In: HSU, K.J. & JENKYNS, H (eds.): Pelagic sediments on land and under the sea.- IAS Spec. Publ. 1, 273-299, 7 Figs., Oxford.
- FLÜGEL, E. (1982): Microfacies analysis of limestones.- 633 S. 78 Abb., 58 Tab., 53 Taf., Berlin - Heidelberg - New York (Springer).

FLÜGEL, E. & STEIGER, T. (1981): An Upper Jurassic sponge algal buildup from the northern Frankenalb, West Germany. In: TOOMEY, D.F. (ed.): European fossil reef models.- Soc. Econ. Paleont. Min. Spec. Publ. 30, 371-397, 23 Figs., Tulsa.

GAILLARD, C. (1983): Les biohermes a spongiaires et leur environnement dans l'Oxfordien du Jura meridional.- Docum. Lab. Geol. Lyon, 90, 515 S., 187 Abb., 42 Taf., Lyon.

- LACOMBE, H. & TCHERNIA, P. (1972): Caracteres hydrologiques et circulation des eaux en Mediterrannee. In: STANLEY, D. (ed.): The Mediterranean Sea, 25-36, Stroudsberg.
- LANG, B. & STEIGER, T. (1985): Paleontology and diagenesis of Upper Jurassic siliceous sponges from the Mazagan Escarpment.- In: AUZENDE, J.M. & RAD, U. von (eds.): Cyamaz cruise 1982.- Oceanologica Acta Spec. Vol. 5, 93-100, 3 Taf., Paris.
- LONGMAN, M.W. (1980): Carbonate diagenetic textures from nearsurface diagenetic environments.- Amer. Ass. Petrol. Bull., 64, 461-487, 18 Abb., Tulsa.
- MACINTYRE, I.G. (1984): Preburial and shallow-subsurface alteration of modern scleractinian corals.- Palaeontogr. Amer. 54, 229-244, 17 Abb., Ithaca N.Y.
- MULLER, J. & FABRICIUS, F. (1974): Magnesian-calcite nodules in the Ionian deep sea.- In: HSU, K.J. & JENKYNS, H.C. (eds.): Pelagic sediments on land and under the sea. IAS Spec. Publ. 1, 235-247, 11 Figs., Oxford.
- PALMER, J. & FURSICH, F.T. (1981): Ecology of sponge reefs from the Upper Bathonian of Normandy.- Palaeontology, 24, 1-23, 5 Figs. 2 Pls., 1 Tab., Oxford.
- PUDSEY, C.J., JENKINS, D.G. & CURRY, P. (1984): Sedimentology and palaeontology of samples from the Hellenic Trench. Marine Geology, 44, 273-288, 7 Figs., Amsterdam.
 - RAD, U. von, RIECH, V. & RÖSCH, H. (1977): Silica diagenesis in continental margin sediments of Northwest Africa.-In: LANCELOT, Y. & SEIBOLD, E. (eds.): Init. Rep. Deep Sea Drilling Project, 41, 879-905, Washington D.C.
 - RYAN, W.B.F., OLAUSEN, E. & FAIRBRIDGE, R.W. (1966): Mediterranean Sea. In: FAIRBRIDGE, R.W. (ed.): Encyclopedia of oceanography, 490-499, Amsterdam.

- SARTORI, (1974): Modern deep sea Magnesian-calcite in the central Tyrrhenian Sea. J. Sed. Petrol. 44, 1313-1322, 10 Figs., Tulsa.
- SCHROEDER, J.H. & ZANKL, H. (1974): Dynamic reef formation: a sedimentological concept based on studies of recent Bermuda and Bahama reefs.- Proc. II Internat. Coral Reef Symposioum 2, 413-428, Miami.
- SELLI, R., LUCCHINI, F., ROSSI, P.L., SAVELLI, C. & DEL MONTE, M. (1977): Dati geologici, pterochimici e radiometrici sui vulcani centro Tirrenici.- Giornale di Geologia 2, XLII, 221-246, 6 Figs. 5 Tabs., Pl. XV, Bologna.

ZIBROWIUS, H. (1981): Thanatocoenose pleistocene profonde a spongiaires et scleractinaires dans la Fosse Hellenique.- Journees Etud. System. et Biogeogr. Medit.-Cagliari, C.I.E.S.M. Monaco.

Tafelerläuterungen

Tafel 1

Fig. 1: Spitzkegelförmiger Schwamm mit deutlich erkennbarer zentraler Einsenkung, die dem Osculum entspricht. S041 95DC, 0,5x.

Fig. 2: Querschnitt durch einen Kieselschwamm. Deutlich erkennt man "Mikrokarst"-Erscheinungen, die aufgrund fehlender Lithifizierung und intensiver SiO₂-Lösung entstanden sind. Im unteren Teil sind mehrere "Bohrgang in Bohrgang"-Strukturen entwickelt. Die im noch unverfestigten Sediment angelegten Bioturbationsmuster treten als dunklere Mikritfüllungen in Erscheinung. SO41 95DC, 1x.

- Fig. 3: Außenfläche eines Kieselschwammes mit nur geringen Anbohrungen und Mikrokarst-Bildungen, der bei der Bergung noch Sediment anhaftete. SO41 120DC, 0,3x.
- Fig. 4: Mikrokarstoberfläche mit dünnen Mn-Fe-Überzügen. Auf diesen finden sich kleine Scleractinier der Gattung <u>Caryophyllia</u> (Pfeil) sowie mehrere Serpel-Röhren. S041 120DC, 1,2x.

Fig. 5: Brekzien messinischer Evaporite (Pfeile) in der zementierten, mikritischen Matrix. SO41 95DC, 1,5x.

Fig. 6: Das Vorkommen von <u>Emiliana huxleyi</u> in der feinkörnigen und mikritischen Matrix belegt Nannoplanktonzone 21. Teilweise sind die Plättchen so stark zementiert, daß sie nur undeutlich zu erkennen sind (Pfeil).

Fig. 7: Hundezahnartige Zementsäume aus Mg-Kalzit.

Fig. 1: Korngefüge des feinkörnigen Mg-kalzitischen Mikrits innerhalb des Schwammkörpers. SO41 95DC.

Fig. 2: Nadelige Foraminiferenkammerzemente aus Mg-Kalzit. SO41 95DC.

- Fig. 3: Verfüllung des Achsenkanals der Schwammnadeln mit Sediment (Pfeil) vor der SiO₂-Lösung und Sprossung von Mg-Kalzitzement nach der Lösung. SO41 95DC, 16x.
- Fig. 4: Verfüllung des Achsenkanals der Schwammnadeln mit Mn-Oxiden vor der SiO₂-Lösung. Das ehemalige Nadelskelett ist durch nachfolgende Sedimentverfüllung vollkommen verschwunden. SO41 95DC, 42x.
- Fig. 5: Die Vielzahl der planktonischer Foraminiferen im Interspicularraum weisen auch auf eine sedimentäre Natur des Mikrits. Bei fehlender Achsenkanalfüllung und ausschließlicher SiO₂-Lösung mit nachfolgender Sedimentverfüllung werden die Schwammnadeln vollkommen der Fossilüberlieferung entzogen (Pfeil). Anstelle von sedimentärer Verfüllung kann die Mn-Abscheidung im Bereich des Achsenkanals auch auf das gelöste Nadelskelett übergreifen. SO41 95DC, 9,5x.

Fig. 6: Detail aus Fig. 3, mit deutlich erkennbarer Mikritfüllung des Achsenkanals (Pfeil). SO41 95DC, 42x.

- Fig. 7: Teilweise gelöste Schwammnadel, mit Relikten von Skelettopal (A). Der Achsenkanal ist bereits mit Mikrit verfüllt. SO41 95DC.
- Fig. 8: Schwammnadelersatz durch Mg-Kalzitzemente. Der Bereich des Achsenkanalknotens ist noch nicht zementiert. Zwischen umgebendem Mirkit und dem Zement ist eine dünne Mn-Lage entwickelt (Pfeil). SO41 95DC, 42x.

hearte na arark semenrierr, can alo nur underrithr a or state

- Fig. 9: Mg-Kalzitzementtapeten im Lösungshohlraum von Schwammnadeln. SO41 95DC.
- Fig. 10: Detail aus Fig. 9. Beachte die drusigen und hundezahnartigen Kristallvergröberungen in Richtung des ehemaligen Hohlraumzentrums.

Tafel 3 al allaking mencionals of meptions and solvepart if you

Fig. 1: Anschliff in der Längsachse eines spitzkegelförmigen Kieselschwammes. Die Bioturbationsmuster im noch unverfestigten Sediment sind durch dunklere Färbungen des Mikrits angedeutet. Bohrungen endolithischer Organismen greifen sowohl über Bioturbationsmuster als auch über Mn-Imprägnationen hinweg. S041 95DC, 1,4x.

- Fig. 2: Zwischen der Verfüllung der Bohrlöcher kann es zur Bildung mehrerer Mg-kalzitischer Zementsäume kommen (Pfeil). Nachfolgende Anbohrungen kleinerer Endolithen erzeugen "Bohrgang in Bohrgang"-Strukturen. S041 95DC, 26x.
- Fig. 3: Manche Bohrgänge wurden vor der Verfüllung mit Sediment mit einer dünnen Mn-Tapete ausgekleidet. SO41 95DC, 30x.
- Fig. 4: Mn-Auskleidung eines Bohrganges mit deutlich in das umgebende Sediment eingedrungenen dendritischen Mn-Imprägnationen. Die mächtigere Mn-Kruste, sowie die stark angereicherten planktonischen Foraminiferen deuten auf eine längere Sedimentationsunterbrechung hin. SO41 95DC, 12x.
- Fig. 5: Die Bohrgänge der Endolithen greifen über Sedimentgrenzen, Mn-Krusten, ältere Bohrungen und Schwammnadeln hinweg. Die jüngste Bohrgeneration ist noch nicht mit Sediment verfüllt. S041 95DC, 16x.

Tatel 3

13. SEDIMENTKERNE DER KASTENLOT- UND STOSSROHRSTATIONEN

J. SCHOLTEN, P. STOFFERS & W.-C. DULLO

Die Forschungsfahrt Sonne 41 (HYMAS I) hatte zum Ziel, den Hydrothermalismus im Bereich der Seamounts des Tyrrhenischen Meeres zu erforschen. Hierzu erfolgte u.a. eine ausgedehnte Sedimentbeprobung der einzelnen Arbeitsgebiete. Durch die mineralogischen und geochemischen Untersuchungen sollen folgende Gesichtspunkte geklärt werden:

- 1) Charakterisierung der Sedimente im Tyrrhenischen Meer
- 2) Art und Umfang hydrothermaler Beeinflussung der Sedimente
 - 3) Vorkommen von massiven Sulfiden und ihre Erzparagenese
- 4) Verbreitung der Eisen- und Mangankrusten und ihre Geochemie
 - 5) Vorkommen von Karbonatkrusten

Kernstationen

Insgesamt wurden während der Forschungsfahrt "SONNE 41" 50 Kastenlot- und Stoßrohrstationen gefahren. Tab. 1 gibt einen Überblick über Koordinaten, Lokalität und Wassertiefe. Diese Stationen ergaben einen Sedimentgewinn von 44,43 m. Die Sedimentkerne wurden an Bord beprobt, fotografiert und mit Hilfe der Munsell Color Chart beschrieben. Von einigen Sedimentkernen wurden smear slides zur ersten Sedimentansprache gemacht. Zusätzlich zu den in Tab. 1 erwähnten Stationen wurden noch 12 Sedimentproben von Dredge-, Multicorer- und Fernsehgreiferstationen entnommen.

Der Einsatz von Kastenloten und Stoßrohren im Bereich der Seamounts des Tyrrhenischen Meeres erwies sich teilweise als schwierig. Zum einen läßt der pliozäne bis pleistozäne Bildungszeitraum der Seamounts keine mächtigen Sedimentablagerungen erwarten, zum anderen erlaubt die sehr unruhige Morphologie der Arbeitsgebiete nur bedingt den Einsatz von Kerngeräten an Steilhängen. Die Sedimentstationen konzentrierten sich deshalb auf die Ebene um die Seamounts sowie auf Verebnungsflächen der vulkanischen Erhebungen.

STATION	GERAT	LOKALITÄT		KOORDIN	ATE	N XAGT	WASSERTIEFE
51	KL	Palinuro	14	44.84E	39	31.21N	1038
52	KL	Palinuro	14	54.55E	39	29.30N	753
60	KL	Palinuro	14	49.04E	39	29.33N	124
61	KL	Palinuro	14	53.35E	39	31.29N	1150
62	KL	Palinuro	14	56.27E	39	30.53N	806
68	KL	Palinuro	14	48.98E	39	29.06N	94
69	KL	Palinuro	14	49.05E	39	22.26N	80
76	KLH	Ventotene	13	12.35E	40	36.93N	2013
77	KL	Ventotene	13	12.52E	40	35.08N	1644
78	KL	Ventotene	13	14.28E	40	34.41N	1216
79	KLH	Ventotene	13	06.82E	40	34.66N	2638
86	KL	Ventotene	13	10.97E	40	23.78N	1490
87	KLH	Ventotene	13	14.95E	40	25.76N	2274
90	KLH	Ventotene	13	16.80E	40	21.21N	2645
92	KL	Ventotene	13	11.09E	40	23.75N	2013
96	SR	Ventotene	13	11.37E	40	26.98N	1644
97	KL	Ventotene	13	11.06E	40	23.83N	1513
98	KLH	Vavilov	12	31.81E	39	51.95N	3173
99	SR	Vavilov	12	31.82E	39	54.74N	3296
112	KLH	Vavilov	12	43.52E	39	49.03N	3470
113	SR	Vavilov	12	44.53E	39	51.72N	3496
115	KLH	Vavilov	12	31.26E	39	54.69N	3306
116	SR	Vavilov	12	31.45E	39	51.63N	3162
119	KL	Vavilov	12	36.83E	39	52.52N	1196
130	KLH	Magnaghi	11	42.93E	39	52.44N	3052
134	KL	Magnaghi	11	48.65E	39	55.30N	2087
135	KL	Magnaghi	11	45.53E	39	51.16N	1826
140	KLH	Enareta	14	03.57E	38	37.31N	1755
142	KL	Enareta	13	59.99E	38	38.50N	268
144	KLH	Enareta	14	03.54E	38	43.60N	2598
151	SR	Enareta	13	56.84E	38	36.53N	1720
154	KLH	Eolo	14	14.90E	38	32.49N	1662
163	KLH	Eolo	14	12.40E	38	33.04N	1262
164	SR	Eolo	14	12.49E	38	34.38N	1369
165	SR	Eolo	14	14.05E	38	33.26N	1365
175	SR	Eolo	14	12.79E	38	33.78N	1030
183	KLH	Palinuro	14	42.44E	39	32.65N	634

184	SR	Palinuro	14 42.3	9E 39 32.51N	613	
185	KL	Palinuro	14 42.12	2E 39 32.64N	644	
186	KL	Palinuro	14 41.80	DE 39 32.71N	757	
196	KLH	Palinuro	14 49.8	7E 39 29.35N	90	

Tab. 1: Übersicht über die gefahrenen Kastenlote und Stoßrohre. Bei den Koordinaten handelt es sich um die endgültigen, korrigierten Werte.

Untersuchungsgebiete

Ventotene:

Insgesamt wurden im Gebiet des Ventotene-Seamounts 10 Kernstationen gefahren. Bei der Stationsauswahl wurde eine Verteilung auf Gipfellokalitäten und umgebende Ebenen berücksichtigt. Bedingt durch eingeschaltete Aschen- und Geröllagen, vorwiegend Bimsstein, war die Eindringtiefe der Kerngeräte, insbesondere in der Ebene um die Seamounts, begrenzt. Die Sedimente im Gebiet von Ventotene sind überwiegend karbonatisch-detritischer Zusammensetzung. Eine hydrothermale Beeinflussung konnte makroskopisch nicht festgestellt werden

Vavilov:

Der Vavilov-Seamount hat eine Ausdehnung von 17x32 km und erhebt sich bei einer vorwiegenden Streichrichtung von NNE bis auf eine Höhe von 739m (-NN). In diesem Arbeitsgebiet wurden 7 Kern- bzw. Stoßrohrstationen gefahren. Durch die rauhe Morphologie des Seamounts erbrachte nur eine Kernstation im Bereich des Gipfels Sedimentgewinn. Weitere Stationen westlich und östlich des Vavilovs sollten die unterschiedliche Sedimentation in der Ebene um den Seamount, sowie mögliche Manganhalos als Folge hydrothermaler Aktivität dokumentieren. Soweit makroskopisch erkennbar, konnten keine Wertmetallanreicherungen im Sediment festgestellt werden. Deutlich zeigt sich aber eine unterschiedliche Sedimentation im Bereich des Seamountgipfels und der umgebenden Ebene. Während in den Gipfellagen ungestörte karbonatische Sedimentation dominiert, ist die Sedimentation in den Gebieten um den Seamount durch turbiditische Einflüße geprägt. Als deren Folge sind auch die dunklen, an organischem Kohlenstoff reichen Lagen zu verstehen, die wiederholt in den Sedimenten auftreten. Oft

- 111 -

beginnen diese Lagen mit einem Erosionskontakt.

Magnaghi:

Der Magnaghi-Seamount liegt 37 km westlich des Vavilov-Seamounts und erreicht eine Größe von 19x29 km, das Streichen ist NNE. Es wird vermutet, daß dieser Seamount eine tektonisch bedingte Erhebung ist und somit keine hydrothermale Aktivität in diesem Gebiet zu erwarten ist. Dies wurde auch durch die in diesem Gebiet gezogenen Sedimentkerne bestätigt. Wie schon am Vavilov-Seamount beobachtet, zeichnen sich die Sedimente in der Ebene durch einen Wechsel von organisch reichen Lagen, Turbiditablagerungen und ruhiger karbonatischer Sedimentation aus, während die Sedimente auf dem Magnaghi-Seamount eine sehr einheitliche karbonatische Zusammensetzung aufweisen.

Enareta:

Der Enareta-Seamount gehört zu der Gruppe der Äolischen Inseln, die teilweise noch rezenten Vulkanismus zeigen (z.B. Stromboli). Das Alter des Enareta-Seamounts wird auf <1 Mio. Jahre geschätzt. Im Bereich des Enareta-Seamount wurden 4 Kernstationen gefahren. Da sich bei der Fernsehschlittenstation 143 FS keine Sedimentbedeckung auf dem Top des Seamounts zeigte, konzentrierte sich die Probennahme auf die umgebenden Ebenen. Die Sedimente zeigen im Vergleich zu den übrigen Arbeitsgebieten ähnliche Zusammensetzung mit Ausnahme der hier vermehrt auftretenden Aschenlagen.

Eolo: nov sense out of the ore production sets and appetrace

Wenige Seemeilen östlich des Enareta-Seamount liegt der Eolo- Seamount. Die Dredgestation 158,1 DC förderte hydrothermale Fe-Mn-Krusten, sowie leicht verfestigtes, hydrothermal beeinflußtes Sediment zu Tage. Wie sich aus der Position der Station 158,1 DC entnehmen läßt, dürfte im östlichen Bereich des Eolo-Seamount ein 'hydrothermal mount' liegen. Es wurde versucht, durch eine Reihe von Kernstationen diesen 'mount' zu beproben, jedoch war dieser Versuch wegen der geringen Größe des hydrothermal geprägten Areals nicht erfolgreich. Eine geringe hydrothermale Beeinflussung der Sedimente scheint hier nicht ausgeschlossen.

Palinuro:

Der Palinuro-Seamount liegt nordöstlich der Äolischen Inseln und erstreckt sich in West-Ost-Richtung. Seine höchste Erhebung, eine Caldera, liegt nur 70m unter dem Meeresspiegel. In dieser Caldera wurden hydrothermal beeinflußte Sedimente entdeckt. Weitere Wertmetallanreicherungen in den Sedimenten zeigten sich im Bereich der Massivsulfidvorkommen. Hier bestehen die Sedimente aus Eisen- und Mangankrusten mit teilweiser nontronitischer Matrix. Die zur Zeit beginnenden Laboruntersuchungen werden ein umfassendes Bild über Art und Umfang hydrothermaler Aktivität im Bereich des Palinuro-Seamounts geben.

Bemerkungen zur Biostratigraphie

In den selektiv von Eolo, Enareta und Palinuro untersuchten Proben wurde aus den Kronenproben der Kastenlote und Stoßrohre jeweils noch die planktonische Foraminifere <u>Globorotalia truncatulonoides</u> nachgewiesen (Taf. 1/10,11). Diese Form ist nach CITA et al. (1973) und THUNELL (1979) leitend für das Pleistozän. Hieraus ergibt sich, daß in keinem Kern Pliozän enthalten ist.

Die detailliertere biostratigraphische Untersuchung auf der Basis von Coccolithen erbrachte folgende Arten: Coccolithus pelagicus (Taf. 1/1,2), Cyclococcolithus leptoporus (Taf. 1/3), Emiliania huxleyi (Taf. 1/5), Syracosphaera dalmatica und Rhabdosphaera clavigera (Taf. 1/4). Die ebenfalls hierzu gehörige Gephyrocapsa carribeanica konnte nicht nachgewiesen werde. Nach BUKRY (1973), STRADNER (1973) und MULLER (1978) ist diese Vergesellschaftung kennzeichnend für die Nannoplanktonzone 21, die das jüngere Pleistozän und das gesamte Holozän umfaßt. Somit ist älteres Pleistozän ebenfalls auszuschließen. Die hohen Sedimentationsraten in der Tyrrhenis bestätigen diesen Tatbestand. Nach neuesten Ergebnissen der Joides Resolution Fahrt wird eine Sedimentationsrate von mehr als 50cm/1000 Jahre für die zentrale Tyrrhenis angegeben (Mitteilung SAVELLI, Bologna).

Auf Grund der fehlenden biostratigraphischen Gliederungsmöglichkeit der Kerne mit Hilfe von planktonischen Zonenfossilien wurde versucht, mittels Häufigkeitsverteilungen planktonischer Foraminiferen eine Unterteilung zu ermöglichen. Basierend auf dem unterschiedlichen Verhalten einiger Arten während klimatischer Veränderungen läßt sich so eine Häufigkeitsstratigraphie erstellen. Nach THIEDE (1978) sind für kälteres Wasser die Arten <u>Globigerinoides bulloides</u> (Taf. 1/7), <u>Globorotalia in-</u> <u>flata</u> (Taf. 1/9) und <u>Neoqloboquadrina pachyderma</u> mit dem linksgewundenen Morphotyp (Taf. 1/6) charakteristisch, während <u>Globigerinoides ruber</u> (Taf. 1/8) Anzeiger für wärmeres Wasser ist.

In Abb. 1 ist eine auf diesen planktonischen Foraminiferenarten basierende Häufigkeitsverteilung für das Stoßrohr 164 SR dargestellt. Für jede Probe wurden drei Ausleseschalen ausgezählt, so daß im Schnitt zwischen 600-700 Foraminiferen erfaßt wurden. Als auffallendes Merkmal ist die Gegenläufigkeit im Verhalten der Arten Globorotalia inflata und Globigerinoides bulloides zu bemerken. Diese Beobachtung wird auch von LOUBERE (1982) aus Kernen des westlichen Mittelmeeres bestätigt und auf regional sehr unterschiedliche Meeresströmungen zurückgeführt. Aus diesen Gründen ist die Häufigkeitskurve von Globorotalia inflata hinsichtlich klimatischer Aussagen weniger brauchbar. Globigerinoides ruber hat ein erstes Minimum in einer Kernteufe zwischen 1,80m - 2,40m, was mit einem deutlichen Maximum in der Häufigkeit von Globigerinoides korreliert. Dieser Einschnitt könnte unter Vorbehalt mit dem 18000 Jahre Glazialevent im Sinne von LOUBERE (1982) korrelieren. Die hierfür notwendige Dominanz von Neogloboquadrina pachyderma fehlt allerdings im vorliegenden Material. Gleichermaßen würde dies auch eine weitaus geringere Sedimentationsrate bedeuten. Sie läge dann bei ca. 20cm/1000 Jahre, was allerdings bei der Position des Stoßrohres am Hangfuß des Palinuro noch durchaus zu erwarten wäre. Eindeutige Sicherheit über diese Alterskorrelation läßt sich erst durch absolute Altersbestimmungen gewinnen, die noch ausstehen.

Literatur

- BUKRY, D. (1973): Coccolith Stratigraphy LEG 13, deep sea drilling project. In KANEPS, A.G. (ed.): Initial Reports of the Deep Sea Drilling Project, Vol. XIII, Part 2, 817 - 821, Washington.
- CITA, M.B. CHIERCI, M.A., CIAMPO, G. MONCHARMONT, M. D'ONOFRIO, S., RYAN, W.B.F. & SCORZIELLO, R. (1973): Quarternary Record in the Ionian and Tyrrhenian basins of the Mediterranean Sea. In KANEPS, A.G. (ed.): Initial Reports of the Deep Sea Drilling Project, Vol. XIII, Part 2, 1263-1340, Washington.
- LOUBERE (1982): The western Mediterranean during the last Glacial: Attacking a no-analog problem.- Marine Micropaleontology 7 (1982) 311-325, Amsterdam.

- MULLER, C. (1978): Neogene calcareous nannofossils from the Mediterranean LEG 42A of the deep sea drilling project. In KIDD, R.B. & WORSTELL (eds.): Initial Reports of the Deep Sea Drilling Project, Vol XLII, 727-752, Washington.
- STRADNER, H. (1973): Catalogue of calcareous Nannoplankton from sediments of neogene age in the eastern North Atlantic and Mediterranean Sea.- In KANEPS, A.G. (ed.): Initial Reports of the Deep Sea Drilling Project, Vol. XIII, Part 2, 1137-1200, Washington.
- THIEDE, J. (1978): A glacial Mediterranean.- Nature, 276, 680-683, London.
- THUNELL, R.C. (1979): Mediterranean Neogene planktonic foraminiferal biostratigraphy.- Micropleontology, 25, 412-437, New York.

Tafelerläuterung

- Fig. 1: Coccosphaere von <u>Coccolithus pelaqicus</u> SCHILLER. So 41 SR164 / 450-453cm. Balken = 3um.
- Fig. 2: <u>Coccolithus pelaqicus</u> SCHILLER. So 41 KL51 / 100cm Balken = 1µm.
- Fig. 3: Cyclococcolithus leptoporus (MURRAY & BLACKMAN). So 41 SR164 / 450 - 453cm. Balken = 3µm.
- Fig. 4: <u>Rhabdosphaera clavigera</u> MURRAY & BLACKMAN. So 41 SR164 / 450 - 453. Balken = 1µm.
- Fig. 5: <u>Emilinania huxleyi</u> LOHMANN. So 41 KL51 / 100cm. Balken = 1µm.
- Fig. 6: <u>Neogloboquadrina pachyderma</u> (EHRENBERG), links gewundener Morphotyp. So 41 FG109, Balken = 100µm.
- Fig. 7: <u>Globigerinoides bulloides</u> d'ORBIGNY. So 41 FG109, Balken = 100µm.
- Fig. 8: <u>Globigerinoides ruber</u> (d'ORBIGNY). So 41 FG109, Balken = 100µm.

- Fig. 9: <u>Globorotalia inflata</u> (d'ORBIGNY). So 41 FG109, Balken = 100µm.
 - Fig. 10: Globorotalia truncatulonoides (d'ORBIGNY). So 41 FG109, Balken = 100µm.
- Fig. 11: <u>Globorotalia truncatulonoides</u> (d'ORBIGNY). So 41 FG109, Balken = 100µm.

rad. . Eat (treat new eve townam. So of st star , 1900m

The sectors will be a sector of the sector sector and the sector se

Abb.1: Häufigskeitsverteilung (in %) ausgewählter planktonischer Foraminiferen im Stoßrohr S041SR164. Teufenangaben in cm.

K E R N B E S C H R E I B U N G

10100 0				
STATIONSNUMMER	: 51 KL			
START: 10.18 SAMPLING: LENGTH: 90cm	END: 12.15 TIME:12.07 bit	DATE: 6.3. 39.30,949N	DEPTH: 1038m 14.45,131E	
	.00, 1319 0140 b			
DEPTH:	COLOR	CORE-DESCRIPT	TION:	
Top - 78cm ligh 18 - 22cm	2,5Y5/4 ht olive brown	fossiliferous thin ash laye	ooze with black ers	and
36 - 47cm	one with elace p	more sandy		
69 - 78cm		mixed with as	sh, more pteropod	ls
78 - 83,5 dark	2,5¥4/2 greyish brown	"fining upwar	d" PARE :	
83,5 - 85		coarse grain ooze – fine s	ed, fossilifero and	ous
85 - 91cm light	2,5¥6/4 z yellowish brown	DATES	DALER: LI EL	
bit 33	5Y5/3 olivine	with pteropo stripes ?hydr	ods with browni othermal?	sh
	18011111808			
STATIONSNUMMER	52 KL			
8.00	right Lisson , type	an) 60m		
START: 13.46	END: 14.16	DATE: 6.3.	DEPTH: 763m	
IENGTH · 52cm +	11ME: 14.09	39.28,80/N	14.34,0346	
ELENGIN, SZCM	bit	angi tir		
DEPTH:	COLOR	CORE-DESCRIPT	ION:	
Top - 52cm light	2,5Y6/4 yellowish brown	fossiliferous ash intercala 15 - 20cm and large tests o Clio sp. Diac	s ooze with very tions at: 2 - 5c 48 - 50cm; of pteropods: cria sp.	thin m, 9 - 08
STATIONSNUMMER:	60 KL			
(mapm 0.15	THIN & AL			
SAMPLING:	END: 2.26 TIME: 2.22	JATE: 7.3. 39.29,137N	DEPTH: 124m 14.49,302E	

- 119 -

LENGTH: 73CM + bit

DEPTH:	COLOR	CORE-DESCRIPTION:
Тор – 2 ст	10YR4/3 brown	manganiferous marl with coral debris
2 - 3cm	10YR3/3 dark brown	manganiferous marl with many pteropods
3 - 7cm lig	2,5Y6/2 ht brownish grey	pteropod sand with calcareous hard layers
7 - 28cm	5Y3/3 olive	pteropod ooze with calcareous intercalations
28 - 43cm li	10YR5/2 ght brown grey	sandy pteropod ooze
43 - 51cm li	2,5¥6/2 ght brown grey	sandy ooze with minor pteropods
51 - 73cm li	5¥6/4 ght olive grey	fossiliferous sand – marl with sponge spicules and pale olive intercalations ?Nontronit?
STATIONSNUMME	R: 61 KL	• #10m * mol8 +
START: 3.22 SAMPLING: LENGTH: 138 +	END: 3.55 TIME: 3.41 bit (Superp	DATE: 7.3. DEPTH: 1150m 39.30,89N 14.53,56E enetration!)
DEPTH:	COLOR	CORE-DESCRIPTION:
0 - 52cm li	2,5Y5/4 ght olive brown	mud (sandy), fossiliferous
52 - 609cm	5Y4/3 olive	fossiliferous mud with black stripes
60 - 80cm	5Y5/3 olive	fossiliferous mud
80 - 88 li	2,5Y5/4 ght olive brown	fossiliferous mud
88 - 100cm li	2,5Y6/4 ght yellowish bro	fossiliferous mud wn
100 - 118cm	5¥5/3 olive	fossiliferous mud
118 - 120cm	5Y5/4 olive	mud very rich in fossils
120 - 138cm	SNATP Doundary - 5Y5/2 olive grey	fossiliferous mud

bit	5Y5/3 olive	fossiliferous mud do do de letture do l'Ara
	3, DETTH, 1216a 5,4 13,14,462E	TART: 3.28 UND: 0.03 PATE: 3.43 TARPLING TIME 8.43 40.34,70
STATIONSNUM	MER: 76 KLH	
START: 4.14 SAMPLING: LENGTH: 100	END: 5.41 TIME: 4.57 cm + bit	DATE: 9.3. DEPTH: 2013m 40.36,790N 13.12,431E
DEPTH:	COLOR	CORE-DESCRIPTION:
Тор	10YR5/4 yellowish brown	fossiliferous mud with black spots
19-24cm	10YR5/3 brown	fossiliferous mud with very thin black stripes increasing down- wards
24 - 33cm	2,5¥5/2 greyish brown	black mud with fossils
33 - 38cm	10YR5/4 yellowish brown	fossiliferous mud
38 - 51cm	2,5Y4/4 olive brown	fossiliferous mud with intercala-
51 - 65cm	10YR5/3 pale brown	fossiliferous mud with increasing intercalations of dark stripes downwards
65 - 85cm	10YR5/3 brown	fossiliferous mud with dark layers
85 - 100cm	10YR6/3 pale brown	fossiliferous mud with dark layers
STATIONSNUM	MER: 77 KL	
START: 6.07 SAMPLING: LENGTH: 55c	END: 7.15 TIME: 6.33 m + bit	DATE: 9.3. DEPTH: 1644m 40.43,500N 13.12,590E
DEDEN.		V6-82.5 SYSVI HAR PIC 60281
DEPIN:	COLOR	CORE-DESCRIPTION:
0 - 50cm	10YR5/4 yellowish brown	fossiliferous mud with thin dark stripes
60 - 55cm	10YR6/3 pale brown	mud very rich in fossils

STATIONSNUMMER: 78 KL

START: 8.28	END: 9.03	DATE: 9.3.	DEPTH: 1216m
SAMPLING:	TIME: 8.43	40.34,205N	13.14,482E
LENGTH: 126cm	+ bit		

DEPTH:	COLOR	CORE-DESCRIPTION:		
0 - 17cm	2,5¥5/2 brownish gray	calcareous ooze with yellowisch red (5YR4/6) spots at 12cm		
17 - bit	10YR6/4 light yellowish brown	calcareous ooze with some yello- wish red (5YR4/6) spots between 93-96		

the management of the second second second

STATIONSNUMMER: 96 SR

START: 13.25	END: 14.52	DATE: 13. 3.	DEPTH: 2524m
SAMPLIN:	TIME: 14.07	40.27,00N	13.11,08E
LENGTH: 140cm			

DEPTH:	EPTH: COLOR CORE-DESCRIPTION:					
Top-3.5	10YR4/3 brown	ooze		814122.0 	an.(
3.5-4	10YR3/3 dark brown	ooze				
4-38	10YR5/3 brown	ooze				
38-51	10YR6/3 pale brown	ooze				
51-53	2.5¥5/2 grayish brown	ooze	with	microfossils		
53-60	2.5Y5/4 light olive brown	ooze	with	microfossils		
60-76	2.5Y7/4 pale yellow	ooze	with	few microfossils		
76-82.5	5Y5/3 olive	ooze				
82.5-93	2.5Y5/4 light olive brown	ooze				
93-base	5Y5/2 olive gray	ooze				

STATIONSNUMMER: 97 KL

START:	15.30		END: 16.56	DATE: 13.	3.	DEPTH: 1358m
SAMPLING	:		TIME: 16.20	40.23,90N		13.10,80E
LENGTH:	124CM	+	KRONE			

DEPTH: COLOR		CORE-DESCRIPTION:
0 - 75	10YR 5/4	calcareous ooze
	vellowish brown	

75 - Kr 10YR 6/4 sandy calcareous ooze, between light yellowish brown 76 - 80 and 114 - 122 volcanic ashes; between 120 - 122 semiconsolidated mud

STATIONSNUMMER 112 KLH

START: 3.45	END: 5.50	DATE: 15. 3.	DEPTH: 3470m
SAMPLING:	TIME: 4.54	39.49,037N	12.43,537E
LENGTH: 1m + b	oit		

DEPTH:	COLOR		CORE-DESCRIPTION:
Тор	10Y/R5/6 yellowish bro	wn	mud
2 - 9	2,5Y6/2 light brownish	gray	organic rich mud with dark grayish brown 10YR4/2 laminations between 6-9 cm
9 - 11	10YR6/4 light yellowish	brown	calcareous ooze
11-18	2,5Y6/2 light brownish	gray	mud (organic rich) with dark laminations between 15-19cm
18-27	10YR6/2 light brownish	gray	organic rich mud at the top more 10YR6/4 -light yellowish brown- (more manganese?); at the base 5Y5/1 gray band

- 27-30 10YR6/3 mud with increasing carbonate light brownish gray towards the base
- 30-32 10YR6/4 mud light yellowish brown
- 32-42 10YR6/3 mud pale brown
- 42-46 10YR6/4 mud light yellowish brown

46-54	10YR5/4 yellowish brown	laminated with	10YR5/1 gray mud
54-55	10YR7/2 light gray	calcareous ooze	
55-65	10YR6/4 light yellowish brown	mud, at the top	one dark band
65-71	2,5¥6/2 light brownish gray	laminated with (organic rich)	10YR5/1 gray ooze
71-75	7,5¥7/2 light gray	mud	
75	10YR5/1 gray	mud; top 10YR6/	6 brownish yellow
75-83	10YR6/4 light yellowish brown	calcareous ooze	
83-88	10YR7/4 very pale brown	calcareous ooze with gray lamin	; between 86-88 ations
88-92	10YR6/3 pale brown	calcareous ooze	
92-94	10YR6/4 light yellowish brown	calcareous ooze band at top	with same gray
94-Bot.	2,5¥6/2 light brownish gray	laminated with semiconsolidate	10YR5/1 gray ooze d
STATION	SNUMMER: 113 SR		
START: SAMPLIN LENGTH:	6.20 END: 8.20 G: TIME: 7.08 1,83m	DATE: 15. 3. 39.51,76N	DEPTH: 3496m 12.44,73E
DEPTH:	COLOR	CORE-DESCRIPTIO	N :
Тор-9	2,5Y5/2 grayish brown	sandy mud	
9-14,5	2,5Y4/2 dark grayish brown	coarse grained	mud (organic-rich)
14,5-44	2,5Y5/2 grayish brown	sandy mud with at the base ero	volcanic ashes? sive contact
44-49	10YR6/2 light brownish gray	mud, more darke	r at the base
49-91	5Y5/2 olive gray	calcareous mud at 64,70,74,78,	with sandy bands 87 cm (allodapic?)

		at 78cm a lighter band with more
		carbonate
91-100	5Y4/1 dark gray	sandy mud (organic-rich?) at the base an erosive contact
100-136	5Y6/2 light olive gray	mud, sandy bands at 115, 117, 118, 130, 136, 117–122 more carbonate
136-138	5Y4/2 olive gray	sandy mud (organic-rich) at the bottom more coarse grained and an erosive contact
138-140	2,5¥5/2 grayish brown	calcareous mud
140-148	5Y6-2 light olive gray	mud, sandy band at the bottom, erosive contact
148-150	10YR6/2 light brownish gray	calcareous mud
150	10YR5/3 brown	mud
150-172	5Y5/2 olive gray	homogenous mud
172-183	2,5Y6/2 light brownish gray	calcareous mud, at the bottom erosive contact
STATION	SNUMMER: 115 KLH	part no and er a
START: SAMPLINGLENGTH:	12.06 END: 14.05 G: TIME: 12.59 1.88m + bit	DATE: 15. 3. DEPTH: 3306m 39.54,63N 12.31,22E
DEPTH:	COLOR	CORE-DESCRIPTION:
0-22	10YR6/4 light yellowish brown	fossiliferous sand, dominated by Limacina and Orbulina universa
22-28	10YR6/4 yellowish brown	calcareous ooze with 10YR6/3 pale brown bands
38-53	10YR6/4 light yellowish brown	calcareous ooze with darker band at the base
53-60		various bands of 10YR5/2 grayish brown (organic rich) and 10YR6/3 pale brown ooze
60-65	10YR6/3 pale brown	calcareous mud with a grayish brown 10YR5/2 band at the base (organic rich)

1

- 65-78 10YR5/4 calcareous ooze; more darker yellowish brown between 65-71 (less carbonate ?)
- 78-87 10YR6/4 calcareous ooze light yellowish brown

87-100 2,5Y6/4 semiconsolidated mud with light yellowish brown bioturbation

- 100-116 10YR6/4 calcareous ooze with 10YR5/8 light yellowish brown yellowish brown bands at 108 and 115.5 cm
- 116-bit10YR6/2organic rich mud with gray bandslight brownish grayand several gray laminationsbetween 114-142 and one gray10YR5/1 band at 164 cm

STATIONSNUMMER: 116 SR

START: 14.35	END: 16.20	DATE: 15. 3.	DEPTH: 3161m
SAMPLING:	TIME: 15.27	39.51,58N	12.31,31E
LENGTH: 76 +	bit		

DEPTH:	COLOR	CORE-DESCRIPTION:
Top-2	10YR5/4	ooze
	yellowish brown	
2-6	10YR5/6	ooze
	yellowish brown	
6-8	10YR7/4	ooze
	very pale brown	
8-12	2.5¥6/4	ooze
	light yellowish brown	
12-15	2.5¥6/2	ooze
	light brownish gray	
15-17.5	10YR5/1	ooze - silt
	gray	
17.5-20	2.5¥5/2	ooze
	grayish brown	
20-24	2.5¥5/2	silt
11	grayish brown	REAL PROPERTY AND
24-30.5	2.584/2	silt - sand
2. 50.5	dark grayish brown	bit of band
20 5-22	10482/2	forgiliforous good

very dark grayish brown

32-42	2.5Y6/2 light brownish gray	ooze	
	eches de las		
42	2.5Y5/2 grayish brown	ooze	
42-44.5	5¥6/2	ooze	
	light olive gray		
44.5-50	5¥7/2	ooze	
53	light gray		
13		sharp boundary, running oblique from 50 to 53 cm of copper green colour, not found in the soil colour chart! sandy ooze	
50-base	5¥5/2	ooze	
55	Slive gray		
STATIONS	NUMMER: 130 KLH		
START: 1 SAMPLING LENGTH:	8.18 END: 20.11 : TIME: 19.11 2.58 + bit	DATE: 17. 3. DEPTH: 3052m 39.52,426N 11.41,890E	
DEPTH:	COLOR	CORE-DESCRIPTION:	
Top-28	10YR6/4 light yellowish brown	ooze	
28	10YR5/3 brown	brown band	
28-88	10YR7/4	ooze with several gray bands	
	very pale brown	between 28-48cm; at 58cm several brownish yellow bands	
88-base	10VP6/2	poset at 107 and 210cm grav	
UU Dase	brownish gray	(organic rich) bands; between 108-109 and 141-148 fossil accu- mulations of sand size, dominated by the pteropod Limacina; at 148 gray organic rich bands; at 148	
	, tayal Ha	with brown stripes; between 200-206 2,5Y5/2 grayish brown sandy organic rich layer; between 235-241 fossiliferous layer of	
fig-1		sand size (pteropod event)	
		at the crown semiconsolidated mud	

٠.

- 127 -

STATIONSNUMMER: 134 KL

START: 2.25	END: 3.45	DATE: 18. 3.	DEPTH: 2087m
SAMPLING:	TIME: 3.04	39.55,37N	11.48,46E
LENGTH: 1.89 +	bit		

DEPTH:	COLOR	CORE-DESCRIPTION:
ToP-115	10YR7/4 very pale brown	ooze with brown stripes between top-20cm
	very pale brown	top-20cm

115-crown 10YR6/3 ooze; between 76-81 brown stripes pale brown

STATIONSNUMMER: 140 KLH

START: 16.31	END: 17.55	DATE: 19. 3.	DEPRH: 1755m	
SAMPLING:	TIME: 17.13	38.37,39N	14.03,25E	
LENGTH: 52 + b	it			

DEPTH:	COLOR	CORE-DESCRIPTION:
0-16	10YR5/3 brown	calcareous ooze
16-bit	5Y6/3 pale olive	calcareous ooze with volcanic ashes, at 30-32cm glasses (up to 2cm size) with 2,5Y6/6 olive vellow strikes (hydrothermal)

STATIONSNUMMER: 144 KLH

START: 2.07	END: 4.00	DATE: 20. 3.	DEPTH: 2598m
SAMPLING:	TIME: 3.11	38.43,93N	14.03,33E
LENGTH: 2.98m	+ bit		

DEPTH:	COLOR	CORE-DESCRIPTION:
0-7	10YR7/4 very pale brown	calcareous ooze
7-12	10YR6/3 pale brown	fossilrich layer
12-29	10YR6/4 light yellowish brown	mud, between 12-23cm 10YR3/4 yellowish brown manganiferous mud, at 28cm dark fossilrich layer
29-33	10YR6/6 brownish vellow	mud

33-35	10YR7/2	mud
	light gray	

35-40	10YR6/1	mud
	light gray	

40-53 10YR6/2 sandy mud with several dark light brownish gray laminations

53-bit 5Y6/2 mud with several dark gray light olive gray (7,5YR1/4) stripes, here more organic rich, between 80-89 fossil rich layer 7,5YR1/4 dark gray

STATIONSNUMMER: 151 SR

START: 14.20	END: 15.18	DATE: 20. 3.	DEPTH: 1723m
SAMPLING:	TIME: 14.48	38.37,37N	13.56,76E
LENGTH: 3.20cm	+ bit		

DEPTH:	COLOR	CORE-DESCRIPTION:
Top-7	5Y4/2 olive gray	ooze with iregular laminations of 5Y3/2 dark olive gray and of 2,5Y5/4 light olive brown
7-10	2,5Y5/4 light olive brown	ooze with 0.5cm 2,5Y4/4 olive brown band at 8cm
10-11	2,5¥6/4 light yellowish brown	ooze
11-20	2,5¥5/4 light olive brown	ooze, at 19cm laminations of 5Y4/2 olive gray
20-23	10YR7/3 very pale brown	ooze
23-26	2,5Y5/4 light olive brown	ooze
26-29	5Y4/3 olive gray	ooze
29-40	5Y4/2 olive gray	ooze
40-46	5Y3/2 dark olive gray	ooze
46-47	5Y2,5/1 black	ooze with ash and sand
47-83	5¥3/2	ooze with black ash sand and

	dark olive gray	fossiliferous tions; predomi at 55, 58, 65–	sand intercala- inant layers occur -68, and 81-82cm	
83-87,5	5Y3/2 dark olive gray	ooze and sand	with microfossils	
87,5-202	5¥4/2 olive gray	ooze with dots brown	s of 2,5¥5/2 grayis	h
202-209	5¥6/2 light olive gray	fossiliferous	sand	
209-bit	5Y6/2 light olive gray	ooze with dots yellow, 5Y7/2 5Y4/2 olive gr	s of 5Y7/3 pale light gray, and ray	
STATIONSN	UMMER: 154 KLH			
START: 7. SAMPLING: LENGTH: 2	29 END: 8.30 TIME: 8.00 7CM + bit	DATE: 21. 3. 38.32,39N	DEPTH: 1622m 14.15,21E	
			0.010	
DEPTH:	COLOR	CORE-DESCRIPT	ION:	
0 - 27cm	2,5¥5/4 light olive brown	calcareous oo:	ze dage te bl	

bit 2,5Y5/2 calcareous ooze grayish brown

STATIONSNUMMER: 163 KLH

START: 0.40	END: 1.42	DATE: 22. 3.	DEPTH: 1262m
SAMPLING:	TIME: 1.08	38.32,78	14.12,32
LENGTH: 200cm	+ bit		

DEPTH:	COLOR	CORE-DESCRIPTION:	
Top-17cm	10YR5/4 yellowish brown	ooze with 10YR4/4 dark yellowish band at 9cm and 15cm	(2-7
17-22.5	2,5Y5/2 grayish brown	ooze	
22.5-26	10YR5/4 yellowish brown	ooze	
26-37	10YR6/3 pale brown	ooze	
37-38	2.5¥6/2	ooze	

light brownish gray

38-56	10YR6/3 pale brown	ooze
56-bit	5Y5/2 olive gray	ooze with stripes of 5Y3/2 dark olive and 5Y2.5/1 black

STATIONSNUMMER: 164 SR

START: 2.00	END: 3.00	DATE: 22. 3.	DEPTH: 1369m
SAMPLING: LENGTH: 4.96	TIME: 2.29	38.34,43N	14.12,29E

DEPTH:	COLOR	CORE-DESCRIPTION:
Top-38	10YR5/4 yellowish brown	calcareous ooze
38-148	2,5¥5/2 grayish brown	calcareous ooze, between 70-79, 85-89cm bands with more hydroxi- des (organic rich stripes), between 29-57 mixture of 10VP5/4
		yellowish brown and increasing 2,5Y5/2 grayish brown, bioturba- tion between 100-120 several black spots between 100-148
148-326	5Y5/2 olive gray	calcareous ooze, at 175, 179, and 149 black band, spots, bio- turbation from 200-327, at 310 5Y4/4 olive band, between 315-326 2,5Y dark grayish brown spots
326-329	5Y6/2 light olive gray	calcareous ooze
329-350	5¥5/2 olive gray	ooze with darker bands
350-357	5Y4/1 dark gray	turbated layer: mixture of calcareous ooze and volcanic ashes
357-390	5¥5/1 gray	calcareous ooze with with thin laminations
390-399	2,5Y5/2 grayish brown	coarse grained turbated layer with volcanic ashes
399-bit	5¥6/2 light olive gray	calcareous ooze, bioturbated layers at 420, 430-435, 440-442 with volcanic ashes **** MACROFOTOS FROM THE BASE ****

STATIONSNUMMER: 165 SR

START: 3.12	END: 4.09	DATE: 22. 3.	DEPTH: 1365m
SAMPLING:	TIME: 3.38	38.33,60N	14.13,20E
LENGTH: 321cm			

DEPTH: COLOR CORE-DESCRIPTION: _____ -------------Top-14.5 10YR5/4 calcareous mud with fine laminayellowish brown tions of bands, probably volcanic ashes 2.5Y?? calcareous mud with spiculae and 14.5-43 light yellowish brown little black spots at bottom darker band with more Fe-oxides? 43-83 mud with pteropods and spiculae 5Y5/3 olive 83-97 5Y6/2 mud, bioturbated with olive gray light olive gray infillings 5Y6/2 97-209 calcareous mud with black spots light olive gray (volcanic ashes) 5Y6/2 209-283 mud with black spots (volcanic ashes) bands of 5Y5/2 olive gray light olive gray intercalated 283-308 5Y5/2 mud with black spots olive gray coarse grained ashes 308-310 2.5Y1/2 black 516/2 310-321 mud with sand sized coquinas olive gray

STATIONSNUMMER: 175 SR

olive gray

START: 21.31	END: 22.30	DATE: 22. 3.	DEPTH: 1030m
SAMPLING:	TIME: 22.09	38.33,72N	14.12,66E
LENGTH: 5m			

DEPTH:	COLOR	CORE-DESCRIPTION:
Top-13	10YR6/3 pale brown	calcareous ooze
13-44	10YR6/4 light yellowish brown	calcareous ooze
44-147	5¥5/2	calcareous ooze

147-154	10YR4/1 dark gray	volcanic ashes
154-230	5Y5/3 olive	calcareous ooze
230	10YR4/1 dark gray	volcanic ash layer
231	10YR4/4 olive	spots, probably nontronitic
231-279	2,5Y6/2 light brownish gray	ooze, between 243-244 olive (nontronitic?) spots, 252-259 10YR5/2 grayish brown
279-311	10YR4/1 dark gray	volcanic ashes, at the top olive (nontronitic?) layer
311-322	10YR4/1 dark gray	volcanic ashes mixed with 5Y6/2 light olive gray calcareous ooze
322-410	5Y6/2 light olive gray	calcareous ooze with nontronitic spots at 404
410-415	olive	nontronitic layer
415-432	10YR4/1 dark gray	volcanic ashes, fining upward
432-bit	5Y5/2	ooze with olive layers at 453 and

STATIONSNUMMER: 183 KLH

START: 15.54	END: 16.37	DATE: 23. 3.	DEPTH: 634m	
SAMPLING:	TIME: 16.14	39.32,73N	14.42,47E	
LENGTH: 65cm +	bit			

DEPTH:	COLOR	CORE-DESCRIPTION:
Top-26	10YR5/4 yellowish brown	calcareous ooze
26-33	10YR2/2 very dark brown	manganiferous crusts
33-65	5Y4/4 olive more greenish than color chart	nontronit mud

STATIONSNUMMER: 184 SR

START: 16.55	END: 17.28	DATE: 23. 3.	DEPTH: 613m
SAMPLING:	TIME: 17.00	39.32,57N	14.42,21E
LENGTH: 110cm			

•

DEPTH:	COLOR	CORE-DESCRIPTION:
Top-29	10YR5/4 yellowish brown	calcareous ooze, manganiferous?
29-30		manganese crust
30-42	10YR5/4 yellowish brown	calcareous ooze with manganese crust fragments
42-57	5YR3/3 dark reddish brown	fragmented iron-manganese crusts semiconsolidated
57-77	5YR5/8 yellowish red	iron-manganese crusts
77-88	5¥4/4 olive	nontronitic crust
88-95	5Y4/2 olive gray	nontronitic and iron-manganese crusts
95-110	5Y3/2 dark olive gray	nontronitic and sulphidic crusts and fragments

STATIONSNUMMER: 185 KL

START: 17.40	END: 18.05	DATE: 23. 3.	DEPTH: 644m
SAMPLING:	TIME: 17.54	39.32,68N	14.42,23E
LENGTH: 30cm +	bit		

DEPTH:	COLOR	CORE-DESCRIPTION:	
Тор-30	10YR5/4 . yellowish brown	?manganiferous? calcareous ooze with probably volcanic ashes between 20-26cm at the bottom (bit) manganese crusts with yellowish sediments	

STATIONSNUMMER: 186 KL

.

START: 18.21	END: 19.03	DATE: 23. 3.	DEPTH: 757m
SAMPLING:	TIME: 18.47	39.32,70N	14.41,67E
LENGTH: 26cm	• bit		

DEPTH:	COLOR	CORE-DESCRIPT	ION:
Top-24	10YR5/4 vellowish brown	manganiferous	, calcareous ooze
24-26	10YR2/2	manganiferous	crusts and ooze
	very dark brown		
	-		
STATIONSNUM	MER: 197 SR		
START: 14.4	0 END: 14.55	DATE: 24. 3.	DEPTH: 130m
SAMPLING:	TIME: 14.48	39.30,66N	14.49,84E
LENGTH: 111	cm	and a state of the second	estatu ini ka mending paksi.
DEPTH:	COLOR	CORE-DESCRIPT	ION:
Top-4	10YR2/2	volcanic ashe	sab tradadent, teb, tr
uquan-8 pdri	very dark brown		
4-24	5¥4/2	mud mixed wit	h volcanic ashes and
	olive gray	5Y4/4 olive b	ands
24-33	5Y2,5/1	crusts, probal	bly volcanic,
	black	fagments of m	anganese crusts
33-base	5¥4/4	nontronitic f	ossiliferous
	olive	(gastropods)	ooze and sand with
		hard layer at	61cm and at 91
		black volcani	c layer

Laguagnithes in the Bernshen: Vonstron 24. Vontor, hepaght, Solquinter: Herbilt and Uniner-School, Leriender Leries direct direct attracted at United Linear and ended informations and Charake reflected at 101210 preliation, comparing information reflected in the Solution of Preliation, comparing the Soctoficth areas of the Solution of Solution of Society and Soctoficth between legeneous as in terms of Presidence Arm dr. and another und benyelite Lister biogram Between Solution of Armstein and Society kendig, Harringen and Kenbensteine of the solution weather and design

testinite de August en August entre des de la construction de la des autores de la construction de la constr

14. BIOLOGISCH-OZEANOGRAPHISCHE UND BIO-GEOCHEMISCH/MIKROBIOLOGISCHE UNTERSUCHUNGEN IM BEREICH VON TIEFSEE-KUPPEN IM TYRRHENISCHEN MEER L. KARBE, M. PETZOLD, S. BURCHERT, A. FREIGANG, A. JENISCH, M. MEYER-JENIN, N. VERCH & R. ZEITNER

14.1. ZIELSETZUNG IM RAHMEN DES GESAMTPROGRAMMS

L. KARBE

In Ergänzung des geologisch und petrographisch ausgerichteten Programms der anderen Arbeitsgruppen sollte untersucht werden, inwieweit sich Bereiche der Tyrrhenischen Tiefsee, in denen mit rezenten hydrothermalen oder vulkanischen Aktivitäten gerechnet werden kann, durch Besonderheiten in der Besiedlung durch Mikroorganismen und den bio-geochemischen Bedingungen auszeichnen. Im Hintergrund steht die Frage, welche Bedeutung Mikroorganismen bei der hydrothermal-sedimentären und massivsulfidischen Lagerstättenbildung zukommt und inwieweit Anomalien im biologischen Besiedlungsbild Hinweise auf Erz-Lagerstätten geben können. Die Arbeiten sind im Zusammenhang zu sehen mit früheren (SO 29) und zukünftigen zunächst für SO 41 geplanten Arbeiten im Roten Meer (jetzt vorgesehen als Komponente von HYMAS II).

Ziel des Gesamtprogramms war die Untersuchung bekannter und vermuteter Lagerstätten in den Bereichen: Ventotene Süd, Vavilov-, Magnaghi-, Eolo/Enareta-, Marsili- und Palinuro-Seamount. Über das nähere Umfeld dieser unterseeischen Kuppen liegen erst wenige Informationen zur Charakterisierung der lokalen physikalisch-, chemisch- und biologischozeanographischen Bedingungen vor. Da das Verständnis der bio-geochemischen Gegebenheiten im Benthal Kenntnisse über die sedimentäre und konvektive Zufuhr biogenen Materials erforderlich macht, war es notwendig, Messungen und Probennahmen auf die gesamte Wassersäule auszudehnen.

Oberhalb der Kuppen und oberhalb verschiedener Hanglagen wurden an allen in das Untersuchungsprogramm einbezogenen Seamounts jeweils von wenigen Metern über Grund bis zur Wasseroberfläche hochauflösend physikalischozeanographische Parameter bestimmt mit dem Ziel, Hinweise auf lokale Besonderheiten im Zirkulationsregime zu erhalten und um abschätzen zu können, inwieweit Prozesse in Bodennähe durch das adektive und konvektive Transportgeschehen beeinträchtigt werden (vgl. Bericht von Dr. D. Quadfasel).

Zur Charakterisierung der biologischen Produktivität der Seegebiete Untersuchungen zur Vertikalverteilung autotropher und wurden heterotropher Mikroorganismen durchgeführt, ergänzt durch die Bestimmung von Stoffumsatzpotentialen in der euphotischen Zone und in den bodennahen Wasserschichten. Dem produktionsbiologischen Komplex zuzuordnen sind ferner Messungen zur Bestimmung der Vertikalverteilung der Konzentration von organischen Stickstoff-, Phosphor- und Silizium-Verbindungen, wie auch Messungen zur Bestimmung der Karbonat-Alkalinität (Meßwerte zur Alkalinität im Bericht von Α. Jenisch). Die allgemein produktionsbiologischen Untersuchungen sind von besonderem Interesse im Hinblick auf einen Vergleich mit dem Roten Meer. Rotes Meer und Mittelmeer gelten in ihren ozeanischen Bereichen als oligotrophe Seegebiete mit geringem Nährstoffangebot und geringer Primärproduktion. Temperaturbedingt ist aber mit starken Unterschieden in der Stoffwechseldynamik und im vertikalen Partikelfluß zu rechnen.

Von unseren italienischen Partnern hatten wir Hinweise erhalten, aufgrund derer in Teilbereichen der vorgesehenen Untersuchungsareale in bodennahen Wasserschichten mit Temperatur- und Trübungsanomalien wie auch mit erhöhten Methan- und Schwefelwasserstoff-Gehalten zu rechnen ist. Es war eine wesentliche Komponente des Programms, diesen Hinweisen nachzugehen, um an Lokalitäten mit rezenter hydrothermaler oder vulkanischer Aktivität mit detaillierteren bio-geochemisch/mikrobiologischen Untersuchungen ansetzen zu können.

Neerskelungtie die Neudernalivernitien eit des Genear des Kuttinnete nicht ofinicht worten. Hach Perheet des Verwanderpek und Erseisering der Steutrolytiklassigk is verst des Genks bis is die 200 e Vermitiefe Gena au, die sich wit titsentriene Sectation Summaritigenziche in otwa tecken. Unterhalt tieven Vielen unter Egs der Sector einer paran Tiefentricht die eine bis Deforestienen sige der Sector einer paran auflichentricht die der Genestienen sige der Sector einer paran tecken Bisterrichten ist bis der die Bisterrichten eine nach auflichentrichten ist bisterrichten einer bister der Sectoren einer bister einer Bisterrichten ist bisterrichten einer eine auflichen eine Fisterrichten under Bisterrichten ist bisterrichten einer eine auflichen auf einer eine Bisterrichten ist bisterrichten einer eine auflichten einer fisterrichten einer Bisterrichten die des Geliefer einer eine auflichten einer fisterrichten einer einer einer Bisterrichten einer eine Stierreichten eine Bisterrichten einer einer die des der Bisterrichten einer einer die Bisterrichten einer einer die Generichten einer einer Bisterrichten einer Fisterrichten einer einer die Generichten einer einer Bisterrichten ein Bisterrichten einer Bisterrichten einer Bisterrichte

14.2. STATIONEN MIT EINSATZ VON MULTISONDE UND KRANZWASSERSCHÖPFER M. PETZOLD

Zur Messung physikalisch-ozeanographischer Daten wurde auf der SONNE die Kiel-Multisonde (KMS 60) des IHF eingesetzt. Die Sonde war eingehängt in einen Kranzwasserschöpfer mit 12 Spannschienen und je einer elektromagnetischen Auslösereinheit (Hydrobios). Die Auslösung der Einzelschöpfer wurde über eine Releaser-Zentrale (ME) gesteuert, die über Einleiterkabel vom Bordgerät der Sonde bedient wurde. So konnten pro Hol maximal 12 frei wählbare Tiefenstufen beprobt werden. Mit der auf der SONNE eingesetzten Multisonde können folgende Größen gemessen und über Einleiterkabel auf die Bordeinheit übertragen werden:

- 1. Druck (dbar)
- 2. Temperatur (°C)
- 3. Leitfähigkeit (mS)
 - 4. Attenuation bzw. Transmission (%)
- 5. Sauerstoff (mg/l oder % Sättigung)
- 6. Chlorophyll-Fluoreszenz (relative Einheiten, fy)

Zum Geräteeinsatz und zu technischen Bemerkungen siehe Bordtagebuch N. Verch im Fahrtbericht Dr. D. Quadfasel. Zu ergänzen ist noch, daß der Ausfall des in-situ Chlorophyll-Fluorometers für die Fragen der kleinräumigen Phytoplanktonverteilung und -schichtung einen bedauerlichen Verlust darstellt. Das Gerät konnte trotz intensiven Bemühens mit Bordmitteln nicht repariert werden. Ebenso konnten hochauflösende Vertikalprofile der Sauerstoffverteilung mit dem Sensor der Multisonde nicht erreicht werden. Nach Wechsel der Membrankappen und Erneuerung der Elektrolytflüssigkeit zeigt das Gerät bis in etwa 500 m Wassertiefe Werte an, die sich mit titrimetrisch bestimmten Sauerstoffgehalten in etwa decken. Unterhalb dieser Tiefen unterliegt der Sensor einer starken Tiefendrift, die meist auf Deformationen oder Zerstörungen der Membranen zurückzuführen ist. Die Werte der Hievprofile unterscheiden sich nach solchen Veränderungen entscheidend von den Aufzeichnungen beim Fieren. Die Erfahrungen dieser Fahrt zeigen erneut die bislang ungelösten gerätetechnischen Probleme polarometrischer Sauerstoffbestimmungen im Tiefenwasser der Ozeane.

In folgender Tabelle sind die Multisondenstationen mit den Beprobungstiefen und den gemessenen Parametern zusammengestellt. Datum, Uhrzeit, Position und Wassertiefe der Einzelstationen sind im Bericht der physikalischen Ozeanographie aufgelistet.

Die Abkürzungen in der Tabelle bedeuten im einzelnen:

STAT	=	Stations-Nummer
TIEFE	=	Wassertiefe
SN	=	Schöpfer-Nummer
02	=	Sauerstoffgehalt
AuA	=	Phytoplanktonnährsalze mit Autoanalyzer
SMt	=	Schwermetalle
pHA	=	pH-Wert, Alkalinität
BPh	=	Bakterien- und Phytoplanktonproben
Chl	=	Chloroplastische und akzessorische Pigmente
Prt	=	Proteingehalt
PPr	=	Primärproduktionsmessung
COD	=	CO2-Dunkelfixierung
H3T	=	H3-Thymidin Aufnahme
H3L	=	H3-Leucin Aufnahme
N2F	=	Stickstoff-Fixierung
Amm	=	Proteolytische Aktivität (Ammonifikation)

12

.

elle	14.1	1	:	Pa	rame	ter	au	f c	len	Stat	ione	n	des	bi	010	gisch	hen				STAT	TIEFE	SN	02	AuA	SMt	pHA	BPh	Ch1	Prt	PPr	COD	H3T	H3L	N2F	: A
				Un	ters	uchu	Ingsp	rogi	amms	der	For	schu	ngsf	ahrt	SO	NNE 4	41																			
																					022	0	1	+	+	-	+	-	-	-	-	•	-	-	-	
STAT 1	TIEFE	SN	02	AuA	SMt	pH/	8PH	Ch]	Prt	PPr	COD	нзт	H3L	N2F	Am	n						50	10	+	+	-	-	-	-	-	-	-	-	-	-	
																						100	3	+	+	-	-	-	-	-	-	-	-	-	-	
19	0	1		ni	cht	ause	elös	t														150	8	+	+	-	-	-	-	-	-	-	\sim	-	-	
	50	2	-	+	-	+	-	-	-	-	-	-	-	-	-							300	5	+	+	-	-	2	-	-	_	-	-	-	-	
	100	3	-	+	-	-	-	-	-	-	2	-	-	-	-							500	6	+	+	-	-	-	-	-	-	-	-	-	-	
	150	4	-	+	-	-	-	-	-	-	-	-	-	-	-							1000	7	+	+	-	+	-	-	-	-	-	-	-	-	
	300	5		ni	cht	auso	elös	t														1500	2		nic	:ht a	usg	elöst	: Aut	tokl	avsch	nöpfe	er			
	500	6	-	+	-	+	-	-	-	-	-	-	-	-	-							2000	9	+	+	-	-	-	-	-	-	-	-	-	-	
	1000	7	-	+	-	-	-		-	-	-	-	-	-	÷.,							2500	4		Aut	okla	vsc	höpfe	er							
	2000	8	-	+	-	+	-	-	-	-	-	-	-	-	2.							3256	11	-	-	-	-	-	-	-	-	-	-	-	-	
	2700	9	-	+	-	-	-	-	-	-	-	-	-	-	1							3266	12	+	+	-	+	-	-	-	-	-	-	-	-	
	3182	10	-	+	-		-	-	-	-	-	-	-	-	-																					
	3212	11	-	+	-	-	-	1-	-	-	-	-	-	-							024	0	1	+	+	-	+	-	+	-	-	-	-	-	-	
	3222	12	-	+	-	+	1	-	12	-	_	2	-	-	Ξ.							50	2		nic	tht a	ausg	elöst								
																						100	3	+	+	-	+	-	+	-	-	-	-	-		
0	0	1		ni	cht	ause	elōs	t														150	4	+	+	-	+	-	+	1	-	-	-	-	-	
	50	2	-	+	-	+		-	-	-	-	-	-	-	-							200	5	+	+	-	+	-	+	-	-	-	-	-	-	
	100	3	-	+	-	-		-	-	-		-	-	-	۰.							300	6	+	+	-	+	-	+	-	-	-	-	-	-	
	200	4	-	+	-	-	-	-	-	-	-	-	-	-								500	7	+	+	-	+	-	+	-	-	-	-	-	-	
	300	5		ni	cht	auso	elös	t														1000	8	+	+	-	+	-	-	-	-	•	-	-	-	
	400	6	-	+	-	+	١.		-	-	-	-	-	-								1500	9	+	+	-	+	-	-	-	-	-	-	-	-	
	500	7	-	+	-	-	-	-	-	-	-	4	-	-	-							2000	10	+	+	-	+	-	+	-	-	-	-	-	-	
	600	8	-	+	-	+			-	_	-	2	2	-								2273	11	+	+	-	+	-	+	÷.,	-		-		-	
	700	9	-	+	-	- 2	-	-	4	4	4	2	-	-	-							2283	12	+	+	-	+	2	+	-	-	-	-	4	-	
	800	10	-	+	-	-		-	-	-	_	-	-	-	-																			*		
	1000	11	-	+	-	-	-	-	-	-	2	-	-	-	-		- 53				026	0	2	+	+	-	+	-	2	-	-	-	-	-	-	
	1259	12	-	+	-	+	1	-	-	-	-	-	-	-	÷.,							100	3	+	+	-	+	-	-	-	-	-	-	-	-	
																						500	4	+	+	-	+	-	-	-	-	-	-	-	-	
																						1000	5	+	+	-	+	-	-	-	-	-	-	-	-	
																						1150	6	+	+	-	+	-	-	-	-	-	-	-	-	
																						1200	7	-	-	-	+	-	-	-	-	-	-	-	-	
																						1220	8	+	+	-	+	-	-	-	-	-	-	-	-	
																						1230	9	+	+	1	+	-	-	-	-	-	-	-	-	
																						1240	10	+	+	-	+	-	-	-	-	-	-	-	-	
																						1250	11		+							144	-			

1250 1

Autoklavschöpfer

- 140 -

STAT	TTEEE	SN	02	AA	SM+	DHA	RDh	Chi	Det	DD-	C00	цэт	121	NOE	A
JIAI		314	02	AUA	SHL	pna	Dri	CIT	PIL	PPT	COU	131	HJL	NZF	Amin
031	· 0	2	+	+	-	+	-	+	-	-	-	-		-	-
	50	3	+	+	- 1	+	-	+	-	-	-	4	-	2	1
	100	4	+	+	-	+	-	+	-	-	-	-	-	-	-
	150	5	+	+	-	+	-	+	-	-	-	-	-	-	-
	300	6	+	+	-	+	-	-	-	-	-	-	-	-	-
	500	7	+	+	-	+	-	-	-	-	-	-	-	-	-
	1000	8	+	+	-	+	, <u>1</u>	-	-	-	-	-	-	-	-
	1200	9	+	+	-	+	-	-	-	-	-	-	-	-	-
	1383	10	+	+	-	-	-	-	-	-	-	-	-	-	-
	1383	11		nic	cht a	ausge	elöst	t							
	1403	12	+	+	-	+	-	-		-	-	-	-	-	-
	1403	1		Aut	Autoklavschöpfer										
032	0	2	+	+	-	+	+	+	-	-	-	-	-	-	-
	10	3	+	+	-	+	+	+	-	-	-	-	-	-	-
	20	4	+	+	-	+	+	+	-	-	-	-	-	-	-
	30	5	+	+	-	+	+	+	-	-	-	-	-	-	-
	40	6	+	+	-	+	+	+	-	•	-	-	-	-	-
	60	7	+	+	-	+	+	+	-	-	-	-	-	-	-
	80	8	+	+	-	+	+	+	-	-	-	-	-	-	-
	100	9	+	+	-	+	+	+	-	-	-	-	-	-	-
	150	10	+	+	-	+	+	+	-	-	-	-	-	-	-
	300	11		nic	cht a	usge	elöst	t				5			
	685	12	+	+	-	+	+	+	-	•	-	-	-	-	-
	685	1		Autoklavschöpfer											
033	0	2	+	+	-	+	+	+	-	-	-	-	-	•	-
	50	3	+	+	-	+	+	+	-	-	-	-	-	•	-
	100	4	+	+	-	+	+	+	-	-	-	-	-	-	-
	150	5	+	+7	-	+	+	+	-	-	-	-	-	-	-
	300	6	٠	٠	-	+	-	-		-	-	\overline{a}	-	-	
	500	7	+	+	-	+	-	- 1	-	-	-	-	-	-	-
	1000	8	+	+	1.7	+	-	-	-	-	- 1	-	-	-	-
	1500	9	+	+	-	+	-	-	-	-	-	-	-	-	-
	2000	10	+	+	-	+	-	-	-	-	-	-	-	-	-
	2531	11	+	+	-	+	-	-	-	-	-	-	T		-
	2541	12	+	+	-	+	-	-	-	-	-	-	-	-	-
	2541	1		Aut	okla	vsch	nöpfe	er							

ses a meaning foren

035	0	2	-	-	-	-	•	-	- 1	-	-	-	-	-	-
	0	3	-	-	-	-			-	-	-	-	-	-	-
	0	4	-	-	-	-	-	-	-	-	-	2	-	-	-
	0	5	+	+	-	-	-	-	-	-	-	-	-	-	-
	0	6	+	+	-	+	-	-	÷	-	-	÷	÷	-	-
	1317	7	+	+	-	+	-	-	-	-	-	-	-	-	-
	1327	8	+	+	-	+	-	÷	-	-	-	-	-	-	-
	1337	9	+	+	-	+	-	-	-	Ξ.	-	-	-	-	-
	1339	10	+	+	+	+	-	-	-	-	-	-	-	-	-
	1339	11	-	-	+	-	-	-	-	-	-	-	-	-	-
	1339	12	-	-	+	-	-	-	-	-	-	-	-	-	-
	1339	1		Autoklavschöpfer											
038	0	2	+	+	-	+	+	+	-	-	-	-	-	-	_
	50	3	-	-	-	+	+	+	-	+	27	-	-	-	-
	100	4	+	+	-	+	+	+	-	-	-	-	-	-	-
	150	5	+	+	-	+.	+	+	-	-	-	-		-	-
	300	6	+	+	-	+	-	-	-	-	-	-	-	-	-
	500	7	+	+	-	+	-	-	-	-	-	-	-	-	-
	1000	8	+	+	-	+	-	-	-	- 1	-	\mathbf{r}^{\prime}	-	-	-
	2000	9	-	+	-	+	-	\mathbf{z}^{\dagger}	-	-	-	-	\mathbf{z}^{*}	-	-
	2500	10	+	+	-	+	-	-	-	-	÷	-	-	-	-
	2943	11	+	+	-	+	- 100	-	÷	-	-	÷	-	-	-
	2953	12	+	+	+	+	-	-	-	÷	-	-	-	-	-
	2953	1		Autoklavschöpfer											
040	0	2	+	+	-	+		+			-			-	-
	20	3		ni	cht i	ausg	elöst	t							
	50	4	+	+	-	+	+	+	-	-	-	4	-	-	-
	70	5	+	+	-	+	+	+	-	2	-	2	2	\mathbf{x}	_
	100	6	+	+	-	+	+	+	÷.	-	÷	-	-	-	-
	150	7	+	+	-	+	+	+	4	-	-	-	-	-	-
	300	8	+	+	-	+	+	+	-	-	-	-	-	-	-
	500	9	+	+	-	+	-	-	-	-	-	-	-	-	-
	1000	10	+	+	-	+	-	-	-	-	-	-	-	-	-
	1265	11		ni	cht	ausg	elöst	t							
	1275	12	+	+	-	+	-	-	-	_	-	-	2	-00	-
	1275	1		Au	tokl	avsc	höpf	er							

STAT TIEFE SN 02 AUA SMt pHA BPh Chl Prt PPr COD H3T H3L N2F Amm

÷

2

1
STAT TIEFE SN 02 AUA SMt pHA BPh Chl Prt PPr COD H3T H3L N2F Amm

1	041	0	2	+	+	-	+	+	+	-		-	-	-	÷	÷	
		50	3		ni	cht	ausg	elös	t								
		100	4	+	+	-	+	+	+		-	-		-	-	с т .	
		150	5	+	+	-	+	+	+	-		-	-	-	-	-	
		300	6	+	+	-	+	+	+			-		-	-	-	
		500	7	+	+	-	+	-	+	<u>,</u> -	-	-	-	::=:	-	-	
		1000	8	+	+	-	+	-	-	-	-	-	-	-	-	-	
		1500	9	+	+	-	+	-	-	-	-	-	-	3 -	-	-	
		2000	10	+	+	-	+	-	-	-	-	-	-	-	-	-	
		2388	11		ni	cht	ausg	elös	t								
		2398	12	+	+	-	+	-	-	-	-	-	-	-	-	-	
		2398	1		Aut	tokl	avsc	höpf	er								
3	045	0	2	-	-	-	-,	1+	+	-	-	-	-	-	-	-	
		0	3	+	+	-	+	-	-	-	-	-	-	-	-	-	
		20	4	+	+	-	+	+	+	-	-	-	-	-	-	37	
		50	5	+	+	-	+	+	+	-	-	-	-	-	-	-	
		100	6	+	+	-	+	+	+	-	-	-	-	-	-	-	
		150	7	+	+	-	+	+	+	-	-	-	-	-	-	-	
		300	8	+	+	-	+	+	+		•	-	-	-	-	-	
		500	9	+	+	-	+	-	-	-	-	-	-	-	-	-	
		649	10	-	-	-	+	-	-	-	-	-	-	-	-	-	
		664	11	+	+	-	+	-	-	-	-	-	-	-	-	-	
		669	12	+	+	-	+	-	-	-	-	-	-	-	-	-	
		669	1		Aut	tokl	avsc	höpf	er								
	047	0	2	+	+	-	-	-	-	-	-	-	-	-	-	-	
		0	3	+	+ '	-	+	+	+	-	-	-	-	-	-	-	
		20	4	+	+	-	+	+	+	-	-	-	-	-	-	-	
		50	5	+	+	-	+	+	+	-	-	-	-	-	-	-	
		100	6	+	+	-	+	+	+	-		-	-	-	•	-	
		150	7	+	+	-	+	+	+	-	-	-	-	-	-	-	
		300	8	+	+	-	+	+	+	-	-	-	-	-	-	-	
		500	9	+	+	-	+	-	-	-	-	-	-	-	-	-	
		547	10	+	+	-	+	-	-	-	-	-	-	-	-	-	
		562	11	+	+	-	+	-	-	-	-	-	-	-		-	
		567	12	+	+	-	+	-	-	-	-	-	-	- 2	-	-	

567 1 Autoklavschöpfer

STAT TIEFE SN 02 AUA SMt pHA BPh Chl Prt PPr COD H3T H3L N2F Amm 055 08++-+------50 9 nicht ausgelöst 73 10 + + - + - - - --83 11 + + - + - - - - - - ----85 12 + + - + - - ---85 1 Autoklavschöpfer 056 0 2 + + - + -- --50 3 + + - + . -- \simeq -1 77 4 + + -+ --120 -87 5 + + -+ -~ -87 6 + + - + ---89 7 + + - + - ---89 1 Autoklavschöpfer 057 04+ . -+ -. --50 5 + + -+ -+ ---80 6 + + -+ -+ ----100 7 + . -. 1 . ---150 8 + + -+ --+ 233 9 + + -+ -+ -273 10 - + - + -+ ----283 11 nicht ausgelöst 283 12 + + - + - + - - - ----283 1 Autoklavschöpfer 02++-+---059 --50 3 + + -+ -+ -100 4 + + -+ ~ -2 + --150 5 + . --300 6 + + -+ --500 7 . 1000 8 . 140 2000 9 + + -2445 10 - --+ -2455 11 + + - + -+ ----2455 12 + + - + -+ --2455 1 Autoklavschöpfer

						1										
STAT	TIEFE	SN	02	AuA	SMt	pHA	8Ph	Chl	Prt	PPr	COD	нзт	H3L	N2F	Amm	
067	20	5	-	-		-	-	-	-	-	-	-	-		-	
	20	6	-	-	-	-	-	-	-	-	-	-	-	-	-	
	1000	7	-	-	-	-	-		-	-	-	1	-	1	-	
	2000	8	-	•	-	-	-		-	1	-	-	-	-	-	
	1000	9	-	-	-	-	1	17	-	-		-	-		-	
	300	10	1.5		-	-	-	-	17	1	-		1		-	
	20	11	-		-	-	1	1	-	1	-	1		-	-	
	20	12	17	-			-		1	-	-	-	-	-	-	
	1000	1		Au	tokl	avso	höpt	er								
074	0	1		пі	cht	ausg	elös	st								
	20	2		+	-	+	+	+	-	-	-	-	-	-	-	
	50	3		•	-	+	+	+	-	-	-	-	-	-	-	
	100	4		•	-	+	+	+	-	-	-		-	-	-	
	150	5	i +	• •	-	٠	+	+	-	-	-	-	-	-	-	
	300	6	; ;	+	-	+	+	+	-	-	-	-	-	-	-	
	500	1 7		+	-	+	-	+	-	-	-	-	-	-	-	
	1000	1 8	3 4	+ +	-	+	-	+	-	-	•	-	-	-	-	
	1500) 9		• •	-	+	-	+	-	-	-	-	-	-	-	
	2000) 10) -	• •	•	+	-	+	-	-	-	-	-	- 1	1	
	2636	5 1:	1	n	icht	aus	gelö	st								
	2648	5 13	2.	+ +	-	+	-	+	-	-	-	-	-	-	-	
088)	1		-	-		+	+	-	-			+	-	
	()	2		-	+		+	-	-	+	+	+	8		
	20	3	3	+ +	-	10		+	-	-	-			6 B		
	20	0	4		-	+	-	•	•	1	+	+	-	•		
	50	0	5	+ +	-	-	-	•	-	-	1	•		1	-	
	50	0	6		-	•	-	•	1	-	•	•		2	-	
	7	5	7		icht	aus	gelö	st								
	7	5	8	+ +	-	•	-	•		1	•	• •				
	10	0	9	• •						8	0				•	i
	10	0 1	0									• •	•			
	15	0 1	1	r	icht	aus	gelä	ist								
	15	0 1	2	+ +	1.10		1.1	3 3			- 14	• •	2.10			•

."

STAT	TIEFE	SN	02	AuA	SMt	pHA	8Ph	Chl	Prt	PPr	COD	H3T	H3L	N2F	Amm	

089	300	1	+	+	-	•	-	-	+	-	-	•		-	-
	300	2	-	+	-	+	-	-	-	ж.	+	٠	-	н.	-
	500	3	+	+	-	-	-	-	-	-	-	-	-	-	-
	500	4	-	+	-	+	-	-	•	-	+	+	-	-	-
	1000	5	+	+	-	-	-	-	.+	-	-	-	-	-	-
	1000	6	-	+	-	+	-	-	-	-	+	+	-	-	-
	2000	7	+	+	-	-	•	•	-	-	-	-	-	-	-
	2000	8	-	+	-	+	-	-	-	-	+	+	-	-	-
	2623	9	+	+	-	-	-	-	-	-	-	-	-	-	-
	2623	10	-	+	-	+	-	-	-	-	+	+	-	-	-
	2633	11	+	+	-	-	-		+	-	-	-		-	-
	2633	12	-	٠	-	٠	•	•	-	-	٠	٠	-	-	-
100	0	1		+	-	-	+	-	٠	-	-	-	-	-	+
	0	2	-	-	-	+	+	+	-	-	-	-	-	-	- 1
	20	3	+	+	-	-	+	-	-	-	-	-	1	-	-
	20	4	-	4	-	+	+	+	•	-	-	-	-	-	-
	50	5	+	+	-	-	+	-	+	-	-	-	-	-	+
	50	6	-	Ξ.	-	+	+	+	-	-	-	-	-	-	-
	70	7	٠	+	-	-	+	-	-	-	-	-	-	-	÷
	70	8	-	-	-	+	٠	+	-	-	-	-	-	-	-
	100	9	+	٠	-	-	+	-	+	-	-	-		-	+
	100	10	-	-	-	+	+	+	-	-	-	-	-	-	-
	150	11	+	+	-	-	+	-	+	-	-	-	-	-	+
	150	12	-	-	-	+	٠	٠	-	-	-	•	-		٠
101	300	1	+	+	-	-	-	-	-	-	-	-	-	-	÷
	300	2	-	Ξ.	-	+	-	-	-	-	+	+	-	-	÷
	500	3	+	+	-	-	-	-	-	-	-	-	-	-	-
	500	4	-	÷	-	+	-	-	-	-	+	+	-	-	8
	1000	5	+	+	-	-	-	-	-	-	-	-	-	-	-
	1000	6	-	-	-	+	-	-	-	-	+	+	-		-
	2000	7	+	+	-	+	-	-	-	-	+	+		-	-
	2000	8		vo	rzei	tig	ausg	elös	t						
	3238	9	+	+	-	-	-	-	-	-	-	-		-	-
	3238	10	-	-	-	+	-	-	-	-	+	+	-	-	-
	3248	11	+	+	-	-	-	-	-	-	-	-	-	-	2
	3248	12	-	×	-	+	-	-	-	-	+	+	-	2	2

STAT	TIEFE	SN	02	AuA	SMt	pHA	BPh	Chl	Prt	PPr	COD	HOT	H3L	N2F	Amm	S	TAT TIEF
						Sand											126 (
103	0	1	+	+	-	۰.	+		-	+	+	+		-	-		100
	5	2	+	+	-	-	+	+	-	+	+	+	-	-	-		10
	10	3	+	+	-	-		+	-				-	-	-		20
	20	4	+	+	-	-	+		-	+	+	+	-	-	-		30
	30	5	+	+	-	-	+	+	-	+	+	+	-	-	-		40
	40	6	+	+	-	-	+		-	+	+	+	-	-	-		50
	50	7	+	+	-	-	+	+	-	+	+	+	-	-	-		60
	60	8		пі	cht	gesc	hlos	sen									80
	80	9	+	+	-	-	+	+	-	+	+	+	-	-	-		100
	100	10	+	+	-	-	+	+	-	+	+	+	-		-		120
	120	11	+	+	-	-	+	+	-	+	+	+	-	-	-		150
	150	12	+	+	-	-	+	+	-	+	+	+	-	-	-		
																	131 (
109	0	3	+	+	-	.+'	-	-	٠	-	-	-	-	-	+		50
	50	4	+	+	-	+	-	-	+	-	-	-	-	-	+		70
	100	5	+	+	-	+	-	-	+	-	-	-	-	-	+		100
	150	6	+	+		+	-	-	-	-	-	-	-	-	-		150
	300	7	+	+	-	+	-	-	-	-	-	-	-	-	-		300
	500	.8	+	+	-	+	-	-	-	-	-	-	-	-	-		500
	1000	9	+	+	-	+	-		٠	-	-	-	-	-	+		1000
	1395	10	+	+	-	+	-	-	-	-	-	-	-	-	-		1500
	1405	11	-	-	-	-	-	-	+	-	-	-	-	-	+		2000
	1415	12	+	+	-	+	-	-	+	-	-	-	-	-	+		2435
																	244
117	0	3	+	+	-	+	-	-	+	-	+	+	+	-	+		
	50	4	-	+	-	-	-	-		-	+	+	-	-	-		132 (
	100	5	+	+	-	+	-	-	+	-	+	+	+	-	+		10
	150	6	+	+	-	+	-	-	+	-	+	+	+	-	+		30
	300	7	+	+	-	+	-	-	-	-	+	+	-	-	-		50
	500	8	+	+	-	+	-	-	-	-	+	+	+	-	-		70
	1000	9	+	+	-	+	-	-	+	-	+	+	+	-	+		100
	1108	10	+	+	-	+	-	-	+	-	+	+	+	-	+		150
	1118	11	+	+	-	+	-	-	-	-	+	+	-	-	-		300
	1128	12	+	+	-	+	-	-	-	-	-	-	-		-		500
	1128	1	7		-	-	-	-	+		-	-	-	-	-		1000
	1128	2	-	+	-	-	-	-	-	-	+	+	+	-	-		1540

STAT	TIEFE	SN	02	AuA	SMt	PHA	8Ph	Chl	Prt	PPr	COD	H3T	H3L	N2F	Amm
126	0	1	+	+	-	+	+	+	-	-	+	+	+	-	+
	5	2	+	+	-	+	+	+	-	-	+	+	-	-	-
	10	3	+	+	-	+	+	+	-	-	+	+	+	-	+
	20	4	+	+	-	+	+	+	-	-	+	+	-	-	-
	30	5	+	+	-	+	+	+	-	-	+	+	+		+
	40	6	+	٠	-	+	+	+	-	-	+	٠	-	-	-
	50	7	+	+	-	+	+	+	-	-	+	+	+	-	+
	60	8	+	+	-	+	+	+	-	-	+	+	-	-	-
	80	9	+	+	-	+	+	+	-	-	+	+	+	-	+
	100	10	+	+	-	+	+	+	-	-	-	-	-	-	-
	120	11	٠	٠	-	+	+	+	-	-	+	+	+	-	٠
	150	12	٠	٠	-	٠	+	+	-	•	+	+		-	-
131	0	1	٠	٠	-	+	-	-	-	-	٠	٠	+	-	٠
	50	2	+	٠	-	+	-	-	-	-	+	+	+	-	+
	70	3	+	+	-	+	-	-	-	-	-	-	-	-	-
	100	4	+	+	-	٠	•	-	-	-	•	1	•	-	· -
	150	5	+	٠	-	+	-	-	-	-	-	-	-	-	-
	300	6	+	+	-	٠	-	-	-	-	-	-	-	-	-
	500	7	+	٠	-	+	-	-	-	•	-	1	-	-	-
	1000	8	+	٠	-	+	-	-	-	-	٠	+	+	-	+
	1500	9	+	+	-	+	-	-	-	-	-	-	-	-	-
	2000	10	+	+	-	٠	•	•	-	-	-	-	-	-	-
	2435	11	+	+	-	+	-	-	-	-	-	-	-	-	-
	2445	12	+	*	-	+	•	-	•	-	+	٠	٠		٠
132	0	1	+	+	-	٠	٠	٠	-	-	-	-	-	-	٠
	10	2	+	+	-	+	+	+	-	-	-	-	-	-	-
	30	3	+	+	•	+	+	+	-	-	-	-	-	-	-
	50	4	+	+	-	+	٠	+	-	-	-	-	-	-	+
	70	5	+	+	-	+	+	+	-	-	-	-	. *	-	-
	100	6	+	+	•	+	+	٠	-	-	-	-	-	-	-
	150	7	+	+	-	+	+	+	-	-	-	-	-	-	-
	300	8	+	+	-	+	+	+	-	-	-	-	-	-	-
	500	9	+	+	-	+	-	-	-	-	-	-	-	-	-
	1000	10	+	+	-	+	-	-	-		-	-	÷.,	-	+
	1540	11	+	+	-	+	-	-	-	-	-	-	-	-	-
	1550	12	+	+	-	+	-	-	-	-	-	-	_	-	+

STAT	TIFFE	SN	02	AUA	SME	PHA	BPh	Chl	Prt	PPr	COD	H3t	H3L	N2F	Amm	
133	0	1	+	+	-	•	-	-	-	-	+	+	+	-	+	
	50	2	+	+	-	+	-	-	-	-	+	+	+	-	+	
	70	3	+	+	$\mathbf{H}^{(i)}$	+	-	-	-	-	-	-	-	-	-	
	100	4	+	+	-	+	-	-	-	-	-	-	-	-	-	
	150	5	+	+	-	+	-	-	-	-	-	-	-	-	-	
	300	6	+	+	-	+	-	-	-	-	-	-	-	-	-	
	500	7	+	+	-	+	-	-	-	-	•	•	-	-	-	
	1000	8	+	+	-	+	-	-	-	-	+	+	+	-	+	
	1500	9	+	+	-	+	-	-	-	-	-	-	-	-	-	
	2000	10	+	+	-	+	-	-	-	-		-	-	-	-	
	2540	11	+	+	-	+	-	-	-	-	-		-	-	-	
	2550	12	+	٠	•	٠	-	-	-	•	٠	+	+	-	•	
139	0	1	+	+	-	+	-	-	-	-	+	+	٠	-		
	30	2	+	+	-	+	-	-	•	-	٠	+	+	-	+	
	50	3	+	+	-	+	•	-	-	-	+	+	+	-	+	
	70	4	+	+	-	+	-	-	-	-	-	-	-	-	-	
	100	5	+	+	-	+	-	-	-	-	+	+	+	-	+	
	150	6	+	+	-	+	-	-	-	-	-	-	-	-	-	
	300	7	+	+	-	+	-	•	•	-	-	-	-	-	-	
	500	8	+	+	-	+	-	-	-	-	•	•	-	-	-	
	1000	9	+	+	-	+	-	-	-	-	+	+	+	-	+	
	1500	10	+	+	-	+	-	-	-	-	-	-	-	-	-	
	1750	11	+	+	-	+	-	-	-	-	-	-	-		-	
	1760	12	+	+	-	+	-	-	-	-	+	+	+	-	٠	
141	0	1	+	+	-	+	+	+	-	-	•	+	+	-	+	
	10	2	+	+	-	+	+	+	-	-	+	+	+	-	+	
	20	3	+	+	-	+	+	+	-		+	+	+	-	+	
	30	4		1	nicht	au:	sgel	öst								
	40	5	+	+	-	+	+	+	-	-	+	+	+	•	+	
	50	6	-	-	-	+	+	+	-	-	+	+	-	-	+	
	60	7	+	+	-	+	+	+	-	-	+	+	-	-	-	
	80	8	+	٠	-	+	+	+	-	-	+	+	-	-	-	
	100	9	+	+	-	+	+	+	-	-	+	+	-	-		
	150	10	+	+	•	+	+	+	-	-	+	+		-	-	
	263	11	+	+	-	+	+	+	-		+	+	•	-	-	
	273	12	+	+	-	+	+	+	-	-	+	+	-	-	+	

1

1.1.1

12000 120

SAT	TIEFE SN	02	AuA	SMt	pHA	BPh	Ch1	Prt	PPr	COD	H3T	H3L	N2F	Amm

145	0	1	+	+	-	+'	-	-	-	-	+	٠	+	-	+
	20	2	+	+	-	+	-	-	-	-	+	+	+	-	+
	50	3	+	+	-	+	-	-	-	-	+	+	+	-	+
	100	4	+	+	-	+	-	-	-	-	+	+	+	-	+
	150	5	+	+	-	+	-	-	-	-	-	-	-	-	-
	300	6	+	+	-	+	•	-	-	-	-	÷	-	-	-
	500	7	+	+	-	+	•	-	-	-	-	-	-	-	-
	1000	8	+	٠	-	+	-	-	-	-	٠	+	٠	-	+
	2000	9	+	+	-	+	-	-	-		•	-	-	-	-
	2585	10	+	+	-	+	-	-	-	-	-	-	-	-	-
	2595	11	-	٠	-	+	-	-	-	-	-	-	-	-	-
	2595	12	+	+	-	-	-	-	-	-	•	+	+	-	+
150	0	1		, ni	cht	ausge	előst	t							
	10	2	+	+	-	+	-	4	-	-	-	-	-	-	1
	30	3	+	+	-	+	-	-	-	-	-		-	-	-
	50	4		ni	cht	ausge	lõs	t							
	70	5	+	+	-	+	-	-		-	-	-	-	-	-
	100	6	+	+	-	+	-	-	-	-	-	-	-	-	
	150	7	÷	+	-	+	-	-	-	-	-	-	-	-	-
	300	8	+	+	-	+	-	-	٠.	-	-	-	-	-	-
	500	9	+	٠	-	+	-	-	-	-	-	-	-	-	-
	1000	10	+	+	-	٠	-	-	-	-	-		-	-	-
	1697	11	+	+	-	+	-	-	-	-	-	-	•	-	-
	1707	12	+	+	-	+	-	-	-	-	-	-	-	-	-
152	0	2	+	+	-	+		•						1	5
	20	3	+	+	-	+	-	+		-	-	-	-	-	-
	40	4		ni	cht	ausge	löst	5							
	60	5	+	+	-	+	-		-	-	Ξ.	Υ.	2	20	-
	80	6	+	+	-	+	-	+	4	-	-	<u>ن</u>	-	-	-
5	100	7	+	+	-	+	2	+	-	-	-	-	-	-	-
	150	8	+	+	-	+	-	4	-	-	-	-	-	-	-
	300	9	+	+		+	-	1	-	4	-	-	-	-	-
	500	10	+	+	-	+	-	-	-	-	-	-	-	-	-
	580	11	+	+	-	+	-	-	-	-	-		-	-	-
	590	12	+	+	-	+	-	-		-	-	-	-	4	-

STAT TIEFE SN 02 AuA SMt pHA BPh Ch1 Prt PPr COD H3T H3L N2F Amm

188	0	5	+	-	-	2	-	-	-	-	-	-	-	-	-
	50	6	+	+	-	-	-	-	-	-	-	-	-	-	-
	100	7	+	+	-	-	-	-	-	-	-	-	-	-	-
	150	8	+	+	-	-	-	-	-	-	-	-	-		-
	300	9	+	+	-	-	-	-	-	-	-	-	-	-	-
	500	10	+	+	-	-	-	-	-	-	-	-	-	-	-
	661	11	+	+	-	-	-	-	-	-	-	-	-	-	-
	671	12	+	٠	•	-	-	÷	-	-	-	-	5	-	-
193	0	1	+		-		٠	٠				•	•	-	٠
	5	2	+	+	-	-	+	+	-	٠	+	+	-	-	-
	10	3	+	٠	-	-	+	+	-	+	+	+	+	-	+
	20	4	+	+	-	-	+	+	-	+	+	+	+	-	+
	30	5	+	+	-	-	+	+	-	+	+	+	-	-	-
	40	6	+	+	-	-	+	+	-	+	+	+	+	-	+
	50	7	+	+	-	-	+	+	-	+	+	+	4	-	+
	60	8	+	+	-	-	+	+	-	+	+		+	-	+
	80	9	+		-	-	-	+	-	+	+	+	-	-	-
	100	10	+	+	-	-	-		-	+	+	+	-	-	-
	120	11	+	+	-	-	+	+	-	+	+	+	-	-	-
	150	12	+	+	-	-	+	٠	-	+	٠	+	-		-
206	0	5	1			+	-		-	-	-		÷	_	_
	300	6	÷	•	•	٠	-	-	-	-	-	-	-	-	-
207	507	٠.		A	ak1										
207	501	2		AUL	UKI	avsc.	nopr	er							
	592	2													
	572	3													
	562	-													
	10	5		201		Cobil									
	502	7		301		SCHO	prer								
	593			AUC	OKI	avsc	nopr	er							
	533	10		HUT	Lne	rsch	opre	r							
	543	10	-	-	•	-	-	•	•		-	-	1	7	7
	583	11	-	-	Ĩ.	•	-	-		-	-	1	or.	5	-
	283	12	-	-	-	-	-	-	-	-	-	-	-	-	-

- 146 -

14.3. STATIONEN MIT EINSATZ DES MULTICORERS

M. PETZOLD

Zur gezielten Beprobung ungestörter Sedimentoberflächen und überstehenden Bodenwassers wurde auf der HYMAS I – Fahrt ein Barnett Multicorer eingesetzt. Das Gerät besitzt 12 Plastikstechrohre (d = 5,6 cm), die nach Aufsetzen des Gerätes hydraulisch gedämpft in den Boden einfahren. Vor dem Hieven werden die Rohre oben und unten geschlossen, so daß die biologisch interessanten obersten Millimeter der Proben nicht weggeschwemmt sondern stets erhalten bleiben. Alle sieben Einsätze des Multicorers erbrachten genügende Mengen an Probenmaterial für die gewünschten Bestimmungen.

Routinemäßig wurde das bodennahe Wasser auf Gehalte an Sauerstoff, Nährsalzen und Schwermetallen untersucht, sowie Proben für Bakterienzählungen genommen. Weiterhin wurden bodennahe Messungen von pH, eH und Alkalinität ausgeführt. Zusätzlich wurden die oberen Sedimentschichten der Kerne für N₂-Fixierungsmessungen und Proteinbestimmungen bearbeitet.

Die beiden folgenden Tabellen stellen Tage, Zeiten und Positionen bzw. gemessene und zu bearbeitende Parameter der Multicorerstationen zusammen.

Datum	Uhrzeit	StatNr.	Position	Tiefe
12.3.	16:05 - 17:32	91 MC	40 21.34N / 13 17.43E	2616m
15.3.	18:54 - 20:57	118 MC	39 52.69N / 12 36.87E	1250m
16.3.	20:13 - 20:58	127 MC	39 50.07N / 12 36.07E	1298m
22.3.	06:20 - 07:05	166 MC	38 33.89N / 14 12.03E	1108m
22.3.	08:52 - 09:53	168 MC	38 35.16N / 14 07.06E	773m
23.3.	11:26 - 12:00	180 MC	39 32.55N / 14 42.07E	626m
24.3.	05:40 - 06:00	190 MC	39 29.88N / 14 49.25E	100m

Tab. 14.2: Stationen der Multicorereinsätze

Die Abkürzungen in der folgenden Tabelle bedeuten im einzelnen:

- STAT = Stations-Nummer
- 02 = Sauerstoffgehalt
- AuA = Phytoplanktonnährsalze mit Autoanalyzer
- SMt = Schwermetalle
- pH = Wasserstoffionenkonzentration
- eH = Redoxpotential
- Alk = Alkalinität
- Bak = Bakterienproben
- Prt = Proteingehalt
- COD = CO₂-Dunkelfixierung
- H3T = H3-Thymidin Aufnahme
- N2F = Stickstoff-Fixierung
- Amm = Proteolytische Aktivität (Ammonifikation)

STAT SMt pH eH Alk Bak Prt COD H3T 02 AuA N2F Amm 091 118 127 + 166 + 168 180 190

Tab. 14.3: Parameter auf den Multicorer-Stationen

14.4. MULTISONDEN-MESSWERTE

M. PETZOLD & N. VERCH

Zur Untersuchung biologisch-ökologischer Prozesse im Meer ist die Kenntnis physikalischer und chemischer Umweltdaten von großer Bedeutung. Sie beeinflussen die biologischen Komponenten von der Produktion bis zur Sedimentation partikulärer organischer Substanz. Andererseits wird die "unbelebte Natur" wiederum durch die Aktivität von Organismen verändert. Aus diesen Gründen ist eine Einbeziehung physikalischer und chemischer Daten in eine biologische Betrachtung Voraussetzung für das Verständnis des Gesamtsystems.

Auf der Fahrt SO 41 wurden auf den 44 Multisonden-Stationen Vertikalprofile verschiedener Parameter (s. 14.2) aufgezeichnet und im Anschluß an die Stationen geplottet. Die Auswertungen werden sowohl im Institut für Meereskunde als auch im Institut für Hydrobiologie einige Monate in Anspruch nehmen. Ergebnisse liegen bislang in Form unkorrigierter Rohdaten vor. Beispielhaft seien in den Abbildungen 14.1 - 14.6 Vertikalprofile der Salinität, Temperatur und Dichte sowie der Trübung und des Sauerstoffgehaltes aus dem Gebiet Vavilov-Seamounts (Stat. 26), des Palinuro- (Stat. 47) und des Enareta-Gebietes (Stat. 145) dargestellt.

ABB: 1411: Vertikalprofii det Self-ität. Tomperatur und Dionte sus ide Gebiet des Veviles-Ecomount (Station 26 mB)

Abb. 14.1: Vertikalprofil der Salinität, Temperatur und Dichte aus dem Gebiet des Vavilov-Seamount (Station 26 MS)

Abb. 14.2: Vertikalprofile der Licht-Attenuation und des Sauerstoffgehalts aus dem Gebiet des Vavilov-Seamount (Station 26 MS)

Abb. 14.3: Vertikalprofile der Salinität, Temperatur und Dichte aus dem Gebiet des Palinuro-Seamount (Station 47 MS)

Abb. 14.4: Vertikalprofile der Licht-Attenuation und des Sauerstoffgehalts aus dem Gebiet des Palinuro-Seamount (Station 47 MS)

Abb. 14.5: Vertikalprofile der Salinität, Temperatur und Dichte aus dem Gebiet des Enareta-Seamount (Station 145 MS)

Abb. 14.6: Vertikalprofile der Licht-Attenuation und des Sauerstoffgehalts aus dem Gebiet des Enareta-Seamounts (Station 145 MS)

14.5. CHEMISCHE MESSWERTE

14.5.1. SAUERSTOFF, NITRAT, PHOSPHAT, SILIKAT L. KARBE & S. BURCHERT

Mit Schwerpunkten in der euphotischen Zone und in den bodennahen Wasserschichten wurden an allen Multisondenstationen mit dem Kranzwasserschöpfer Proben entnommen und im Hinblick auf chemischozeanographische Parameter analysiert. Die Beprobung der Wassersäule Standardtiefen, an einigen Stationen ergänzt erfolgte in durch Probennahmen mit feinskaliger Auflösung. In Bodennähe sind die Möglichkeiten des Einsatzes der Gerätekombination von Multisonde und Kranzwasserschöpfer eingeschränkt. Ein Aufsetzenlassen des Gerätes war bei der gegebenen Bodenmorphologie nicht zu verantworten. Je nach Seegang erfolgte der Einsatz der Multisonde unter Annäherung an den Boden auf etwa 5-10 m über Grund. Hier wurde der erste Wasserschöpfer ausgelöst, ein zweiter Schöpfer 15-20 m über Grund. Für die Beprobung der Wasserschicht mit unmittelbarem Bodenkontakt wurde der Multicorer eingesetzt. Auf Weichböden erlaubt dieses Gerät die Entnahme von Sedimentkernen zusammen mit dem überstehenden Wasser bei nur geringfügiger Störung der Übergangszone Sediment/Wasser. Für die Messung chemischer Parameter wurden Wasserproben in etwa 5 cm Abstand von der Sedimentoberfläche entnommen.

In allen Wasserproben aus Kranzwasserschöpfer und Multicorer wurde der Sauerstoffgehalt bestimmt, manganometrisch nach der modifizierten Winckler-Methode. Ursprünglich war die Anwendung der naßchemischen Sauerstoff-Bestimmungsmethode nur zur Kalibrierung des Sauerstoff-Sensors der Multisonde, sowie zur Analyse von Multicorer-Proben vorgesehen. Der Entscheid, alle Wasserproben mit dieser Methode zu analysieren, fiel, nachdem sich zeigte, daß der Sensor der Multisonde in tieferen zunächst unrichtige Werte anzeigt und daß es bei Wasserschichten wiederholtem Einsatz in Tiefen von über 2000 m zu Defekten am Meßsystem kommen kann, die dann zu völlig falschen Anzeigen führen.

Die Bestimmung von Nitrat, Nitrit, Ortho-Phosphat und Silikat erfolgte unter Einsatz eines Technicon-Autoanalyzer Systems: Nitrat als Nitrit nach Reduktion über eine mit Kupfer aktivierte Cadmium-Säule, Nitrit nach Reaktion mit Sulfonilamid in saurem Medium als eine mit N - (1-Naphtyl) Äthylendiamindihydrochlorid gekoppelte Diazo-Verbindung, Ortho-Phosphat als Molybdänblau-Komplex nach Reaktion mit Ammoniummolybdat in saurem Medium und Reduktion mit Ascorbinsäure bei 880 nm, Silikat ebenfalls als Molybdänblau-Komplex aber bei 660 nm und unter Zugabe der Oxalsäure vor der Ascorbinsäure zur Vermeidung von Interferenzen mit Phosphat. Alle Messungen wurden an Bord möglichst kurzfristig nach der Probennahme durchgeführt. Bedingt durch Zeitmangel konnte zu Beginn der Fahrt und bei Auftreten von Störungen in der Funktion von Komponenten des Autoanalyzers nicht an allen Stationen das volle Analysenprogramm durchgeführt werden. Ein vollständiger Datensatz liegt für Nitrat und Silikat vor. Alle Daten sind in Tab. 14.4 zusammengestellt.

Die gemessenen Konzentrationen von Sauerstoff, Nitrat, Nitrit, Phosphat und Silikat wie das Muster von Konzentrationsgradienten in der Wassersäule entsprechen unseren Vorstellungen über die Situation in oligotrophen Meeresgebieten. Hinweise auf geochemische Anomalien sind nach dem derzeitigen Stand der Auswertung nicht zu erkennen.

Tab. 14	4.4 Chemi	sche Meßwerte Wa	asser	T			Sta	ation	n Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
	Sauerst	off (mg/l), Nitu	rat, Nitrit	, Phosphat	, Silikat (µmo1/1)		8	150	6,64	4,2			1,0
Statio	Tiofo	Saugestoff	Nitrat	Nitwit	Phosphat	Silikat		5	300	6,33	4,9			1,8
	i fiere	Sauerscorr	Aitrat	NICITC	Filospilac	STIKAL		6	500	6,37	5,1			2,0
Vavilo	v SMt							7	1000	6,43	6,6			3,9
o19-2	50		1,2					9	2000	6,51	7,3			5,3
3	100		4,0			0,8		12	3266	6,51	7,2			6,0
4	150		4,8			1,2	o24	1-1	о	8,31	0,8	10		nn
6	500		6,0			1,9		3	100	7,99	0,8			nn
7	1000		6,8			3,6		4	150	6,75	3,8			1,0
8	2000		7,9 /			5,3		5	200	6,57	4,1			1,2
9	2750		7,5			5,9		6	300	6,30	4,5			1,4
10	3182		7,8			6,2		7	500	6,30	5,1		1.1.1	2,0
11	3212		7,6			6,2		8	1000	6,41	5,8			3,9
12	3222		7,8			6,7	希望道台	9	1500	6,37	6,5			5,2
o2o-1	o							10	2000	6,43	6,6			5,9
2	50		0,9			nn		11	2273	6,49	7,1			6,4
3	100		4,0			0,9		12	2283	6,47	7,1			6,8
4	200		5,2			1,1	026	5-2	0	7,79	0,5	8 8		nn
7	500		5,5			1,8		3	100	7,20	2,4			0,7
8	600		5,8			2,3		4	500	6,20	4,7			1,9
9	700		5,8			2,5		5	1000	6,77	3,7			1,0
10	800		5,9			2,7		6	1150	6,39	6,3			4,3
11	1000		7,4			4,0		8	1220	6,27	6,2			5,0
12	1259		7,1			4,3		9	1230	6,22	6,5			4,9
o22-1	0	8,49	0,6			nn		10	1240	6,43	6,5			4,8
10	50	8,36	0,8			nn		11	1250	6,41	6,3			5,1
3	100	8,16	1,3			nn								

	Station	1 Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat	Statio	n Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
	Marsil	SMt						8	1000	6,36	6,9			5,4
	o31-2	o	7,94	0,8			nn	9	1500	6,47	7,1			5,7
	3	50	9.14	0,3			nn	10	2000	6,64	7.2			5,6
	4	100	6,69	2,9			nn	11	2531	6.50	7.5	118		5.6
	5	150	6,40	3,4			1,4	12	2541	6.34	7.4			5.5
	6	300	6,19	3,5			2,1	31.4		8*11	6° 2			
	7	500	6,32	4,7			2,5	o35-5	0	8,06	0,8			nn
	8	1000	6,43	5,8			5,1	6	0	8,06	0,6			nn
	9	1200	6,32	6,2			5,4	7	1317	6,22	7,5			7,0
	10	1383	6,09	6,4			7,2	8	1327	6,27	7,4			6,9
	12	1403	7,08	6,5			7.3	9	1337	6,24	7,5			6,7
		100		5 B.				10	1339	6,23	7,5			6,8
	032-2	0	8,34	0,6			nn	o38-2	o	8,00	0,3			nn
1	3	10	8,32	0,5			nn	4	100	6,54	3,9			1,9
5	4	20	8,32	0,4			nn	5	150	6,27	4,7			3,0
	5	30	8,25	0,4			nn	6	300	6.12	4.9			3.8
	6	40	8,27	0,6			'nn	7	500	6.14	5.5			4.7
	7	60	8,28	0,3			nn	8	1000	6.25	7.0			5.9
	8	80	7,09	3,2			nn	9	2000	8° 10	7.6			6.8
	9	100	6,82	3,5			nn	10	2500	6 20	7,0			6.5
	10	150	6,31	4,2			0,6	10	2042	6 20	7,7			0,5
	12	685	6,35	5,9			4,1	11	2943	0,29	7,7			0,5
	o33-2	10000	8,10	0,6			nn	12	2953	6,29	7,9			6,6
	3	50	7,91	0,9			nn	040-2	0	8,15	0,4			nn
	4	100	6.65	2.9			1.2	4	50	7,94	0,6			nn
	5	150	6.07	4 1			2.2	5	70	7,35	1,7			nn
	5	300	6.07	4,1			2,6	6	100	7,73	3,2			1,5
	0	300	0,07	4,0			3,0	7	150	6,37	4,5			2.4

						13							
tation	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat	Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	
8	300	6,14	4,9		1995-1	3,8	5	50	8,08	0,6	0,10		
9	500	6,13	5,4			4,5	6	100	8,05	0,9	0,20		
10	1000	6,15	6,5			6,1	7	150	6,75	3,5	nn		
12	1275	6,21	7,3			6,5	8	300	6,38	4,9	nn		
41-2	0	8,00	0.5			nn	9	500	6,27	5,4	nn		
4	100	6,67	3,6			1.8	10	547	6,30	5,4	nn		
5	150	6,42	4,4			2,8	11	562	6,28	5,4	nn		
6	300	6,17	5,1			4,1	12	567	6,30	5,5	nn		
7	500	6,15	5,6 /			5,0	o55-8	o	8,32	0,4	0,10		
8	1000	6,21	6,7			6,7	10	73	7,21	1,6	o,15		
9	1500	6,25	7,3			7,4	11	83	6,63	1,7	0,14		
10	2000	6,29	7,7			7,5	12	85	7,04	2,1	0,14		
12	2398	6,27	7,8			7,8	056-2	o	8,35	0,6			
alinuro	SMt						3	50	8,18	0,8	•		
45-3	0	8,24	0,3	nn		nn	4	77	7,76	1,4	0,14		
4	20	8,26	0,3	nn		nn	5	87	7,65	1,7	0,16		
5	50	8,04	0,7	0,11		nn	. 6	87	7,70	1,6	0,15		
6	100	7,91	0,9	0,17		nn	7	89	7,72	1,6	0,13		
7	150	6,75	3,6	nn		2,1	o57-4	o	8,11	0,6	0,08		
8	300	6,29	4,5	nn		3,9	5	50	8,28	1,2	0,07		
9	500	6,25	5,4	nņ		5,1	6	80	7,63	1,2	0,18		
11	664	6,29	5,5	nn		5,7	7	100	7,10	1,5	0,08		
12	669	6,21	5,8	nn		5,9	8	150	6,57	4,0	nn		
047-2	0	8,33	0.3	nn		nn	9	233	6,28	4,5	nn		
3	0	8,31	0,3	nn		nn	10	273	- alabert	4,8	nn o		
4	20	8.35	0.3	nn		nn	12	283	6,26	4,8	nn		

			e.s . *											1.16	
Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat		Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat	
o59-2	0	8,28	0,3			nn	ě.	089-1	300	5,97	5,2	nn		2,2	
3	50	8,20	0,4			nn		2	300		3 8 6	nn	o,18	2,0	
4	100	7,80	1,0			nn		3	500	5,93	5,4	nn	0,20	2,8	
5	150	6,58	3,9			1,0		4	500			nn		2,7	
6	300	6,25	5,0			1,8		5	1000	6,13	6.6	nn	0,24	4,8	
7	500	6,29	4,9			1,9		6	1000		•	nn		4,8	
8	1000	6,33	6,1			3,3		7	2000	6,27	7,7	nn	0,31	6,9	
9	2000	6,42	7,6			6,0		8	2000	14		nn		6,9	
11	2455	6,51	7,8			6,0		9	2623	5,99	7,7	nn	0,31	7,0	
12	2455	6,52	7,4			6,0		10	2623	5.76	1.6	nn		7,1	
074-2	20	7.82	0.9	nn		nn		11	2633	6,39	7,8	nn	0,32	7,2	
3	50	8.05	0.6	nn		nn		12	2633	2.03	0.48	nn	-	7,1	
4	100	7.71	1.2	0.09		nn		Vavilov	SMt						
12	150	6.10	4.3	nn	3451	0.8		100-1	0	6.67	nn	0 * 1 M	nn	00	
6	300	6 22	5.0	00		1.4		3	20	6.42			00	00	
7	500	6.23	5.3	nn		1.9		5	50	6.59	0.6	0.18	nn	nn	
8	1000	6.28	6.7		ni y	3.5		7	70	7,60	0.6	0.22	nn	nn	
0	1500	0,20	7 4		1/4	4.8		9	100	7 47	0,9	0.27	147	00	
10	2000	5 22	7 7			6.0		11	150	5 69	4.4	0,27	0.17	1.4	
12	2646	6 23	7 7	20		6.0		TOP-1	130	1.11	40 × *	10a	0,17	1, 1	
12	2040	0,23	100	en		0,0		101-1	300	6,16	5,2	nn	0,21	1,9	
Ventot	ene Süd	1735		and .				3	500	6,09	5,3	nn	0,23	2,5	
o88-1	0	7,74	0,5	92 [*]	nn	nn		5	1000	6,17	6,6	nn	0,29	4,3	
3	20	7,40	0,6	0,13	nn	nn		7	2000	6,14	7,5	nn	0,36	6,1	
5	50	7,70	0,6	0,16	nn	nn		9	3238	6,04	7,8	nn	0,37	6,5	
8	75	7,30	0,8	10 (511) 5	nn	nn		11	3248	6,11	7,7	nn	0,37	6,7	
9	100	6,11	2,4	•	0,15	nn									
12	150	5,71	4,9		0,15	nn									

- 161 -

Station	n Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat	Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
103-1	0	8,63	nn	nn	nn	nn	10	1108	3,71	7,4	nn	0,40	8,0
2	5	8,38	nn	nn	nn	nn	11	1118	5,22	7,5	nn	0,45	7,9
3	10	8,32	nn	nn	nn	nn	12	1128	5,45	7,1	nn	0,36	8,0
4	20	8,22	nn	nn	nn	nn	2	1128		7,2	nn	o,38	•
5	30	8,30	nn	nn	nn	nn	126-1	o	8,33	nn	nn	nn	nn
6	40	8,09	0,3	0,08	nn	nn	2	5	8,35	nn	nn	nn	nn
7	50	7,95	0,4	0,17	nn	nn	. 3	10	8,42	nn	nn	nn	nn
9	80	7,97	0,6	0,28	nn	nn	4	20	8,37	nn	nn	nn	nn
10	100	7,81	1,0	0,36	nn	nn	5	30	8,12	nn	nn	nn	nn
11	120	6,96	3,0	nn	0,14	nn	6	40	7,94	nn	0,11	nn	nn
12	150	6,53	4,4.	nn	0,21	1,9	7	50	7,86	0,3	0,18	nn	nn
109-3	o	8,00	0,3	0,12	nn	nn	8	60	7,85	0,7	0,25	nn	nn
4	50	7,83	0,4	0,22	nn	nn	9	80	7,08	0,8	0,30	nn	nn
5	100	7,41	1,2	nn	nn	nn	10	100	6,73	2,2	nn	nn	nn
6	150	6,31	4,5	nn	0,14	2,1	11	120	6,16	3,8	nn	nn	0,5
7	300	5,90	5,4	nn	0,17	2,6	12	150	6,13	4,7	nn	0,18	0,9
8	500	6,18	5,6	nn	0,18	3,4	Magnagh	i SMt					
9	1000	5,75	6,7	nn	0,25	4,9	131-1	0	8,39	nn	nn ·	nn	nn
10	1395	6,07	7,2	nn	0,29	6,4	2	50	7,94	0,3	0,17	nn	nn
12	1415	6,07	7,2	nn	0,13	5,8	3	70	7,88	0,5	0,12	nn	nn
117-3	0	5,65	nn	nn	nn.	nn	4	100	7,91	0,4	0,21	nn	nn
5	100	7,70	0,8	0,33	nn	nn	5	150	7,74	0,9	nn	nn	nn
6	150	6,20	4,1	nn	0,21	0,6	6	300	7,02	2,9	nn	nn	0,3
7	300	5,52	5,3	nn	0,29	2,7	7	500	6,29	5,4	nn	0,25	2,6
8	500	5,76	5,7	nn	0,36	4,5	8	1000	6,29	6,4	nn – 16	0,29	6,3
9	1000	3,97	6,6	nn	0,34	7,2	9	1500	6,34	7,2	nn	0,30	7,6

Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat	Stat	ion	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
10	2000	6,26	7,7	nn	0,34	8,2	Eolo	/En	areta SMts	2*8%	2°E	ŵ.	-	199
11	2435	6,20	7,6	nn	0,34	8,3	139-	1	o	8,20	nn	nn	nn	nn
12	2445	6,22	7,7	nn	0,32	8,4		2	30	8,24	nn	nn	nn	nn
132-1	0	7,96	nn	nn	nn	nn		3	50	8,08	0,3	0,27	nn	nn
2	10	8,12	nn	nn	nn	nn		4	70	8,05	0,3	0,22	nn	nn
3	30	7.65	0.3	nn	nn	nn		5	100	7,66	0,7	0,17	nn	nn
4	50	7,61	0.5	0.17	nn	nn		6	150	7,42	1,3	nn	nn	nn
5	70	7.68	0.7	0.09	nn	nn		7	300	6,17	4,1	nn	0,15	nn
6	100	7.44	0.7	0.13	nn	nn		8	500	6,13	4,4	nn	0,15	nn
7	150	7.85	1.1	0.20	nn	nn		9	1000	6,05	6,0	nn	0,23	nn
8	300	6.87	3.9	nn	0.10	0.4	1	0	1500	6,08	7,0	n	0,26	nn
9	500	6.04	5.6	nn	0.20	2.8	1	1	1750	6,13	7,3	nn	0,30	nn
10	1000	6,18	6.5	nn	0.23	6.3	1	2	1760	6,15	7,4	nn	0,28	nn
11	1540	6,12	7.5	nn	0.29	7.9	141-	1	0	8,00	nn	nn		nn
12	1550	6.06	7.4	nn	0.31	8.0		2	10	6,10	nn	nn 158		nn
					0,01	0,0		3	20	5,83	nn	nn		nn
133-1	0	6,90	nn	nn	nn	nn		5	40	6,59	nn	0,25		nn
2	50	7,95	0,4	0,10	nn	nn		7	60	6.39	1.0	0.12		nn
3	70	6,45	0,6	0,31	nn	nn		8	80	5.72	1.0	0.17		nn
4	100	7,69	1,2	0,18	nn	nn		9	100	5.67	1.5	0.10		nn
5	150	7,44	1,4	nn	nn	nn	14	0	150	7.01	2.3	nn		nn
6	300	6,72	3,9	nn	0,17	0,5	1	1	263	5.29	4.0	nn		1.8
7	500	6,02	5,5	nn	0,18	2,1	1	2	273	6 23	4,0			2 1
8	1000	6,40	6,7	nn	0,31	6,7	•	1	275	0,23	4,2			2,1
9	1500	6,08	7,1	nn	0,30	7,6	145-	1	0	8,09	nn	nn	nn	nn
10	2000	6,22	7,7	nn	0,39	8,6		2	20	8,03	nn	nn	nn	nn
11	2540	6,28	7,8	nn	0,38	8,7		3	50	7,84	nn	nn	nn	nn
12	2550	6,13	7,7	nn	0,32	8,7								

Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
4	100	7,34	1,5	0,05	nn	nn
5	150	6,41	3,5	nn	0,12	1,0
6	300	5,98	4,9	nn	0,20	2,4
7	500	5,95	5,2	nn	0,20	4,3
8	1000	6,05	6,2	nn	0,35	6,9
9	2000	5,98	7,2	nn	0,35	9,0
10	2585	6,19	7,5	nn	0,35	9,0
11	2595	1.11	7,5	nn	0,35	9,0
12	2595	5,86	7,5	nn	0,33	9,0
150-2	10	7,62	nn - '	nn		nn
3	30	7,97	nn	nn		nn
5	70	7,57	0,9	0,17		nn
6	100	7,33	1,1	0,14		nn
7	150	12 Yr -	1,8	nn		0,7
8	300	6,20	4,2	nn		2,7
9	500	6,10	4,4	nn		3,4
10	1000	5,34	5,6	nn		5,7
11	1697	5,91	7,8	nn		8,8
12	1707	6,05	7,9	nn		8,9
52-2	0	8,24	nn	nn		nn
3	20	7,89	nn	nn		nn
5	60	7,69	0,9	0,23		nn
6	80	7,58	0,9	nn		nn
7	100	7,65	1,1	0,08		nn
8	150	7,46	1,4	0,08		nn
9	300	6.20	4.8	00		3.0

Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
10	500	5,95	4,9	nn	444.5	3,7
11	580	5,88	5,0	nn		4,2
12	590	6,04	5,1	nn		4,3
155-1	0	7,47	nn	nn		nn
2	5	5,88	nn	nn		nn
3	10	6,78	nn	nn		nn
4	20	6,98	nn	nn		nn
5	30	7,70	nn	nn		nn
6	40	7,81	nn	nn		nn
7	50	8,13	0,3	0,25		nn
8	60	7,63	0,9	0,46		nn
9	80	6,41	1,3	0,16		nn
10	100	7,49	0,8	0,13		nn
. 11	120	6,63	0,8	0,17		nn
12	150	6,36	1,9	nn		nn
159-1	0	8,06	nn	nn		nn
2	50	6,81	0,3	0,32		nn
3	70	7,46	0,7	0,36		nn
4	100	7,09	0,9	0,10	m	nn
5	150	7,05	1,8	nn		nn
6	300	6,14	4,1	nn		2,1
7	500	6,18	4,8	nn		3,4
8	800	5,76	5,0	nn		4,2
9	1000	5,48	5,6	nn		5,2
10	1322	5,65	6,3	nn		7,0
11	1332	5,77	6,5	nn		7,3
12	1332		6,6	nn		7,4

Station	Tiefe	Sauerstoff	Nitrat	Nitrit	Phosphat	Silikat
167-2	o	8,16	nn 2	nn	3 (B	nn
3	20	8,08	nn	nn		nn
4	5o	7,82	0,4	0,41		nn
5	70	7,69	0,7	0,22		nn
6	100	7,73	1,5	nn		nn
8	300	6,38	4,1	nn		1,6
9	500	6,08	5,0	nn		3,3
10	769	6,11	4,8	nn		3,8
11	779	6,16	4,8	nn		3,9
12	779	6,16	4,8	nn		4,0
alinuro	SMt					
88-5	o	8,24	8			.00
6	50	8,05	nn	nn		nn
7	100	7,08	1,5	nn		nn
8	150	6,54	3,1	nn		1,1
9	300	6,23	4,7	nn		2,9
10	500	6,19	5,0	nn		4,0
11	661	6,15	5,1	nn		4,7
12	671	6,13	5,2	nn		4,8
93-1	o	8,17	nn	nn		nn
2	5	8,15	nn	nn		nn
3	10	8,92	nn	nn		nn
4	20	8,14	nn	nn		nn
5	30	7,84	nn	nn		nn
6	40	8,19	nn	nn ·		nn

. '

7	50	8,12	nn	nn	nn
8	60	7,92	nn	0,10	nn
9	80	7,54	nn ,	0,08	nn
10	100	7,39	nn	0,08	nn
11	120	7,22	nn	nn	0,7
12	150	4,40	nn	nn	1,2

Ventot	ene Sud					
o91	2616	6,24	7,8	0,16		9,0
Vavilo	ov SMt	10		1000 B 10		
118	1250	6,08	7,4	nn		8,1
127	1398	6,37	7,4	nn		8,1
Eolo S	SMt					
166	1108	6,18	5,9	nn		5,9
168	773	6,19	5,0	nn		4,4
Palinu	uro SMt					
180	626	6,09	5,7	nn		6,1
189	565	6,16	5,2	nn	1,3	5,9
190	100	7,57	1,5	0,15	1,5	2,3

							Market Inc.
		Zn	Cu	РЬ	Cd	Hg	rhuzodia
Vavilov SMt	o26 MS 11	1.890	90	200	18	2,2	
Marsili SMt	o35 MS 10	1.790	80	50	7	5,2/4,9	
Marsili SMt	o38 MS 12	• 20			•	6,5/6,3	
Eolo SMt	159 MS 11	2.020	80	50	10	1,7/1,3	
Eolo SMt	167 MS 12	5.300		390	42	3,5/3,4	
Vavilov SMt	118 MC	5.780	380	210	30	•	
Vavilov SMt	127 MC	2.940	220	70	10	2,9/3,5	
Eolo SMt	168 MC	3.290	310	50	25	3,7/3,5	
Palinuro SMt	180 MC	4.910	380	60	26	3,7/6,3	
Palinuro SMt	189 MC	10.510	530	420	38	10,0/9,4	
Palinuro SMt	190 MC	6.830	290	110	22	7,4/6,5	
VK % ca		10-20	10-20	10-20	5-10	5-10	
Ozean (Brulan	d 1983)	9-500	32-380	o 1-36	,1-12	3 0,4-2,0	s film

MS: 5-10 m über Grund, MC: 10-20 cm über Grund

Schwermetalle in Oberflächenschicht des Sediments (mg/kg)

Vavilov SMt	118 MC	0,035
Vavilov SMt	127 MC	0,039
Eolo SMt	166 MC	0,051
Eolo SMt	168 MC	0,055/0,018
Palinuro SMt	180 NC	0,094

Tab. 14.5: Schwermetalle im bodennahen Wasser (ng/kg)

Abb. 14.7: Chemische Meßwerte. Zusammenfassung aller Analysenwerte für die an verschiedenen Stationen mit dem Kranzwasserschöpfer

- 167 -

14.5.2. SCHWERMETALLE

L. KARBE, S. BURCHERT, R. ZEITNER

Um das Forschungsprogramm hinsichtlich erforderlicher Schiffszeit und Geräteeinsatz in Grenzen zu halten, waren für die Forschungsfahrt SO-41 keine Detailuntersuchungen zur Verteilung von Schwermetallen in der Wassersäule und im benthischen Bereich vorgesehen. Entsprechend waren keine Spezialwinde, Spezialwasserschöpfer und weitere Einrichtungen zur kontaminationsfreien Wasserprobenentnahme und Probenbearbeitung an Bord. Trotz der gegebenen Einschränkungen erschien es sinnvoll, aus den mit konventioneller Methode mit dem Kranzwasserschöpfer (Hydrobios Niskin-Schöpfer) und den mit dem Multicorer genommenen Wasserproben Unterproben für Schwermetalluntersuchungen abzutrennen.

Wasserproben wurden unfiltriert in hochreine Quarz- und Teflonflaschen abgefüllt und bis zur analytischen Bearbeitung im Labor des IHF tiefgefroren bzw. kühl eingelagert. Der Probennahmetechnik entsprechend ist nicht auszuschließen, daß im Zusammenhang mit der Probennahme vom eingesetzten Gerät Spurenstoffe an das Probengut abgegeben wurden. Ebenso ist es nicht auszuschließen, daß die Proben, obwohl optisch nicht erkennbar, geringe Mengen an Schwebstoffen enthielten. Entsprechend sind die in Tab. 14.5 aufgelisteten Daten nur mit Vorbehalt interpretierbar. Differenziertere Untersuchungen sollten in einer späteren, dann entsprechend zu planenden und auszurüstenden Forschungsfahrt (HYMAS III) durchgeführt werden.

Die Messung von Kupfer, Zink, Blei und Cadmium erfolgte mit der flammenlosen AAS (Pyrorohr mit L''VOV-Plattform) in salpetersaurer Matrix nach dem Standardadditionsverfahren nach Anreicherung über Flüssig/flüssig Extraktion (Komplexierung mit APDC/DDDC, Extraktion mit Freon). Die Messung von Quecksilber erfolgte nach dem AAS Kaltdampfverfahren nach UV-photolytischer Vorbehandlung der Proben und Anreicherung von Quecksilber nach dem Gold-Amalgamisierungsverfahren.

Die Analysenwerte zeigen, daß zumindest für die Metalle Zink und Kupfer in den Proben von Wasser mit unmittelbarem Kontakt mit dem Sediment generell höhere Werte gemessen werden konnten als im Tiefenwasser 5-10 m über Grund. Die für alle analysierten Metalle besonders hohen Meßwerte an Station 189 MC (Palinuro-Seamount) entsprechen den Funden massiver Sulfide an der gleichen Lokalität.

the productive second and indicate an interim the land of the under func-

14.6. STRAHLUNGSKLIMA UND EINDRINGTIEFE DES LICHTES

M. PETZOLD

Um in situ Primärproduktionsmessungen miteinander vergleichen zu können, benötigt man Informationen über das Globalstrahlungsklima während der Expositionszeit, Eindringtiefe des Lichtes und, soweit möglich, eine Globalstrahlungsmessung über den gesamten Tag als Referenz. Auf der SONNE 41-Fahrt kam zu diesem Zweck ein Quantameter der Fa. Biospherical Instruments zum Einsatz, das sich schon auf früheren Fahrten und anderen Einsätzen bewährt hat. Die Lichtsensoren des Gerätes messen die Quantendichte im Bereich zwischen 400 und 700 nm mit scharf

abgegrenzter Flankensteilheit ober- und unterhalb dieser Wellenlängen. Dieses entspricht dem Betrag an photosynthetisch verfügbarer Strahlung innerhalb des Gesamtspektrums. Die Messungen bestanden aus:

- -Registrierung der Globalstrahlung an der Meeresoberfläche als Tagesgang (Quantum Scalar Reference = QSR)
- -Aufnahme von Tiefenprofilen der Lichtverteilung innerhalb der euphotischen Zone sowie der darunter anschließenden Wasserschichten (Quantum Scalar Profile = QSP)

Die QSR-Messungen wurden kontinuierlich während der gesamten Fahrt auf einem Analogschreiber aufgezeichnet, so daß sich ein lückenloses Bild des Lichtklimas über den Forschungszeitraum ergibt. Das vorliegende Datenmaterial wird für verschiedene Fragestellungen Verwendung finden. Ziel der Untersuchungen war es:

- Anhand der QSR-Tagesgänge ein Maß für die Strahlungsbedingungen während der Produktionsmessungen zu finden, um so die unter verschiedenen Lichtbedingungen erhaltenen Produktionswerte aufeinander beziehen zu können.
- Aufgrund der QSP-Profile Unterschiede in der Licht-Eindringtiefe zwischen verschiedenen Regionen des Tyrrhenischen Meeres aufzuzeigen, um Hinweise auf den Schwebstoffgehalt und das Sedimentationsgeschehen zu erhalten.
- Unterschiede in der Mächtigkeit der euphotischen Zone bei der Abschätzung der Produktivität berücksichtigen zu können.

 Tagesperiodische Variationen in der Vertikalstruktur der Phytoplanktongesellschaften und deren Pigmentgehalten auf das unterschiedliche Lichtklima beziehen zu können.

Die Werte der Profilmessungen wurden erstmals über einen Z80-PIO 10 Bit Analog-Digitalwandler auf den Kontron PSI 82 Computer übertragen und auf Diskette gespeichert. Durch diese Verbesserung des Systems konnte die Datendichte und somit die Auflösung der Vertikalprofile erheblich gesteigert werden.

Die folgende Tabelle stellt die QSP-Stationen zusammen:

area anapendistral hiserand? Seibte Gestenaren-Thesta

Datum	Uhrzeit	StatNr.	Position	Tiefe
14.3.86	12:30 - 12:40	104 QSP	39 52.03N 12 36.22E	1148
21.3.86	10:20 - 10:30	156 QSP	38 32.59N 14 14.96E	1345
24.3.86	11:51 - 12:02	194 QSP	39 30:39N 14 51.75E	713

a second and the thermal second and provided the Alberta

Erfahrungen beim Geräteeinsatz

<u>QSR:</u> Für die Reference-Sonde wurde ein möglichst schattenfreier Standort gewählt. Durch Verlängerung des Anschlußkabels um 50 m konnte das Gerät auf dem Vorderdeck plaziert werden. Dadurch ließen sich die Beschattungsprobleme, die auf der SO 29-Fahrt sehr störten, fast vollständig beseitigen. Lediglich bei niedrigem Sonnenstand wurde der Sensor kurzfristig von den Aufbauten des Vorderdecks beschattet. Der Kugelsensor wurde im Verlauf der Fahrt regelmäßig mit Ethanol und destilliertem Wasser gereinigt und arbeitete störungsfrei.

QSP: Die Profilsonde wurde wie auf der SO 29-Fahrt vom Arbeitsdeck über einen Block von Hand gefiert und gehievt. Diese kraftanstrengende Arbeit ließ sich auf dieser Fahrt noch nicht vermeiden. Erst für die nächsten Einsätze des Systems ist eine Hangwinde mit Schleifringen beantragt. Eine Beschattung des Profilers durch den Schiffsrumpf konnte auf der SO 41-Fahrt vermieden werden. Die Sonde wurde nach den Einsätzen mit Süßwasser gespült und zeigte keine erkennbaren Mängel während der Fahrt.

14.7. VERTEILUNG VON MIKROORGANISMEN

14.7.1. BAKTERIEN UND PHYTOPLANKTON

M. PETZOLD

Im Rahmen des Forschungsprogramms des IHF sollten zwei Fragenkomplexe im Hinblick auf die biogeochemisch/produktionsbiologischen Komponenten bearbeitet werden:

plankisserarellecheitan und deren Prownteebalten auf dan

 Welchen Anteil haben Bakterien bzw. Phytoplankton an der in der Wassersäule suspendierten Biomasse? Welche Beziehungen bestehen zwischen der Vertikalverteilung von autotrophen und heterotrophen Mikroorganismen?

 Welche Beziehungen bestehen zwischen der Biomasse und der Bioaktivität heterotropher Mikroorganismen unter den Bedingungen des Tyrrhenischen Meeres und welche Schlüsse lassen sich aus dem Umsatzgeschehen für die Sedimentationsprozesse ziehen?

Die Methodik zur Messung von Bakterienzahlen in der Wassersäule findet sich in diesem Bericht in Kapitel 14.8.2.

Das Phytoplanktonmaterial wird darüber hinaus noch für andere Fragestellungen von Interesse sein. Es soll dazu dienen, den Einfluß allochthoner Planktonelemente aus neritischen Bereichen abzuschätzen und die taxonomischen Versuche anhand chemischer Analysen unterstützen.

Um Aussagen über die Zusammensetzung der Phytoplanktonpopulation machen zu können, wurden während der Forschungsreise SO 41 je 2 Wasserproben (250 ml) aus den Schöpfern in partikelfreie, sterile Braunglasflaschen abgefüllt und mit 40%igem Formalin (5 ml auf 250 ml Wasser) bzw. Lugol'scher Lösung (2 ml) fixiert. Die Proben sollen im IHF Hamburg hinsichtlich numerischer und taxonomischer Untersuchungen am umgekehrten Mikroskop nach Utermöhl analysiert werden. Insgesamt wurden auf 14 Stationen 208 Proben genommen. Die Stationen und die Wassertiefen der Probenahme sind in der Tabelle 14.1 enthalten.

Elnawinge des Erntran lat eine Hangeinde mit Schleifringen beantragt. El Beschsttung des Profiliers durch des Schlifzeumpf konste auf der 50 4 Pahrt versteden werden. Die Sonde wurde nach den Elnakten mit Elfenne gespült und retobe keine erkennaaren Mangel währung der Pahrt.

14.7.2. CHLOROPHYLL, CHLOROPHYLLABBAUPRODUKTE UND AKZESSORISCHE PIGMENTE

M. PETZOLD

Die Messung chloroplastischer und akzessorischer Pigmente wird als Biomasseparameter zur Abschätzung des standing stock der Phytoplanktongemeinschaften und der nachgeschalteten Konsumenten genutzt. Die chromatographische Pigmentanalytik liefert darüber hinaus tiefere Einblicke in das Produktions- und Abbaugeschehen des Phytoplanktons über Verhältniseinzelner Pigmente zueinander. So läßt sich zahlen aus hohen Phäophorbid/Chlorophyll Raten auf einen starken grazing-Druck des Zooplanktons schließen, da Phäophorbid als Chlorophyll Abbauprodukt hauptsächlich als Folge von Intestination durch Zooplankter entsteht. Hohe Phäophytin/Chlorophyll Verhältnisse deuten dagegen vermehrt auf detritalbakteriellen Abbau hin und Chlorophyllid/Chlorophyll-Werte erlauben Aussagen über die Aktivität und den physiologischen Zustand der Phytoplanktongesellschaften.

Die Matrix der akzessorischen Pigmente (Carotinoide, Xanthophylle und Chromoproteine) ist in den einzelnen Algenfamilien unterschiedlich. Darauf basiert die Idee, zumindest die Großtaxa der Algen auf "chemotaxonomischem" Wege durch chromatographische Analysen zu bestimmen und, soweit möglich, annähernd zu quantifizieren, um aus den chemischen Analysen Rückschlüsse auf die taxonomische Zusammensetzung zu ziehen. Dieses Ziel soll anhand des auf der S0-41 Fahrt gewonnenen Materials verfolgt werden.

Um diese Fragenkomplexe beantworten zu können, wurden auf 21 Stationen im Tyrrhenischen Meer aus maximal 12 verschiedenen Tiefen jeweils 2 1 Wasser aus den Niskin-Schöpfern abgefüllt und direkt anschließend über Glasfaserfilter (Whatman GF/C) filtriert. Die Filter wurden danach bei -20°C eingefroren und verbleiben so in Dunkelheit bis zur Analyse.

Die Analysen werden in nächster Zukunft im IHF Hamburg an einer HPLC-Anlage mit binärem Gradientensystem durchgeführt. Die Proben werden mit Athanol extrahiert und nach chromatographischer Aufschlüsselung der Matrix in der Trennsäule werden die Pigmente sowohl spektralphotometrisch als auch fluorometrisch gemessen. Insgesamt konnten 163 Proben genommen werden, die eine punktuelle ökologische Bestandsaufnahme im Tyrrhenischen Meer erlauben und in ihrer Gesamtheit einen ersten Einblick in die

- 173 -

großskalige Phytoplanktonverteilung dieses Meeresgebietes gestatten. Die Stationen und Tiefen der Probenahme sind in der Tabelle 14.1 zusammengestellt.

14.8. AKTIVITAT AUTOTROPHER UND HETEROTROPHER MIKROORGANISMEN

14.8.1. PRIMARPRODUKTION L. KARBE

Der primären Biomasseproduktion durch photosynthetisch oder chemosynthetisch aktive kohlenstoff-autotrophe Mikroorganismen (Bakterien und Phytoplankton oder auch Bakterio- und Phytobenthos) kommt eine entscheidende, das Gesamt-Stoffumsatzgeschehen prägende Bedeutung zu. Als Folge der den vertikalen Partikelfluß überlagernden Aktivität heterotropher Organismen und der damit gekoppelten Abnahme der in der Biomasse gebundenen Energie ist die biogen-sedimentäre Energiezufuhr in die benthischen Bereiche der Tiefsee vielfach außerordentlich gering. Hohe biologische Aktivitäten und Ausbildung eines Organismenbestandes mit großer Biomasse sind hier nur möglich, wenn die Bedingungen gegeben sind für die Entwicklung von Mikroorganismen, die chemisch gebundene Energien für die primäre Biomasseproduktion zu nutzen vermögen (Chemosynthese). Unter Bedingungen massivsulfidischer Lagerstättenbildung ist dies der Fall. In solchen Gebieten ist es von Interesse, die allochthon biogensedimentäre Zufuhr organischen Materials in ihrer Relation zur autochthonen chemosynthetischen Produktion zu untersuchen, um die Bedeutung beider Prozesse für das Stoffumsatzgeschehen im Bereich der Lagerstätten analysieren zu können. Daraus begründete sich der Anspruch im Rahmen des HYMAS-Programms mikrobielle Umsatzprozesse zu untersuchen.

Im Rahmen des Untersuchungsprogramms von HYMAS I wurde der Suche nach Lokalitäten, an denen mit chemosynthetischen bakteriellen Aktivitäten zu rechnen ist, erste Priorität gegeben. Nur an drei Tagen wurden Primärproduktionsmessungen (gekoppelt mit der Bestimmung heterotropher Aufnahmeraten) durchgeführt:

14.3.1986 Vavilov-Seamount Probennahme

Station 103 MS

Exposition der Meßkette Son 105 PP 13:45 GMT+1 Einholen der Meßkette Station 107 PP 17:45 GMT+1

21.3.1986 Eolo & Enareta-Seamounts Probennahme Station 155 MS Exposition der Meßkette Station 157 PP 11:20 GMT+1 Einholen der Meßkette Station 160 PP 17:50 GMT+1

24.3.1986 Palinuro-Seamount Probennahme Station 193 MS Exposition der Meßkette Station 195 PP 12:50 GMT+1 Einholen der Meßkette Station 199 PP 17:20 GMT+1

> Zeitangaben zur Abschätzung der Expositionszeiten unter Zugrundelegung der realen Fier- und Hievzeiten gerundet.

An allen Stationen wurden in jeweils 12 Tiefenstufen zwischen Oberfläche und 150 m Wasser-(Phytoplankton-)Proben entnommen und nach Zugabe von C-14 Hydrogenkarbonat entsprechend einer Aktivität von 20 µCi in situ exponiert (jeweils 2 Hell- und 2 Dunkelflaschen). Abweichend zu früheren Einsätzen wurden probeweise an Station 105/107 PP für die Exposition der Proben 250 ml Flaschen verwendet. Diese haben sich nicht bewährt. Die Flaschen erwiesen sich als nicht hinreichend druckresistent für Expositionstiefen tiefer 80 m. Mit dem für die weiteren Stationen verwendeten 110 ml Flaschentyp gab es dann keine Probleme. Auf eine detaillierte Beschreibung der Methode sei hier verzichtet und diesbezüglich auf den Fahrtbericht S0 29 verwiesen.

Ein typisches Primärproduktionsprofil ist in Abb. 14.8 dargestellt (Station 103 PP) in Gegenüberstellung zum Vertikalprofil des heterotrophen Potentials. In der Abbildung sind im Scintillationszähler ermittelte Rohdaten (counts per minute) wiedergegeben. Weitergehende Berechnungen zur Ermittlung der über die Tiefe integrierten Biomasseproduktion können erst durchgeführt werden, wenn die parallel gemessenen Werte für Temperatur, Salzgehalt, pH und Alkalinität in der endgültigen Form vorliegen.

Abb. 14.8: Stoffwechselpotentiale autotropher und heterotropher Mikroorganismen

14.8.2. BAKTERIEN IN DER WASSERSAULE

M. MEYER-JENIN

Als Fortsetzung der bei früheren Forschungsfahrten durchgeführten produktionsbiologischen Untersuchungen (MESEDA; SO 29) wurden bakteriologische Probenahmen und Messungen heterotropher bakterieller Aktivitäten durchgeführt.

Während der Fahrt SO 29 wurden von L. KARBE & V. STADIE das relative heterotrophe Potential als Parameter für bakterielle Aktivität in der Wassersäule mittels Aufnahmeraten von ^{14}C -Glucose ermittelt. Wegen einer dabei erhaltenen hohen Blindwertadsorption wurde das organische Aufnahmesubstrat deshalb für SO 41 durch ³H-Thymidin ersetzt. Als eine zweite Methode kam wieder die Messung der $^{14}CO_2$ -Dunkelfixierung zur Verwendung. Desweiteren wurden in einigen Versuchsreihen als Ergänzung der von A. FREIGANG durchgeführten Bestimmung der proteolytischen Aktivität die Aufnahmeraten der Aminosäure Leucin gemessen.

Bakterienverteilung, Methoden

Es sollen die Bakteriengesamtzellzahlen und deren Biomasse in der Wassersäule bestimmt werden. Dazu wurde Probenwasser aus den 51-Kranzwasserschöpfern in partikelfreie 200 ml – Enghalsschraubdeckelflaschen abgefüllt und fixiert (0,8% Formaldehydendkonzentration).

Dieses im IHF eingelagerte Probenmaterial soll wie folgt untersucht werden:

Epifluoreszenzmikroskopie: Die Bakterien in den Wasserproben werden mit Acridin-Orange angefärbt und über ein 0,2µ-Nucleporefilter abfiltriert. Unter dem Epifluoreszenzmikroskop lassen sich bei 1250-facher Vergrößerung alle Bakterien in Anzahl, Form und Größe erfassen (ZIMMERMANN, R. & MEYER-REIL, L. 1974). Zur Berechnung der Bakterienbiomasse werden die einzelnen Zellen jeweils unterschiedlichen Größenklassen zugeordnet. Deren Durchschnittsvolumina errechnen sich über die Annahme einfacher geometrischer Formen für die morphologisch unterschiedlichen Bakteriengrößenklassen (KRAMBECK, H.-J. et al. 1979).

Mit Hilfe der epifluoreszenzmikroskopischen Analyse lassen sich Aussagen über die Bakterienverteilung, ihrer Biomasse und der Struktur ihrer morphologisch unterschiedlichen Zusammensetzung machen. Insbesondere ist
die Relation der Bakterienzahlen zu ihrer Biomasse für die Interpretation der gemessenen Stoffumsatzraten bedeutungsvoll. Die Bakterien stellen hinsichtlich der Gesamtbiomasse im Vergleich zu den einzelligen Algen zwar einen nur geringen, jedoch bezüglich seines Stoffwechsels hochaktiven Anteil.

Rasterelektronenmikroskopie: Zum Zwecke des qualitativen Einblicks soll das Probenmaterial auch teilweise rasterelektronenmikroskopisch bearbeitet werden. Ferner gestatten die detaillierten Ansichten von einzelnen Zellen eine exakte Kontrolle der o.g. Größenklassenvermessungen (ZIMMER-MANN, R. 1977).

Messung der bakteriellen, heterotrophen Aktivität

Die metabolische Aktivität heterotropher Bakterien ist für das Gleichgewicht im Ökosystem in zweierlei Hinsicht bedeutungsvoll: Zum einen stehen die Bakterien als Destruenten am Ende von nahezu jeder organischen Substanz in der Biosphäre, zum anderen stellen sie gleichzeitig durch Bildung ihrer eigenen Biomasse den Beginn einer neuen Nahrungskette dar.

Seit nunmehr 20 Jahren findet die Messung heterotropher Stoffumsätze mittels radioaktiv markierter Tracer weitverbreitete Anwendung. Innerhalb der IHF-AG KARBE wurde auf dieser Fahrt erstmals ein 3 H/ 14 C-Doppelmarkierungsverfahren zur simultanen Erfassung der Aufnahmeraten unterschiedlicher Substrate angewandt.

Aufgrund der unterschiedlichen Nährstoffansprüche bei heterotrophen Mikroorganismen gibt es nicht das allgemein gültige Substrat zur Messung ihrer Umsatzaktivität. Nachdem über viele Jahre Glucose, Acetat, Aminosäuren u.a. biogene Verbindungen für diesen Zweck Anwendung finden, führten FUHRMAN u. AZAM 1980 den Gebrauch von ³H-Thymidin ein. Dieses Pyrimidinnukleosid wird bei der Nucleinsäuresynthese ausschließlich in die DNA eingebaut. Bei entsprechender präparativer Auftrennung und gesonderter Messung der bakteriellen DNA und RNA lassen sich somit absolute Zuwachsraten messen (WITZEL u. GRAF 1984). Im Rahmen dieser SO 41 Fahrt wurde die einfacher durchzuführende ³H-Thymidingesamtaufnahme bestimmt.

Einen biochemisch ganz anderen Weg beschreitet die Untersuchung der heterotrophen Aktivität mittels der $^{14}CO_2$ -Dunkelfixierung: Werden aus dem

Aufgrund der Erfahrungen aus früheren Rot-Meer-Kampagnen wurde jede einzelne Inkubation als Doppelbestimmung mit jeweils eigenem Blindwertansatz durchgeführt. Die gewählte Versuchsdauer von 4 Std. ist ein Kompromiß: Zum einen erfordert die Art der Untersuchungen möglichst Kurzzeitinkubation – zum anderen läßt die hohe Oligotrophie des Gewässers hinsichtlich der nur geringen zu erwartenden Aufnahmeraten keine zu kurzen Inkubationen zu, da sonst für die statistischen Bedingungen die Meßausbeute zu niedrig ausfallen könnten.

Radiochemikalien und Konzentrationen: Alle Radiochemikalien wurden von der Fa. Amersham-Buchler, Braunschweig, bezogen. Im einzelnen wurden verwendet:

Sodium[¹⁴C]Bicarbonate: Code CFA.3; Spezifische Aktivität: 2,15 GBq/mmol, bzw. 24,9 MBq/mg Versuchskonzentration = 297,2 µg NaH¹⁴CO₃/1

- [methyl-3]Thymidine : Code TRK.758; Spezifische Aktivität: 3,11 TBq/mmol, bzw. 12,5 GBq/mg Versuchskonzentration = 296,6 ng ³H-Thymidin/1
- [4,5-³H]Leucine : Code TRK.636; Spezifische Aktivität: 7,03 TBq/mmol, bzw. 48,8 GBq/mg Versuchskonzentration = 77,08 ng ³H-Leucin/l

Literatur

- FUHRMANN, J.A. & AZAM, F. 1980: Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California.- Appl.Environ.Microbiol., 39: 1085-1095.
- KRAMBECK, H.-J., KRAMBECK, C. & OVERBECK, J. 1979: Ein Microcomputersystem zur direkten (morphometrischen) Bestimmung von Bakterienbiomasse in der Limnologie.- EDV in Med. u. Biol., 3: 80-82.
- OVERBECK, J. 1979: Dark CO₂ uptake biochemical background and its relevance to in situ bacterial production. Arch.Hydrobiol.Beih. Ergebn.Limnol., 12: 38-47.

- OVERBECK, J. 1984: Application of TCA cycle metabolism for growth estimates of heterotrophic bacterioplankton.- Arch.Hydrobiol.Beih. Ergebn.Limnol., 19: 23-36.
- WITZEL, K.-P. & GRAF, G. 1984: On the use of different nucleic acid precursors for the measurement of microbial nucleic acid turnover.-Arch.Hydrbiol.Beih.Ergebn.Limnol., 19: 59-65.
- ZIMMERMANN, R. & MEYER-REIL, L.-A. 1974: A new method for fluorescence staining of bacterial populations on membrane filters.-Kieler Meeresforschung, 30: 24-27.
 - ZIMMMERMANN, R. 1977: Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy. In: Microb.Ecol. of a Brachish Water Environm., Springer-Verlag 1977.

Piniskini, 3.4. 1 Kakt, F. 1980: Basterioglanktun pagendary proposition

ebricates for coastal values of Bridian Cotumbia, Antoncostos, and

14.8.3. BESTIMMUNG VON STOFFWECHSELPOTENTIALEN BZW. ENZYMAKTIVITATEN: N₂-FIXIERUNG, PROTEOLYTISCHE AKTIVITAT, PROTEINBESTIMMUNG A. FREIGANG

Die enzymatische Fixierung molekularen Stickstoffs als ein autotropher Prozeß kommt hauptsächlich in oligotrophen Gewässern vor und bietet den Organismen die Möglichkeit, ihren Stickstoffbedarf für die Bildung von Aminosäuren über diesen energieaufwendigen Weg zu decken.

Der organische Stickstoff, der durch Phytoplanktonproduktion oder Dekomposition in natürlichen Gewässern vorkommt, besteht zu 85% aus Protein und Peptiden, nur eine geringe Menge freier Aminosäuren werden direkt produziert. Solche hochmolekularen Substanzen können nicht direkt, sondern nur nach exoenzymatischer Hydrolyse von Bakterien absorbiert werden. Folglich spielt die Exoprotease eine wichtige Rolle im N-Kreislauf. Eine gute Korrelation besteht zwischen exoproteolytischer Aktivität und der Rate des Aminosäurenutzens durch heterotrophe Mikroorganismen.

Das N_2 -Fixierungspotential, das proteolytische Potential und der Proteingehalt als Biomasseparameter wurden während der SONNE 41-Fahrt in verschiedenen Wassertiefen und an der Sedimentoberfläche bestimmt.

Probennahmen

Wasserproben:

Die Wasserproben wurden mit 51 PVC-Schöpfern des Kranzwasserschöpfers genommen, die zusammen mit der Multisonde gefahren wurden.

Sedimentproben:

Für die N₂-Fixierungsmessungen und Proteinbestimmungen wurden die oberen Sedimentschichten (ca. 0,5 cm) der Kerne aus dem Multicorer bearbeitet.

Enzymaktivitäten

N₂-Fixierung:

Das N_2 -Fixierungspotential wurde nach der Methode von STEWART et al. (1967) mit der Acetylen-Reduktions-Technik gaschromatographisch an Wasser und Sedimentproben bestimmt. Die Methode wurde nur hinsichtlich der Proben- und Reaktionsgefäßvolumina modifiziert; als Probengefäße dienten 100ml Kulturflaschen, das Probenvolumen betrug 50ml Wasser bzw. 5ml Sediment (mit Insulin-Einwegspritze dosiert). Der Gasraum oberhalb der Proben wurde durch Spülen mit N_2 anaerob oder nach darauffolgender Zugabe von O_2 definiert aerob gemacht. Die Inkubationstemperatur betrug 28°C. Es wurden die Originalproben bearbeitet, d.h. auf eine Konzentration o.ä. wurde verzichtet.

Die Gasanalyse konnte an Bord mit einem Hewlett Packard Typ 5890A (freundlicherweise von Herrn Prof.Dr. H. Puchelt, GPI Karlsruhe zur Verfügung gestellt) vorgenommen werden. N_2 -Fixierung wurde an folgenden Stationen gemessen:

Pützprobe vor dem Hafen von Neapel, St. 88 MS, 91 MC, 118 MC.

durion invition and there are

Keine der vorgenannten Proben zeigte unter Anwendung der o.a. Methode ein N_2 -Fixierungspotential. Gründe liegen vermutlich in den nicht in ausreichender Menge vorhandenen N_2 -Fixierern (z.Zt. der Probennahme war keine Planktonblüte erkennbar) bzw. im zu geringen Angebot organischen Materials im Sediment, das benötigt würde, um C-Quellen bzw. Reduktionsäquivalente für die Bindung molekularen Stickstoffs zur Verfügung zu stellen.

Proteolyse

Das proteolytische Potential wurde nach der Methode von HOPPE (1983) beispielhaft am Abbau von Leucin bei Standardtemperatur von 20°C bestimmt. Das Probenvolumen betrug 50ml, das der Reaktionsgefäße 100ml. Die Substratkonzentrationen lagen bei 50, 100, 200 und 400 uM L-Leucin-4methyl-coumarinyl-7-amid - HCl (Serva). Zeitreihenmessungen (0, 1, 2 und 3 h) ergaben eine lineare Aktivitätszunahme, so daß die Messungen auf sofortige und Bestimmung nach 3 h beschränkt werden konnten.

Anfängliche Schwierigkeiten ergaben sich bei der Benutzung des PERKIN ELMER Fluorometers auf dem Schiff. Ständige Vibrationen durch das Laufen der Schiffsmaschinen und das Schwanken des Schiffes bei unruhiger See übertrugen sich direkt auf die fein aufgehängte Xenonlampe und führten zu starken Schwankungen der digital angezeigten Werte. Häufige Justierung der Lampe war notwendig.

Ferner verursachte die Zugabe von Pufferlösung bei den Eichlösungen (nicht bei den Proben!) (pH 10 von Merck) einen Vollausschlag der Digitalanzeige der Fluoreszenz. Bei der Messung der Proben zeigten sich kaum Unterschiede, ob mit oder ohne pH 10 Puffer gemessen wurde. Um gleiche Verhältnisse zwischen der Messung der Eichlösungen und der Proben zu schaffen, wurde immer auf die Zugabe des Puffers verzichtet. Die Eichlösungen müßten hinsichtlich dieses Phänomens noch weiter getestet werden.

Als Eichsubstanz wurde in Methylcellulos gelöstes MUF-Leucin (Methylumbelliferon von Merck) verwendet. Standardlösungen, die am 1. Schiffstag mit A.bidest angesetzt wurden, lieferten (bei kühler Lagerung bei 4°C) über den gesamten Meßzeitraum (16 Tage) zuverlässige Werte, während später neu angesetzte Standards, trotz Verwendung desselben Merck-Präparats, immer einen Vollausschlag verursachten.

Weiterhin wurde der Unterschied zwischen Fluoreszenz des A.bidests (Eichreihe) und steril filtriertem Seewasser (Grundfluoreszenz der Proben) ermittelt und betrug zwischen 0,2 und 0,6 fy (fluorescence yield). Als Blindwerte wurde die Zunahme der Fluoreszenz in steril filtriertem Seewasser nach Zugabe des L-Leucins genommen. Parallel zur Leucin-Abbauaktivität der Mikroorganismen wurde die Aufnahmerate jener Aminosäure an derselben Wasserprobe mit einer radiotracer-Technik von Herrn Meyer-Jenin durchgeführt.

Proteolytische Aktivitäten wurden in verschiedenen Tiefen der Wassersäule an verschiedenen Stationen bestimmt:

St. 101, 109, 117, 126, 131, 133, 139, 141, 145, 159, 166, 167, 193.

Die Ergebnisse zeigen, daß das Leucin-Abbaupotential in der Wassersäule unterschiedlich ist und häufig in den Tiefen 0 = Oberfläche oder 40m seine Maximalwerte hat, die Minimalwerte fast ausschließlich am Boden zu finden waren. Eine Übereinstimmung dieser Ergebnisse mit den Trübungsmessungen und Chlorophylldaten müßte überprüft werden.

Eine Messung der proteolytischen Aktivität nach Zugabe von Sediment in die Wasserprobe erwies sich nach dieser Methode als undurchführbar, da die Trübung zu groß war, um eine Fluoreszenzmessung durchführen zu können.

In der Abb. 14.9 ist beispielhaft die Verteilung des proteolytischen Potentials in der Wassersäule dargestellt.

Proteinbestimmung

Die Proteinbestimmung wurde nach LOWRY et al. (1951) durchgeführt. Auf dem Schiff wurden die Wasserproben auf GFC Whatman Glasfaserfilter filtriert, die Sedimentproben mit eeiner 1ml Insulinspritze in die Reagenzröhrchen gegeben, mit 1ml 1n NaOH versetzt und bei 40°C hydroly-

- 183 -

siert. Anschließend wurden die Proben tiefgefroren und zu weiterer Aufarbeitung ins Labor transportiert. Proben folgender Stationen wurden genommen:

Pütz-Probe vor Neapel, St. 89, 91, 101, 109, 117, 118, 166, 167 und 168.

Die Proteinbestimmung konnte aufgrund nicht ausreichenden Probenmaterials nicht an allen Stationen genommen werden.

Von den Wasserproben wurden unterschiedliche Mengen (250, 500ml) filtriert und es bleibt zu untersuchen, ob diese Mengen ausreichen, um genügend hohe Extinktionen für die Bestimmung zu erreichen.

- 184 -

Literatur

- STEWART, W.D.P., FITZGERALD, G.P. & BURRIS, R.H. 1967: In situ studies on nitrogen fixation using the acetylene reduction technique. -Proc. Natl.Acad.Sci.U.S., 58: 2071-2078.
- HOPPE, H.G. 1983: Significance of excenzymatic activities in the ecology of brackish water: measurement by means of methylumbelliferylsubstrates. -Mar.Ecol.Prog.Ser., 11: 299-308.
- LOWRY, O.H., ROSENBROUGH, N.J., FARR, A.L. & RANDALL, R.J. 1951: Protein measurement with the Folin Phenol Reagent.J.biol.Chem., 193: 265-275.

the birth for which which we have been a set of the state of the set of the s

14.9. PROBENAHME FOR DIE ISOLIERUNG VON BAKTERIENSTAMMEN M. MEYER-JENIN

Dr. H. WEILAND und Frau Dr. E. HELMKE, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, werden versuchen, aus Sedimentproben der SO 41-Kampagne Bakterien-Reinkulturen zu gewinnen. Gleichartige Bemühungen verliefen bereits bei der SO 29-Fahrt erfolgreich. Für diesen Zweck wurden die Probenahmen durchgeführt:

Sedimentproben wurden mit einem abgeflammten Metallspatel in sterile PE-Vials eingefüllt und im Kühlschrank gelagert. Den zügigen Rücktransport dieser Proben in einer Kühlbox von Kalamata nach Hamburg übernahm Frau A. Jenisch, GPI Hamburg. Das Material wurde am 7.4.86 gekühlt und per Expreß zur Bearbeitung nach Bremerhaven versandt.

Für folgende Stationen wurden entsprechende Proben gesichert (einige doppelt)

MC	91	Sedimentoberfläche
MC	127	1. Suspension von mit Überstandswasser abgeschwemmter
		Sedimentoberfläche
		2. Sediment aus 7-8 cm Tiefe
MC	168	ca. 0,5 cm Sedimentoberfläche
MC	180	ca. 0,5 cm Sedimentoberfläche
FG	181	1. Sedimentoberfläche (bräunlich)
		2. darunterliegende, grau-türkise Schicht
SR	184	Sedimentproben aus den Tiefen: Oberfläche;
		25 cm; 52 cm; 70 cm; 105 cm.

15. DREDGE- UND FERNSEHGREIFERSTATIONEN

D. LASCHEK

Zielsetzung

Ziel der Untersuchung der Vulkanite der Fahrt SO 41 war es, einen Zusammenhang zwischen der Bildung der Massivsulfide und der Zusammensetzung der magmatischen Gesteine herzuleiten.

Wegen der Änderung der Fahrt war diese Fragestellung nicht auf das Rote Meer anwendbar. Trotzdem kann obige Problemstellung auch auf die Tyrrhenis übertragen werden. Sie ist besonders deswegen interessant, da in der Tyrrhenis mit der Förderung von Kalkalkaligesteinen ein ganz anderer Vulkanismus herrscht als im Roten Meer.

Die Untersuchungen ermöglichen einen Vergleich zwischen der Erzbildung im Roten Meer und der Tyrrhenis in Abhängigkeit des entsprechenden Vulkanismus.

Die Ausbeute der einzelnen Dredge- und Fernsehgreiferstationen hinsichtlich vulkanischer Gesteine war leider recht gering, da die meisten der untersuchten Seamounts mit Sediment bedeckt waren, so daß die Beprobung von frischen, nicht alterierten Magmatiten nur selten möglich war.

Von den 54 Dredge- und 9 Fernsehgreiferstationen waren 11 Stationen leer (9 Dredgen, 2 Greifer) und nur 11 Stationen erbrachten vulkanisches Material, die restlichen Stationen enthielten vielfach Normalsediment, Korallen und Karbonatbruchstücke und z.T. Mn-Krusten.

Besonders erwähnenswert sind die Stationen 181 FG, 182 FG und 208 FG vom Palinuro, die Massivsulfide bzw. Sulfidimprägnation enthielten (s. Ber. Puchelt).

Die wenigen Vulkanite und Sedimente, die aufgrund ihrer Alterationsfreiheit für eine Untersuchung in Frage kamen, sind in Tab. 1 zusammengefaßt und stellen typische Kalkalkaligesteine dar.

Im Anhang ist die Ausbeute sämtlicher DC- und FG-Stationen beschrieben. Von den einzelnen Seamounts wurden folgende Vulkanite geborgen:

Palinuro

Die meisten DC-Stationen enthielten Kalk oder Korallen, z.T. mit Mn überzogen oder toniges Sediment. Lediglich in 65 DC konnte vulkanisches Material gedredgt werden. Es handelt sich um massive, blasenreiche, leicht alterierte (s. erhöhte H₂O- und S-Werte in Tab. 1) Andesite bzw. High-K-Andesite. Allerdings dürfte der hohe K-Gehalt nicht primär, sondern die Folge der Alteration sein. Als Einsprenglinge kommen Quarz und Plagioklas vor.

Die Massivsulfide des Palinuro sind in einem gesonderten Kapitel (s. Ber. Puchelt) beschrieben.

Ventotene

Überwiegend Kalk, zähes, toniges Normalsediment oder leere Dredgen. Vulkanisches Gestein war nur in einer einzigen Dredge (95 DC) enthalten und bestand aus einer vulkanischen Brekzie mit karbonatischem Bindemittel.

A Vavilov edosogates est drespionada at elessar Daeb des sectoration

Die Dredgen 106 DC, 120 DC, 122 DC und 123 DC enthielten Vulkanite. Es handelt sich um festes, feinkörniges, sehr blasenreiches Material. Als Einsprenglinge kommen Plagioklas, Olivin und Hornblende vor. Die Blasen sind z.T. mit sekundärem Quarz oder Karbonat ausgefüllt. Dies wird auch durch die hohen CO₂-Gehalte (s. Tab. 1) bestätigt. Wegen der deutlichen Alterationsanzeichen wurde auf eine Hauptelementanalyse verzichtet.

Magnaghi each dorllate set fauding penolatic pedal (terr all clarges)

Es konnte lediglich ein Stück blasenreicher Vulkanit, dessen Blasenhohlräume sekundär mit Quarz gefüllt sind, geborgen werden.

Enareta in meril bours we make the bourse standard by a second best of the second se

Vulkanisches Material in 147 - 149 DC. Überwiegend handelt es sich um dichte porphyrisch ausgebildete Vulkanite mit Einsprenglingen von Plagioklas und Hornblende.

freibeit für eine Untersuchung in Frage karen, eind in Tab. 1 zusammenge

Die wolaten DC-Sistionen aprolaiten fall oder Korallen. w.T. mit Mi Ghersogen oder "toniges Setimente Ludigiter in 65 DC konnte volstalsches

Probe	65 DC/1	65 DC/4	65 DC/8	95 DC/11	95 DC/12	106 DC/1	106 DC/3	
ad . inven	Palinuro-Seamount			Ventot	Ventotene-Süd		Vavilov-Seamount	
6								
Si02	-	1000	60,2	-	-	-	g023	
Ti02	70	5-1	0,82	-	-	-	A+293	
A1203	E.	-	17,5	-	-	-	L ⁰ SeT	
Fe ₂ 0 ₃	-	-	1,50	-	Ξ.		(S#3)	
Fe0	5	1270	2,77	-			Own -	
MnO		81 0 18	0,07	-	-	-	0 4 6	
MgO	-	6 7 .	1,62	-	-	-	0=0	
CaO	-	15.8	5,64	-	 0		0.48	
Na ₂ 0	-	15 7 - E	3,02	-	-	÷.	24.2	
K20		05.0	2,67	-	-	-	1.053	
P205	50,81	00.1	0,21	00,0	1 .	±\$14	10 -5 (1	
H ₂ 0	2,02	1,52	1,85	>7,55	>20	10,43	5,42	
co2	0,02	0,01	0,01	0,10	0,35	2,25	2,18	
10.01			.10.0	0,94		0,60,		
S	1,48	0,02	1,10	1,01	2,65	1,90	1,47	
100		. 88 .	25			803		
Cr	25	28	26	19	7	74	-ab	
Co	13	19	15	29	4	20	- 216 ;	
Ni	13	12	11	23	37	52	-920	
Cu	25	21	27	43	15	29	-05	
Zn	59	69	56	88	68	64		
Ga	20	19	20	14	12	15	-12	
Rb	97	82	97	6	6	18	-13	
Sr	491	478	476	166	120	364	-49	
РЬ	25	20	22	11	20	9 a	-67	
Th	25	22	25	6	15	9		
Zr	223	205	212	92	165	156	-38	
Nb	20	18	19	6	11	32	- y	
Y	29	31	29	16	22	25	-	

Tab. 1: Haupt- und Spurenelementanalysen einiger Vulkanite und Sedimente der Fahrt SO 41. Hauptelemente in Gew.%, Spurenelemente in ppm.

- 189 -

Probe	120 DC/1	122 DC/1	123 DC/19	149 DC/1	149 DC/2	158 DC/1	158 DC/3
tinin siat	Vav	ilov-Seamo	unt	Enareta-	Seamount	Eolo-Seam	ount,Sed
Si02	and Balant		-	59,9	55,8		-
Ti02		-	-	0,71	0,67	-	(033
A1203				18,5	17,1	-	1994
Fe ₂ 0 ₃	-		-	2.752		-	ror W
Fe0	-	-	-	OF,I -		-	0 mil
MnO		-	-	0,12	0,11	-	0a1 -
MgO	-	-	-	3,84	3,63	-	6.29
CaO			-	8,31	7,98	-	Citer 1
Na ₂ 0	Lang a (1. J	-	2,83	2,84	-	040
K20	-	a area a		3,50	3,38	-	Digell
P205		-	-	0,32	0,30	-	P_N
H ₂ 0	5,42	5,57	3,85	1,26	1,39	15,08	10,46
co2	3,13	3,28	3,04	>0,01	>0,01	0,29	0,27
	25,5			10,0	10.0		
S	0,68	0,74	0,94	0,01	0,01	>0,01	0,02
	1,99			101.1.	50.0		
Cr	108	127	120	55	59	173	82
Со	28	28	26	19	20	75	337
Ni	83	70	65	22	22	48	15
Cu	45	44	45	42	46	39	32
Zn	76	74	74	65	64	153	63
Ga	16	14	16	17	18	21	3
Rb	9	9	8	129	128	103	8
Sr	469	506	507	665	653	197	211
Pb	6	8	5	18	16	23	6
Th	6	7	5	16	14	13	2
Zr	141	136	134	144	144	186	35
Nb	22	20	20	11	11	22	2
Y	27	26	25	24	23	38	22

Tab. 1: Haupt- und Spurenelementanalysen einiger Vulkanite und Sedimente der Fahrt SO 41. Hauptelemente in Gew.%, Spurenelemente in ppm. is di takat seb manginting bu unu tu takat ben kes takat in

Probe	158 DC/4	158 DC/6	158 DC/10	158 DC/12	
	1	Eolo-Seamoun	t, Sedimen	nte	
Cr	199	154	91	78	
Co	122	468	359	334	
Ni	41	37	17	15	
Cu	43	40	32	31	
Zn	157	105	74	53	
Ga	18	1	02101000	1 bo 1 88 worr	
Rb	90	2	9	5	
Sr	182	180	154	210	
Pb	20	8		5	
Th	14	2	real there	5 m 1011	
Zr	168	33	35	33	
Nb	19	12 July 2 Mar 2 D	1	1 nalis	
Y	34	18	23	17	

Fortsetzung Tab. 1

Eolo

Kein vulkanisches Material, dafür in 158,1 DC buntes, z.T. diagenetisch verfestigtes Sediment aus Fe-Hydroxiden, die als Zersetzungsprodukte von Sulfiden angesehen werden können. Bemerkenswert ist der hohe Co-Gehalt bis zu 500 ppm (s. Tab. 1). Anhang: Ausbeute der DC- und FG-Stationen der Fahrt SO 41

Abkürzungsschlüssel

BO	BOLOGNA
ER	ERLANGEN
HD	HEIDELBERG
KA	KARLSRUHE
SO	ROM

STATION 48 DC (PALINURO)

Dredge leer

STATION 49 DC (PALINURO)

Ca. 60 kg knotige Mn-Krusten, z.T. auf Kalk oder Korallen

PROBE EMPFANGER BESCHREIBUNG

1	KA	flache Kruste mit y-förmigen Flieβ-Strukturen
2	ER	Kruste mit Mollusken
3	ER	Kruste mit Tiefwasserkorallen
4	ER	Korallen mit Mollusken, Einzelstücke
5	KA	Koralle, stark umkrustet mit Mn
6	KA	Mn-Kruste
7	KA	Mn-Kruste mit verwittertem Basaltglas
8	HD	Manganknollen
9 Jener	BO, ER, HD,	große Probe mit Basalt, verfestigtem Sediment, Mn-
	KA	Kruste und biogenem Bewuchs, Korallen + Serpuliden
10	KA	Mn-Kruste mit Basaltglaslage
11	KA	Basaltglas mit Mangan überkrustet
12	ER	Brachiopoden, Archägastropoden
13	ER	Mikroprobe
14	HD	Sediment
15	HD	Sediment
16	KA	Mn-Kruste
17	BO	Mn-Kruste, blumenkohlartig
18	KA	Mn-Kruste
19	KA	Mn-Kruste
20	KA	Mn-Kruste
21	KA	Mn-Kruste
22	SO	Mn-Kruste

STATION 50 DC (PALINURO)

50 kg toniges Sediment

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	Koralle mit Manganüberzug
2	ER	Korallen, Einzelproben
3	KA	toniges Sediment
4	HD	toniges Sediment
5	HD	toniges Sediment
6	ER	toniges Sediment, Mikroprobe
7	ER	toniges Sediment, Mikroprobe

STATION 53 FG (PALINURO)

Ca. 200kg feinkörniger Pteropodenschlamm mit biogenen Krusten um Karbonatfragmente; keine Probe

STATION 54 FG (PALINURO)

Greifer leer

STATION 58 DC (PALINURO)

Ca. 150kg toniges Sediment, Mn-Krusten und mit Mn überkrustete Korallen

PROBE	E EMPFÄNGER	BESCHREIBUNG	
1 add	ER	große Einzelkorallen	
2	ER	kleine Einzelkorallen	
3	ER	Austernschalen mit Mn-Krusten	
4	ER	Bryozoen – Korallen buildup	
5	ER	Korallen – Serpuliden buildup	
6	ER	Korallen - Bryozoen - Kalk (buildup)	
7	ER	Korallenkalk mit Bryozoen und vielen Serpuliden	
8	ER	kleine Reste von Coralligen und Brachiopoden	
9	KA	Mn-Krusten auf Mollusken	
10	KA	Basalt, überzogen mit Mn-Krusten	
11	KA	Mn-Knolle	

STATION 63 DC (PALINURO)

300g Kalkkrusten

PROBE	EMPFANGER	BESCHREIBUNG				
1-62-0010	KA	Mn/Fe-Krusten	und	Konkretionen	mit	Serpuliden

STATION 64 DC (PALINURO)

500g toniges Sediment

PROBE EMPFANGER BESCHREIBUNG

1 KA Ton mit Diacria sp. und Mn-Mikroknolle

STATION 65 DC (PALINURO)

Typ A: Ca. 1/2 t Pillowbasalte max. 30x40x30 massiv, feinkörnig mit Plagioklas-Einsprenglingen, blasenreich, deutliche Anzeichen von Alteration. Einzelne Pillows sind bis in den Kern vollständig alteriert. Typ B: Grüne Krusten, Neubildung (?) von Nontronit und Smektit. Typ C: Kalkkrusten mit Korallen, z.T durchzogen mit dünnen (1-2 mm) Mn-Krusten. Typ D: Toniges Sediment

PROBE	EMPFANGER	BESCHREIBUNG	
1	KA	Basalt, Typ (A)	
2	KA	Neubildungen, Typ (B)	
3	KA	Basalte, Typ (A)	
4	BO,KA	relativ frischer Basalt, Typ (A)	
5	KA	alterierter Basalt, Typ (A)	
6	KA	Sediment	
7	KA	Basaltpillow, Typ (A)	
8	BO,KA	frischer, aber sehr mürber Basaltpillow, Typ (A). E	Beim
		Wässern scheidet sich eine schlierige, organische	(?)
		Schicht ab.	
9	KA	Basaltpillow, Typ (A)	
10	KA	toniges Sediment, Typ (D)	
11	HD	toniges Sediment, Typ (D)	
12	HD	Basalt mit Neubildungen, Typ (B)	
13	HD	Basalt, Typ (A)	
14	ER	große Einzelkorallen mit Serpuliden inkrustiert	
15	ER	Korallenlkalk mit angelösten Korallen	

Basalt, Cherradon att Hefferrith

STATION 66 DC (PALINURO)

20-30kg Kalkkrusten, z.T. mit Mn überzogen

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	andesitisches Basaltglas auf Mn-Krusten
2	KA	Mn-Krusten
3	KA	Sedimente, Mn-überkrustet mit Korallen und Molusken
4	KA	Kalkkrusten

STATION 71 DC (PALINURO)

Inclusion of the Dredge leer

STATION 72 DC (VENTOTENE)

annoes weigelfirtin (esdoa

Dredge leer

STATION 73 DC (VENTOTENE)

Ca. 200kg toniges Sediment

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	Sediment
2	HD	Sediment

STATION 81 DC (VENTOTENE)

2t Schlamm

PROBE	EMPFÄNGER	BESCHREIBUNG

1 KA Sediment

STATION 84 DC (VENTOTENE) STATION 85 DC (VENTOTENE)

100kg toniges Normalsediment; keine Probe

STATION 94 DC (VENTOTENE)

1,5t gelbes, toniges Sediment

PROBE EMPFANGER BESCHREIBUNG

Obercogen

1

KA Sediment

STATION 95 DC (VENTOTENE)

Typ A:

Vulkanische Brekzie mit karbonatischer gefleckter Mikritmatrix. Die Stücke sind mit dünner Mn-Kruste und Serpeln, z.T. vereinzelten Einzelkorallen, überzogen. Typ B:

Mikritische Karbonate mit brekziösen Komponenten; "Kieselschwämme" intensiv angebohrt, dünne Mn-Krusten. Bioturbationsmuster.

Typ C:

Vulkanische Brekzie (metamorphisiert ?) mit karbonatischem, mikritischem Zement. Typ D:

Stark verwitterter, feinkörniger "Andesit". Typ E:

Basalt mit verwittertem Olivin oder Magnetit.

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	Тур А
2	ER	Тур А
3	BO,KA	Тур А
4	ER	Тур В
5	ER	Тур В
6	ER	Typ B mit Pteropoden
7	ER	Тур В
8	ER	Тур В
9	KA	Typ C
10	KA	Typ C
11	KA	Typ D
12	KA	Typ E
13	KA	Sediment

STATION 102 FG (VAVILOV)

Greifer leer

STATION 106 DC (VAVILOV)

10kg frischer Vulkanit mit Mn-Kruste überzogen Typ A: • Blasenreiche, relativ frische Vulkanite. Die Hohlräume sind teilweise mit Karbonat, Quarz bzw. Eisenoxiden ausgefüllt. Typ B: Brekzie aus verwitterten, verbraunten Vulkaniten varialbler Größe. Karbonatisches Bindemittel. Typ C: Kalkkrusten.

PROBE	EMPFÄNGER	BESCHREIBUNG
1	BO,KA	Тур А
2	KA	Тур А
3	BO,KA	Тур В
4	BO,KA	Тур В
5	KA	Тур А
6	KA	Typ A im Kontakt mit B
7	KA	Тур А
8	BO,KA	Typ C

STATION 108 DC (VAVILOV)

Ca. 2t helles, toniges Sediment; keine Probe

STATION 111 DC (VAVILOV)

Dredge leer

STATION 120 DC (VAVILOV)

Ca. 10kg Kieselschwämme und einige Stücke Basalt Typ A: Feinkörniger, relativ frischer sehr blasenreicher Basalt. Blasenräume z.T. mit Calcedon, Karbonat und Smektit (?) ausgefüllt. Einsprenglinge von Olivin und Hornblende. Typ B: Kieselschwämme, mit Mn-Kruste überzogen. Schwämme bis max. 30 cm lang.

PROBE	EMPFANGER	BESCHREIBUNG
1	BO,KA	Тур А
2	KA	Тур А
3	KA	Тур В
4	ER	Typ B (INDAMDAR) DO BOL HOLTATE

STATION 121 DC (VAVILOV)

10kg Karbonate, Schwämme und brekziöse Karbonate

PROBE	EMPFÄNGER	BESCHREIBUNG	
1-4	ER	Karbonat mit zwei Mikritgenerationen	

5 KA Karbonat

STATION 122 DC (VAVILOV)

Typ A: Massiver Vulkanit mit dünnem Mangan-Veberzug. Zahlreiche, mit SiO₂ gefüllte Bläschen. Typ B:

Korallen und Karbonatbrekzie.

PROBE	EMPFANGER	BESCHREIBUNG
1	BO,KA	Тур А
2	KA	Тур В
3	KA	Тур В
4	KA	Sediment

STATION 123 DC (VAVILOV)

500kg gelber Ton mit einigen Korallenbruchstücken und Vulkaniten Typ A: Korallenbruchstücke Typ B: Dichter Vulkanit

üllt

~

STATION 125 FG (VAVILOV)

750kg Sediment; keine Probe

STATION 136 DC (MAGNAGHI)

2kg Karbonat und einige Stücke Vulkanit

PROBE	EMPFÄNGER	BESCHREIBUNG
1 ata	KA	Karbonatmikrit
2	KA	blasenreicher Vulkanit, z.T. mit SiO ₂ gefüllt

STATION 146 DC (ENARETA)

5kg zementierte Muschelschalen

PROBE EMPFANGER BESCHREIBUNG

- 1 KA zementierte Muschelschalen, Stücke bewachsen mit Ser-2 ER
 - peln, Muscheln und dünner Mn-Kruste. zementierte Muschelschalen, Stücke bewachsen mit Serpeln, Muscheln und dünner Mn-Kruste.

STATION 147 DC (ENARETA)

Ca. 1t poröse Fe/Mn-Oxide und Karbonate, untergeordnet einige Stücke Vulkanit Typ A: Dunkler, blasenreicher (längliche Blasen bis 1 cm), feinkörniger Basalt mit Olivin-Einsprenglingen. TVD B: Vulkanische Brekzie mit silikatischem Bindemittel. Typ C: Kalk - z.T. kavernös - verdrängt bzw. überzogen von mehreren Generationen Fe-Mn-Oxide. Fossilbewuchs (Serpeln, kleine Einzeller und Muscheln) von frischen Mn-Krusten überzogen. Typ D: Stark verwitterter bröckeliger Basalt. Typ E:

Frische Kalkkavernen (biogen) mit dünner Mn-Kruste.

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	Тур А
2	BO,KA	Тур В
3	KA	Тур В
4	KA	Тур В
5	KA	Typ D
6	KA	Typ B
7	KA	Typ D
8	BO,KA	Typ C
9	KA	Typ C
10	KA	Typ E convergion . Respirester Al A
11	ER	Тур С
12	ER	Koralle
13	ER	Тур С
14	KA	Typ C
15	KA	Typ C

400kg schwich verfestigtes Sectment, dif Sberviegend

STATION 148 DC (ENARETA)

300kg gelbes, zähes Sediment mit einigen kg Vulkanit und konglomeratischem Karbonat Typ A: Blasenreicher Vulkanit, im Kern relativ frisch.

Typ B: Molusken (inkrustierte Austern) und Korallen. Typ C: Cyanobakterienkrusten (schwarzer Kalk) Typ D: Biogener Kalk.

PROBE	EMPFANGER	BESCHREIBUNG
1	ER	Typ B
2	ER	Тур В
3	ER	Тур В
4	ER	Тур В
5	ER	Typ C
6	BO,KA	Тур А
7	KA	Тур В
8	KA	Typ C, z.T. mit Mangan vermengt
9	ER	Typ C
10	KA	Тур А
11	KA	Тур А
12	BO,KA	Тур А

STATION 149 DC (ENARETA)

Porphyrischer Vulkanit und Mn-Krusten Typ A: Dichter, porphyrischer, mittelkörniger Vulkanit. Als Einsprenglinge kommen Plagioklas, Glimmer und Hornblende vor. Typ B: Fe-Mn-Krusten. Typ C: Reine Mn-Krusten.

PROBE	EMPFÄNGER	BESCHREIBUNG	
1	BO,KA	Typ A, frisch	
2	BO,KA	Typ A, frisch	
3	KA	Тур В	
4	KA	Typ C	
5	KA	verfestigtes, rotbraunes	Sediment

STATION 158,1 DC (EOLO)

400kg schwach verfestigtes Sediment, daß überwiegend aus Fe- und etwas Mn-Hydroxiden besteht Typ A: Schwachverfestiges Sediment aus Fe-Hydroxiden und untergeordnet Mn-Ausfällungen. Typ B: Bimsstücke. Typ C: Typ D: Normalsediment.

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	Typ A, ocker-orange
2	KA	Typ A, dunkelbraun
3	KA	Typ A, dunkelbraun
4	KA	Typ A, ocker-orange
5	BO,KA	Typ A, ocker-orange
6	KA	Typ A, dunkelbraun
7	KA	Typ B
8	KA	Typ Blocked latences and set and a
9	KA	Typ C, braun-orange
10	KA	Typ C, rostrot
11	KA	Typ C, orange
12	KA	Typ C, rostrot
13	KA	Typ C, rostrot
14	KA	Typ D
15	KA	Typ D menuscritednick and . so . coll All .
16	KA	Typ D
17	HD	Typ A the second s
18	HD	Typ C
		and it was need to and a set of a set o

STATION 158,2 DC (EOLO)

Dredge voll mit hellem Normalsediment; keine Probe

STATION 169 DC, 170 DC, 171 DC, 172 DC

Dredge leer

e all düntem Sarvirasan, in

STATION 173 FG (EOLO)

200kg halbzementierte, pelagische Mikrite

	PROBE	EMPFANGER	BESCHREIBUNG	
			Z10kblende	
	1	KA	Karbonatkruste	
	2	KA	Karbonatkruste	
J.	3	KA anod so:	Kieselschwamm	

STATION 176 DC (PALINURO)

PROBE	EMPFANGER	BESCHREIBUNG	
1	KA	toniges Sediment	

STATION 177 DC, 178 DC (PALINURO)

helles, zähes Sediment; keine Probe

STATION 181 FG (PALINURO)

lt buntes Sediment mit einigen kg Massivsulfiden. Die Schichtung des Sediments ist durch den Greifer zerstört, deswegen ist die Schichtabfolge nur annähernd beschreibbar. Das Top bildet eine 5cm starke, verbraunte Schicht, der 10cm ockerfarbenes Sediment und eine 30cm starke olivgrüne Schicht ohne Massivsulfide folgen. Danach folgt eine olivgrüne Schicht mit porösen, feinkristallinen Sulfiden.

PROBE	EMPFANGER	BESCHREIBUNG
1	KA	Top, ca. 5cm dunkelbraunes Sediment
2	KA	10cm starke, ockerfarbene Schicht
3	KA	30cm starke, tonige, olivgrüne Schicht ohne Massiv- sulfide
4	KA	s. 3, aber mit Massivsulfiden
5	HD,KA,SO	10x5x5cm Massivsulfid, 250g. Porös, überwiegend dunkel mit schlierigen Pyriteinla- gen. Am Rand taflige Barytkristalle. Probenahme: 5,1 Pyrit
01011	96193.13496	5,2 Durchschnittsprobe
6	HD,KA,SO	8x8x6cm Massivsulfid, 700g. Derb, massiv relativ homogen dunkel. Der Pyrit ist gleichmäßig verteilt und als eigene Phase kaum zu erkennen.
		Probenahme: 6 Durchschnittsprobe
7	HD,KA,SO	9x6x4cm, Massivsulfid, 400g.
		Struktur wie 5 KA, Pyritanteil ca. 50%. Deutlich lagiger Aufbau, Außenseite mit dünnem Barytrasen, in
		die eine 0,1mm rötliche Zone eingezogen ist, überzogen. Probenahme: 7,1 Pyrit 7,2 Zinkblende 7.3 Barvt
8	HD,KA,SO	8x8x6cm, Massivsulfid, 800g. Struktur wie 6 KA, höherer Barytanteil.
		Probenahme: 8,1 Zinkblende 8,2 Durchschnittsprobe
9	HD, KA, SO	11x8x7cm, Massivsulfid, 744g.
		Derb, kavernös, Pyrit und Zinkblende homogen verteilt. Probenahme: 9,1 Zinkblende 9,2 Durchschnittsprobe
10	HD,KA,SO	18x13x8cm, Massivsulfid, 2500g. Porös, Pyritanteil höher und schlierig verteilt. Hohl- räume z.T. mit Baryt ausgefüllt. Am Rand dunkelgrüne Ausblühungen. Probenahme: 10,1 Pyrit
		10,2 Durchschnittsprobe
11	HD, KA, SO	17x13x12cm, Massivsulfid, 4200g.
		Massives, derbes Erz, Pyrit und Zinkblende gleichmäßig verteilt.

	Probenahme: 11,1 Pyrit and and and and a sound
WD #1 00	11,2 Zinkblende
HD,KA,SO	20x15x13cm, Massivsulfid, 6100g.
	Derb, deutliche Trennung von Pyrit und Zinkblende. Am
	Rand helle Kruste.
	Probenahme: 12,1 Pyrit
	12,2 Kruste
	12,3 Durchschnittsprobe
KA	33x24x16cm, Massivsulfid, 24,62 kg.
	Derb, überwiegend Zinkblende.
	Probenahme: 13,1 Zinkblende
	13,2 Durchschnittsprobe
KA	32x24x16cm, Massivsulfid, s. 13 KA.
	Probenahme: 14,1 Zinkblende
	14,2 Durchschnittsprobe
	1 KA KA
	HD,KA,SO KA KA

STATION 182 FG (PALINURO)

500kg buntes, braunes- olivgrünes Sediment. In tieferen, verfesigteren Lagen Sulfidimprägnationen

PROBE	EMPFANGER	BESCHREIBUNG
1	KA	braunes Sediment
2	KA	verfestigtes Sediment mit Sulfidimprägnation
3	KA	Bims COUNTIAND DO MOS MOLTATA

(1) NES (第117年1月18日) 17年4月2日 (1977年1月17日) 1973月1

STATION 184 SR (PALINURO)

PROBE	EMPFÄNGER	BESCHREIBUNG		
1	KA	halbverfestigtes,	grünes	Sediment

STATION 191 DC, 192 DC (PALINURO)

Dredge voll mit zähem Normalsediment; keine Probe

STATION 200 DC (PALINURO)

Normalsediment ; keine Probe

STATION 201 DC (PALINURO)

grünes, verfestigtes Sediment mit Mn-Krusten bis zu 4cm dick

ediment an dar Goarliad

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	grünes Sediment
2	KA	grünes Sediment
3	KA	Mn-Kruste
4	KA	Mn-Kruste

STATION 202 DC (PALINURO)

Koralle, mit Mn-Überzug

		Definite Abd have been the set of the South	
PROBE	EMPFÄNGER	BESCHREIBUNG	
1	KA	Kalk	
2	KA	Kalk	
3	SO		

STATION 203 DC (PALINURO)

Dredge mit 750m Seil abgerissen; keine Probe

STATION 204 DC (PALINURO)

30 kg Mn-Krusten, 1-4cm dick, max. 15x30cm.

PROBE	EMPFANGER	BESCHREIBUNG
1-10	KA	Mn-Krusten
11	SO	Mn-Kruste

STATION 205 DC (PALINURO)

80 kg Mn-Krusten, knotig, z.T. lavaähnliche Oberfläche. Zusätzlich grüne Minerale (Nontronit ?). Untergeordnet Kalk.

PROBE	EMPFÄNGER	BESCHREIBUNG
1	KA	Kalk mit Mangan überzogen
2-12	KA	Mn-Krusten
13	SO	Mn-Kruste

STATION 208 FG (PALINURO)

1t buntes, ocker-olivgrünes Sediment mit Mn-reichem Sediment an der Oberfläche. In tieferen, festeren Partien Sulfidimprägnation

PROBE EMPFANGER BESCHREIBUNG

1	KA	Normalsediment
2	KA	Sediment mit Sulfidimprägnation
3	KA	olives Sediment ohne Sulfid
4	KA	Mn-Platte

And Strawn 13 Heat Floratorionem Divierte uni eine Station until denntel.
Andringen.
Bin ertoigenite 10 Heasurien sineen aindestans / Sennoren in Schleent
Bindringen.
Bindrin

Der Alcharn Vermonn ann ale helberfolgenteh eingestuft vermen. Der ernte Sekaut unt steinet in Sintieunt, der zweite Sekau nöglichtrusiene venige die Date Missen tus Untient niteler formerlier uit, de im Klappen des Anstendute verm une Stationer im Seureant nicht geschigenen nätten. Der anteren desner zeute insolt ersunte Tesperaturen gegen Boderweiner, erte stationer in den Kain Tesperaturinterschied gegen Soderweiner feht erternisten ist den in den Freihersterunten gegen Soderweiner feht geschilt wurde und damit keine Erstkertion vorlag, daß der 2. Fühler im Stationer wich in Suntrophische des Kustenlets komme einerschiel inter-

201 den märneren 4 Stationen traten Schrungen an den unteren Someoren auf die wicht unatteibar zu inkatteiteren varen. Die Defekte traten eist bei oberen Resustationen auf und someten durbeit in bedi uleht. festgestellt volden. Haus wirreren vergebiteten Baresstürstenden wirde der ereplette Katelähreng und die unteren Sensoren sungebitetet und damit.

- 205 -

16. HEATFLOWMESSUNGEN

U. KRAMAR & J. SCHOLTEN

Von den Kastenlotstationen wurden 13 mit Heatfloweinrichtung gefahren. Von diesen 13 Heatflowstationen lieferte nur eine Station zufriedenstellende Resultate (s. Tab. 1).

Für erfolgreiche HF-Messungen müssen mindestens 2 Sensoren ins Sediment eindringen.

Die erste HF-Station wurde noch mit einem Sensorabstand von je 1.5 m zwischen den Sensoren gefahren, wie es sich bei früheren Kampagnen bewährt hatte. Diese erste Station brachte eine Eindringtiefe von ca. 1m ins Sediment, so daß nur 1 Sensor im Sediment war, und eine Wärmeflußmessung nicht möglich war.

Von der Messtechnik her traten bei dieser Station keine Problem auf.

An diesem und mehreren Kastenloten ohne HF-Einrichtung wurde festgestellt, daß die Sedimente in diesem Bereich der Tyrrhenis eine außerordentliche Zähigkeit und Festigkeit aufweisen, so daß mit einer größeren Eindringtiefe ins Sediment nicht zu rechnen war. Der Abstand der Sensoren am Kastenlot wurde infolgedessen reduziert (70 cm /100 cm zwischen 1. u. 2. Sensor bzw. 2. u. 3. Sensor).

Bei den nächsten 2 Kernen konnten keine Meßwerte erhalten werden, da das Kastenlot jeweils nur wenige cm in Sediment eindrang und dann umfiel. Der nächste Versuch kann als halberfolgreich eingestuft werden. Der erste Sensor war sicher im Sediment, der zweite Sensor möglicherweise wenige cm. Beim Hieven trat jedoch totaler Kernverlust auf, da die Klappen des Kastenlots nach dem Eindringen ins Sediment nicht geschlossen hatten. Der unterste Sensor zeigte leicht erhöhte Temperaturen gegen Bodenwasser, während beim 2. Sensor kein Temperaturunterschied gegen Bodenwasser festgestellt wurde und damit keine Indikation vorlag, daß der 2. Fühler im Sediment war. Die Eindringtiefe des Kastenlots konnte ebenfalls nicht rekonstruiert werden.

Bei den nächsten 4 Stationen traten Störungen an den unteren Sensoren auf, die nicht unmittelbar zu lokalisieren waren. Die Defekte traten erst bei höheren Wasserdrucken auf und konnten deshalb an Deck nicht festgestellt werden. Nach mehreren vergeblichen Reparaturversuchen wurde der komplette Kabelstrang und die unteren Sensoren ausgetauscht und damit Abhilfe geschaffen. Bei den nächsten beiden Stationen traten keine technischen Probleme auf, aber es wurden keine Messungen erzielt, da der Kasten – bedingt durch die große Festigkeit des Sediments – jeweils nur wenige cm eindrang und dann umfiel.

Beim nächsten Kasten mit Heatfloweinrichtung wurden 200 cm Sedimentkern gewonnen und zwei HF-Sensoren waren im Sediment. Diese Messung konnte ausgewertet werden und ergab einen "normalen" Wärmefluß :

Station Nr. 163 KLH 38 32.99N 14 12.38E Recorder Nr. 708

Bodenwassertemperatur : 13.248 °C 1.Sedimenttemperatur : 13.540 °C 2.Sedimenttemperatur : 13.426 °C

Temperaturgradient	:	0.167	°C/m
Leitfähigkeit	:	0.8	W/(m°C)
Heat-Flow	:	132.4	m₩/m²
HFU	:	3.2 ca	al*10 ⁻⁶ /cm ²

Beim Herausziehen des Kastenlots aus dem Sediment fiel der unterste Sensor wieder aus. Kabel und Sensor wurden daraufhin getauscht. Bei den letzten beiden Heatflowstationen drang das Kastenlot wiederum nicht ins Sediment ein.

Bei Sedimenten mit solch hoher Festigkeit, wie im Untersuchungsgebiet, erscheint es nicht sehr sinnvoll, die Heatflowmessungen am Kastenlot durchzuführen. Auf Grund des besseren Eindringverhaltens wäre es sinnvoll, die Stoßrohre so umzubauen, daß die Heatflowsensoren an diesen angebracht werden können.

Im ursprünglich vorgesehenen Untersuchungsgebiet ROTES MEER wäre der Einsatz der Heat-Flow Einrichtung am Kastenlot mit Sicherheit erfolgreicher gewesen, da dort wesentlich weichere Sedimente auftreten.

Station	Bemerkungen
76 KLH	nur 1 Fühler im Sediment
79 KLH	Kastenlot umgefallen (kein Kern)
90 KLH	Kastenlot umgefallen (kein Kern)
98 KLH	Kastenlot umgefallen (kein Kern)
112 KLH	Fühler defekt
115 KLH	Fühler defekt
130 KLH	Fühler defekt
140 KLH	Fühler defekt
144 KLH	nur 1 Fühler im Sediment
154 KLH	nur 1 Fühler im Sediment
163 KLH	erfolgreich
183 KLH	nur 1 Fühler im Sediment
196 KLH	Kastenlot umgefallen (kein Kern)

Tab. 1: Zusammenstellung der Heatflow-Stationen

17. SULFIDE UND OXIDERZE IN DER TYRRHENIS

H. PUCHELT

Zweck der Sonnefahrt 41 (HYMAS – HYdrothermale MASsivsulfide) war das Studium von sulfidischen Erzen und Indikationen für Vorkommen und Verbreitung von hydrothermalen Erscheinungen.

Nachdem das ursprünglich vorgesehene Arbeitsgebiet Rotes Meer nicht besucht werden durfte, wurde die gleiche Zielsetzung auf das tyrrhenische Meer übertragen, wo andere Bearbeiter (MINNITI & BONAVIA 1984) bereits früher von Manganoxid- und Massivsulfidvorkommen berichtet hatten.

Im Verlauf der Fahrt SO 41 (HYMAS I) wurden zunächst durch Fotoschlittenbeobachtungen, dann durch gezielte Probennahme mit dem Fernsehgreifer zahlreiche Indikationen hydrothermaler Tätigkeit im Sediment bzw. auf Laven beobachtet und bestätigt. Solche Hydrothermaleffekte bestanden in einer gelben, braunen, schwarzen Einfärbung (Abb. 1) des Sediments bzw. einem weißen Präzipitat (Abb. 2). Sie wurden sowohl im Gebiet des Palinuro als auch am Enareta- und Eolo-Seamount gefunden.

Besonders zahlreiche Hydrothermalindikationen wurden am westlichsten Rand unseres Arbeitsgebietes am Palinuro (Abb. 4) gefunden, wo die Fotoschlittenbeobachtung (70 FS) auf einer exakt mit GPS dokumentierten Trasse erfolgte. Zur Orientierung sind die Palinuro-Seamounts und unser erlaubtes Arbeitsgebiet in Abb. 3 dargestellt. Untersuchungen im westlichsten Ausläufer, wo MINNITI & BONAVIA (1984) Tennantit-Tetraedrithaltige Massivsulfide fanden, waren uns nicht erlaubt worden.

Am 23.3.86 kehrten wir in das Palinuro-Arbeitsgebiet zurück, wobei der Bewegungsradius auf 8 nm reduziert worden war. Am 23.3.86 zwischen 12.34 und 13.37 GMT wurde auf Station 181 FG in ca. 630 m Tiefe eine Probe entnommen. Sie erbrachte ca. 800 kg Sediment, in das mehrere große Massivsulfidbrocken eingebettet waren. Das Sediment war hydrothermal beeinflußt, an der Oberfläche Fe- und Mn-reich und enthielt um die Sulfide herum Sulfid-führende Phasen.

Die Sulfide waren von dichtem bis leicht porösem Aufbau. Einen Eindruck vermittelt Abb. 5.

Unter dem Mikroskop waren dunkle Sulfidphasen, gelbbraune Sulfidkügelchen sowie farblose, wasserklare, tafelige Kristalle erkennbar. Im Röntgendiffraktometer konnte eindeutig Pyrit, Bleiglanz, Zinkblende und Baryt identifiziert werden. Durch freundliches Entgegenkommen von Herrn W.-C. Dullo konnten die Sulfide unter dem Rasterelektronenmikroskop näher charakterisiert werden. Als Beispiele seien hier wiedergegeben

- ein Pyritwürfel mit Oktaederecken und Hemiederstreifung (Bild 86036)
 Abb. 6;
 - ein Pyritframboid (Bild 86048) Abb. 7;
- reine Zinkblende mit Skelettwachstum (Bild 86064) Abb. 8
- Bleiglanz als Würfel (Bild 86049) Abb. 9;
 - Globigerinen in Baryt (Bild 86068) Abb. 10;
 - tafelige Barytkristalle (Bild 86056) Abb. 11,
 - mit (001), (191), (210), (010) etc.

Chemische Analysen mit Atomabsorption und instrumenteller Aktivierungsanalyse wiesen die Anwesenheit weiterer Elemente nach. Entsprechende Phasen, die diese Elemente (z.B. Hg) enthalten könnten wurden röntgenographisch oder unter dem Mikroskop nicht erkannt. Insgesamt wurden vorerst 15 Sulfid/Sulfat-Proben analysiert. Die quantitativen Ergebnisse sind in Tab. 1 zusammengestellt.

Entgegen den Aussagen von MINNITI & BONAVIA (1984) sind an dieser Probennahmelokalität Blei und Zink stark vertreten, hinzu kommen Quecksilber, Silber und Gold, die beachtliche Konzentrationen erreichen. Arsen und Antimon liegen im Konzentrationsbereich dieser Autoren.

Ein Vergleich mit Sulfiden aus ozeanischen Spreadingzentren (z.B. Galapagos Spreading Center) zeigt die Armut dieser Sulfide an Quecksilber, Blei, Arsen, Antimon und Barium. Molybdän scheint in Sulfiden den ozeanischen Rücken stärker angereichert zu sein (PUCHELT & KRAMAR 1985; BISCHOFF et al. 1983; HEKINIAN et al. 1980).

Manganoxid-haltige Phasen wurden am Palinuro (66 DC) als glasartige Uberzüge auf Lava (Abb. 12) und Eisenoxidbelägen neben (biogenen) Manganoxidröhrchen (Alpenfäden?) (Abb. 13) gefunden. Schwarze Manganoxidund gelbbraune Eisenoxidbeläge unterschiedlicher Dicke und Fertigkeit wurden auch vom Enareta- und Eolo-Seamount aus mehreren Dredgen geborgen. Erste röntgenographische, chemische und mikroskopische Untersuchungen liegen bereits vor (s. Ber. Laschek).

Literatur

- BISCHOFF, J.L., ROSENBAUER, R., ARUSCAVAGE, P., BAEDECKER, P. & CROCK, J. (1983): Sea-floor massive sulfide deposits from 21°N, East Pacific Rise; Juan de Fuca Ridge; and Galapagos Rift: bulk chemical composition and economic implications. - Economic Geology, <u>78</u>, 1711-1720.
- HEKINIAN, R., FEVRIER, M., BISCHOFF, J.L., PICOT, P. & SHANKS, W.C. (1980): Sulfide Deposits from the East Pacific Rise Near 21°N. -Science, 207, 1433-1444.
- MINNITI, M. & BONAVIA, F.F. (1984): Copper-Ore grade hydrothermal mineralization discovered in a seamount in the Tyrrhenian Sea (Mediterranean): is the mineralization related to porphyry-coppers or to base metal lodes? - Marine Geology, <u>59</u>, 271-282.
- PUCHELT, H. & KRAMAR, U. (1985): Aussagen von Spurenelementgehalten und S-Isotopen frischer und alterierter mariner Massivsulfide. -Fortschritte d. Mineral., <u>63</u>, Beih. 1, 192.

Abb. 1: Gelbe Hydrothermal-Indikationen im Gebiet des Palinuro

Abb. 2: Weiße Hydrothermal-Indikationen im Sediment des Palinuro

Abb. 3: Arbeitsgebiet am Palinuro Seamount mit durchgezogenem 10 sm Radius des Genehmigungsgebietes für Seabeam + OFOS Arbeiten und gestricheltem 8 sm Radius für Gebiet.

١.

Abb. 4: OFOS-Beobachtungen am Palinuro (FS 70) mit Probenahmepunkt der Massivsulfide (FG 181).

Abb. 5: Massivsulfidprobe aus FG 181

Abb. 6: Pyritwürfel mit Oktaederecken und Hemiederstreifung.

Abb. 7: Pyritframboid

Abb. 8: Reine Zinkblende mit Skelettwachstum

Abb. 9: Bleiglanzwürfel

Abb. 11: Tafelige Barytkristalle

Abb. 12: Glasartige Manganoxidphasen auf Lava (Palinuro)

Abb. 14a + b: Gröbere und feinere Manganoxid-Algenfäden vom Palinuro

Haupt- und Spurenelemente von Sulfidproben 181 FG

Probenbezeichnung	5.1	5.2	6.	7.1	7.2	7.3	8.1	8.2	9.1	9.2	10.	12.1	12.3	13.	14.
Hauptelemente 1															
Fe	35,2	18,9	15,3	26,9	14,9	3,26	4,80	12,0	3,57	4,87	16,8	32,9	15,3	8,68	13,3
Zn	2,99	15,3	11,3	17,8	28,2	3,48	27,2	23,9	23,7	26,9	19,4	11,0	19,3	21,4	16,9
РЪ	4,33	4,92	12,6	2,51	10,9	1,04	7,76	12,5	13,3	14,5	10,1	10,4	3,74	9,24	11,8
Cu	0,21	0,32	0,52	0,33	0,06	0,40	1,21	0,61	1,04	0,79	0,29	0,35	0,37	0,54	0,46
Ba	3,49	15,46	20,06	7,68	7,20	48,02	12,16	13,45	21,79	16,20	13,88	7,50	20,85	19,29	17,31
Spurenelemente ppm															
	200		750	70	40	100	750	700	400	190	460	240	750	760	710
Ag	4000	3400	330	4900	3400	1800	4800	4500	400	3600	2200	240	2100	2500	3100
Au	0 52	0 46	7 08	3 57	2 50	1 14	5 30	3 62	5 67	4 91	1 04	2 28	3 00	A 37	4 4
R=	6.6	7.8	10 3	2 4	5 7	11 0	10 3	5 4	11 7	11.8	2 2	18 8	2 0	15 2	13 1
Cd	300	2110	550	1410	1620	510	990	1080	1230	1480	1560	1050	1580	1260	990
Co	7 17	4 94	3 07	12 08	10 54	3 05	21 77	18 52	12 72	15 14	4 16	A 57	4 71	5 85	6.6'
°,	23 1	<45.0	<31.0	76 4	31 5	<23.0	-	-	-	-	36 5	24 5	30.0	36 1	28 5
Ga	17	121	22	20,4	<12	71	28	31	44	36	77	60	41	16	18
Hø	1200	6400	1400	760	468	554	230	399	575	448	4800	1200	1200	633	650
In	-	26	13	<19	-	27	< 20	17		16	22	27	20	<25	<18
Mo	<39	99	98	113	76	<35	147	77	178	93	53	21	38	76	91
La	0.97	2.12	4.66	3.80	1.60	8.54	3.35	2.85	10.0	6.17	2.56	2.51	10.1	7.27	4.5
Sb	505	2000	938	292	337	200	1300	933	996	1200	730	196	300	550	711
Sc	0.18	<0.3	<0.2	<0.3	<0.3	< 0.1	<0.3	<0.4	< 0.3	<0.3	<0.3	<0.2	0.15	<0.3	< 0.3
Se	7.1	_	19.3	<12		< 9	_	-	17.2	<16	-	17.0	-	<15	1
Та		0.29	75	62	_	<43		<70		37	0.19	<65	37	<71	< 50
Th	1.63	<3.0	<2.0	1,18		<1.0		-	1.06	1.09	<2.0	< 2.0	-	1.30	-
W	4.5	3,1	2.6	11.8	0.9	6.2	4.4	2.9	4.8	4.3	3.2	3.3	5.4	2.1	2.0
		1.0	1.6	2.0		2 7	5.0	7.0		1.7					1.2

222 -

.

Tabelle 1

18. BORDANALYTIK MIT RÖNTGENFLUORESZENZ

20.01

U. KRAMAR

Im Laufe der Forschungsfahrt SO 41 wurden aus allen erfolgreichen Dredgen sowie aus einigen Kastenlotprofilen Proben für die Bordanalysen mit winkeldispersiver Röntgenfluoreszenz (RFA) entnommen. Von diesen Proben wurden Pulverpreßlinge hergestellt, die anschließend mit der RFA auf Haupt- und einige Spurenelemente untersucht wurden.

Für die Spurenelementanalytik mußten allerdings relativ unempfindliche Nachweisgrenzen im Kauf genommen werden, da für die Untersuchungen nur eine Cr-Röhre zur Verfügung stand. Die für Spurenelementuntersuchungen besser geeignete Rh-Röhre wurde während der Forschungsfahrt SO 40 durch Kühlwasserausfall beschädigt. Bis zum Ende der Fahrt SO 41 war eine Ersatzröhre (Philips) noch nicht geliefert. Außer den schlechten Nachweisgrenzen für Spurenelemente traten beim Betrieb der RFA keinerlei Probleme auf.

Die Ergebnisse der Haut- und Spurenelementuntersuchungen sind in Tab. 1 zusammengestellt.

 Trobe
 (102
 mac
 Tea202
 COMME
 SubME
 SubME

 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (2)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (3)
 (2)
 (1)
 (1)
 (1)
 (1)
 (1)

 (3)
 (2)
 (1)
 (1)
 (1)
 (1)
 (1)

 (4)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (4)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (5)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (5)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (5)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (5)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

 (2)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)

- 223 -

Tab. 1: Ergebnisse der Bordanalytik (RFA)

a)Hauptelemente

	Pro	obe	Mg0	A1203	Si02	P205	K20	CaO
			(%)	(%)	(%)	10 (%) (%)	(%)	(%)
unin.	65	DC/1	1.97	16.5	64.0	0.16	2.47	5.30
	65	DC/2	2.85	7.1	52.9	0.00	2.68	2.47
	95	DC/11	17.00	15.8	31.0	0.13	0.61	6.95
	95	DC/12	21.82	14.7	27.7	0.11	0.60	0.61
	106	DC/1	16.55	14.3	30.4	0.36	1.89	7.15
	106	DC/3	16.81	13.7	28.0	0.25	0.51	12.17
	120	DC/1	10.98	13.4	32.2	0.43	0.84	11.44
	122	DC/1	13.27	14.1	31.9	0.41	0.68	12.10
	123	DC/19	12.29	13.8	32.4	0.35	0.62	12.11
	147	DC/1	6.25	15.2	50.9	0.27	2.75	10.62
	147	DC/2	3.66	14.1	45.9	0.17	1.72	6.67
	148	DC/10	3.32	16.6	57.1	0.19	3.14	8.65
	149	DC/1	3.67	17.1	60.6	0.24	3.45	8.06
3.	60	KLTOP	4.06	8.9	28.3	0.42	0.93	10.63
i.								
	Pro	obe	TiO2	MnO	Fe203	SUMME	s	SUMME+S
			(%)	`(\$)	(%)	(%)	(%)	(%)
	65	DC/1	0.92	0.09	2.28	93.69	2.77	96.46
	65	DC/2	0.10	0.03	15.31	83.44	0.11	83.55
	95	DC/11	0.96	0.17	9.59	82.21	5.05	87.26
	95	DC/12	0.99	0.05	4.39	70.97	7.79	78.76
	106	DC/1	1.99	0.07	7.23	79.94	4.98	84.92
	106	DC/3	1.92	0.11	6.04	79.51	5.00	84.51
	120	DC/1	1.77	0.14	8.39	79.59	2.03	81.62
	122	DC/1	1.86	0.14	9.27	83.73	2.37	86.10

Pro	obe	TiO2	MnO	Fe203	SUMME	S	SUMME+S
		(%)	(%)	(%)	(%)	(%)	(%)
123	DC/19	1.74	0.14	8.67	82.12	2.81	84.93
147	DC/1	0.66	0.11	5.93	92.61	0.24	92.93
147	DC/2	0.68	0.40	17.65	90.99	0.05	91.04
148	DC/10	0.78	0.24	7.34	97.44	0.05	97.49
149	DC/1	0.76	0.12	4.35	98.35	0.02	98.37
ASTE	NLOTE	Tiefsenve i vam Sch	in der Klentli	ten und bei fanz	n bakann Febrer,	ал 18 тачтыі ў	lageneerte stion Ees
60	KLTOP	0.23	0.81	eases aporta	54.28	0.59	54.87
60	KL78	0.24	0.26	um nno194	54.50	0.39	54.89

b) Spurenelemente

۰.

Pro	obe	Ni	Zn	Rb	Sr	Zr	
a Lea	depart g	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
1N58	DC	92	70	17	433	82	
65	DC/1	35	75	102	529	283	
65	DC/2	57	65	75	61	11	
95	DC/11	38	87	5	248	119	
95	DC/12	38	79	8	142	241	
106	DC/1	60	75	31	268	214	
106	DC/3	71	82	9	368	212	
120	DC/1	79	85	10	507	200	
122	DC/1	76	86	9	494	192	
123	DC/19	76	82	7	480	200	
147	DC/1	55	74	90	999	212	
147	DC/2	71	98	43	606	153	
148	DC/10	50	71	87	716	203	
149	DC/1	38	69	137	743	222	
	B 0100	ne zoveni		140 9081			
ASTE	NLOTE	dalar sag	6-2018.0	inensi Ali ali d	sectorial and	The second date	
60	KLTOP	49	70	29	1664	220	
60	KL78	56	67	33	1661	220	

18. SEABEAMKARTIERUNG J. MONENSCHEIN

Aufgabenstellung

Ziel dieser Reise war eine lückenlose, flächenhafte Kartierung ausgesuchter Areale im Tyrrhenischen Meer in Form von Isobathenkarten. Im Gegensatz zu den bekannten und in der Tiefseevermessung bisher benutzten Kartierverfahren, bei denen jeweils vom Schiff überlaufene Wassertiefen linienförmig in Echogrammen erfaßt und später in einer Karte flächenhaft zusammengestellt werden müssen, liefert das SEABEAM-SYSTEM, wie es auf MS SONNE installiert ist, eine fertige Tiefenkarte eines in seiner Breite von der Wassertiefe abhängigen Profilstreifens. Da diese Streifen nur zeitorientiert sind, muß nachträglich eine Bearbeitung anhand der Navigationsdaten erfolgen, um zu einer geographisch orientierten Gesamtkarte zu gelangen.

Die Qualität und Zuverlässigkeit dieser Karten hängt sowohl von der SEABEAM-Anlage selbst als auch von der Positionierungsgenauigkeit der Navigationsanlage ab.

Hierbei stehen folgende Fragen im Vordergrund:

- genauestmögliche Positionierung des Schiffes für Zuordnung der SEABEAM-Meßpunkte
- Datenerfassung der Navigationsanlage und der SEABEAM-Anlage
- Reproduzierbarkeit der Aufzeichnung
- Datenverarbeitung an Bord

Datenerfassung an Bord

Navigation

Die integrierte Navigationsanlage der Firma Magnavox an Bord MS SONNE besteht aus folgenden Grundsystemen:

- Satelliten-Subsystem
- Koppelsystem Sonar/Kompaß
- Radio-Navigation

Das Satelliten-Subsystem, auch TRANSIT-System genannt, besteht aus mehreren in ca. 1100 km Höhe die Erde umkreisenden Satelliten (s. Abb. 1). Ihre etwa kreisförmigen Bahnen sind gegen die Äquatorebene um 90° geneigte Polbahnen. Die Umlaufzeit beträgt etwa 107 Minuten. Jeder Satellit sendet kontinuierlich Frequenzen von etwa 400 und 150 MHz. Auf diese Frequenzen werden die Bahndaten aufmoduliert; alle zwei Minuten wird ein vollständiger Satz aufdatierter Bahndaten gesendet.

Abb. 1: Polbahnen von Transitsatelliten "Basis"-Punkte in der Sat.-Bahn

An Bord eines Schiffes werden die Satellitensendungen empfangen und mit Hilfe der Bahndaten der Ort des Satelliten zu Beginn jeder zweiten vollen Minute automatisch errechnet. Obwohl der Satellit seinen Ort ständig verändert, können diese Bahnpunkte als momentane Sendestationen behandelt werden. Die gerade Verbindungslinie zwischen solchen Bahnpunkten hat die Funktion einer Basis in einem räumlichen Hyperbel-Funktionssystem. So wie bei der terrestrischen Hyperbelnavigation durch jede Messung eine bestimmte Hyperbelbestandslinie definiert wird, wird durch den Empfang einer Zwei-Minuten-Sendung eines Satelliten eine Hyperboloid-Standfläche bestimmt. Die Linie ihres Schnittes mit der Erdoberfläche geht durch den Ort des Empfängers. Auf diese Weise führen alle empfangenen Zwei-Minuten-Sendungen zu verschiedenen Schnittkurven. Sie schneiden einander im Ort der Empfangsstation. Das beschriebene Funkortungsverfahren wird dabei durch die am Schiffsort gemessene Frequenzverschiebung der gesendeten festen Frequenzen realisiert. Diese unter dem Begriff "Dopplereffekt" bekannte Frequenzverschiebung entsteht durch die Änderung der zum Empfänger gerichteten Geschwindigkeitskomponente des Satelliten während seines Umlaufs.

Abb.2: Navy Navigation Satellite System (schematisch)

Die koordinatenmäßig bekannten Empfangsstationen der Bodenorganisation des Systems nutzen die beobachtete Frequenzverschiebung der Satellitenbahren. Etwa alle 12 Stunden werden die korrigierten Bahndaten und Zeitkorrekturen dem Datenspeicher des Satelliten durch eine Sendestation eingespeist, damit er während der nächsten 12 Stunden aktualisierte Daten senden kann.

Bei einem Satellitendurchgang können bis zu acht Zwei-Minuten-Sendungen empfangen werden. Mindestens drei Messungen von je 2 Minuten werden für die drei zu bestimmenden Größen (geographische Länge und Breite, Uhrkorrektur des Empfängers) benötigt.

Eine kontinuierliche Navigation mit laufender Anzeige von Schiffsort und Uhrzeit wird dadurch ermöglicht, daß die Fahrt- und Kursdaten automatisch in den Rechner des Satellitenempfängers eingegeben werden. Jede Ortsbestimmung durch einen Satellitendurchgang berichtigt die Anzeige. Aufeinanderfolgende nutzbare Satellitendurchgänge haben einen durchschnittlichen Zeitabstand von einer bis anderthalb Stunden in mittleren und niederen Breiten, von etwa einer Stunde in weniger hohen Breiten. Es können jedoch Wartezeiten von mehreren Stunden auftreten.

Bei ortsfestem Schiff oder bei genau bekanntem Fahrtvektor des Schiffes über Grund beträgt die Standardabweichung der Ortsbestimmung für einen Satellitendurchgang etwa 30 m. Durch ungenaue Eingaben der Kurs- und Geschwindigkeitsdaten des fahrenden Schiffes ergibt sich jedoch ein Fehler von mindestens einigen hundert Metern.

NAVSTAR Global Positioning System (GPS)

NAVSTAR Navigation System with time and ranging

Das GPS-Satellitensystem befindet sich seit 1973 unter der Projektleitung des US Department of Defense im Aufbau. Das System wird aus 18 Satelliten bestehen, die in kreisförmigen Bahnen etwa 20000 km hoch die Erde in 12 Stunden umkreisen. Je drei Satelliten werden sich in 6 verschiedenen Bahnen mit 63° Neigung gegen die Äquatorebene befinden. Zur Zeit besteht das System mit 4-6 Satelliten in der Entwicklungsphase. Jeder Satellit sendet auf den Frequenzen 1575,4 MHz und 1227,6 MHz. Beide Frequenzen sind mit dem sog. P-Code moduliert, d.h. mit einem Pseudo-Zufallscode. Dieser Code ist ebenfalls moduliert mit Daten aus dem Speicher des Satelliten, z.B. Bahndaten und Uhrkorrektion. Ein anderer Code, der S-Code, liefert durch Modulation interne im Satelliten gespeicherte Daten.

Beide Codes werden von den Satelliten in der Weise gesendet, daß die Zeit jedem Detail der Information genau zugeordnet ist und durch Atomuhren in den Satelliten kontrolliert wird. Die Ausrüstung des Anwenders, die mit einer wesentlich billigeren Uhr auskommt, mißt die Ankunftszeit der Code-Signale, indem der Codegenerator durch Vergleich mit der empfangenen Phase des Codes automatisch auf die Satellitensendung eingestellt wird. Durch die Messung der Ankunftszeit der gesendeten Signale von vier Satelliten, deren Positionen bekannt sind, lassen sich Uhrkorrektion der Empfängeruhr und die Entfernung zu den Satelliten (Einwegentfernungsmessung) berechnen. Daraus ergeben sich die geographische Länge und

- 229 -

Breite und die Höhe der Empfangsantenne. Da bei Schiffen die Antennenhöhe über dem Erdelipsoid bekannt ist, genügt zur Ortsbestimmung von Schiffen der Empfang von drei Satelliten, die sich über dem Horizont befinden. Das System ist in der Lage, Ortsbestimmungen mit einer horizontalen Standardabweichung von etwa 15 m zu liefern.

Abb. 3: Laufweg von Funksignalen (schematisch)

Abb. 4: Bahnkonfiguration von NAVSTAR GPS. Links: Entwicklungsphase; rechts: Voller Ausbau des Systems Die volle Betriebsfähigkeit des GPS-Systems für die dreidimensionale Ortsbestimmung ist gegen Ende der 80er Jahre zu erwarten. Bei 18 Satelli ten bedeutet dies, daß sich jederzeit mindestens vier Satelliten über dem Horizont befinden.

Neben der außerordentlich hohen Ortsbestimmungsgenauigkeit besteht gegenüber dem Transit-Satelliten-System der Vorteil, daß bei voll ausgebautem GPS-System praktisch jederzeit der Ort bestimmt werden kann. Erste Erfahrungen mit GPS auf MS SONNE während der Reisen GEOMETEP IV und HYMAS I haben alle an das System gestellten Erwartungen voll erfüllt.

SEABEAM

SEABEAM ist ein bathymetrisches Vermessungssystem, das mit einem Fächer von 16 eng begrenzten Sonarstrahlen den Meeresboden unter dem Vermessungsschiff erkundet und in "real time" seine Topographie als Tiefenlinienplan darstellt. Das System erfaßt dabei einen Streifen von ca. 80% der Wassertiefe.

Die Arbeitsfrequenz des Systems beträgt 12 KHz. Die einzelnen Elemente des Sonarfächers strahlen ein Suchsignal unter einem resultierenden öffnungswinkel von 2,5° x 2,65° ab. Diese enge Bündelung ist eine wesentliche Voraussetzung, um auch solche Anomalien des Meeresbodens (Steilstufen, enge Täler usw.) richtig zu erfassen und darzustellen, die andernfalls der Beobachtung entgehen würden.

Desweiteren müssen die Roll- und Stampfbewegungen des Schiffes und die Strahlenberechnung der Sonarstrahlen infolge unterschiedlicher Temperatur- bzw. Salinitätsverteilung im Wasser korrigiert werden.

Die Datenverarbeitung im Echoprozessor erfolgt in "real time" und umfaßt folgende Schritte:

- Rollkorrektur der 16 Empfangssignale

- Brechungskorrektur
- Berechnung der Schwellenwerte für die Signalerkennung
- Berechnung von Tiefe und Abstand von der Kurslinie für jedes Signalelement
- Berechnung der Konturen f
 ür die Tiefenlinienpl
 äne und Steuerung des Plotters

Formatisierung der Tiefen und Kursangaben für die Bandaufzeichnung und
 Erzeugung des Timing und der Triggersignale für das SEABEAM-System.

Abb. 5: Erläuterungen zu den Seabeam-Aufzeichnungen.

Markierungen entlang des Schiffs-Track (Mittellinie):

langer Querstrich :	Zeitmarke absolut, jeweils Schiffskurs und Iso-
	linien-Intervall
Querstrich nach oben:	Zeitmarke relativ alle 2 Minuten, Abstand abhän-
	gig von Schiffsgeschwindigkeit
kurzer Querstrich :	Markierung des Schnittpunktes einer Isolinie mit
	Mittelachse, Tiefenangabe am Unterrand
· nebbi til si	

Jede zweite Isolinie ist mit Zacken versehen, die jeweils hangabwärts zeigen. Die 100m-Isolinien sind durch dickeren Strich hervorgehoben, z.T. auch durch Doppelzacken. Als primäres Ergebnis wird in real time eine Tiefenlinienkarte des vermessenen Streifens am Meeresboden ausgeplottet. Die Breite des Streifens beträgt ca. 80% der Wassertiefe; die Darstellung erfolgt über einen 11" breiten Plotter (s. Abb. 1).

Maßstab und Abstand der Konturintervalle können dabei frei gewählt werden. Die Konturkarten werden automatisch mit der Uhrzeit, dem Konturabstandsintervall und der direkten Tiefe unter dem Schiff entlang der Kurslinie beschriftet (s. Abb. 1). Zusätzlich wird nach jedem Sendeimpuls die Spur der 16 Beams auf einem CRT dargestellt.

Bordrechner VAX 11-750

Bei dem auf MS SONNE installierten VAX 11-750 Rechner handelt es sich um ein speziell auf die Anwendung des Forschungsschiffes zugeschnittenes System. Neben den üblichen Rechnerfunktionen verfügt es über eine aufwendige Datenerfassung, mit der sowohl analog als auch digital anstehende Daten von externen Meßgeräten erfaßt und direkt in den Rechner eingegeben werden können.

Daneben erlaubt eine aufwendige graphische Ausrüstung die Produktion aller kartenmäßigen Darstellungen, aber auch die Darstellung von graphischen Statistiken usw. In Abb. 6 Abbildung wird der technische Aufbau der Rechenanlage erläutert.

Für die Ausreise HYMAS I traten folgende Aufgaben für den Bordrechner in den Vordergrund:

- Postprocessing der Navigationsdaten
- Anfertigung der Lage- und Profilpläne
- Datenaufzeichnung von kontinuierlich arbeitenden Meßgeräten
- Auswertung von Meßergebnissen
- Aufzeichnung des Fahrtablaufs

234

FOR TRAN - 77 V 3.1 DAP | Driver fur VMS) Calcomp TDV Minigraph

Bordrechner FS SONNE

Datenaufbereitung an Bord

Das gesamte Programmpaket zur Auswertung der SEABEAM – Daten besteht aus insgesamt 4 Programmen: SEABEAM, GRAPH, MITTLKON und POSBAND. Darüberhinaus kann mit dem Editor des Betriebssystems die Basisdatei Fahrtlog erstellt und fortlaufend auf aktuellstem Stand gehalten werden.

Im einzelnen haben die Programme folgende Aufgaben:

Das Programm SEABEAM erweitert jeden Satz eines Original SEABEAM-Bandes um Datum, Uhrzeit, Schiffskurs, wahrer Kurs über Grund, Geschwindigkeit über Grund und geographische Länge und Breite für den Zeitpunkt, an dem der Datensatz aufgezeichnet wurde. Die Aufdatierung wird vom überarbeiteten Navigationsband (POSBAND) übernommen. Die erweiterten SEABEAM-Sätze werden im Rechner auf Platte gespeichert.

Das Programm GRAPH erstellt Graphiken auf dem Plotter:

- Karten nach Merkator
- Einzeichnen der gefahrenen Profile, die auf dem Navigationsband gespeichert sind
- Anfertigen von Isolinienstreifen entsprechend den Meßdaten eines erweiterten SEABEAM-Datensatzes. Diese Isolinienstreifen werden vom Programm MITTLKON angelegt. MITTLKON wird automatisch von GRAPH gestartet und mit gültigen Parametern der Merkatorkarte versehen.

Wie in Abschnitt Navigation beschrieben, ist der Positionierungsfehler (Koppelfehler) des Transitsatellitensystems entlang der Meßprofile erst nach einem Satellitenfixdurchgang errechenbar. Es ist daher notwendig, den Koppelkurs des Schiffes rückwirkend zu korrigieren. De facto bedeutet dies, daß die einzelnen Profilabschnitte zwischen den Fixen und dem jeweils nächsten Satellitenfix zukorrigiert werden müssen. Diese Korrektur ist den auf der MAGNAVOX-Navigationsrechneranlage beschriebenen Bändern mittels eines Korrekturprogrammes der VAX 750 – Anlage off-line aufdatiert.

Eine weitere Korrektur der oben beschriebenen Navigationsdatei erfolgt durch "Einschieben" von Daten der GPS-Anlage. Wie aus den beiliegenden Datenblättern ersichtlich ist (s. Abb. 7), war eine Navigationsüber-

Abb. 7: GPS-überdeckung während der Fahrt SO 41

Abb. 7: Fortsetzung

Abb. 7: Fortsetzung

Abb. 7: Fortsetzung

- 239 -

deckung des GPS-Systems nur zeitweilig vorhanden. Durch Einarbeitung der GPS-Daten in die Navigationsdatei konnte eine schon beschriebene Verbesserung der Positionierungsgenauigkeit erreicht werden.

Der gewählte Profilabstand von 1 NM für die zu untersuchenden Meßgebiete ergab sich aus der Berücksichtigung der mittleren Wassertiefe von 1300 – 2000m, des Abbildungsfehlers der Randstrahlen und möglicher Kursabweichungen. Die unvermeidlichen Abweichungen des Meßschiffes vom Sollkurs wirken sich bei einem Profilabstand von 1 NM stellenweise als Überlappung bis 100% und dicht daneben sogar als Meßlücke oder Überdeckungslücken aus.

Die auf dem on-line-SEABEAM-Plotter mitgezeichneten Bathymetriestreifen wurden im Maßstab 1:20000 dargestellt. Bei der Größe der zu untersuchenden Areale empfahl es sich, bei der flächenhaften Zusammenfügung der bathymetrischen Gesamtkarten einen Maßstab von 1:50000 zu wählen. Andernfalls gelangt man zu Riesenkarten, die nicht mehr überschaubar an Bord zu handhaben sind. Die Auswertegenauigkeit ist dabei nicht notwendigerweise beeinträchtigt. Außerdem besteht, bedingt durch die Reproduzierbarkeit der Daten, die Möglichkeit, Spezialgebiete als "Fenster" herauszuvergrößern und gesondert auf dem Plotter darzustellen. Die Wahl des Isobathenabstandes ist hierbei beliebig. Beim Zusammenfügen der SEABEAM-Meßstreifen zu einer bathymetrischen Gesamtkarte traten wiederholt Schwachpunkte der Systeme an Bord SONNE auf:

- ungenaue Zeitzuordnung der SEABEAM-Anlage zu der Navigationszeit MAGNAVOX
- Positionierungsungenauigkeiten bedingt durch Koppelfehler in der SATNAV-Navigation

Bedingt durch die hier gehannten Fehler erscheinen morphologische Strukturen auf verschiedenen Profilen gegeneinander versetzt. Im ungünstigen Fällen addieren sich diese Fehler bis zu ± 300 m. Da diese Fehler bekannt sind, wurde während der Ausreise HYMAS I großer Wert darauf gelegt, Profilvermessung zeitlich in die GPS-Sendephasen zu legen, um die genannten Fehler durch die hohe Genauigkeit des GPS-Systems möglichst klein zu halten. Nötigenfalls wurden die mit SAT-NAV gefahrenen Profile in die Bathymetrie der GPS-Profile eingehängt.

Die so entstandenen Karten, die z.T. im Anhang zusammengestellt sind (s. Abb. 9-13), können bereits den Anforderungen der Benutzer zur Beurteilung

Abb. 8: Verhältnis der Aufzeichnungsbreite zur Wassertiefe

Zusammenfassung

Die Ergebnisse der SEABEAM-Kartierung mit MS SONNE lassen sich wie folgt interpretieren.

Die Funktionssicherheit aller beteiligten Systeme (SEABEAM, MAGNAVOX, GPS, VAX 11-750) war zufriedenstellend. Technische Störungen konnten während der Reise routinemäßig behoben werden.

Die durch SEABEAM deutlich werdenden Koppelfehler veranschaulichen, daß die augenblicklich gegebene Navigationsgenauigkeit auf hoher See bei einem gewünschten Profilabstand von IMM als nicht befriedigend angesehen werden muß. Das nur in kurzen Zeitintervallen zur Verfügung stehende GPS-Navigationssystem schafft hier deutliche Verbesserungen. Leider wird es noch Jahre dauern, bis eine totale GPS-Überdeckung zur Verfügung stehen wird.

Dabei muß nach den Erfahrungen der Reisen GARIMAS II und HYMAS I gesagt werden, daß der heutige Stand der Datenaufnahme und Weiterverarbeitung der GPS-Daten an Bord SONNE höchst unbefriedigend ist.

Das GPS-System verfügt über keine eigene Datenaufzeichnung, weder per Papierausdruck noch über eine Bandaufzeichnung. Die Navigationsdaten werden über eine Schnittstelle auf der VAX 750 aufgezeichnet. Bei Ausfall des Rechners besteht augenblicklich keine Möglichkeit der Datenaufzeichnung. Bedenkt man die weitaus höhere Genauigkeit des Systems, mag man sich einen Ausfall der Daten bei der beschriebenen Profildichte nicht vorstellen. Als Abhilfe bietet sich eine Datenaufzeichnung der GPS-Daten auf den 2 Bandlaufwerken der SATNAV-Anlage an. Diese laufen im Wechsel 24 Stunden pro Tag mit bekannt hoher Präzision. Allerdings ist eine Programmänderung im SAT-NAV-System notwendig, um einkommende GPS-Positionen im Minutentakt als sogenannte "Echtkoppelwerte" in die SATNAV einzuspeisen. Damit würden sich für die Zeiträume der GPS-Sendephasen die Präzision des GPS-Systems auf die SATNAV-Anlage und deren Datenaufzeichnung übertragen.

Da die SATNAV-Bänder im täglichen Rhythmus auf dem VAX-Rechner processed werden, würde so das mehrfache, umständliche "Einflicken" von GPS-Daten in die SATNAV-Datei wegfallen. Als weiterer, sehr wichtiger Vorteil dieser Datenaufzeichnung wäre eine zumindest während der GPS-Phasen kontinuierlich korrigierte Datenanzeige auf den Bildschirmen, die an allen wichtigen Stellen im Schiff während der Profil- und Stationsarbeiten von den jeweiligen Operatoren beobachtet werden. Bisher erschienen auf diesen Monitoren unkorrigierte SATNAV-Daten, die in vielen Fällen bei ungeübten Mitarbeitern zu Irrtümern in der gewünschten Schiffsposition geführt haben.

Das Problem des Zeitfehlers in der SEABEAM-Anlage wurde schon in mehreren Berichten angeführt. Die interne Uhr (Taktgeber) zeigt pro 24 Stunden einen Zeitfehler von ca. 25 Sekunden, die sich bei einer mittleren Profilgeschwindigkeit von 8 kn zu einem Fehler in der Anpassung der SEABEAM-Daten zu den Navigationsdaten von über 100 m pro Tag aufdatiert. Dabei ist zu beachten, daß bei gegenläufigen Profilen durch Addition des beschriebenen Fehlers Ungenauigkeiten von 300 m pro 24 Stunden auftreten können. Hier sollte der Hersteller bemüht sein, durch Änderung in der Hardware die Möglichkeit zu schaffen, die SEABEAM-Anlage an die durch Satellitenzeit gesteuerte Navigationsanlage anzukoppeln.

Zu der VAX-Rechenanlage müssen einige kritische Anmerkungen in Bezug auf die Benutzer gemacht werden. Die Vielzahl der angeschlossenen Terminals erlauben einer großen Anzahl Benutzer ein gleichzeitiges Arbeiten am Rechner. Dies ist grundsätzlich ein großer Fortschritt für die Datenerfassung und -aufbereitung an Bord SONNE. Leider ist es durch disziplinloses Verhalten einiger Benutzer während der Reise HYMAS I zu unerfreulichen Datenausfällen gekommen.

Wie im Bericht beschrieben läuft die Datenerfassung der GPS-Navigationsdaten noch provisorisch direkt auf die VAX-Rechenanlage. Leider ist es leicht möglich, daß hinreichend informierte Rechnerbenutzer durch spezielle Commands gezielt das Datenerfassungsterminal oder die benutzte Schnittstelle der GPS-Datenübertragung "torpedieren" können und so den Datenfluß auf unbestimmte Zeit lahmlegen können. Die auf diese Weise verlorengegangenen Daten sind unwiederbringlich verloren. Erst die Reorganisation des Softwarepaketes GPS-Datenaufnahme mobilisiert einen weiteren Datenfluß.

Hier kann nur ein kontinuierliches Überwachen der Kompetenzen der einzelnen Benutzer am Rechner für Abhilfe sorgen. Der Systemmanager muß verantwortlich dafür sorgen, daß jedem Benutzer ausreichend Rechnerkapazität und Privilegien zugeordnet werden, andererseits aber durch Beschneiden der Operationsmöglichkeiten dafür sorgen, daß Benutzer den on-line Datenfluß der täglichen Routine nicht unterbrechen können.

- 243 -

VAVILOV

PROFILKILOMETER UND MINUTEN

ROFIL			BEG	1 INN	10	-	END	E	-	LAENGE	IN MIN	I	N KM
1	26.	2=	57	9:40	26.	2=	57	10:40		60	60	16.1	16.1
2	26.	2=	57	10:48	26.	2=	57	11:41		53	113	14.5	30.6
3	26.	2=	57	14:37	26.	2=	57	15:50		73	186	17.3	47.5
4	26.	2 =	57	17:50	26.	2=	57	19:34		104	290	28.3	76.1
5	26.	2=	57	19:46	26.	2=	57	21:35		109	399	28.2	104.3
G	26.	2=	57	21:45	26.	2=	57	23:30		105	504	29.2	133.5
17	26.	2=	57	23:50	27.	2=	58	1:31		101	605	26.7	160.2
. 8	27.	2=	58	1:51	27.	2=	58	3:32		101	706	27.6	187.8
9	27.	2=	58	3:40	27.	2=	58	5:33		113	819	29.1	217.0
10	27.	2=	58	10:15	27.	2=	58	11:17		62	881	16.6	233.0
11	27.	2=	58	21:55	27.	2=	58	23:14		79	960	19.9	253.5
12	27.	2=	58	23:21	28.	2=	59	0: 0		39	999	10.3	263.7
13	28.	2=	59	1:55	28.	2=	59	3: 8		73	1072	20.1	283.9
14	28.	2=	59	3:13	28.	2=	59	3:56		43	1115	10.5	294.4
15	28.	2=	59	4: 2	28.	2=	59	5:56		114	1229	29.3	323.7
16	28.	2=	59	6: 5	28.	2=	59	7:55		110	1339	29.8	353.5
58	15.	3 =	74	8:26	15.	3=	74	9: 5		39		8.8	8.8
59	15.	3=	74	9:7	15.	3≖	74	9:31		24		7.5	16.3
60	15.	3 =	74	9:46	15.	3=	74	10:41		55		16.4	32.7
61	15.	3=	74	10:45	15.	3=	74	11:20		35		9.5	42.2

- 244 -

MAGNAGHI

PROFILKILOMETER UND MINUTEN

.1

PROFIL	11.		BEG	INN			END	E	LAENGE	IN MIN		IN KM
62	16.	3=	75	20: 0	17.	3=	76	0: 4	244	244	77.7	77.7
63	17.	3=	76	0: 9	17.	3=	76	0:49	40	284	13.3	91.0
64	17.	3 =	76	0:58	17.	3=	76	2:12	74	358	21.8	112.8
65	17.	3=	76	2:13	17.	3=	76	3:22	69	427	23.3	136.1
66	17.	3=	76	3:30	17.	3=	76	4: 3	33	460	10.0	146.2
67	17.	3=	76	4: 9	17.	3=	76	5:47	98	558	28.7	174.9
68	17.	3=	76	6: 0	17.	3=	76	7:22	. 82	640	27.3	202.2
69	17.	3=	76	7:31	17.	3=	76	9: 2	91	731	27.4	. 229.6
70	17.	3=	76	9: 8	17.	3=	76	10:32	84	815	28.4	258.0
71	17.	3=	76	10:40	17.	3=	76	12:13	93	908	27.4	285.4
72	17.	3=	76	12:19	17.	3=	76	13: 9	50	958	16.5	301.9
			1.8									

MARSILI

PROFILKILOMETER UND MINUTEN

. .

PROFI	L		BEG	SINN			END	E	LAENGE	IN MIN		IN KM
17	28.	2=	59	18:30	28.	2=	59	20:25	115	115	27 1	27 1
18	28.	2=	59	20:30	28.	2=	59	22:30	120	235	29.2	56 4
19	28.	2=	59	22:35	1.	3=	60	0:14	99	334	23.7	80.0
20	1.	3=	60	0:25	1.	3=	60	1:46	81	415	24 2	104 3
21	1.	3 =	60	2: 7	1.	3=	60	3:33	86	501	22.8	127 1
22	1.	3 =	60	3:43	1.	3=	60	4:50	67	568	20.6	147.7
23	1.	3 =	60	12: 8	1.	3=	60	13:41	93	661	24.3	172.0
24	1.	3=	60	13:53	1.	3=	60	16:17	144	805	28.1	200.1
25	1.	3=	60	16:18	1.	3=	60	17:40	82	887	22.9	223.0
26	1.	3 =	60	20:30	1.	3=	60	22:12	102	989	25.1	248.1
27	2.	3=	61	0:22	2.	3=	61	1:47	85	1074	23.8	271.9
28	2.	3=	61	3:19	2.	3=	61	4:34	75	1149	22.3	294.2
29	2.	3=	61	6:10	2.	3=	61	7:30	80	1229	23.5	317 7
30	2.	3=	61	8:18	2.	3=	61	9:53	95	1324	24.7	342.4
31	2.	3=	61	10: 0	2.	3=	61	11:33	93	1417	26.3	368 7
32	3.	3=	62	12: 7	3.	3=	62	13:40	93	1510	24.9	393 7
33	3.	3=	62	19:15	3.	3=	62	20:53	98	1608	26.1	419.7
34	3.	3 =	62	21: 0	3.	3=	62	22:33	93	1701	25.3	445.0
35	3.	3 =	62	22:41	4.	3=	63	0: 9	88	1789	22.4	467.4
36	4.	3=	63	0:13	4.	3=	63	1:30	77	1866	21.0	488.4
37	4.	3=	63	1:35	4.	3=	63	3:34	119	1985	31.8	520 2
38	4.	3=	63	3:57	4.	3=	63	6:10	133	2118	36.8	557 0
39	4.	3 =	63	6:19	4.	3=	63	8:48	149	2267	37.5	594 5
40	4.	3=	63	8:50	4.	3=	63	11:15	145	2412	27.7	622.2
41	5.	3 =	64	0:19	5.	3=	64	1:31	72	2484	23.6	645 8

VENTO TENE

5.83

1

	PROFI	LK	IL	OME	TER UND	MIN	JTE	N 3.8						
PROF	IL			BEG	INN	ENDE				LAENGE	IN MIN	IN KM		
4	4 8.	3	=	67	20:10	8.	3=	67	21:54	104	104			
4	5 8. 6 9.	3	=	67	0:7	8.	3=	68	23:55	98	315			
4	7 9.	3	=	68	1:52	9.	3=	68	3:30	98	413			
4	9 9.	3	=	68	21:30	9.	3=	68	23:12	102	622			
5	0 9.	. 3	=	68	23:24	10.	3=	69	1: 5	101	723			
5	2 12.	3	=	71	18:55	12.	3=	71	20:48	113	934	27.9	27.9	
5	3 12.	3	=	71	20:56	12.	3=	71	23: 3	127	1061	28.5	56.4	
5	4 12. 5 13.	3	=	72	1: 3	13.	3=	72	2:53	102	1273	27.9	84.3	
5	6 13	3	=	72	3: 3	13.	3=	72	4:44	101	1374	28.4	141.3	
5	7 13.	3	=	72	4:55	13.	3=	72	6:20	85	1459	22.9	164.2	

1 247 i.

ENARETE

PROFILKILOMETER UND MINUTEN

. •

PR	OFIL	15	1	BEG	INN	1344	9 <u>-</u> .	END	E	LAENGE	IN MIN	I	N KM
									1 minutes	101			
	76	19.	3=	78	2:50	19.	3=	78	3:31	41	41	13.6	13.6
1	77	19.	3=	78	3:34	19.	3=	78	4:18	44	85	14.2	27.8
	78	19.	3=	78	4:22	19.	3=	78	5: 4	42	127	13.9	41.7
	79	19.	3=	78	5: 8	19.	3=	78	5:49	41	168	13.4	55.0
	80	19.	3 =	78	5:52	19.	3=	78	6:35	43	211	13.9	69.0
	81	19.	3=	78	6:38	19.	3=	78	7:18	40	251	13.1	82.0
	82	19.	3=	78	7:22	19.	3=	78	8: 4	. 42	293	13.7	95.8
	83	19.	3=	78	8:12	19.	3=	78	8:53	41	334	14.1	109.9
	84	19.	3=	78	8:58	19.	3=	78	9:36	38	372	13.3	123.2
	85	19.	3=	78	9:42	19.	3=	78	10:20	38	410	13.1	136.2
	86	19.	3=	78	10:26	19.	3=	78	11: 4	38	448	13.4	149.6
	87	19.	3=	78	11:10	19.	3=	78	11:48	38	486	12.7	162.4
	88	19.	3=	78	12: 5	19.	3=	78	12:42	37	523	13.0	175.4
	89	19.	3 =	78	12:49	19.	3=	78	13:29	40	563	13.3	188.6
	90	19.	3=	78	13:34	19.	3=	78	14:16	42	605	14.5	203.1
	91	19.	3=	78	14:20	19.	3=	78	14:55	35	640	12.1	215.2

SUNA LIST

- 248 -

EOLO

PROFILKILOMETER UND MINUTEN

.1

PROFIL			BEGINN					END)E	LAENGE	IN MIN	IN KM		
	a a	20	2-	14	7.55	-	-			211				
	02	20.	2-	20	./:35	20.	3=	79	18:15	40	40	13.2	13.2	
	93	20.	3=	19	18:20	20.	3=	79	18:59	39	79	13.4	26.5	
	94	20.	3=	19	19: 4	20.	3=	79	19:44	40	119	13.7	40.3	
	95	20.	3=	79	19:48	20.	3=	79	20:29	41	160	13.3	53.5	
	96	20.	3=	79	20:31	20.	3=	79	21: 9	38	198	12.9	66.4	
	97	20.	3=	79	21:14	20.	3=	79	21:55	41	239	12.9	79.3	
	. 98	20.	3=	79	21:59	20.	3=	79	22:41	42	281	13.0	92.3	
	99	20.	3=	79	22:46	20.	3=	79	23:29	43	324	13.2	105.5	
	100	20.	3 =	79	23:34	21.	3=	80	0:20	46	370	13.8	119.3	
	101	21.	3=	80	0:27	21.	3=	80	1:17	50	420	14.5	133 8	
	102	21.	3=	80	1:20	21.	3=	80	2: 4	44	464	13.1	146 9	
	103	21.	3=	80	2:12	21.	3=	80	2:53	41	505	12 3	159 2	
	104	21.	3=	80	3: 2	21.	3=	80	3:44	42	547	12.7	171 9	
	105	21.	3=	80	3:51	21.	3=	80	4:36	45	592	12.2	105 1	
	106	21.	3=	80	4:41	21.	3=	80	5:25	44	636	13.3	100.5	
	107	21.	3=	80	5:30	21.	3=	80	6:16	46	692	13.3	198.5	
	108	21.	3=	80	6:22	21	3=	80	7. 4	40	724	13.2	211./	
	109	21.	3=	80	18: 6	21	3=	00	10.40	42	744	13.1	224.8	
	110	21.	3=	90	18.58	21	2-	00	10.47	43	/6/	10.8	235.6	
	111	21	3=	90	10.30	21.	3-	00	19:4/	29	796	9.2	244.8	
	112	22	3-	01	19.30	21.	3=	80	20: 1	26	822	7.8	252.6	
	112	22.	2-	01	19:42	64.	3=	81	20: 3	21	843	5.9	258.5	
	113	66.	3=	81	20: 9	22.	3=	81	21: 2	53	896	12.7	271.2	

- 249 -

Abb. 9: Seabeamkarte Ventotene

Abb. 10: Seabeamkarte Ventotene-Nord

Abb. 11: Seabeamkarte Eolo- und Enareta-Seamount

Abb. 12: Seabeamkarte Enareta-Seamount

Abb. 13: Seabeamkarte Eolo-Seamount

20. TV-GREIFER- UND FOTOSCHLITTENEINSATZE

J. LANGE

TV-Greifer

Der TV-Greifer (Typ A, Schalengreifer) wurde während der Fahrt SO 41 zur Beprobung von Sedimenten und Hydrothermalprodukten im Bereich von 3 Seamounts eingesetzt:

2x Vavilov 1x Eolo 5x Palinuro

Die Gesamtausbeute der 8 Einsätze beträgt 4477 kg. Bei 2 Stationen kippte der Greifer um, so daß die Probennahme fehlschlug (54 FG) bzw. daraus nur eine geringe Ausbeute von 5 kg (102 FG) resultierte.

Technische Mängel am System traten während der Einsätze nicht auf, jedoch mußten mehrmals vor dem Einsatz elektronische Defekte beseitigt werden (Datenstrecke, Telemetrie), wodurch sich Verzögerungen des Programms ergaben. Die Batterien arbeiteten einwandfrei.

Die Probennahme von Gesteinen erwies sich als außerordentlich schwierig, da Lavaausbisse im befahrenen Terrain nur an Verwerfungsstufen und steil geneigten Hängen auftraten. Probennahmeversuche in diesem Terrain schlugen fehl, da der Greifer umkippte (54 FG, 102 FG). Ebene Bereiche, in denen eine Probennahme möglich war, zeichneten sich durch in der Regel vollkommene Sedimentbedeckung aus, so daß Lavaformationen nicht mehr erkennbar waren.

Auf Station 181 FG wurde eine Sedimentebene beprobt, die sich durch weiße, rundliche Hydrothermal-Imprägnationen von cm bis dm-Durchmesser auszeichnete. Hier konnten 82 kg Massivsulfid gewonnen werden, welches offensichtlich im Sediment ausgefällt oder bereits wieder zusedimentiert war. Daß es sich bei den Massivsulfiden um flächenmäßig kleinräumige Körper im m-Bereich handelt, wird durch die Probennahmen von 182 FG und 208 FG dokumentiert. Diese Versuche liegen in unmittelbarer Nähe der weißen Hydrothermalimprägnationen und erbrachten lediglich sulfidisch imprägniertes Sediment im Basis-Bereich (ca. 50 cm Tiefe).

				Bodenbeoba	achtung	jen	Reco-	20. 19-085712		
Stat	tion	Lokation	Datum	Start-Ende	Fotos	TV	very	Material		
				(GMT)		(min)	(kg)			
27	FS	Vavilov	27.02	16:19-20:20	770	241	-			
34	FS	Marsili	02.03	19:30-22:53	579	203	-			
42	FS	Marsili	04.03	19:25-21:30	332	125	-			
46	FS	Palinuro	05.03	21:32-23:18	398	106	1167			
53	FG	Palinuro	06.03	15:32-15:40	-	8	500	Sediment		
54	FG	Palinuro	06.03	16:36-18:08	-	92	-	umgekippt		
70	FS	Palinuro	07.03	18:57-21:15	353	138				
80	FS	Ventotene	09.03	13:47-15:14	205	87	-			
83	FS	Ventotene	11.03	21:03-22:20	140	77				
102	FG	Vavilov	14.03	09:26-10:15	-	49	1	Sediment		
110	FS	Vavilov	14.03	21:38-23:30	268	112	-			
124	FS	Vavilov	16.03	09:36-13:06	438	210	-			
125	FG	Vavilov	16.03	15:21-16:48	-	87	750	Sediment		
1.29	FS	Maghaghi	17.03	15:38-16:47	266	69	6 ÷			
43	FS	Enareta	19.03	21:02-22:40	370	98	-			
143	FS	Enareta	20.03	00:26-00:56	70	30				
162	FS	Eolo	21.03	21:33-23:17	310	104	-			
173	FG	Eolo	22.03	18:06-18:32	-	26	240	Sediment,Konkr.		
81	FG	Palinuro	23.03	12:34-13:37	-	63	900	hydroth.Sediment		
							82	Massiv-Sulfid		
182	FG	Palinuro	23.03	14:37-14:43	1 431	6	1000	hydroth.Sediment		
187	FS	Palinuro	23.03	20:50-23:49	676	179	-			
208	FG	Palinuro	25.03	09:49-09:53	-	4	1000	hydroth.Sediment		
209	FS	Palinuro	25.03	12:30-13:00	115	30	-			
		Summe:	、		5290	2144	4473			

Tab. 1: Statistik der TV-Greifer- und Fotoschlittenstationen SO 41

TABELLE 1: ABKUERZUNGEN GEOLOGIEDATEN: PROGRAMM GEO LAVA TYPES L = LAVA, NOT DETERMINED F = FILLOW LAVA, NOT DETERMINED = PILLOWS,STRIATED PL = PILLOWS WITH PROTUBERANCES PP PI = INDIVIDUAL PILLOWS IN SEDIMENT COVERED AREA PLS = PILLOW AND SHEET LAVA S = SHEET LAVA, NOT DETERMINED = LOBATED SHEET LAVA = NODULAR SHEET LAVA SL SN = NODULAR SHEET LAVA SP = PLATY SHEET LAVA SC = CURTAIN FOLD/ROPY SHEET LAVA SS = SCRAMBLED SHEET LAVA T = TALUS TP = PILLOW TALUS TS = SHEET LAVA TALUS TE = SMALL-GRAINED TALUS ON SEDIMENT TL = TALUS (ROUNDED SURFACE, LAPILLI) B = BRECCIA/BRECCIATED VOLCANITES SEDIMENT = NO SEDIMENT; REFLECTION AT GLASS SURFACES MO = SEDIMENT DUSTING: SEDIMENT IN INTERSTITIAL SPACES 11 = SEDIMENT COVER IN PART; P : < 30 % M2 SL,SN,SS < 50 % SP,SC <100 % P > 30 % = STRONG SEDIMENT COVER MЗ SL, SN, SS : > 50 % = TOTAL SEDIMENT COVER;NO ROCK OUTCROPS M4 = CARBONATE CONCRETIONS CC

- 257 -

~ 258

TABELLE 2: ABKUERZUNGEN GEOLOGIEDATEN: PROGRAMM GEO TECTONIC STRUCTURES = CRACK/SMALL FISSURE GC G = FISSURE/GJA G, W, O = FISSURE/GJA,WIDTH (m),OFFSET (m) (UP + DOWN -):G,2,-4 GE = FLAT FLOORED FISSURE GF,w,o = FLAT FLOORED FISSURE,WIDTH (m),OFFSET (m),UP + DOWN -= DISPLACEMENT WITHOUT FISSURE/CRACK ΪI = BISPLACEMENT WITH OFFSET [<3m] IN m (UP + DOWN -) Do DA = DISPLACEMENT ASSUMED = SCARP DS DSo = SCARP WITH OFFSET [>3M] IN m (UP + DOWN -): DS-10 DSA = SCARP ASSUMED COLLAPSE STRUCTURES CS = COLLAPSE STRUCTURE(SMALL SCALE) CP = COLLAPSE * *(LARGE SCALE);COLLAPSE PITS,LAVA LAKES MORPHOLOGY = FLOW FRONT FF = FLAT TERRAIN ÷ ---+ + = SLOPE UPWARDS = SLOPE DOWNWARDS ----HYDROTHERMALISM = GENERAL INDICATIONS Ы НН = SULPHIDES = SULPHIDES,LARGE AREA HHH HP = PRECIPITATES ON CRACKS AND VOLCANITE SURFACES HSF = SILICATE AND FERRONIAN PRECIPITATES ON CRACKS = EAUNA HF = CRAB HEC THE NO HEP = POGONOPHORA 5 HF,C,x = SPECIAL FAUNA(x)HM = SEDIMENT COLORATION; OXYHYDROXIDES = LIGHT COLORATION HML = STRONG COLORATION HMD HC. = CRUSTS/OXYHYDROXIDES HA = HALO AROUND ROCKS

TABELLE 3: ****** ABKUERZUNGEN GEOLOGIEDATEN: PROGRAMM GEO FAUNA FE = BENTHOS;SESSIL+VAGRANT = ENDOBENTHOS/ICHNOFOSSILS FE FC = CORALS COMMENTS ***** C, XYZ = GENERAL COMMENT (SUB-POSITION, DISTANCE SHIP-EQUIPMENT NUMBER OF FLASHES AND LIGHTS, NUMBER OF PHOTOS, MORPHOLOGICAL AND TECTONI-= TAPE ON TON CAL FEATURES, ETC. TOF = TAPE OFF BOT1 = FIRST BOTTOM SIGHT BOF1 = FIRST BOTTOM PHOTO = LAST BOTTOM PHOTO BOPL = LOSS OF BOTTOM SIGHT LOB BOT = BOTTOM SIGHT AGAIN UP = HEAVING START SAM, × = SAMPLING = COLOUR TV, RECORD ON RCON RCOF = COLOUR TV, RECORD OFF RBON = BLACK AND WHITE TV, RECORD ON RBOF = BLACK AND WHITE TV, RECORD OFF ANGABEN UEBER NAVIGATIONSMODUS SCHIFF/TV-GREIFER + SCHIFF/OFOS SCHIFF: 1. SAT= SATELLITEN-NAVIGATION 2. AT = ATNAV 3. GPS 1. RS= RS904 TV-GREIFER/OFOS: 2. SUB= ATNAV-SUBPOSITIONIERUNG

STATION : SO-41 53FG NAVIGATION SCHIFF: SATNAV GERAET: -G-MAR-8G LOKATION: PALINURO SEAMOUNT HAUPTCALDERA

KOORDINATEN PROBENAHME 15:38:56 : 39 DEG 28.86 N - 14 DEG 49.30 E WASSERTIEFE PROBENAHME 15:38:56 : 86 m (SCHIFF)

15:20:04	87	0	AUF STATION
15:20:16	87	0	39 DEG 28.993 N,14 DEG 49.243 E
15:20:52	88	0	IN KRATER-CALDERA
15:27:03	89	0	TON
15:32:06	84	65	BOT1,M4
15:34:13	83	77	M4
15:38:56	86	88	SAM1,M4
15:39:55	87	90	UP . Thuid dorned to age
15:43:23	90	31	TOF

ERGEBNIS: PTEROPODENSCHLAMM (500 KG)

.

STATION : SO-41 54FG NAVIGATION SCHIFF: GPS GERAET: -G-MAR-86 LOKATION: PALINURO SEAMOUNT HAUPTCALDERA

KOORDINATEN PROBENAHME 18:07:04 : 39 DEG 29.22 N - 14 DEG 49.06 E WASSERTIEFE PROBENAHME 18:07:04 : 105 m (SCHIFF)

ZEIT(GMT)	WD	WL	COMMENT	an trans
16:28:28	92	0	AUF STATION	
16:28:33	93	0	C.39 DEG 28.83 N.14 DEG 49.259 E	
16:29:23	92	0	RAND CALDERA FALINURO	
16:31:08	92	0	ZU WASSER	
16:32:06	93	0	TON	
16:36:33	87	90	BOT.M4	
16:54:34	113	111	M4.C. RELATIV HART	
16:55:00	107	107	M4	
16:55:28	101	98	MA STALL SALTAND ALEMA STA	
16:57:31	106	97	,LOB	
16:58:56	120	115	EOT	
16:59:11	128	118	M4,C, DUNKEL	
17:01:06	145	133	C, FAHREN NACH WEST HANGABWAERTS	
17:15:32	471	348	C, HIEVEN AUF 100M, WIEDER ZURUECK	ZUR CALDERA
17:31:27	132	101	C.FIEREN WIEDERAB	
17:31:49	128	112	BOT	
17:32:19	124	132	M4	
17:52:53	103	106	M2,C,KNOLLIGE KRUSTEN	
17:55:37	103	103	M4	
18:07:04	105	96	SAM1	
18:08:22	118	90	UP	
18:18:53	117	65	TOF	

ERGEBNIS:GREIFER LEER;WAHRSCHEINLICH UMGEKIPPT

STATION : SO-41 102 FG NAVIGATION SCHIFF: GPS GERAET: RS 14-MAR-8G LOKATION: TOP VAVILOV SEAMOUNT

KOORDINATEN PROBENAHME 10:12:00 : 39 DEG 51.58 N - 12 DEG 36.66 E WASSERTIEFE PROBENAHME 10:12:00 : 924 m (RS904)

ZEIT (GMT)) WD	μL	COMMENT
09:23:33	758	700	TON
09:26:04	743	723	BOT1.C.39 DEG 51.207 N.12 DEG 36.716 E (GPS)
09:26:37	741	733	++.M3.S
09:29:22	735	742	C,KABEL
09:29:31	735	741	M3.C.KRUSTEN
09:31:11	744	733	SAM1.C.TOP VAVILOV
09:31:19	741	736	C, HIEVEN
09:36:56	775	649	C.GREIFER LEER.ERNEUT FIEREN
09:40:26	779	761	BOT.M3.S
09:42:29	781	775	M4
09:43:34	784	775	M3.5
09:43:51	817	776	h4 and a second s
09:45:05	811	786	SAM2
09:46:25	817	792	C.GREIFER LEER.ERNEUT FIEREN
09:50:11	818	807	BOT.M3.S
09:51:19	855	813	++
09:53:17	852	811	M3.S
09:55:08	865	834	C, KABEL
09:55:14	862	835	M3.S
09:59:27	875	878	ň4
10:01:09	885	874	++ TOT BALL CON COMMAND
10:04:16	928	874	M3,S
10:05:29	924	892	M4
10:09:29	956	928	C, BENTHOSSPUREN
10:09:57	963	931	M4
10:12:00	969	940	SAM3
10:15:04	962	953	UP
10:18:41	986	840	TOP
ERGEBN IS:	SEDIMENT SUEBERZUG,	5 KG 1N-0) 1GEK	KORALLENBRUCHSTUECKE MIT DUENNEM MN-OXID- (IHYDROXID-KRUSTE (100 G); IPPT,HANG;SEDIMENTSPUREN IM BATTERIEKASTEN

STATION : SO-41 125 FG NAVIGATION SCHIFF: SAT GERAET: RS 16-MAR-86 LOKATION: VAVILOV SEAMOUNT

KOORDINATEN PROBENAHME 16:45:28 : 39 DEG 50.33 N - 12 DEG 35.86 E WASSERTIEFE PROBENAHME 16:45:28 : 1316 m (SCHIFF)

ZEIT(GMT)	W D	WL	COMMENT
15:20:51	1129	1153	BOT1, TON
15:22:31	1104	1184	P, M3
15:23:10	1118	1162	C.RS 904 HAENGT
15:23:38	1106	1159	++,LOB
15:30:28	1227	1163	BOT
15:31:05	1236	1175	M3.P
15:31:24	1234	1185	M4
15:47:18	1357	1341	P.M3
15:47:31	1337	1351	SAM1.C.GREIFER LEER
15:54:57	1301	1369	BOT.H4
15:55:53	1311	1371	++.P.M3
15:59:28	1322	1321	P-N3
16:00:33	1337	1299	++
16:01:30	1355	1290	H 4
16:05:37	1368	1324	M3.P
16:10:10	1410	1375	M4
16*14*48	1416	1420	C KURS ZURUECK AUF PROFIL
16:16:10	1410	1419	MA
16:19:10	1314	1423	M3.D+.P
16:20:49	1290	1405	++
16:23:27	1283	1360	M3 - P
16:29:20	1305	1296	DP
16:29:41	1310	1302	M3. P
16:32:40	1296	1309	M3. P
16:35:35	1300	1346	M4
16:41:32	1322	1347	MA
16:45:28	1316	1357	SAM2.C.SEDIMENT
16:48:39	1284	1249	UP
16:48:42	1287	1247	TOF
ERGEBNIS	BEFAHREN	ES ARE	CAL WEIST ZU STARKE HANGNEIGUNGEN AUF
	PILLOW-A	USBISS	SE NUR IN FORM VON LAVAFRONTEN UND DUTCROPS
	IN STELL	EN HAL	INGEN VERSUCH DER PILLOW-PROBENAHME SCHLAEGT
	FEHL GRE	TEER I	MGEKIPPT.
	MAYTMALE	R 7116	RET STETLWANDFAHRT 11 5 +1
	ABDECKKL	APPE F	ATTERIEKASTEN ARGERISSEN
	R5904-DA	TENALIE	ZEICHNUNG NEGATIV.
	RECOVERY	: 750	KG SEDIMENT : GEGRIFFEN MANGELS GEFIGNETED
	GESTEINS	PROPER	JAHMEPHNKTE
	SH-UTHEO	-AUE71	$15.000 \pm 15.01 - 16.48 = 97 MIN$
		PR 1 4 F . F. F.	

STATION : S0-41 173 EG NAVIGATION SCHIFF: GPS GERAET: -22-MAR-86 LOKATION: EOLO SEAMOUNT KOORDINATEN PROBENAHME 18:31:49 : 38 DEG 38.74 N - 14 DEG 08.60 E WASSERTIEFE PROBENAHME 18:31:49 : 1695 m ZEIT(GMT) WD WL COMMENT ____ 1793 1724 TON 18:01:22 13:04:10 1713 1804 C, STARKE TRUEBUNG DURCH ORGANISCHE PARTIKEL 1835 BOT1.C.TOUCHIERT 18:06:11 1714 1734 1828 M4 13:06:30 1800 M4 18:11:46 1728 1800 M4 18:11:55 1727 1702 SAM1, M4, C, KRUSTEN, HC 18:31:49 1704 1617 TOF 18:36:50 1706

ERGEBNIS: 200 KG SEDIMENT;40 KG MIKRITISCHE KALKKONKRETIONEN MIT DUENNER BRAUNSCHWARZER MN-FE-KRUSTE UEBERZOGEN. RS904-DATENREGISTRIERUNG AUSGEFALLEN. SW-VIDED-AUFZEICHNUNG: 18:06-18:32 = 26 min

TPRALITIE REPARTED THE WELL'S THE CONTENTS WERE AND AND AN A MAIL

STATION : S0-41 181 FG NAVIGATION SCHIFF: SAT GERAET: RS 23-MAR-86 LOKATION: PALINURO SEAMOUNT, AREAL A - 14 DEG 42.37 E B OCKOORDINATEN PROBENAHME 13:37:11 : 39 DEG 32.48 N WASSERTIEFE PROBENAHME 13:37:11 : 625 m (RS904) WD WL COMMENT ZEIT(GMT) THATSE 592 TON 582 12:34:28 12:34:31 585 591 BOT1 12:34:40 585 590 HM? 590 12:35:04 583 M4 12:39:09 631 580 ---12:41:17 602 603 M4 620 M3.L 614 12:42:21 632 M4 12:43:21 626 12:43:57 -628 639 M3,L 12:47:41 607 683 H4 12:48:23 631 680 HM 662 M4 12:49:44 622 611 M3,L 12:55:27 615 12:55:31 617 611 M4 12:57:53 602 612 M3.L 12:58:28 603 617 M4 607 M3.L 583 13:01:37 610 HM 13:02:14 528 13:03:37 537 605 ++ 593 M2,L 585 13:04:27 13:05:56 599 574 M3,L 614 M4 617 13:09:33 615 ++.M3.L 13:11:04 608 13:11:18 612 615 C.SEDIMENT GEFLECKT 596 13:11:39 607 M2,L 581 612 M4 13:13:37 532 609 M3,L 13:13:56 608 M4 13:14:14 581 525 602 M2.L 13:14:51 587 M4 13:16:53 594 582 M3,L 13:17:13 598 607 M4 13:23:40 589 586 593 M3.L 13:26:13 592 M4 13:26:47 585 630 HM, HH?, HC, C, WEISSE SEDIMENTIMPRAEGNATIONEN 13:36:46 639 637 SAM1, HMD, HH, HC, WEISSE SEDIMENTFLECKEN 13:37:11 634 13:38:54 600 629 UP 13:39:23 634 618 TOF ERGEBNIS: 800 KG SEDIMENT. HYDROTHERMAL IMPRAEGNIERT: 3 PHASEN: HELL BIS DUNKELBRAUNER TOPBEREICH (FE-MN-REICH) - GRAUER ZENTRALBEREICH (SULFID-FUEHREND) – DUNKELGRAUE SULFIDFUEHRENDE PHASEN IM BASISBEREICH UM SULFIDBRUCHSTUECKE ******* 82 KG MASSIVSULFID-BRUCHSTUECKE, DUNKELGRAU, MEISTENS AMORPH: VORWIEGEND PYRIT, ZNS, Z.T. KUPERKIES.

STATION :	SC	-41	18	2 F	G															
AVIGATIO	NS	CHI	FF:	S	AT	GE	RA	ET:	R	3										
LOKATION:	Pf	LIN	URO	SE	AMO	งบพ	Τ,	ARE	AL	A				-111						
OORDINAT	EN	PRO	BEN	AHM	E I	1.4:	39	:32	:	39	DE	G	32	. 45	N	-	14	DEG	42.50	E
JASSERTIE	ΕE	PRO	BEN	AHM	E :	14:	39	:32	:	611	m	(R	159	04)						
*****	***	***	***	***	***	***	**	***	***	***	***	**	**	***	***	***	***	****	*****	***
ZEIT(GMT)		_	WD		WL	CO	MM	ENT	N E I	7mm	00	140		.0	J		(7	37273		•
4:37:54		6	09	5	68	TC	IN IN				li n n									
14:39:07		5	98	G	16	BO	T1	, нм	, H(C,HE	LLE	S	ED	IME	NT	IMP	RAE	GNAT	IONEN	
4:39:32		5	93	6	20	SA	M1	, HM	, HI	2										
4:43:09		5	37	5	51	TO	F													
ERGEBNIS:	10	000	KG	SED	IMI	ENT	.н	YDR	OTI	HERM	AL	IM	PR	AEG	NIE	ERT	: 2	PHA	SEN:	
		HEL	LB	IS	NUC	1KE	ĹB	RAU	NE	N TO	PBE	RE	IC	н (FE-	-MN-	RE	ICH)		
		GRA	UER	BA	SIS	BRE	RE	ICH	(9	SULE	IDI	SC	(H)							
	-	Z.T	.DU	NKE	LGI	RAU	E	SUL	FI	ISC	HE	SE	DI	MEN	TKC) NKI	RET	IONE	N AN	
		DER	BA	STS																

- 266 -

намогтансалятнізнаміаза здагай. 5. 34. тыя, ня на чэтогітніят 105 такі ій, эк. мі, омо, глад STATION : SO-41 208 FG NAVIGATION SCHIFF: SAT GERAET: -LOKATION: PALINURO SEAMOUNT, AREAL A KOORDINATEN PROBENAHME 09:53:12 : 39 DEG 32.57 N - 14 DEG 42.61 E WASSERTIEFE PROBENAHME 09:53:12 : 638 m (SCHIFF) ZEIT(GMT) WD WL COMMENT 09:36:12 732 496 TON 09:43:52 588 512 BOT1, HM, M4 09:53:12 638 628 SAM1, HM, M4 09:56:24 615 568 UP.TOF ERGEBNIS: RS-904-DATENREGISTRIERUNG AUSGEFALLEN: RS904-GERAET VERLO-REN. SCHELLEN ABGERISSEN. CA.1000 KG HYDROTHERMAL IMPRAEGNIERTES SEDIMENT:MN-REICHER TOPBEREICH (0-10cm), HELLBRAUN; OLIVGRAUER BASISBEREICH MIT SULFIDIMPRAEGNATIONEN, DUNKELGRAU: 1 MN-KRUSTE

Recommentation and and and for a second and and and a second and a s

i htarku fedimentondecking (10-100 %), von 1360-1120% konkrecionare Schichtatzukturen (Kaikbänkel); Lavatypen: arraebied atuen: Lava (791-1150a), iobated sheut lava (1250-1500s), pillou lava ale Ausbiese an Verwarfingeoutweb geeth&urtes Arter der Lavaergünae älter ale 5000 Jahre isshe geringe Tehtonik: rehiger Terrich art leicht genergten Asogen und großen Verwindigerfischent keine Nydrotenstentingthationer.

Fib FS: Starks Sadiwanthelackung (70-100 %): Sadiabat ait waifiltohan Fladkan in dunklar Alfrix bai 2012; Lavamusblane in Four von verruhrtan bid leicht looiertan Schlichtlaven von 807-940% in lavont renalgten Hängen. in Form von Einzelpillows von 940-1000m. Kaine Taktonik: Koralien-Duoria auf Lava

- 267 -

Fotoschlitten

Der Fotoschlitten (OFOS = Ocean Floor Observing System) wurde während SO-41 zur optischen Kartierung von Lava-, Sediment- und Hydrothermalstrukturen im Bereich von 7 Seamounts des Tyrrhenischen Meeres eingesetzt. Insgesamt wurden 15 Stationen mit einer Gesamtdauer der TV- und Photobeobachtung von 30.15 Stunden durchgeführt (s. Tab. 1). Dabei wurden 5290 Farbphotos des Meeresbodens aufgenommen. Die Stationen verteilen sich auf die Seamounts wie folgt:

Vavilov	:	3	Stationen	-	1476	Photos	-	563	min	TV-Aufzeichnung
Marsili	:	2		-	911		-	328	min	•
Ventotene	:	2		-	345		-	164	min	
Magnaghi	:	1	STE MELLING	-	266	(19 . 16)	-	69	min	•
Enareta	:	2		-	440		-	128	min	A DECEMBER OF
Eolo	:	1		-	310		-	104	min	•
Palinuro	:	4		-	1542		-	453	min	and here in

Technische Ausfälle, die Schiffszeit beanspruchten, waren nicht zu verzeichnen. Mängel im System traten nicht auf. Die geowissenschaftlichen Beobachtungen lassen sich wie folgt zusammenfassen:

Vavilov-Seamount

- 27 FS: Starke Sedimentbedeckung (50-100 %); von 1380-2120m konkretionäre Schichtstrukturen (Kalkbänke?); Lavatypen: scrambled sheet lava (791-1250m), lobated sheet lava (1230-1500m), pillow lava als Ausbisse an Verwerfungsstufen; geschätztes Alter der Lavaergüsse älter als 5000 Jahre ;sehr geringe Tektonik; ruhiges Terrain mit leicht geneigten Hängen und großen Verebnungsflächen; keine Hydrothermalindikationen.
- 110 FS: Starke Sedimentbedeckung (70-100 %); Sediment mit weißlichen Flecken in dunkler Matrix bei 22:12; Lavaausbisse in Form von verrührten bis leicht lobierten Schichtlaven von 807-940m in leicht geneigten Hängen, in Form von Einzelpillows von 940-1362m. Keine Tektonik; Korallen-Debris auf Lava (21:46:04,21:50:58); keine Hydrothermalindikationen.

124 FS: Starke Sedimentbedeckung (50-100 %); Lavaausbisse in ± ebenem Terrain vorwiegend als verrührte bis leicht lobierte Schichtlaven; lokal stark lobierte Formen; Pillows in Lavafronten und stark geneigten Hängen; sporadisch auch Seil- u. Stricklava (11:25:44,11:40:34). Tektonik ausgeprägt in Form von etwa N-S streichenden Verwerfungsflächen. Lokal wallartige Strukturen (9:53-9:54). Collapse pit (?) bei 12:30. Keine Hydrothermalindikationen.

Marsili-Seamount

- 34 FS: Geringe Sedimentbedeckung (10-30 %) auf dem Top (528-648m), starke Sedimentbedeckung in tieferem Terrain (50-100 %); Lavatypen: von 528-725m plattig-bankige und verrührte Schichtlaven, von 730-1407 lobierte und verrührte Schichtlaven; Pillowlava von 1456-1520m; Akkumulationen von Schichtlava-Talus und Feinschutt von 528m-891m; geringe Tektonik; keine Hydrothermalindikationen
- 42 FS: Sehr starke Sedimentbedeckung (70-100 %); Topbereich mit konkretionären Sedimentbänken ohne Lavaausbisse; Schichtlaven lokal in stärker geneigtem Terrain (3016-3352m); sehr wenig Tektonik; ausgeprägte Sedimenthügel (2-8cm)im Beckenbereich bei 3350m; keine Hydrothermalindikationen; altes Erscheinungsbild der Lavaformationen

Ventotene-Seamounts

- 80 FS: Sehr starke Sedimentbedeckung (80-100 %). Lava: nur als partielle Outcrops (5-20 %) vorwiegend als knollenartige, teilweise als verrührte Schichtlava; stärkere Ausbisse (50 %) an Verwerfungsstufen; sehr geringe Tektonik; keine Anzeichen von Hydrothermalismus; sehr wenig Benthos. Gesamteindruck: alter Seamount mit hoher Sedimentbedeckung.
- 83 FS: Sehr starke Sedimentbedeckung (80-100 %) auch auf dem Top; Lava: nur als partielle Outcrops (5-10 %), vorwiegend als

knollenartige, teilweise als verrührte Schichtlava; stärkere Ausbisse nur an steilen Verwerfungsflächen; sehr geringe Tektonik, ein deutlicher Steilabfall bei 22:02:00; keine Anzeichen von Hydrothermalismus; sehr wenig Benthos. Gesamteindruck: alter Seamount mit hoher Sedimentbedeckung; wahrscheinlich älter als nördliches (80 FS) Pendant Ventotene.

Magnaghi-Seamount

129 FS: Starke Sedimentbedeckung (50-100 %); Lavaoutcrops nur an steilen Hängen, Lavafronten und Verwerfungsstufen; vorwiegend Pillowformationen, z.T.lappige und verrührte Schichtlaven. Kaum Tektonik. Morphologie bestimmt durch Hänge unterschiedlicher Neigungswinkel. Typisch sind sedimentbedeckte Flächen mit schwarzen Ascheakkumulationen in Mulden und Vertiefungen. Keine Hydrothermalindikationen.

Enareta-Seamount

143 FS: Sedimentbedeckung bis 580m 30-60 %, von 580-2100m 100 % mit einigen Outcrops bei746, 855-879 und 1562m. Lavaformationen vom Top bis 350m, wenn anstehend vorwiegend als wulstige bis lappige Schichtlava, keine Pillows; Lapilliauswürfe (gerundete Körper von cm-dm-Größe im Bereich Top bis 580m. Geringe Tektonik; Korallen (tot) vom Top-380m; Hydrothermalindikationen: 21:02:51 bis 21:08:30 (284-320m) in Form von gelblichen Sedimentverfärbungen (Fe-Oxihydroxide?) um Lavaund Krustenstrukturen, Mn-überkrustete Korallen, plattige und hügelige Krustenstrukturen, dunkle Überzüge (Mn-Oxide?) auf Vulkaniten.

Eolo-Seamount

162 FS: Fast totale Sedimentbedeckung auf dem gesamten Profil (90-100%). Keine Lavaausbisse. Keine tektonischen Strukturen. Am südlichen bzw. südöstlichen Hang des Adventivhügels und speziell in einer Top-Mulde (Caldera?) Indikationen von niedrigthermalem Hydrothermalismus: Sedimentverfärbungen (gelb, rotbraun, braun (Fe-Mn-Oxihydroxide) und lagige bis hügelige Krustenstrukturen (mounds), z.T. weiße Sedimentimprägantionen (SiO₂, Sulfate, Karbonate?), deutliche Trübungen im Wasser. An südlicher Flanke des Adventivhügels z.T. sedimentüberdeckte Lavaausbisse. Hauptindikationen: 22:29:52 (1224 m)-22:50:31 (1046m). Schwerpunkt: in Top-Mulde mit Randhöhen von 1062m im Osten und 1034m im Süden (1074m im Zentrum): 22:44:34-22:51:34 , Zentrum 22:48-22:50 Koordinaten 22:49: 38-33.81N, 14-12.94E.

Palinuro-Seamount

- 46 FS: Geringe Sedimentbedeckung (10-20 %) von 486-533m (21:53-21:59), starke Sedimentbedeckung 50-100 % in anderen Bereichen; Lavaformationen vorwiegend Schichtlaven mit verrührter oder knolliger Oberflächenstruktur; Fe-Mn-Krusten als Oberflächenbelag der Schichtlaven; Hydrothermalindikationen in Form von grünlichen (Fe-Smektite?) und braun-schwarzen (Fe-Mn-Oxihydroxide?) Imprägnationsflecken im Sediment; Fe,Mnüberkrustete Korallen (21:32:55); stärkere Tektonik.
- 187 FS: Starke Sedimentbedeckung (70-100 %), Sedimente von 270-600m fleckenartig mit sandigen dunklen vulkanischen Aschen bedeckt. Korallenbruchstücke (tot) von 270-300m Tiefe, z.T. lebende Formen (gelbe Tentakeln) im Bereich 270-290m. Deutliche Lavaausbisse nur von 270-330m im Topbereich in Form von plattigen und lobierten Schichtlaven. Sonst nur in Form von einzelnen Outcrops in vorwiegend sedimentbedecktem Terrain oder an Verwerfungsflächen. Geringe Tektonik, etwas ausgeprägter am westlichen Hang des Seamounts mit Caldera, 720-640m. Hydrothermalindikationen wenig ausgeprägt: partiell braunschwarze Sedimentimprägnationen (Mn-0xihydroxide?) und sehr lokal gelbe Präzipitate (Fe-0xide) auf Laven um 23:21.

209 FS: Vollkommene Sedimentbedeckung (100 %)im ganzen Profilbereich.

Steilabfall um 666m (12:36) mit einigen Lavaausbissen. Keine Indikationen von Hydrothermalismus.

70 FS: Deutliche Hydrothermalindikationen!

-gelbliche Imprägnationen und Halos (Fe-Oxihydroxide, Sulfide?) auf und um Lavastrukturen: 19:06:28,19:10:21, *19:32:24*, *21:03:37-21:10:56*, ***21:07:20-28***

-gelbe Imprägnationen im Sediment(Fe-Oxihydroxide?): 19:01:18,19:03:28

- -schwarze Imprägnationen (Mn-Oxihydroxide?) im Sediment: 19:09:18-19:09:38,19:17:20, 21:00:37-21:03:37
 - -weiße Präzipitate (Sulfate, Karbonate, SiO₂?) auf Lava: 19:22:40, **20:40:29**
- -weiße rundliche Imprägnationen im Sediment, z.T. mit Loch (Karbonate, Sulfate, SiO₂?) ***19:36:06-19:36:41***, **19:38-19:42**, *19:50:19-19:50:40*, 20:50-20:51
- -Trübungen im Wasser: 20:45:34-20:48:23

-Mn-überkrustete Korallen: 19:37:12,20:55:41

ktolilger SherfildStudtickburz ("gelb

Sedimentbedeckung 30-100 %, in Arealen mit Lavaoutcrops 30-70 %; Lava als Schichtlava mit überwiegend verrührter oder wulstiger Oberflächenstruktur, lokal plattig-bankig (20:56:39-20:56:52); z.T. Mn-Krusten auf Lava; wenig Tektonik; Morphologie wird überwiegend durch vulkanische Ergüsse bestimmt; 2 Fische (Barsche?) verfolgen Grundgewicht in der Nähe der Wassertrübungen.

Zentren hydrothermaler Indikationen:

Kerallenbruchsticke Stoff ave 1902200s Lefe, 1.7. Schunge

sublight par you 270-110x in Togetries in Provide the Providence

a. 19:06-19:11 = 618-631m (OFOS-RS904)
>>> b. 19:32-19:42 = 517-627m
c. 20:37-20:40 = 588-605m
>>> d. 21:03-21:10 = 592-600m

- 272 -

STATION SO-41 :	27 FS 27.02.86
LOKATION	VAVILOV SEAMOUNT
****	*****
KOORDINATEN :	BREITE (N) LAENGE (E)
BODENSICHT OFOS	START: 39 DEG 51.57 MIN 12 DEG 36.51 MIN ENDE : 39 DEG 53.98 MIN 12 DEG 38.73 MIN
PROFILSTRECKE :	VOM TOP SEAMOUNT (1.BODENSICHT BEI 791 M) NACH NORDEN UEBER RUECKENKAMM BIS CA. 39 DEG 52 MIN N,DANN WEITER IN
All Market South All	RICHIUNG 45 GRAD AUF DESTLICHER FLANKE HANGABWAERTS,AB CA. 39 DEG 53.5' N MIT RICHTUNGSAENDERUNG AUF GO GRAD BIS 2129 M
PROFILTIEFEN :	START: 791 M ENDE: 2129 M (RS904-OFOS)
TECHNISCHE DATEN:	NAVIGATION SCHIFF: SATNAV NAVIGATION OFOS : RS 904
	BLITZE : FL1-FL4 LAMPEN : L2
(ZEITEN IN GMT)	S/W-VIDEO : 16:14 - 19:19 1.BAND 19:20 - 20:28 2.BAND FARB-VIDEO: 17:21 - 17:25 18:36 - 18:40 18:50 - 18:58 EINGEBLENDETE ZEIT ENTSPRICHT GMT + 630 SEC ERSTES PHOTO : 16:18:58 LETZTES PHOTO : 20:20:20 ANZAHL PHOTOS : 770
DATENFILES :	27FS.GEO (DATENFILE)
	RS27FSO.DAT (POSITIONEN OFOS)
FUNKTION :	OK
KURZFASSUNG DER : BEOBACHTUNGEN	STARKE SEDIMENTBEDECKUNG (50-100 %): VON 1380-2120m KONKRETIONAERE SCHICHTSTEUK- TUREN(KALKBAENKE?);LAVATYPEN:SCRAMBLED SHEE LAVA(791-1250m),LOBATED SHEET LAVA(1230- 1500m),PILLOW LAVA ALS AUSBISSE AN VERWER- FUNGSSTUFEN;LAVAERGUESSE AELTER ALS 5000 JAHRE;SEHR GERINGE TEKTONIK:RUHIGES TERRAIN MIT LEICHT GENEIGTEN HAENGEN UND GROSSEN VEREBNUNGSFLAECHEN;KEINE HYDROTHERMALINDI- KATIONEN.

ERLAUTERUNGEN ZUR DATENDOKUMENTATION BEI PHOTOSCHLITTEN-STATIONEN.

DIE ERGEBNISSE JEDER PHOTOSCHLITTEN-STATION WURDEN AUF DREI DATEN-BLAETTERN DOKUMENTIERT:

- 1. SEITE: TECHNISCHE DATEN UND KURZFASSUNG DER BEOBACHTUNGEN
 - - SIE ENTHAELT ANGABEN UEBER STATIONSNUMMER
 - DATUM - LOKATION
 - KOORDINATEN DER OFOS-POSITIONEN BEI BEGINN UND ENDE DER BODENSICHT (RS904-DATEN)
 - EINE KURZBESCHREIBUNG DER GEFAHRENEN PROFILSTRECKE
 - MEERESBODEN-TIEFEN BEI BEGINN UND ENDE BODENSICHT (RS904)
 - NAVIGATIONSMODUS SCHIFF UND OFOS
 - EINGESETZTE BLITZE UND LAMPEN
 - ZEITEN DES SCHWARZ-WEISS VIDEO-RECORDINGS
 - ZEITEN DES FARB-VIDEO-RECORDINGS
 - ZEITEN DES 1. UND LETZTEN BODENPHOTOS
 - ANZAHL DER PHOTOS
 - DATENFILES (POSITIONEN RS904,GEOLOGISCHE BEOBACHTUNGEN, TECHNISCHE KURZEESCHREIBUNG)
 - FUNKTIONSBEURTEILUNG
 - KURZFASSUNG DER GEOLOGISCHEN BEOBACHTUNGEN
- 2.SEITE: FLOT DER PROFILSTRECKE
 - IM MASSTAB 1:10000.1:20000 ODER 1:50000

- BEGINN BODENSICHT OFOS.ENDE BODENSICHT OFOS
- 3.SEITE: AUFLISTUNG DER GEOLOGISCHEN BEOBACHTUNGEN

IN DIESER TABELLE SIND SOWOHL DIE ON-LINE SCHWARZ-WEISS TV-BEOBACHTUNGEN ALS AUCH DIE AUS DEN FARB-PHOTOS ZU ENTNEHMENDEN INFORMATIONEN (MIT P MARKIERT)INTEGRIERT. SIE ENTHAELT 3 ZAHLENSPALTEN UND EINE TEXTSPALTE: 1.SPALTE: ZEIT IN GMT (MAGNAVOX-UHR) 2.SPALTE: WASSERTIEFE in m (SCHIFFSPOSITION) VOM SCHELFRANDLOT 3.SPALTE: AUSGESTECKTE KABELLAENGE IN m 4.SPALTE: AUFLISTUNG DER GEOLOGISCHEN BEOBACHTUNGEN UNTER VERWENDUNG DER IN DEN TABELLEN 1-3 ANQEFUEHRTEN ABKUERZUNGEN.

- 274 -

STATION : NAVIGATION	SO-41 27 N SCHIFF:	7 FS : GF(GERAET: RS		
1/-FEB-00	200	201	MON PHONE PHONE		
16:14:09	189	731	IUN CO VO		
16:18:49 F	839	823	BUP1,55,M3		
16:18:58	839	823	B011,55,M3		
16:19:05	890	824	n3,55		
16:22:19	915	316	LUB		
16:25:07	916	903	LUB		
10:20:27	920	047	DUL DI C TOUCH PROPENAMME!		
16:27:55	929	926	M3.SS		
16:29:11	994	925	LOB	1.03	
16:30:03	994	945	BOT		
16:30:09	994	947	M3,SS		
16:30:18	987	951	M3.SS		
16:31:29	987	963	LOB		
16:33:35	983	1005	BOT		
16:33:39	985	1007	M3,SS		
16:35:41	1010	992	M3,SS		
16:35:50 P	1010	1000	M 4		
16:36:40	1011	1017	M4		
16:37:11	1038	1022	MA		
16:38:53	1006	1018	C,DOSE		
16:39:34	1009	1010	M4		
16:41:16 P	1025	1015	M3,SS		
16:41:39	1008	1021	M3,55		
16:42:06	1004	1031	M3,SS		
16:42:27 F	1035	1037	GC,M3,SS		
16:42:35	1036	1038	LUB		
16:42:57	1008	1046	BUL		
16:43:01	1023	1047	H4 H4		
16 - 45 - 56	1031	1067	C.RTPPELMARKEN.M4		
16:46:08	1035	1062	++		
16:47:07	1090	1058	M3,SS		
16:47:36	1092	1058	M3,SS		
16:47:41	1033	1057	C,WURMBAUTEN		
16:48:01	1037	1048	++,M3,SS		
16:48:16	1085	1042	++,M3,SS		
16:48:27 P	1095	1040	SL,M3,SS		
16:49:56	1103	1038	GC,SL,M3,SS		
16:48:58 P	1102	1035	SS,M3		
16:49:03	1101	1031	LOB		
16:49:43	1087	1041	BUI		
16:50:01	1094	1048	M3,55		
16:51:08	1095	1048	M3,55		
16:01:44 P	1094	1053			
16:51:56	1094	1055			
10.02.02	1107	1074	HO CC		
16.05.00 1	1095	1077	NO CC		
16*56*46	1090	1075	44		
16:56:56	1036	1073	M3.SS		
17:00:06	1093	1068	M3.SS		
17:01:54	1132	1065	M3.SS		
17:02:12	1133	1065	M3.SS		
17:03:11	1118	1076	M3,SS		
17:05:43 P	1156	1103	M4 CD.AM COAL U		
17:06:58	1191	1128	M4 1.20.12 Feb 0		
17:07:14	1203	1133	M4 NUCR COMP.		

.

١.

1		1000	1120	14.0			
1/:10:11		1 4 4 5	1100	F1 44			
17:10:37		1221	1172	M4			
17:11:53		1221	1189	FB.M4			
1		1 0 0 0	1010	NA FRO			
1/113:33		1220	J. ±, I. V	11-1,1.00			
17:15:03		1223	1221	M4,EB			
17:16:52		1223	1233	M4			
17-18-52		1223	1239	M4			
17:21:14		1222	1240	RCON			
17:21:26		1225	1240	M4			
17:23:04		1213	1244	C.ZEIT FARB-TV:	GMT	+10 MIN	30 SEC
17:04:01	T.	1007	1744	МА			
17:03:01	Y	1212	1044	RCOF			
17		1000	1/2 4/2	MA PD			
17:25:16		1 20 3	1443	PI4 , C.D.			
17:28:24		1203	1240	M 4			
17:29:01		1204	1238	M3, P, SL			
17:30:12		1205	1224	+ +			
17:30:38	р	1203	1222	NA .			
17:31:40	*	1201	1219	C-FL1			
17:01:10		1000	1000	D.			
17:32:23		1200	1047	C DI LITIO			
1.7:34:28		1239	1.34/	L,ELl#ELA			
17:35:17		1238	1253	M4			
17:37:24	P	1231	1256	C, FL1+FL2+FL3			
17:39:38	P	1230	1259	M4			
17:43:14		1235	1254	M4			
17:43:44		1236	1254	C-FL1-4			
17:44:25		1239	1055	ма			
17 . 40 . 51		1100	1055	MA			
1. / # *tO = () 1.		11.50	1000	113 No. 00			
17:51:58		11.96	1.22/	M3,85			
17:53:08		1193	1203	++			
17:54:16	Þ	1192	1167	D+,M4			
17:56:23	P	1194	1155	M 4			
17:58:07		1231	1159	D			
17 - 58 - 29		1 2 3 1	1159	LOB			
10.00.07		1 0 0 4	1104	BOT			
18:00:47		1230	1124	501			
18:01:06	22	1236	1197	N 4			
18:04:12	P	1308	1220	SL,H3			
18:05:00		1310	1235	M4 A A A A A A A A A A A A A A A A A A A			
18:06:38		1312	1251	M4			
18:07:22		1309	1252	M4			
18:10:21		1310	1325	14.4			
18 • 15 • 23		1227	1340	14			
10:10:20		1006	1 0 4 1	MA PD			
10.10.3/		1.350	1001	114,CD			
18:20:16		1239	1331	n 4			
18:22:23	P	1300	1315	SL,P,M3			
18:22:34		1301	1313	D,P,SL,M3			
19:23:26		1239	1303	M3, P, SL			
18:27:39		1325	1309	DF.M3,SL			
18:30:15		1303	1330	M3.P.SL			
10:00:01		1210	1225	ма			
10.00.00.00		1000	1000	11-1 M A			
18:34:28		1328	1004	114 DCON			
18:35:58		1 382	1337	KCUN			
18:36:24		1391	1357	C,ZEITVERSATZ R	ECURD	: GMT+ 1	NIM 06.01
18:38:28		1417	1365	M4,FB			
18:39:38	P	1426	1371	RCOF			
18:39:48		1402	1371	C.FL1-3			
18:42:03		1410	1380	M4-CC-C-CC=CONSI	DLTDA	TED CARE	ONATES
10=40=40		1 4 1 2	1202		an an air de 111		
10,42,43		1400	1 4 4 4	XA 00			
1.0:40:12		1.439	1400				
18:47:00		1496	1411	5L,M3,M			
18:48:21		1506	1439	KCON			
18:49:06		1505	1428	RCOF			

18:50:00		1510	1450	M4.CC
18:50:30		1517	1454	RCÓN
18:53:54		1516	1500	P.SL.M3
18:54:19	P	1514	1507	M4.CC
18:54:47	-	1513	1514	M4.CC
18:55:52		1527	1517	HM7.CC.C.SEDIMENT STARK GEFLECKT
18:58:37		1529	1527	RCUE
18:59:03		1519	1527	MA.CC.HM?
19:01:36		1588	1527	MA.CC
19:02:48		1583	1533	MA_HM?_CC
19:08:43		1598	1576	CC-M4
19:10:48		1622	1592	M4.CC
19:11:53		1634	1603	M4.CC
19:12:18		1624	1603	M4.HM?.CC
19:15:05		1621	1619	M4,HM7,CC
19:17:30		1697	1627	C.ASCHEN?
19:19:20		1697	1631	TOF.C.BAND 1
19:19:29		1714	1632	TON.C.BAND 2
19:22:25		1720	1649	M4.CC.HM?
19:24:38	P	1717	1668	P.M3.C.RUTSCHUNGEN
19:24:44		1713	1674	P.M3
19:25:36		1781	1690	P.M3.C.RUTSCHUNGEN
19:25:40		1783	1692	MA.C.LEICHT VERFESTIGTES SEDIMENT
19:31:44		1816	1755	M4.HM?
19:36:05		1885	1792	M3 S
19:36:26		1890	1795	
19:30:20		1901	1013	C BUTSCHUNGEN
10=40=41	D	1001	1010	
10=40=57	£.	1901	1015	μ, μ
10:40:50		1000	1010	MA LIM?
10=40=05		1010	1004	MO C
10=40=00		1011	1007	no,o
10:51:00		1909	1941	
19*52*10		1905	1941	
10=50=47		1993	1949	MA CC
10.5.00.47		1905	1951	GC MA CC
10=57=15		1996	1961	MA CC
19+57+56		2003	1962	MA, CC
20:01:49		2037	1983	MA.CC
20:03:30		2090	2000	60
20:03:58		2039	2004	P. M3. CC
20:04:22		2090	2010	C SEDIMENTABERUCH
20=04=20	p	2020	2012	MA CC
20:04:00	1 1 1 1 1	2094	2015	C CANYON
20:07:06	p	2090	2038	C.SEDIMENTABBRUCH
20:00:00		2026	2045	MA.CC
20:13:07		2083	2076	M4-CC
20:17:11		2088	2095	P. M3
20:20:12		2104	2152	MA TELMORNESS SAU
00=00=10		01/07	2152	BUDI
20:25:26		2136	2155	M4.C.ASCHEN?
20+22+12		0107	2150	11 p
00 × 07 × 10		010/	2142	"OF
4V = 47 = 49		2100	in 1° 1. in	1. U E

*****	****	***************************************
STATION SO-41	:	34 FS 02.03.86
LOKATION	:	MARSILI SEAMOUNT
****	***	***************************************
KOORDINATEN	:	BREITE (N) LAENGE (E)
BODENSICHT OFOS	3	START: 39 DEG 17.00 MIN 14 DEG 23.94 MIN ENDE : 39 DEG 19.66 MIN 14 DEG 25.71 MIN
PROFILSTRECKE	:	VOM TOP SEAMOUNT(1.BODENSICHT BEI 551 M) NACH NORDEN UEBER RUECKENKAMMIN IN EIN 1340M BECKEN AUF DEM KAMM BEI CA.39 DEG 19 MIN N, DANN WEITER UEBER OESTLICHEN RANDWALL HANG- ABWAERTS IN RICHTUNG 45 GRAD BIS 1743 M
PROFILTIEFEN	:	START: 551 M ENDE: 1743 M (RS904-OFOS)
TECHNISCHE DATE	1:	NAVIGATION SCHIFF: GPS, AB 20:50 SATNAV NAVIGATION OFOS : RS 904
		BLITZE : FL1-FL3,Z.T.FL1-FL4 LAMPEN : L1
(ZEITEN IN GMT)		S/W-VIDEO : 18:59 - 22:54 1.BAND FARB-VIDEO: NICHT RECORDED
		ERSTES PHOTO : 19:30:20 LETZTES PHOTO : 22:53:16 ANZAHL PHOTOS : 579
DATENFILES :		34FS.GEO (DATENFILE) 34FS.DAT (TITELBLATT) RS34FSO DAT (POSITIONEN)
FUNKTION :		OK
KURZFASSUNG DER BEOBACHTUNGEN	:	GERINGE SEDIMENTBEDECKUNG (10-30 %) AUF DEM TOP (528-648m),STARKE SEDIMENTBEDECKUNG IN TIEFEREM TERRAIN (50-100 %);LAVATYPEN: VON 528-725m PLATTIG-BANKIGE UND VERRUEHRTE SCHICHTLAVEN,VON 730-1407 LOBIERTE UND VER- RUEHRTE SCHICHTLAVEN;PILLOW LAVA VON 1456- 1520m;AKKUMULATIONEN VON SCHICHTLAVA-TALUS UND FEINSCHUTT VON 528m-891m;GERINGE TEKTO- NIK;KEINE HYDROTHERMALINDIKATIONEN
****	***	***************************************

die

. 279

OTATION . C		r.c.	
STATION : S	0-41 34	13	an and the A and the
NAVIGATION	SCHIFE:	GPS	GERAET: RS
2-MAR-86			
18:59:12	643	514	TON1
10.00.10	756	602	C HAPTEN AUE POSITION
19:08:19	/56	603	DOWN O WITTER DOOA SOO M
19:29:33	537	545	BUTI, C, TIEFE R5904 532 H
19:30:20 P	541	558	BOP1
19:30:21	541	558	M3,SP,SS,TS
19:32:27 P	540	550	M2,SP,SS,TS
19:32:53	539	546	M2,SP,SS,TS .
19:33:04	535	546	M2,SP,SS,TS
19:36:36	521	523	M2.SP.SS.TS
19:27:59 P	515	534	C-DRAHT?
10=00=44 D	510	520	MO SP SC
1.7.30.44 1	512	500	MO CD CC
19:39:4/	314	000	H2,5F,5C
19:39:56	512	536	M3,5P,5C
19:40:35 P	520	528	M3,TS,TF
19:41:22	528	522	M3,TS,TF
19:42:28 P	550	525	M3.TS.TF
10 . A3 . A0 D	561	576	MOSCOTS
17:44:40 F	501	500	MO C TC
19:44:48	599	047	10,0,10
19:45:08	620	534	
19:45:30	613	540	
19:48:50	642	610	TS,M3
19:49:00	645	613	TS,M3
19:49:22	648	621	M3,TS
19:49:59	662	635	D-
19:50:28 P	675	636	S.TS.M2
19:50:46	692	638	M2.S.TS
19:50:56 P	696	645	TS M2 SP SC C SAFILLEN
19.30.30 F	DJO	640	TO NO C
19:51:30	705	640	10,02,0
19:52:04	704	656	M3,55,5P
19:52:57	712	655	C, TERRASSE
19:53:07	719	654	M3,SS,SP
19:55:54	728	703	M4
19:56:56 P	736	719	M3,SP,TS,TF
19:58:00	744	734	M3.SP.SS.TF
19:58:22	749	734	++ M3 TS TF S
10.50.27	757	711	LOB
10.50.50	707	710	BOT NO TO TE C
19:09:04	765	/19	DUL, NO, LO, LE, O
20:00:09	768	120	M3,15,1F,5
20:01:03 P	770	730	M4
20:01:37 F	771	735	M3,5
20:02:26	779	748	ИЗ, S
20:02:51	782	757	M3.5
20:05:35	797	787	M3 S
20=05=50	700	787	Mag
20.00.00	011	700	C CEDIMENT ETHAC DUNVIED
20.00.00	011	790	CUSEDINERI EIWHO DORKEEK
20:07:29	814	798	m3,5
20:07:36	812	799	M4,TE
20:08:22	805	806	C,SEDIMENT DUNKEL
20:09:17	824	808	M4,TE
20:09:51	816	808	C,SEDIMENT DUNKEL
20:10:01	833	810	M4, TF
20:10:15	828	810	M4.TF
20:10:59	841	813	D+.C.TOUCHIERT
20.11.17 ₽	837	792	M3.S
20.11.1/ F	007	705	NO C
30:11:34	833	190	13,3
20:11:48 F	840	796	
20:13:44	873	320	C, BILD FLACKERT
20:14:31	898	804	LOP

34.15.30		000	000	POT	
40.10.28		906	823	BUI	
20:15:39		921	828	M4	
20:16:57		922	835	МЗ,5	
20:18:10		937	852	M4,TF	
20:18:43		952	865	M4.TF	
20:19:04		950	872	C.SEDIMENT DUNKEL	
20:20:04		957	991	MA TE	
AV. AV. V4		005	011		
20:21:13		965	911		
20:22:32		955	934	M3, SP, SL	
20:24:08		954	950		
20:27:08		975	972	C, FLASH 1-3	
20:27:25	P	964	972	M4	
20:31:44		1057	970	C,STREIFEN IM SED.	
20:32:08		1047	973	. M4	
20:33:59		1079	995	, M4	
20:37:22		1125	1050	C, RUTSCHSPUREN	
20:39:30		1145	1036	M4	
20:42:05		1160	1128	C.FLASH 1-4	
20:49:26	P	1199	1191	MA CHARLEN CAR CONST	
20:49:46	-	1204	1192	FB.M4	
20.45.40		1204	1195	MA	
20.30.00		1200	1107		
20:50:40		1210	1197	FB,C,DEKHFODEN	
20:51:03		1205	11.98		
21:03:14	P	1280	1243	m4 sector back to a	
21:04:32		1294	1265	FF, PLS	
21:04:55		1291	1267	M4	
21:05:56	3	1299	1272	FF,PLS	
21:06:16		1295 \	1276	M4	
21:06:40		1298	1276	FF,PLS,M3	
21:07:01	P	1299	1280	M4	
21:07:40	i i	1301	1288	MA THE REPORT OF THE STATE	
21:07:54		1307	1291	MA DEGULT DECT AND	
21:09:50		1310	1295	M2 S	
21.00.50		1010	1200	NO C	
21:09:00		1000	1010	110,0 X A	
21:11:07		1323	1017	n4 C DOCK	
21:14:26		1323	1317	C, DOSE	
21:14:37		1329	1318	M4	
21:16:18		1330	1323	M4	
21:17:11	P	1331	1324	M4	
21:17:20		1331	1324	M3,S	
21:19:07	P	1333	1326	M3,S	
21:20:44		1330	1334	M3,5 Black Content of the	
21:22:40		1332	1337	M3.Self- Total Actor Control	
21:23:41		1331	1340	D-1,FF,M4	
21:24:43		1334	1348	M4	
21:29:23		1336	1353	M4.FB.C.KREBS	
21:36:19		1345	1365	C.FLASH 1-3	
21.26.29		1344	1366	M4	
D1 + 00 + 15	4	1071	1000	TT MA	
21:39:15		1325	13/6	EB, 114	
21:39:36		1328	13//		
21:39:49		1323	1377	C, FISCH	
21:40:01		1322	1377	M4	
21:41:14		1321	1381	C, RUHESPUREN?	
21:41:42		1307	1379	M4	
21:41:58		1323	1379	FB,M4	
21:42:03		1326	1379	M4	
21:43:39		1281	1378	C.FLASH 1-4	
21:43:49		1279	1378	M4	
21:46:49		1295	1369	++ - M4	
01 + 40 + 44		1212	1262	C. FAHRT HERER NE PAND DEP 9	ENKE
01.50.50		1012	10/0	NA CALINE CODDEN NO NHILD DON C	
21:20:29		1367	1303	17 4	

۲.

21:57:06		1312	1314	C. TOP RANDWALL.M	3.5
21:57:37		1336	1316	M3.S	100
22:00:13		1349	1342	M4	
22:00:10		1369	1400	C.FISCH	
22.V2.2V		1047	1 401	MA	
22:02:30		1.347	1401	19	
22:03:06		1401	1400	TOPI	
22:04:29		1400	1404	MA	
22:09:57		1456	1373	D+	
22:10:18		1492	1364	M4	
22:11:38		1500	1378	M3.SL	
22:14:26		1514	1407	M3.5	
22:15:09		1545	1425	P. M3	1921
22:10:00		1556	1431	P.M3	1000
22+15+45		1569	1440	MA	6201 6
22.10.10.10	p	1500	1 450	MO D DIC	19214 5
44:10:04	P	1086	1400		
22:16:58	P	1589	1408	C, CRINUIDE	
22:17:50		1598	1463	11-, P, M3, PL5	
22:17:59		1600	1469	M4 PM-813 20121	*051 a
22:20:44	-	1633	1508	M4	
22:21:49	Р	1642	1520	PLS,M3	
22:22:29		1657	1534	D NH 0011	
22:22:50		1663	1536	M4	4 P 1280
22:23:39		1662	1557	C, RUISCHUNGSBAHNI	ENCS
22:23:59		1668	1565	M4 In tasz	
22:25:10		1670	1583	RUTSCHUNGSBAHNEN	6 1299
22:25:28		1670	1584	M4 PH 3521	282
22:28:44		1678 -	1632	EB,M4	
22:29:55		1684	1645	M4 PART PART OF CIT	
22:34:50		1643	1706	C, SED IMENT DUNKE	L GEFLECKT
22:35:43		1646	1712	C,DOSE PH LOCI	1307
22:36:11		1645	1711	M4 e.ch.cect	0104 0
22:40:14		1724	1713	D-,FF	
22:42:02		1739	1715	D- AM OICI	
22:42:32		1748	1721	M4, C, RUTSCHUNGSB	AHNEN
22:43:50		1747	1752	M4 MA BEEL	
22:47:29	P	1754	1703	D+ A COCL	
22:47:58		1774	1694	M4	
22:49:59		1805	1704	P,M3	186.0
22:50:03		1809	1705	D- B.B. Ch acci	RECT OF
22:50:51		1808	1705	LOB	
22:52:00		1857	1739	BOT,M42 Personen	
22:52:41		1875	1759	C. RUTSCHUNGSBAHN	EN
22:53:06		1884	1760	UP AN BACI	NCEI G
22:53:16	P	1880	1763	BOFL	
22:52:50		1851	1720	TOF	
VU + CU + Mu		1001	1/03/	LOL.	

THAR ON BERER NUMBER OF SAMP

BAYS FERMAN

****	****	*************************************
STATION SO-41		42 FS 04.03.86
LOKATION	:	MARSILI SEAMOUNT, SE BASIS, VORGELAGERTER Ruecken
****	****	******
KOORDINATEN	:	BREITE (N) LAENGE (E)
BODENSICHT OFOS	3	START: 39 DEG 07.67 MIN 14 DEG 31.58 MIN ENDE: 39 DEG 08.47 MIN 14 DEG 29.93 MIN
PROFILSTRECKE	•	VOM TOP DES RUECKEN(1.BODENSICHT BEI 2989 M) NACH WESTEN IN EINE 3300 M EBENE ZWISCHEN MARSILI MASSIV UND VORRUECKEN
PROFILTIEFEN	:	START: 2989 M ENDE: 3365 M (KABELLAENGE)
TECHNISCHE DATEN	1:	NAVIGATION SCHIFF: GPS NAVIGATION OFOS : RS 904
		BLITZE : FL1-FL3,Z.T.FL1-FL4 LAMPEN : L1
(ZEITEN IN GMT)		S/W-VIDEO : 19:25 - 21:30 1.BAND FARB-VIDEO: NICHT RECORDED
		ERSTES PHOTO : 19:25:30 LETZTES PHOTO : 21:30:07 ANZAHL PHOTOS : 332
DATENFILES :	•	42FS.GEO (DATENFILE) 42FS.DAT (TITELBLATT) S04107.SAT (POSITIONEN)
EUNKTION :		RS904-DATEN VERLOREN, SONST OK; PROFILTRACK= SCHIFFSPOSITIONEN
KURZFASSUNG BER Beobachtungen	:	SEHR STARKE SEDIMENTBEDECKUNG (70-100 %); TOPBEREICH MIT KONKRETIONAEREN SEDIMENT- BAENKEN OHNE LAVA-AUSBISSE;SCHICHTLAVEN LOKAL IN STAERKER GENEIGTEM TERRAIN (301G- 3352m);SEHR WENIG TEKTONIK;AUSGEPRAEGTE SEDIMENTHUEGEL (2-8cm RADIUS) MIT LOECHERN IM BECKENBEREICH BEI 3350m;KEINE HYDROTHER- MALINDIKATIONEN;ALTES ERSCHEINUNGSBILD DER LAVAFORMATIONEN
*****	***	*****

- 284

STATION	• 3	0-41 41	DE G	
NAVIGATI	้ ผถ	SCHIFF	GPS	GERAET: RS
4-MAR-8	6			
19:24:52	-	2937	2998	TON
19.25.30	Þ	2960	2989	BOPL M3 S D+
19:25:38	•	2963	2989	BOTI
19:25:51		2900	2990	44
19:26:47		2932	2005	C AUE DEM TOP MA
19-29-24		2976	2905	MA
19.20.34		2970	2000	
10.00.04		2904	2000	MA
10:01:16		2020	2001	
19.01.10		293/	2000	C CEDIMENTRAENVE MA ED
19:33:33		2005	2900	C, SEDINERIERE, Nº, CD
19:34:00		2920	4907	
10:04:24		2943	2000	
10:05:50		3009	2000	WA
19:30:03		2940	2990	114,
19:41:01		2967	3016	C,KANIG
19:43:33	r	2968	3017	D -
19:44:00		2970	3010	
10.45.00		2996	3016	no, o
10=45=40		2000	3010	
19:45:49	D	2020	2007	ыт, на, а
19:47:37	D	2021	2007	MA
10:47:57	r	2091	3007	, II4
19:40:50		3100	2019	no , o
10:40:00		2105	2024	MO C
10.51.50	D	2120	2020	MA
10.52.00	r	0107	2076	MO C
10.50.40		31/7	3070	, no, o
19:03:49		3439	3083	no, 5
10.55.50		3230	2116	
19.55.00		3237	2124	MA
1.9.00.02		3334	01/21	11-2 M A
20:01:12		3237	31/1	114 MO C
20:02:03		3237	310/	no,o
20:03:33		3230	3130	HA
20:04:07		3240	3230	MA
20:00:02		2262	3262	ма с
20:08:20		3249	2270	M3 C
20:00:00		3245	2270	C KANTE D-
20:07:05		2254	2207	
20.11.00		3204	2226	BOT
20:12:12		3251	3331	MA
20:12:36		3239	3337	НА
20:13:44		3238	3352	M3-5
20:14:00		3239	3357	H4
20:15:38		3239	3359	MA - C - SEDIMENTHUEGEL
20:20:47		3213	3377	FB-M4
20:43:40		3186	3346	C.SEDIMENTBLASEN
20:44:00		3194	3341	C.SEDIMENTBLASEN
20:46:13		3184	3324	LOB
20:47:29		3181	3343	BOT, M4
21:01:20		3167	3315	C,KANTE
21:07:06		3160	3297	C,FL1-FL2
21:08:15		3167	3293	M4
21:09:15		3158	3290	C,FL1
21:11:10		3158	3285	C,FL1-FL3
21:12:23		3155	3284	C, FL1-FL4
21:14:19		3155	3288	

21:14:33	3154 3290 3077 3358	C,FL1-FL3 MA				
21-20-52	2077 2260	1111				
	3077 3300	DODI				
21:30:07 1	3076 3363	DULL				
21:30:22	30/0 3361	102				
		61		12000		
		CRANUNCIDIUS				
		LINTHENTIGES, G	880			
		STRANG				
					a sorradine -	
			3015			
	×					
					24×277:11	
		socionomorezea (3				
				1. 1. C. C.		
	×			U-1 17		
	- I THERE	THEMI THE .U. IN				
		1, 11, 1 - 13, 2				
		A 10 - A 10, 3				

STATION	S0	41	•	46	FS							05	.03	.86		
LOKATION	ONC	i other		PAL 14	. INUF	80 S 43	EAMO Min	UNT, E, S	WE9	STLI DEG	CHE 32	S M MIN	ASS W	IV	ин	
*******	***	***:	****	****	****	***	****	****	***	****	***	***	***	***:	***	****
KOORDINAT	EN		: 5				В	REIT	E	(N)			L	AEN	GE	(E)
BODENSI	HT	OFO	3	STA	ART: DE :	39 39	DEG DEG	31. 31.	92 95	MIN		14 14	DEG DEG	43 42	. 54 . 94	MIN MIN
PROFILSTI	RECK	E	•	VON 515 39 EIN DES	1 TOP 5 M) DEG 1EN 9 5 GE9	DE MIT 32. SATT	S 48 330 3 MI EL Z MASS	G M GRA N N, WISC IVS	KRA DAI DAI HEI	ATER NACH NN N N DE IEFE	S(1 14 ACH N B N G	.BO DE WE EID ROE	DEN G 4 STE EN SSE	51C 3.4 N I IEI R 7	HT I MII N LKUI DOMI	BEI N E, PPEN)
PROFILTIE	FEN		:	STA	RT:	515	м	ENI	E:	773	м	(R	S90-	4-01	FOS	>
TECHNISCH	IE D	ATE	1:	NAV	IGAT	ION	SCH OFO	IFF: S:	GI RS	PS 5 90	4					
				BL1 Lam	TZE		: FL : L4	1-FL	3,2	Ζ.Τ.	FL1	-FL	2			
(ZEITEN 1	N GI	MT)		S/W Far	-VID 8-V1	EO DEO	: 21 : NI	:32 CHT	- 2 REC	23:1 CORD	8 ED	1.B	AND			
				ERS LET ANZ	TES ZTES AHL	PHO PHO PHO	ro DTO COS	: 21 : 23 : 39	:32 :17 8	2:15					1.0.00	
DATENFILE	S		- 4	()		D	46 46	ES.G	EO	(DA (TI	TEN	FIL	E) TT) EN)			
FUNKTION				ОК		R	5401	50.0	HI	(FU	511	TON	5147			
KURZFASSU BEOBACHTU	ING I	DER N	•	GER 533 50- TIO TER FE- SCH FOR BRA PRA KRU TEK	INGE M (2 100 NEN ODE MN-K ICHT M VO UN-S EGNA STET TON I	SEI 1:53 2 IN VORU R KN RUST LAVI N GI CHWA TION E KO K	DIME 3-21 N AN JIEG NOLL FEN EN;H RUEN ARZE NSFL DRAL	NTBE 59) DERE END IGER ALS YDRO LICH N (F ECKE LEN	DEC ,ST N E SCH OBE THE EN E-M N 1 (21	KUN ARK ERE IICH ERF RFL RFL (FE IN-0 IM S .:32	G (E SI ICHI TLAU LAE(AECH LINI -SMI XYHY EDIN :55	10- EDI EN; VEN CHE HEN DIK YDR YDR YEN);S	20 7 MENI LAVA MII NSTH BELA ATIC ITE? OXII T;FH TAEH	() (BEI AFOR (VE (UK) AG I NEN () () () () () () () () () ()	IND IND IND IND IND IND IND IND IND IND	486- (UNG JEHR- I I BER-

14 42			14 43			14 44			14 4	s 3 5 . 5 5				
39 33		274-	300	128-					1.61	39 33				
			558							222258		1.	* _ 11	
			AN.			1				1000			2.22	
			880											
find the fi						1.1				1 1 2 0				
			623	AND AND						이 나의 거 봐.				
	1		M GI G			1 2 3				NA ANA				
11 S. 10			G al	2						10000			120	
				-	241-0 0 10 10				(a)	N 101 N 100 N	195	14		
1 D. Dr.	2		C.C.		1,	85-							5 293	
- 6 C					Ę	1200				122.48			2. 2.8.	
39 32	30.00	14365	01102	2 KH (1) 25 Ki		1343	- 25	 25	10-	39 32				
					A second	生育品			13					
			Fig		46	1 월일류				02013	19.3			
			100			DE L				별 및 정 및 운	MERCA	TOR	PROJECTIO	IN
					L.						SC	ALE I	: 25000	
					•						8.3	N 3	39 32'	
				1 18						1.	WORLD	GEODET	IC SYSTEM 197	2
												PREL	JSSAG	02
											100	SON	NE 41	
			ŀ							14	EM	PAL	INURO	
										30.5	- 23	RS	904	
					L'UNC I					5.805.71	100 EV	PAL 46 RS	INURO FS 904	1.50

the second secon

STATION NAVIGAT 5-MAR-1	: 10N 86	SO-41 46 SCHIFF:	FS GPS	GERAET: RS	1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1		
21:32:15		516	518	BOP1			0.0 ± 1 1 1
21:32:17		516	519	TON			
21:32:51	P	516	517	BOT1.FB.M3.	S	and the	
21:32:55		514	517	M3.S.C.MN-U	EBERKI	USTETE	KORALLEN
21:33:24	P	502	515	M4			
21:37:06	P	496	513	M4 Thantgaa			011289-1
21:38:23	P	497	503	M3,S,HC,HM		1112	
21:38:37		496	497	M3,S,HC,HM			1 76:38E:37
21:39:46		510	502	C, TOP HILL			
21:40:00		512	502	M3,S,HC			A 4441831
21:40:39		512	503	++ 6.0			
21:40:46		513	498	M3,S,HC		1.104	143,226,011,034
21:41:16	P	533	507	HM, M3, S, HC			1 N 8812611
21:41:30		519	507	M3,5,HC			
21:41:4/		044	503	L,FISUM			
21:42:01		530	506	M3,5,HC			
21:43:01		539	512	M3,5,HL		10,000	042754Ø
21:40:02		553	540		in Acce		
21:40:17		534	540			1000	
21:46:10		554	550	M3.HC	en de sup 214 de seu		
21:40:00		557	556	HM HC S			1 461 5 100 5 5
21:47:00		566	557	M3.S		6.1.0	
21:49:19	Р	550	563	M4			
21:49:47	-	544	567	M4 DHLEL			
21:50:19		526	567	SN.M3			
21:50:52		522	565	M3,S CHURLE			
21:51:21		526	558	HM, M4			
21:51:27		535	558	M4 DH.C.	SAS H		
21:51:52		510	554	++, M3, S, HC			
21:52:10		518	549	M3,++,S,HC			
21:52:39		519	540	SN,M3,HC			2:52:59
21:53:05		508	535	++,M3,S			
21:53:12		507	533	M2,S,HC			
21:53:48		499	521	M2,S,HC	11 85		9 9 9 1111
21:54:27		491	519	++,M2,5,HL	11400 11400		
21:54:40		491	515	MZ, SN, HC			× E0:60:E
21:56:26		504	499	M2, SN, HC			
21:57:12		514	49/	1)+ 20 CN UC 30		and the	
21:57:37		541	400	C TOD AGG M			N 9-2332.20
21:58:29	р	520	498	M2.S	T GUNNI		
22:00:35	•	523	508	HM.M3.S			
22:01:24		517	515	M4.FB			A CELONIC A CONTRACTOR
22:02:21		509	521	C, FL1-2			
22:04:31		534	521	M4.FB			
22:04:58		537	517	++			
22:05:20	P	548	516	M4, C, KORALL	EN IM	SEDIMEN	T
22:06:20		559	516	M3.S.HM.HC			
22:06:57	Р	573	517	C,FL1-3			
22:07:17		568	520	нм,мз,ѕ,нс			
22:07:56		584	528	нм,мз,ѕ,нс			
22:08:25		588	534	M4		*	
22:09:23		597	547	M3,S,HC,HM			
22:10:24		609	560	C,FL1-2			
22:10:40		607	564	M3,S,HC,HM			
22:11:10		613	576	n4 0			
22:12:50		638	223	しゅドレイーゴ			

22:15:07		699	626	M4 CTIARTO STO
22:15:25		707	629	M4
22:16:00		726	633	M3,S,D-,HC
22:17:23		729	663	M3,S,HC HOE end
22:17:24		729	663	M3,S,HC
22:19:28		726	700	C, LAMPES DEFEKT, M4
22:21:51		728	739	M4
22:23:19 22:26:39		721 671	746 745	C.SEDIMENT FLECKIG
22:28:27	P	624	733	HM,M4
22:30:24		612	706	++ JULH WOT. D. COF
22:31:14		615	687	M4
22:31:56	3	612	671	M3,S
22:32:41		605	653	M4 DH, E, SH 600
22:32:52	P	601	649	M3,D+,S M MI TOT
22:33:17		597	637	S,M3 DH.8.SH TOT
22:35:30		560	633	N4 HIGTS, J CO2
22:35:43		554	632	++,M4 00.0.0 M 000
22:37:40		563	615	M3,S,HC
22:38:41		576	591	M3, D+, S, HC MA ONE
22:40:14		582	570	D+,S,HC,M3 CA SAR
22:41:17	Р	589	572	S, D+, M1, HC
22:41:35	P	593	573	M2, D+, S, HC CM OBR
22:42:20	P	603	582	N3,S,HC HARAC
22:43:01		614	598	M4 Buch tea
22:43:30		620	604	563 M4
22:44:00		625	607	M3,S,HC
22:44:16		640	611	M4 100,08 102
22:44:29		620	614	M3,S,HC R,CM RDR
22:45:08		656	621	C, RUTSCHBAHNEN
22:46:41		676	642	M3,S,HC
22:47:30		662	654	M3,S,HC
22:50:11		678	679	DH1 S W - * CM 649
22:52:59		688	704	МА ОНАСМАНА ОНО
22:56:39		687	711	M3,S,HC MARK 202
22:58:47		710	/0/	D+ DMLB.SM SEC
23:01:29	P	716	721	M4
23:06:42		730	740	++,Π3,S,HL
23:09:03		741	750	
23:10:50	P	132	748	N3, 5, HU
23:16:12	Ð	773	739	POPI
23:17:50	r	/ 99	760	BULT COOD DUCTOR
23:18:13		806	760	UP,C,398 PHOTUS
23:18:18		807	758	TUP

70, 11

608

0:E0:15

STATION SO-41 :	70 FS 07.03.86
LOKATION :	PALINURO SEAMOUNT,WESTLICHES MASSIV UM 14 DEG 43 MIN E, 39 DEG 32 MIN N
****	************
KOORDINATEN :	BREITE (N) LAENGE (E)
BODENSICHT OFOS	START: 39 DEG 32.34 MIN 14 DEG 43.37 MIN ENDE : 39 DEG 32.60 MIN 14 DEG 42.75 MIN
PROFILSTRECKE :	VOM TOP DES 561 M KRATERS(1.BODENSICHT BEI 657 M) MIT 45 GRAD NACH 14 DEG 43.55 MIN E, 39 DEG 32.48 MIN N,DANN NACH WESTEN DURCH EINEN SATTEL (740M) ZWISCHEN DEN BEIDEN TEILKUPPEN DES GESAMTMASSIVS BIS 39 DEG 32.41 N,14 DEG 42.3 E(POS.1),WEITER ZWISCHEN 59 UND 576m KRATERN HINDURCH,DANN WIEDER NACH WESTEN UMBIEGEND BIS 39 DEG 32.68 N,14 DEG 41.8,ZURUECK NACH POS.1 UND WEITER UEBER 563m KRATER BIS CA.39 DEG 32.2N,14 DEG 42.3,ZURUECK NACH POS.1.
PROFILTIEFEN :	START: 657 M ENDE: 634 M (RS904-OFOS)
TECHNISCHE DATEN:	NAVIGATION SCHIFF: GPS NAVIGATION OFOS : RS 904
1184102-40104-00	BLITZE : FL1-FL3,Z.T.FL1-FL2 LAMPEN : L3
(ZEITEN IN GMT)	S/W-VIDEO : 18:56 - 21:15 1.BAND FARB-VIDEO: 20:49 - 20:56 (EINGEBLENDETE ZEIT=GMT + 52 min 20 sec) ERSTES PHOTO : 18:57:01 LETZTES PHOTO : 21:14:48 ANZAHL PHOTOS : 353
DATENFILES :	70FS.GEO (DATENFILE) 70FS.DAT (TITELBLATT) 70FS.ERG (ERGEBNISSSE) RS70FSO.DAT (POSITIONEN)
FUNKTION :	OK. EINGEBLENDETES DATUM AUF PHOTOS 04.03.

STATION	SO-41	:	70 FS 07.03.86	
LOKATION		1.8	PALINURO SEAMOUNT, WESTLICHES MASSIV UM	
			14 DEG 43 MIN E, 39 DEG 32 MIN W	

KURZFASSUNG DER : BEOBACHTUNGEN

33530 14 DEG 49, 01 MS 35

-GELBLICHE IMPRAEGNATIONEN UND HALOS

(FE-OXYHYDROXIDE,SULFIDE?) AUF UND UM LAVASTRUKTUREN: 19:06:28,19:10:21, ±19:32:24±.±±19:35:47-19:36:06±±±, 20:12:32,20:27:03,±±±20:37:10-20:38:56±±±, ±21:03:37-21:10:56±,±±±21:07:20-28±±±

-GELBE IMPRAEGANTIONEN IM SEDIMENT(FE-OXIHY-Droxide?): 19:01:18,19:03:28

> -SCHWARZE IMPRAEGNATIONEN (MN-OXIHYDROXIDE?) IM SEDIMENT: 19:09:18-19:09:38,19:17:20, 21:00:37-21:03:37

-WEISSE PRAEZIPITATE(SULFATE, KARBONATE, SI02?) AUF LAVA: 19:22:40, **20:40:29**

-WEISSE RUNDLICHE IMPRAEGNATIONEN IM SEDI-MENT,Z.T. MIT LOCH (KARBONATE,SULFATE,SIO2?) ***19:36:06-19:36:41***,**19:38-19:42**,*19: 50:19-19:50:40*,20:50-20:51

-TRUEBUNGEN IM WASSER: 20:45:34-20:48:23

-MN-UEBERKRUSTETE KORALLEN: 19:37:12,20:55:41

SEDIMENTBEDECKUNG 30-100 %, IN AREALEN HIT LA-VA-OUTCROPS 30-70 %; LAVA ALS SCHICHTLAVA MIT UEBERWIEGEND VERRUEHRTER ODER WULSTIGER OBERFLAECHENSTRUKTUR, LOKAL FLATTIG-BANKIG (20:56:39-20:56:52); Z.T.MN-KRUSTEN AUF LAVA; WENIG TEKTONIK; MORPHOLOGIE WIRD UEBERWIEGEND DURCH VULKANISCHE ERGUESSE BESTIMMT; 2 FISCHE (BARSCHE?) VERFOLGEN GRUNDGEWICHT IN DER NAEHE DER WASSERTRUEBUNGEN.

ZENTREN HYDROTHERMALER INDIKATIONEN:

A. 19:06-19:11 = 618-631 m (OFOS-RS904) >>> B. 19:32-19:42 = 517-627 m C. 20:37-20:40 = 588-605 m >>> B. 21:03-21:10 = 592-600 m

EMPFEHLENSWERTE PROBENAHMEPOSITIONEN: 19:36:00,21:07:30

STATION NAVIGATI 7-MAR-8	: SO- ON SC 6	41 70 HIFF:	FS GPS	GERAET: RS	19:37:12 P 500 (9:30:05 P 509
18:56:22		648	652	TON.C.FALSCHES DATUM AUF	PHOTOS
18:56:58		643	668	BOT1.M3.S	003 1 2747440
18:57:01	P	640	665	BOP1.M3.S.C.RS-TIEFE 657M	TTS OFFICIAN
19:00:05		637	663	M3.S	100 100 000 000 000 000 000 000 000 000
19:00:30		640	653	M3.5	
19:01:01		636	650	M4	292 00.401.401
19:01:18	P	633	649	M4-HM-C-FE-OXIDE?	CO2 C1+01+01
19:01:35	P	634	649	M4	102 SC+00+01
19:03:28	P 200	627	647	M4.HM.C.FE-OXIDE?	19:50:10 595
19:03:43	•	645	645	MA SOLEN EDA	APP 4 GA-07+PI
19:04:14		642	641	M3.5	892 00112-01
19:06:28	P	642	649	HP.M3.S.C.FE-OXIDE.SULFIL	E?
19:06:40	•	643	652	M3.S	PEAL SEADER
19:07:51		643	659	M3.5	10-54-57
19:08:25		649	670	MA BUCK CAR	224 20142-01
19:09:18	P	630	677	HMD_M4_C_MN-OXIHYDROXIDE	IM SEDIMENT?
19:09:46	•	718	685	++.M3.S	
19:10:25	P	725	680	M3.S.HP.C.FE-OXIDE.SULFIL	E?
19:10:30		728	679	M3.S an area	015 - 82:30:00
19:10:37		737	674	LOB	
19:10:50		741	678	BOT,M3,S	1011010102
19:11:30		754	684	M4 no-an other a property	
19:12:10		748	688	M3.5	
19:12:52		742	704	M3.S	
19:14:44		660	770	M3.S more than the second	Fill d Cardiean
19:15:39		674	775	++	
19:17:20	P	676	776	M3, HMD, S, C, MN-OXIHYDROXID	E IM SEDIMENT?
19:17:58		677	777	M3,S	Eba g calabian
19:18:37		678	777	M4 MA	PLA V PATTOLAR
19:18:50	P	707	771	HMD, M4, C, MN-OXIHYDROXIDE	IM SEDIMENT?
19:19:04		679	767	M4 B.DH 00a	26:31:21 580
19:21:01		722	748	++,M3,S AN 888	
19:21:37		735	750	M4 e.in pea	
19:22:04		719	753	M3,S NOR COST	
19:22:14		722	752	++,M3,S	00:271:10 2 00:2
19:22:40	P	716	742	HP, M3, S, C, SULFATE, KARBONA	TE, SI02?
19:22:58		711	736	M41982AN, 0.91, 8, 25 Yea	20:40:29 P 606
19:23:29	P	710	751	M3,S BISS HORMAN, D CLA	20:45:13 9 609
19:24:02		688	751	++,M3,S CHUESUNT, D LIA	20145:24 9 010
19:24:54	P	670	753	SP,M3 MOREDWIT. O. MA 214	20146128 628
19:25:37		664	758	M3,S DHUSEUNT, D. MM ala	
19:27:02	Р	612	801	M4 OMUNIQUET.O TEA	20147207 618
19:27:54		593	822	C, IM SATTELBEREICH	20140133 9 60102102
19:28:08		607	819	М4 ИООЯ ГЕА	20149:51 593
19:28:38		590	813	++, M4 6M, MH 020	20:50:54 593
19:30:14	P	580	780	M3,SI29231111122,0,959	20:51:13 594
19:30:36	P	582	780	++, n4	20:53:29 8 551
19:32:19	L IVIU	604	745	HE, HE, HS, S, C, EE-UXIDE, SUL	10:55:41 P 14:22:01
19:32:23		604	/42	NG 2003 SEA	20156132 377
19:33:12	D	609	708	623 H3,5 42,6H 623	20:56:39 P 386
19:33:14	P	609	/06	114	20:56:52 P 500
19:33:33	n	606	692		20:59:45 8 7723
19:33:35	P	606	690	MA, C, WEISSE ELUCKEN IM WA	33FK 4 16:00:15
19:34:33	F A 2 M	010	652	NA C URIDOR RIDOURN TV UN	21:03:25 1 22:50:12
19:30:33	D D D D D D	602	649	HALL WEISSE FLUCKEN IM WA	COLN CETAOLIC
19:30:4/	P	621	655	MA HM C VADEONATE CHIEATE	SI022
10:06:00	D D	611	653	UM MA C VADDOMATE CHI PATE	61022
1.7.30.34	L.	011	00/	ni, na, c, NARDUNALE, SULFALE	, 3104!

19:37:12	P		598		660	M3.S.HC.C.MN-UEBERKRUSTETE KORALL	EN
19:38:05	P		593		686	HM.M4.C.KARBONATE.SULFATE.SIO2?	
19:41:25	P		598		681	M4.HM.C.KARBONATE.SULFATE.SIO2?	B-SAM-C
19:41:59	p		600		673	MAI BALDELATED. MOT COL RAD	
19:42:53	P		602		632	++ MA CONCITOR SAAT CAA	100 x 00 x 01
19.42.00			617		615	MA ST TREE THE TREE THE	
10.46.10			617		610	C DIDDEL MADVENO	
19:46:13			602		623	L, RIPPELMARKEN!	
19:46:34			602		624		
19:48:18			282		618	HM, M4	19:01:00
19:49:12			593		615	M4auryo-aararmered coarriesaring d	
19:49:33			587		610	M3,5	19:01:35
19:50:10			595		606	HM, M4, C, KARBUNATE, SULFATE, S102:	19:03428
19:50:48	Р		596		603	M3,S AN BAS SAS	19:03:43
19:51:02			598		600	**************************************	19:50:4:14
19:51:39			605		596	M3,SU-JI. J. A. FR. SH CAA SAA	
19:52:47			625		597	M3.S	
19:54:57			649		620	R CA SEA FAS	
19:56:03			653		642	M3.S	1.14 × 3.19 × 5.1
19.57.04			670		658	MA	
20:02:12	Ð		600		670	NO C	83100261
20.04.12	r		074		0/2		
20:04:59			/11		/19	++,n3,5	SIN OUTEL O
20:06:28			719		755	n4	
20:08:30	F		702		733	M4 000 000 000 000 000 000 000	
20:12:14	P		698		723	ИЗ, S	
20:12:32	P		695		719	M3.S.HP.C.FE-OXIDE,SULFIDE?	
20:12:39			695		717	M3.S BLEM BBA BAY AND	101121210
20:16:00			650		681	M4 2,6H M01 SM1	11:12:53
20:18:02	P		643		671	M4_FB_C_SEDIMENTFAECHER	
20:23:32	•		622		652	MA	
20.25.22			600		GAD	LL MANNER THE ATT ATA	DCATIFRE.
20.20.22			605		640		
20:26:32	P		501		630	C, BAKOLA	
20:2/:03	P		299		641	M3, HP, S, C, EE-UXIDE, SULFIDE?	
20:29:58			287		611	M4	OCCUSICS 3
20:32:21			583		600	M3,S	
20:32:50			582		598	M4	
20:33:51			584		592	M3,S PARA BEY BEY	
20:35:50	P		598		599	M4 SACK DEC DIS	
20:37:10	P	1.4	602		603	M3, HP, S, C, FE-OXIDE, SULFIDE?	
20:38:56	P		604		604	M3,SLUDE. J. B. SH. THE DAY	0.A.: 00: 04.
20:40:29	P		606		605	M3, S, HP, C, KARBONATE, SULFATE, SIO2?	
20:45:13	P		609		610	C, BARSCH BEISST GRUNDGEWICHT	PLARSERIA
20:45:34	P		610		611	C.TRUEBUNG IM WASSER	LOSAL TO L.
20:46:28			623		615	M4.C.TRUEBUNG	
20:46:53	P		620		616	M4.C.TRUEBUNG	· · · · · · · · · · · · · · · · · · ·
20:47:07			618		617	C.TRUEBUNG	CONCRETE OF
20:48:23	р		602		624	C TRUEBUNG	A TANK A A A A
20:48:51	•		593		631	PCON	
20.50.51			500	5	630		
20.50.54			593	•	630		
20:51:13			594		646	C. ZEIIDIEFEKENZ GMI+52.20MIN	84499784
20:53:29	P		551		631	M3,S	00108161
20:55:41	P		560		628	M3,S,HC,C,MN-UEBERKRUSTETE KORALLI	EN
20:56:22			577		623	RCOF	
20:56:39	P		586		622	M3,SP, 800 800 800	19:333:12
20:56:52	P		588		615	G,SP,M3,	19:33:14
20:59:45	P		599		565	605 EF, 88 200	19:33133
21:00:31	P		590		579	M3.S.HMD.C.MN-OXIHYDROXIDE IM SEDI	IMENT?
21:03:25	P		589		592	HMD.M3.S.C.MN-OXIHYDROXIDE IM SEDI	IMENT?
21:04:33	P		580		597	HMD_MA_C_MN-OXTHYDROYIDE TH SEDIME	NT?
21:06:09	•		601		600	M3.5	19:25:47
21:07:20	P		600		597	MO C HP C FE-OVIDE CHIETDE?	19126206
21 . 07 . 40	T.		600		502	NO C UD C PE-OVIDE CUIPIDE	DRAMPICA.
21:07:28	r		608		293	no, o, nr, c, re-uxine, our the	FOIGFICT

21:08:19		610	594	M4		
21:09:17		623	592	M3,S		
21:10:56	P	627	601	M3,5		
21:11:10		629	609	M4		
21:12:16		635	623	M4		
21:13:01		634	628	,M4		
21:13:59		630	632	M4		
21:14:48	P	629	636	BOPL		
21:14:59		628	638	UP,C,353	PHOTOS	
21:15:21		631	635	TOF		

MOBILY DECORTIC SAZIEM 1015

STATION SO-41	80 FS 09.03.86
LOKATION	VENTOTENE SUD, NOERDLICHER SEAMOUNT BEI 40 deg 34 min N,13 deg 14 min e
*****	****
KOORDINATEN	BREITE (N) LAENGE (E)
BODENSICHT OFOS	START: 40 DEG 34.59 MIN 13 DEG 14.16 MIR ENDE : 40 DEG 35.06 MIN 13 DEG 14.21 MIR
PROFILSTRECKE	START 500m WESTLICH VOM TOP DES SEAMOUNTS IN 1310m TIEFE,FAHRT AUF TOP SEAMOUNT (1149m TIEFE),DANN NOERDLICHEN HANG ABWAERTS IN RICHTUNG O GRAD BIS 1781m
PROFILTIEFEN	START: 1310 M ENDE: 1781 M (RS904-DEDS)
TECHNISCHE DATEN	NAVIGATION SCHIFF: SATNAV NAVIGATION OFOS : RS 904
1111111	BLITZE : FL1-FL3,Z.T.FL1-FL2 LAMPEN : L3
(ZEITEN IN GMT)	S/W-VIDEO : 13:39 - 15:14 1.BAND FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 13:46:44 LETZTES PHOTO : 15:13:57 ANZAHL PHOTOS : 205
DATENFILES :	BOFS.GEO (DATENFILE) BOFS.DAT (TITELBLATT) RSBOFSO.DAT (POSITIONEN)
FUNKTION :	OK. EINGEBLENDETES DATUM AUF PHOTOS 06.03. IST FALSCH,MUSS 09.03. HEISSEN;PHOTOS AP 14:57:45 UEBERBELICHTET
KURZFASSUNG DER BEOBACHTUNGEN	SEHR STARKE SEDIMENTBEDECKUNG (80-100 %); LAVA: NUR ALS PARTIELLE OUTCROPS (5-20 %) VORWIEGEND ALS KNOLLENARTIGE, TEILWEISE ALS VERRUEHRTE SCHICHTLAVA; STAERKERE AUS- BISSE (50 %) AN VERWERFUNGSSTUFEN; SEHR GE- RINGE TEKTONIK; KEINE ANZEICHEN VON HYDRO- THERMALISMUS; SEHR WENIG BENTHOS GESAMTEINDRUCK: ALTER SEAMOUNT MIT HOHER SEDIMENTBEDECKUNG.

- 298 -

- 008 - - 299 -

STATION	: :	50-41 80	ES	
NAVIGATI	ION	SCHIFF:	SAT	GERAET: RS
9-MAR-8	36	14 - NO		
13:39:01		1297	1150	TON
13:46:37		1259	1329	BOT1,M4
13:46:44	P	1256	1326	BOP1,M4
13:53:47		1249	1281	M4
13:54:02		1238	1281	M4
13:59:23	F	1212	1260	M3,S
14:00:10	P	1202	1251	M4
14:19:33		1156	1196	M4
14:20:20		1153	1191	M4
14:25:04		1157	1164	M4,C,TOP VENTOTENE SUED
14:27:39		1215	1164	M4, C, KURSWECHSEL NACH NORD
14:29:59	P	1230	1185	M3,5,
14:33:37	P	1349	1251	M3,S,C,NORDHANG ABWAERIS
14:34:23	P	1353	1256	FF,M3,S
14:36:16	P	1340	1279	D-,M3,S,C,DEUTLICHE STEILKANTE
14:37:21		1337	1295	M3,S,
14:39:38		1332	1313	M3.5,
14:42:26	P	1377	1361	M3,5
14:43:00		1370	1369	M4
14:44:20		1398	1371	M4
14:48:37		1512	1383	M4
14:49:50		1550	1404	M4
14:57:45	P	1730	1503	C,FOTOS UEBERBELICHTET BIS ENDE
14:59:28		1773	1582	M4
15:02:34		1821	1625	M3.5
15:06:42	P	1900	1740	M3.5
15:10:56		1980	1895	M4
15:13:51		1980	1967	UP.C.205 BILDER
15:13:57	P	1980	1963	BOPL, M4
15:14:18		1980	1957	TOF

STATION	SO-41	:	83 FS	11.03.86
LOKATION		:	VENTOTENE SUD, SUEDLICHER 40 DEG 23.8 MIN N,13 DEG	SEAMOUNT BEI 10.95 min E

KOORDINATEN	•			BI	REITE	(N)		L	AENGE	(E)
BODENSICHT	OFOS	START: ENDE :	40	DEG DEG	23.76	MIN MIN	13 13	DEG DEG	11.34	MIN MIN

PROFILSTRECKE : START 300m SUEDLICH VOM TOP DES SEAMOUNTS IN 1356 m TIEFE,FAHRT AUF TOP SEAMOUNT (1327 m TIEFE),DANN NORDOESTLICHEN HANG ABWAERTS IN RICHTUNG GO GRAD BIS 2067 m (CA.40 DEG 24.6 N, 13 DEG 12.40 E)

PROFILTIEFEN : START: 1356 M ENDE: 2067 M (RS904-OFOS)

TECHNISCHE DATEN: NAVIGATION SCHIFF: GPS NAVIGATION OFOS : RS 904

> BLITZE : FL1,FL3,Z.T.FL4 LAMPEN : L3

(ZEITEN IN GMT) S/W-VIDEO : 21:01 - 22:22 1.BAND FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 21:03:09 LETZTES PHOTO : 22:19:49 ANZAHL PHOTOS : 140

DATENFILES

83FS.GEO (DATENFILE) 83FS.DAT (TITELBLATT) RS83FSO.DAT (POSITIONEN)

FUNKTION : OK. EINGEBLENDETES DATUM AUF PHOTOS 08.03. IST FALSCH,MUSS 11.03. HEISSEN.BLITZ 2 AUS-GEFALLEN.

KURZFASSUNG DER : BEOBACHTUNGEN SEHR STARKE SEDIMENTBEDECKUNG (30-100 %)AUCH AUF DEM TOP;LAVA:NUR ALS PARTIELLE OUTCROPS (5-10 %),VORWIEGEND ALS KNOLLENARTIGE,TEIL-WEISE ALS VERRUEHRTE SCHICHTLAVA;STAERKERE AUSBISSE NUR AN STEILEN VERWERFUNGSFLAECHEN; SEHR GERINGE TEKTONIK,EIN DEUTLICHER STEIL-ABFALL BEI 22:02:00;KEINE ANZEICHEN VON HYDROTHERMALISMUS;SEHR WENIG BENTHOS GESAMTEINDRUCK: ALTER SEAMOUNT MIT HOHER SEDIMENTBEDECKUNG;WAHRSCHEINLICH AELTER ALS NOERDLICHES PENDANT VENTOTENE.

13°11′	13°12'	13º12,5
-2222222222222222222222222222222222222		TOPA DESTRUCTIONS
)°245'	и лим гания стали и лим гания и лим гания стали и лим гания и лим гания и лим гания стали и лим гания и лим гания и лим гания и лим гания стали и лим гания и л	A PART JOON SHEWALLE AND A PRESS OF THE ADDRESS OF
е 24.	MERCATOR E SCALE 1 N 44 VORLD GEDDETT	PRCJECT I ON 10000 5' 30' 5 SYSTEM 1972 SSAG
83	SONN VENTO 83 RS	E 41 TENE FS 904

- 302 -

1.

STATION	: 5	0-41-83	FS CPC	CEDAET DC
11-MAR-	PC	SUNTEE.	Gra) GERHEI. KO
21:01:44	00	1250	1969	TON
01.00.40		1367	1007	10K DOT1 MO C
21:02:42	ъ	1007	1000	DOD1 W3 C D
21:03:09	F	13/3	1392	
21:03:42		1380	1392	14 CONTRACTOR AND
21:06:30		1409	1364	
21:07:18		1434	1360	C TOB UENTOTENE CUED
21:07:30	D	1445	1000	C, IUF VENIUIENE SUED
21.00.41	r D	1465	1300	HA .
21.07.15		1400	1004	11-2 M A
21.10.33		1496	1400	117 1473 C 1461 1461 1461 1461 1461 1461 1461 14
21.11.30	D	1400	1409	MAIDMANE GRY GEREN
21.12.12	• . A.	1517	1451	ATUR RIBER REARING
21.16.03	D	1520	1450	EF LL MO C III
21.10.10	p	1540	1500	μα
21.10.32	8.831	1570	1600	MA A TOS TISATO
21.20.30		1620	1600	MA
21.40.43		1642	1677	MAILNER MAILENTAN SUTTAN SUSPECTUMENTS
21 . 46 . 07	D	1670	1520	MA C ETOCH AND AND
21:47:27	•	1704	1650	MA
21:51:01		1833	1684	MA LIN : ATTING
21:59:16		2042	1779	MA CJ : MERMAN
22:01:19	P	2073	1803	M3-5
22:02:00	P	2091	1813	D-17.M3.S.C.STEILKANTE
22:02:22	P	2031	1830	M3.5 D300V-9863
22:03:05	P	2096	1855	M3.S TONA ESTERS
22:04:21		2110	1889	M3,5, M4_B01113J
22:07:07		2119	1995	M3.S OHY JHASHA
22:08:35	P	2125	2021	M4
22:09:36		2134	2045	M4
22:11:06		2144	2058	C,BASIS HANG
22:13:24	TAR	2152	2087	M3,5
22:13:35		2145	2090	H4 ^{1030318N}
22:19:49	P	2156	2153	BOPL, M4 BALLAR SHOLL NOT THE ST
22:19:54		2159	2156	UP,C,140 FOTOS (BIS 364 FOTOS AUF FILM)
22:22:00	3 1 11	2161	2083	LOE NAME ANALIS - 1 MU DADSEATING

TORM VON EINZEL-PILLOWS VON 940-1362 *.

TEN BIS LEICHT LOBIBETEN SCHICHTLAUEN VON 107-940 m IN LEICHT GENEIGTEN HAENGEN, IN

ï

*****	*****	***************************************
STATION SO-4	. :	110 FS 14.03.86
LOKATION	:	VAVILOV SEAMOUNT
****	*****	***************************************
KOORDINATEN	:	BREITE (N) LAENGE (E)
BODENSICHT O	:0S	START: 39 DEG 51.37 MIN 12 DEG 36.60 MIN ENDE: 39 DEG 49.93 MIN 12 DEG 36.12 MIN
PROFILSTRECKE	:	VOM KAMM SEAMDUNT (1.BODENSICHT BEI 807 M) UEBER TOP SEAMOUNT (743 M) IN RICHTUNG Sueden Ueber Rueckenkamm BIS CA. 39 Deg 50.0 min n Hangabwaerts
PROFILTIEFEN	:	START: 807 M ENDE: 1362 M (RS904-OFOS)
TECHNISCHE DA	EN:	NAVIGATION SCHIFF: GPS NAVIGATION OFOS : RS 904
		BLITZE : FL1,FL3,FL4 LAMPEN : L3
(ZEITEN IN GM)	S/W-VIDEO : 21:36 - 23:30 1.BAND FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 21:38:25 LETZTES PHOTO : 23:29:38 ANZAHL PHOTOS : 268
DATENFILES FUNKTION	:	110FS.GEO (DATENFILE) 110FS.DAT (TITELBLATT) RS110FSO.DAT;2 (POSITIONEN OFOS) OK;BLITZ 2 AUSGEFALLEN
KURZFASSUNG DI BEOBACHTUNGEN	R:	STARKE SEDIMENTBEDECKUNG (70-100 %); SEDIMENT MIT WEISSLICHEN FLECKEN IN DUNKLER MATRIX BEI 22:12; LAVAAUSBISSE IN FORM VON VERRUEHR- TEN BIS LEICHT LOBIERTEN SCHICHTLAVEN VON 807-940 m IN LEICHT GENEIGTEN HAENGEN, IN FORM VON EINZEL-PILLOWS VON 940-1362 m. KEINE TEKTONIK; KORALLEN-DEBRIS AUF LAVA (21: 46:04,21:50:58); KEINE HYDROTHERMALINDIKATIO- NEN.

- 305 -

STATION	: 5	50-41 11	.0 FS	
NAVIGAT	ION	SCHIFF:	GPS	GERAET: RS
14-MAR-8	36			
21:36:38		801	806	TON
21:37:25		804	824	BOT1
21 . 28 . 25	P	795	793	BOPL M3 S
21.00.20	•	7774	760	MO TT C
21.40.17	D	760	765	C1 C MO
21:41:22	r	768	758	
21:41:54		/50	/51	
21:46:04	P	752	758	M3, 5, C, KURALLENBEWUCHS
21:46:51	P	775	760	C, DEKAPUDE, S, M3
21:47:33	P	793	760	SL,M3 '
21:48:58		804	762	
21:50:58	P	802	788	C,KORALLENBEWUCHS,S,M3
21:51:21	P	800	797	SL,M2
21:52:00		799	812	M4 DEFENSION AND ADD ADD ADD ADD ADD ADD ADD ADD AD
21:52:09	P	804	812	M4
21:54:02	p	806	813	S_H3
01 . EC . A1	^	010	015	MA
21.30.41		012	010	
22:01:18		819	806	n3,5
22:01:43	1. mar 1.	826	808	++.M3,5
22:02:26	P	829	809	SL,H3
22:03:07		833	810	
22:11:51		856	854	M3,S
22:12:44	P	868	853	C.WEISSE FLECKEN IN DUNKLEM SEDIMENT
22:12:54		870	850	M3S
22:13:16	p	885	856	S-H3
22.15.21	•	921	060	MA
22.10.01		011	000	
22:15:57		911	869	na, s
22:19:18		937	899	
22:19:52		931	912	M3,S
22:20:49		942	919	M4
22:22:38		946	930	
22:23:13		946	938	M4
22:23:50	P	951	942	FF.S.M3
22:26:07		965	955	M3.S
22:27:42		981	963	MA
22:28:27		982	966	M3-5
22:20:52		984	970	
22:20:00		001	000	MA
22:27:40		204	900	
24:30:21		998	981	H A
22:32:00		1008	982	
22:36:50		1066	1010	, M4
22:38:19		1093	1032	M3, S
22:39:57		1110	1047	,P,M3
22:40:20		1111	1051	M4
22:40:55	P.	1113	1054	, P, M3, FF
22:41:47	P .	1130	1070	D-, M2, S
22:42:10	P	1137	1075	MIS
22:42:40		1145	1080	MA.C.NUR GERINGE SEDIMENTUEBERDECKUNG
30 . 45 . 10		1014	1110	M2 C
22.40.12 00.47-00	-	1019	1100	n vo
22:46:25	P	1217	1123	r,nz,
22:47:05	P	1220	1129	P, m2,
22:47:06		1220	1130	M4
22:49:04		1236	1141	M3,S,
22:51:42		1251	1195	
22:52:02	P	1258	1210	SC.M3.C.DEBRIS
22:52:17	P	1260	1215	P.DM3
22:55:15		1270	1247	M4
22:00:56		1217	1210	a cw
22:02:00		101/	1212	MA
4.3 . 0.0 . 0.8		1.3 1 13	1.31.6	

	23:04:59	P	1325	1320	P,M3
	23:05:14	P	1330	1324	M4
	23:08:13		1359	1347	M4
	23:08:24		1362	1346	M3,P STATE APPE HOLTATE
	23:09:13	P	1378	1354	SP,SL,M3
	23:09:18	P	1380	1356	M4 CMARS VOLTVAR
	23:09:46	P	1365	1356	M4
	23:12:08		1346	1355	++,P,M3
	23:12:50		1357	1342	++,P,M3
	23:13:10	P	1362	1344	FF,P,M2,++
	23:13:51	PCT	1370	1348	, M4
	23:14:08	P	1365	1350	D-,M3,P
	23:14:19		1358	1355	M3,P
	23:14:45	P	1363	1352	M4
	23:15:22	P	1368	1350	P,M3,
	23:15:36		1373	1349	LOB
ő	23:16:49		1371	1376	BOT
	23:17:53	195	1369	1406	M4
	23:18:00	P	1372	1407	,M3,S
	23:20:08		1397	1411	M4
	23:22:48	P	1399	1400	P,M3
	23:23:23		1404	1386	14 N. 188 S. URALE MARKED 11 1084
	23:24:02	P	1404	1386	M4
	23:24:20	P	1404	1387	P,M3
	23:24:31		1404	1387	M3, P
	23:28:33		1377	1418	M4
	23:29:32		1376	1384	UF,C,268 PHOTOS
	23:29:38		1376	1383	BOPL,M4
	23:29:40	1004	1376	1382	TOF
			1.5 20		

ANZAIR PHOTOS I 438

ANTHREAD OAP.BANKL

RELEASED. DAI (POSITIONEN DRUS

****	***************************************
STATION SO-41 :	124 FS 16.03.86
LOKATION :	VAVILOV SEAMOUNT
****	***************************************
KOORDINATEN :	BREITE (N) LAENGE (E)
BODENSICHT OFOS	START: 39 DEG 53.51 MIN 12 DEG 36.58 MIN ENDE : 39 DEG 55.58 MIN 12 DEG 37.01 MIN
PROFILSTRECKE :	VOM TOP VAVILOV BEI 39 DEG 53.4 N,12 DEG 36.6 E (1.BODENSICHT BEI 927 m) NACH NOR- DEN BIS 39 DEG 54.0 N, WEITER UEBER KAMM BIS 39 DEG 54.4, DANN IN RICHTUNG 350-330 GRAD HANGABWAERTS BIS 1405 m
PROFILTIEFEN :	START: 927 M ENDE: 1405 M (RS904-OFOS)
TECHNISCHE DATEN:	NAVIGATION SCHIFF: SATNAV NAVIGATION OFOS : RS 904
111210 (1121) 12132 (114) (1121) 131531 (114)	BLITZE : FL1,FL2,FL3,FL4 LAMPEN : L3
(ZEITEN IN GMT)	S/W-VIDEO : 09:32-12:41 1.BAND 12:42-13:05 2.BAND FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 09:35:54 LETZTES PHOTO : 13:06:01 ANZAHL PHOTOS : 438
DATENFILES : FUNKTION :	124FS.GEO (DATENFILE) 124FS.DAT (TITELBLATT) RS124FSO.DAT (POSITIONEN OFOS) OK
KURZFASSUNG DER : BEOBACHTUNGEN	STARKE SEDIMENTBEDECKUNG (50-100 %);LAVAAUS- BISSE IN +- EBENEM TERRAIN VORWIEGEND ALS VERRUEHRTE BIS LEICHT LOBIERTE SCHICHTLAVEN; LOKAL STARK LOBIERTE FORMEN;PILLOWS IN LAVA- FRONTEN UND STARK GENEIGTEN HAENGEN;SPORA- DISCH AUCH SEIL- U. STRICKLAVA (11:25:44, 11:40:34).TEKTONIK AUSGEPREAGT IN FORM VON ETWA N-S STREICHENDEN VERWERFUNGSFLAECHEN. LOKAL WALLARTIGE STRUKTUREN (9:53-9:54). COLLAFSE PIT (?) BEI 12:30.KEINE HYDROTHER- MALINDIKATIONEN.

STATION	: S ION	SCHIFF	4FS : GPS	S GERAET: RS
16-MAR-8	BG			the set of
09:32:27		998	906	TON
09:33:24		1006	932	BOT1.M3
09:35:04		1034	978	M3S
09:35:54		1045	992	ROPI
09:37:53		1066	1013	
09:39:04		1087	1032	M4
09:41:33		1075	1067	
09:42:16		1082	1074	
09:42:47		1077	1080	M4
09:46:29		1001	1071	11 MD C
09:40:30		991	1060	μ ΜΔ
09:47:55		969	1060	2 CM
09:49:37		924	1020	MA
09:51:40		929	1009	N2 C
09-51-55		943	1000	M2 ++ C
09.52.31	D	950	075	C WALL /MAHER
09:54:54		956	944	
10:07:39		1140	1056	M4
10:08:50		1125	1065	M3 S
10:00:56		1124	1085	P. M2. D-
10:10:22	P	1124	1097	P. M2, D-
10:10:22	•	1125	1102	M3 C
10-14-42		1126	1153	M3 S
10-19-52		1018	1155	++
10:25:00		1020	1057	D+ C STETIMAND
10:20:00		1026	1015	LI COLLIGNARD
10:20:30		1034	000	M2 C
10:25:30		1033	1046	NO C
10:33:29		1034	1040	MA 11
10-40-37		067	1034	114 y TT
10.41.21		967	1025	
10:44:36	D	930	993	
10:40:30	r D	935	070	80 C
10.40.55	r D	005	060	LL C CEECDINNE
10:47:01	P	930	200	C CEIDITCUE ELECVEN UNO
10:51:00	r	944	025	MA C
10:54:12		000	966	MA
10.55.47		970	900	Ma C
11:01:16		1172	1090	13,5
11.02.22		1160	1000	10P
11:05:32		1069	1210	
11:06:52		1071	1221	M3.S
11:07:49	P	1093	1231	Mais
11:08:50	÷	1102	1241	LOB
11:09:15	P	1093	1240	D- FF P M2
11:09:40	man	1064	1275	ROT MA
11:13:07		1071	1268	MA
11:14:31		1075	1243	++ D+
11:15:37		1075	1240	D+52
11:15:44		1076	1192	M3_S
11:16:01		1062	1107	++ M3 S
11.17.51		1000	1100	MO C
11-10-47		1000	1120	110 y 0 D 1
11.10.4/	p	1002	1122	UT UT NO
11:22:20	r	1109/	1110	r y r r y 11 3 M A
11.00.45	P	1100	110	D MO
11:22:45	r	1101	1105	r,no Xo t D
11:25:00		1104	1097	NO DI CD C DELATIL EDICOL
11.43.44	r	1094	1110	HA. JL. JL. L. KLLMIIV EKIJUH

÷

11:27:48	P P	1083	1120	P,SL,M2 S-M3
11:29:16		1072	1133	++.M3.P
11:33:35		1060	1119	M2.P
11:34:12		1050	1105	D+,LOB
11:36:19		1071	1078	BOT, M3, P
11:39:49		1078	1094	P,M3
11:40:17		1098	1105	M4
11:40:34	P	1104	1104	SC,SS,M2
11:41:06	P	1112	1103	P,M3,S
11:41:17		1116	1102	++
11:42:04		1134	1113	MA
11:44:32		1145	1095	H4 ++ M3 S
11:46:46		1133	1050	M3.S
11:51:00		1118	1111	M3.S
11:51:07		1121	1114	M4
12:00:20		1022	1165	MA
12:01:35		1040	1150	CC,M4,C,BAENKE
12:05:43		1123	1128	++
12:08:45		1147	1075	M4
12:12:20	P	1131	1125	,M3,S,P
12:14:26	P	1142	1175	M3,5
12:15:22	Р	1168	1179	M4
12:20:33		1239	1193	++
12:21:33	P	1209	1185	M3,5 M3 C
12:22:40		1258	11/9	MA
12:26:51		1259	1175	M3- S
12:28:23		1230	1200	
12:30:33	P	1235	1230	FF.CP.SL.M3
12:30:45	P	1237	1242	SP,M3
12:31:03	Р	1238	1250	S,M3,C,STEILKANTE
12:32:14		1239	1266	D+
12:33:17	P	1238	1270	SL,P,M2
12:33:43	Р	1238	1275	5,M3
12:34:26		1238	1283	M4
12:30:30		1229	1203	++
12:36:32	p	1245	1286	P.FF.SL.M2
12:37:14	P	1260	1282	S.M3
12:38:46	P	1272	1278	C.MARKANTER LAVAHUEGEL.S
12:39:46	P	1286	1275	FF,SL,P
12:39:52		1288	1273	M4
12:40:38	Р	1275	1273	M4
12:41:02		1260	1273	P,M3
12:41:19		1258	1282	C,TAPE 1 OFF
12:41:32		1256	1292	TON2
12:41:44		1257	1293	114 112
12:43:52		1279	1292	
12:45:33	P	1288	1304	SL, MJ, FF
12:40:12	P	1200	1925	55,115 CI M3 CC
12:47:06		1303	1328	14
12:52:17		1349	1318	D+
12:57:54	Р	1379	1363	SL.M3.SS
12:59:06	P	1396	1397	D-, P, M2
12:59:29	P	1398	1402	M3,55
13:02:25		1413	1431	
13:02:56	P	1414	1440	D-, P, M3
13:03:40	Р	1415	1450	M4

13:05:01 13:05:07 13:06:09	1416 1417 1418	1462 1459 1460	UP,C,438 TOF BOPL	PHOTOS			11:27:43 P
				- 0.0.B - 0			CITACTIC
							D. D. D. D. D. L. L. L.
							GANDENY!
						8901	
				\$6,82,92			
							51:16:17
							111:42104 ·
				1		11.45%	11:44:32
							11:45:16
		1.1.20					12:146:146
							11:51:00
							12:00:22
				- P41		1142	
							12:12:20
				8. 5 M			
				B. SH			
		1.087					
							12:20:00
				12.40.23			5 00-00-01
				5, N3, D, I			A ROTTROOT
						85,23	
				1.111 1.190.1		9941	10:35:36
				15,11,7.			12:36:32 8
			·				
	10						
							1 GGGG#121
Little for							
		1109			131		5 1 + P 3 + P 1
							A Martin Calendar
					0010 e 3		

*****	**********************************
STATION SO-41 :	129 FS 17.03.86
LOKATION :	MAGNAGHI SEAMOUNT
*****	*******************
KOORDINATEN :	BREITE (N) LAENGE (E)
BODENSICHT OFOS	START: 39 DEG 53.08 MIN 11 DEG 46.36 MIN ENDE: 39 DEG 52.03 MIN 11 DEG 45.49 MIN
PROFILSTRECKE :	START AUF DEM SUEDLICHEN KAMM BEI 39 DEG 53 N / 14 DEG 46.3 E (1.BODENSICHT BEI 1682 m), DANN RICHTUNG 230 GRAD AUF KAMM UND WESTLICHER FLANKE ABWAERTS BIS 1887 m TIEFE
PROFILTIEFEN :	START: 1682 M ENDE: 1887 M (RS904-OFOS)
TECHNISCHE DATEN:	NAVIGATION SCHIFF: SATNAV,GPS NAVIGATION OFOS : RS 904
	BLITZE : FL1,FL2,FL3,FL4 LAMPEN : L3
(ZEITEN IN GMT)	S/W-VIDEO : 15:33-16:46 1.BAND FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 15:38:17 LETZTES PHOTO : 16:46:49 ANZAHL PHOTOS : 266
TONES REQUEINE STREET IN 1	
DATENFILES : FUNKTION :	129FS.GEO (DATENFILE) 129FS.DAT (TITELBLATT) RS129FSO.DAT (POSITIONEN OFOS) OK
KURZEASSUNG DER : BEOBACHTUNGEN	STARKE SEDIMENTBEDECKUNG (50-100 %);LAVADUT- CROPS NUR AN STEILEN HAENGEN,LAVAFRONTEN UND VERWERFUNGSSTUFEN; VORWIEGEND PILLOW-FORMA- TIONEN,Z.T.LAPPIGE UND VERRUEHRTE SCHICHTLA- VEN.KAUM TEKTONIK.MORPHOLOGIE BESTIMMT DURCH
	HAENGE UNTERSCHIEDLICHER NEIGUNGSWINKEL. TYPISCH SIND SEDIMENTBEDECKTE FLAECHEN MIT SCHWARZEN ASCHEAKKUMULATIONEN IN MULDEN UND VERTIEFUNGEN.KEINE HYDROTHERMALINDIKATIONEN.

- 313 -

- 314 -

. RANDITANI THI JAPANITOROVA ENTERINERRY INTERNET

STATION		50-41 1.	19 15	C. ALTERTATION AND CACT ARKT CONTRACTOR
NAVIGAT	ION	SCHIFF:	GPS	GERAET: RS
17-MAR-	86			16138104 1953 1964 D. H3.S
15:33:10		1672	1632	TON 82.92.5H asel 1001 9 faractar
15-35-14		1680	1667	BOTI AN APPENDIX SPECIAL
15:00:17		1710	1700	DODI MO C
15:38:17		1/10	1704	BUF1,NO, S
15:38:48		1725	1712	M3,5.JHMLIMITAL,D CODE DEEL C HOVECOPCOL
15:39:15		1727	1709	M4
15:39:36		1721	1706	M3,S FIREN INC. SEVE STREET INCOM
15:42:03		1719	1715	M3.S AM PAOS 0201 01:545:01
15:43:46		1753	1731	M3.5 - THE EN REPORT FROM THE RESEARCH
15:44:26		1748	1749	M4 SHOUTDA DIAN COAST DOOL OUTDIZAYOF
15:45:10		1776	1769	MARTON 230 2 BU DOOD 0001 1 1110101
10.10.14		1720	1705	MA CONTRACTOR CONTRACTOR
13.40.44		1737	1/95	
15:47:06		1706	1805	C, SEDIMENI SIMKK GERLECKI
15:48:09	P	1690	1810	TF,M4,C,ASCHEN?
15:48:29	P	1690	1810	C,WEISSE FLECKEN MIT DUNKLEN UMRANDUNGEN
15:51:02		1671	1824	P,M3
15:51:41		1670	1817	M4
15.52.16	p	1658	1914	P.FF.++.H3
15:52:20	D	1655	1017	MA TE C ASCHEN?
13.32.30	r	1000	1014	No. D
15:56:54		1634	1800	M3, P
15:57:39	P	1658	1795	M4,C,GRENZE ASCHEN?/NORMALSEDIMENT
15:58:18	P	1663	1794	M3,S
15:58:53		1675	1793	++.P.M2
15:59:48		1693	1782	M3.P
16:00:20	P	1717	1781	P-M3-++
16:00:25	•	1721	1781	a growy
16.00.33		1710	1701	HA
16:01:09		1/10	1///	NA C ACCUENC
16:02:50	Ρ	1700	1777	M4, C, ASCHEN!
16:06:49	P	1650	1776	M4,C,SCHWARZE ASCHESTREIFEN?
16:10:30	P	1610	1776	M4,C,SANDIGE AKKUMULATIONEN IN MULDEN
16:10:35		1606	1776	P, M3
16:11:20		1568	1787	M4
16:11:52	P	1576	1798	P.M3
16:12:48	P	1582	1812	M4.C.ASCHESTREIFEN?
16:15:17	÷.,	1597	1878	M3.5
16:15:22		1500	1005	MA
16.16.19		1600	1012	C CEDIMENT CTADU GEELECUT
10.10.13		1003	1015	C, SEDINERI SIARK GELECKI
16:16:20	P	1687	1915	M3, FE, F, B
16:16:45	P	1700	1920	M4
16:18:09		1749	1943	C,KABEL?
16:19:31		1809	1941	M4
16:22:55		1889	1898	M4
16:24:08		1887	1866	++.M3.P
16:25:00	D	1960	1825	S M3
16.20.00	p	1964	1000	в ма с
16:20:16	r	1964	1044	r,10,5
16:25:28		1968	1819	m3,F
16:26:06	P	1967	1819	D+,P,S,M3
16:26:26		1966	1819	M4 market because the second
16:26:34		1979	1812	++,P,M2
16:27:50		1971	1836	M4
16:28:07	P	1980	1850	S.M2.C.LAVAHUEGEL
		1000	1060	P M2
16.20.10	D.			
16:28:19	P	1982	1000	
16:28:19 16:29:03	F P	1982	1872	M3,SL,SS
16:28:19 16:29:03 16:31:59	P P	1982 1985 1991	1872 1919	M3,SL,SS M3,P
16:28:19 16:29:03 16:31:59 16:32:05	P P	1982 1985 1991 2002	1872 1919 1920	M3,SL,SS M3,P M4
16:28:19 16:29:03 16:31:59 16:32:05 16:32:26	F P	1982 1985 1991 2002 1997	1872 1919 1920 1924	M3,SL,SS M3,P M4 C,DUNKLER STREIFEN IM SEDIMENT
16:28:19 16:29:03 16:31:59 16:32:05 16:32:26 16:32:42	P P	1982 1985 1991 2002 1997 1997	1872 1919 1920 1924 1927	M3,SL,SS M3,P M4 C,DUNKLER STREIFEN IM SEDIMENT M4
16:28:19 16:29:03 16:31:59 16:32:05 16:32:26 16:32:42 16:33:38	F P P	1982 1985 1991 2002 1997 1997 2001	1872 1919 1920 1924 1927 1934	M3,SL,SS M3,P M4 C,DUNKLER STREIFEN IM SEDIMENT M4 M4,TF,C,ASCHEN?,CANYON?

16:34:52 16:36:40 16:38:04 16:38:55 P 16:39:18 16:39:41 16:40:57 P 16:40:59 16:41:38 P 16:44:19 16:44:38 P 16:45:22 P 16:45:22 P 16:46:05 16:46:24 16:46:49	1986194919781965195319641951198619501994194719961938200619372008193620111898206418932079189020831885209118832095	M4 M4,C,DUNKLES SEDI D+,M3,S M3,SP,SS M4 M3,S C,DATENEINBLENDUN M4 M3,P M4 P,M3 M4,C,ASCHEN? UP,C,266 PHOTOS TOF BOPL	MENT G DEF	1672 1672 1672 1716 1716 1717 1721 1722 1723 1726 1726 1726 1726 1726 1726	TATELON : TATELON : TV-MAR-46 17-MAR-46 15:135:14 15:135:14 15:135:17 15:135:17 15:145:15 15:145:15 15:145:15 15:145:06
		TR.MA, C, A.CHENT		1629	
	NETRNOR TIM	N302933 35513M'2			
					15:58:93
		利用于的过去式	1.12		
	*				
		URIN SPREAK S. ON			
		No, C. ASCHESTREIEE			
				20.5	
		9,5M,**			
		P, M3, S			
		1,20			
		HIT & TANK		1200	
					20128:01

43 FS 19/20.03.86 NARETA SEAMOUNT ************************************
NARETA SEAMOUNT ************************************

BREITE (N) LAENGE (E)
TART: 38 DEG 38.58 MIN 13 DEG 59.92 MIN NDE : 38 DEG 40.22 MIN 14 DEG 00.47 MIN
JEDLICH SEAMOUNT (1.BODENSICHT BEI 305 m) EBER TOP SEAMOUNT (281 m) IN RICHTUNG
D GRAD HANGABWAERTS BIS 1650 M; INHIEVEN BIS 1000 m UND ANFAHREN POSITION B DEG 44 N / 14 DEG 03.5 , DEPRESSION NE NARETA.NACH BODENSICHT BEI 2604 m TIEFE JRZES PROFIL NACH NORDEN.
TART: 305 M ENDE: 1650 M (RS904-OFOS) TART: 2604 M ENDE: 2628 M (RS904-OFOS)
AVIGATION SCHIFF: GPS,SATNAV AVIGATION OFOS : RS 904
LITZE : FL1,FL2,FL3,FL4 AMPEN : L3
W-VIDEO : 20:57-22:45 1.TEIL 00:26-00.56 2.TEIL ARE-VIDED: NICHT RECORDED RSTES PHOTO : 21:02:23 (1) 00:32:13 (2) ETZTES PHOTO : 22:39:54 (1) 00:57:02 (2) NZAHL PHOTOS : 370 70
143FS.GEO (DATENFILE)
RS143FS.DAT (TITELBLATT) RS143FSO1.DAT (POSITIONEN TOP+HANG) RS143FSO2.DAT (POSITIONEN DEPRESSION) K
EDIMENTBEDECKUNG BIS 580 m 30-60 % ,VON BO - 2100 m 100 % MIT EINIGEN OUTCROPS BEI 46,855-879 UND 1562 m. LAVAFORMATIONEN VOM DP BIS 350 m, WENN ANSTEHEND VORWIEGEND ALS ULSTIGE BIS LAPPIGE SCHICHTLAVA,KEINE ILLOWS;LAFILLI-AUSWUERFE(GERUNDETE KOERPER DN CM-DM-GROESSE IM BEREICH TOP- 580 m. ERINGE TEKTONIK;KORALLEN(TOT) VOM TOP-380m; YDROTHERMALINDIKATIONEN: 21:02:51 BIS 1:08:30 (284-320m) IN FORM VON GELBLICHEN EDIMENTVERFAERBUNGEN (FE-0XIHYDROXIDE?)UM AVA- UND KRUSTENSTRUKTUREN,MN-UEBERKRUSTE- E KORALLEN,PLATTIGE UND HUEGELIGE KRUSTEN- FRUKTUREN,DUNKLE UEBERZUEGE (MN-0XIDE?) JF VULKANITEN.

- BIE - - 317 -

PILLOWSILAPITLI - AUSQUERTRIGENINMETE HOEFTER
VON EM-DM-GROISSE IM DEREICH - 727 - 560 m.
DERIMME TEREMETENCENTEN (TOT) VON TER-390m
S):00:20 (264 - 320m) IN FORM VON GELELICHER
S):00:20 (264 - 320m) IN FORM VON GELELICHER
S):00:20 (264 - 320m) IN FORM VON GELELICHER
LAVA - UNA HOUSTEMSTRUKTUERI, MH-VERERNUETERTE KORALLEN FLATINE UND MURGELICH KROITERSTRUKTINEN, DUHMER, UERERSUEGE (MM-OXIDET)

STATION	: SO	-41 14 CHIFF:	3 FS GPS	GERAET: RS						
19-MAR-8	36	UTTTTT .		22139:54 P 2013 2094 E0PL/0, 1400000						
20:57:12		312	250	TON1. 110 3141, 3 2010 VEIS 10:35'100						
21:01:07	1	288	304	BOTI MAUAIW, 3 OFOI CIAS IS:53:CC						
21:01:40		286	302	C.BODEN BEDECKT MIT LAPILLI(TL)						
21:02:23	P	285	296	BOP1.M3.L.TL CO22 Clar Coracioo						
21:02:47	P	284	293	M3.L.TL.FC LIGE POVE alas adaocido						
21:02:51	P	284	293	FC.L.TL.HM.C.GELBE SEDIMENTIMPRAEGNATIONEN (FE-0)						
21:02:57	P	284	292	M3,L,FC,TL						
21:03:42		283	289	M3,L,FC,TL MACHO DEAL STAC ALLEELOO						
21:04:07	P×	293	283	M3,HM,FC,L,TL,HC,C,FE-OXIDE?,C,TOP ENARETA						
21:04:31	P×	302	284	HC,HM,C,FE-OXIDE?,TL,M3,L						
21:04:46	Р	310	284	M3, TF, L, HM, C, FE-OXIDE?						
21:05:00	P**	315	285	HC,C,KRUSTEN-HUEGEL,HM,C,FE-OXIBE?,TL,M3						
21:05:09	P	320	285	FC,HM,TL,M2,L ^{UG} Woods Alac Cotterco						
21:05:14	P*	322	285	HC, IF, HM, L, M2, C, FE-OXIDE						
21:05:44	P	323	285	M3, IF, HC, HM, FC						
21:06:24	P*	324	285	TL,HC,FC,M2,HMC,FE-OXIDE						
21:06:44	P	326	285	IL,HM,M3,EC						
21:06:57	P	328	288	TL,EC,HM,M3						
21:07:05	P	329	296	,IL,FC,M3,IF						
21:07:18	P*	332	302	FC,L,M2,HC,C,PLATTIGE KRUSTEN						
21:07:46	D	33/	308							
31:08:30	r	344	319	C CEDIMENT CEELECKT						
21:09:18	Ð	309	33/							
21:09:30	r v	266	240							
21:10:05	r D	369	373	TI EC MO HC						
21.11.22	L	370	278							
21.11.54	P	374	324	M3 TI TE						
21+12+48	P	399	384	MA_TF						
21:14:04	P	453	390	M3.SN.SL.HC.C.MN-OXIDE AUE LAVA?						
21:14:26	P	470	402	M3.TL.SP.SL.HC						
21:16:55	P	510	466	TL.M3.HC						
21:17:36		547	487	M3.TL						
21:17:58	P	553	496	HC.TL.M3						
21:18:34		563	509							
21:18:47		564	514	M 4						
21:19:20		596	523	M3,TL						
21:21:12	P	620	548	TL,M3,FC,C,GELBE KORALLEN						
21:21:27	F.	625	555	TL,M3,FC,C,GELBE KORALLEN						
21:22:08		640	578	M4						
21:23:31	P	698	618	H4						
21:30:57		820	691	D-						
21:31:23		840	694	M4 M4						
21:32:21	Р	861	746	FF,,M3,L,HC?						
21:33:22		880	786							
21:35:04		933	827	C, KANIE						
21:30:21		933	835	174 C VANTE						
21.33.31	p	000	040	C, NHRID NO C DIATTICE A F.1. MARCHTICE DARMUR /VALV IAMA/						
21:30:21	r D	222	000	MO C DIATTICE 1 - DANK (IAHATINGE VALVO)						
21.37.04	r P	242	000	MA						
21.3/.30	r	1075	000							
21.41.00		1222	1045	C,SEDIMENT SERK EINFOERNIG						
22:11:04		1520	1556	MΔ						
22:12:29	p	1540	1560	D+ FF C 16UA- ODER VALVRANV						
22:13:07	•	1563	1570	M4						
22:13:37		1563	1583	M4						
22:14:00		1590	1589	M4						
		ante sur Constituine		while the set of a state of the late of the set						
				statistics of the second states						
22:24:16		151	1829	M4						
----------	---	------	------	--------------------	------	--------	------	----	---	--
22:33:34		1975	2092	M4						
22:39:54	P	2023	2094	BOPL, C, 1. PROFIL						
22:45:31		2137	2102	C, TAPE OFF						
23:55:31		2613	1040	C, WIEDER FIEREN	ZUM	BODEN				
23:55:46		2616	1053	C.DEPRESSION 38	DEG	44 N,	14	03	E	
00:26:05		2617	2502	TON2						
00:30:56		2616	2704	BOT2						
00:31:04		2616	2705	M4						
00:32:13	P	2616	2700	BOP2,M4						
00:35:14		2617	2690	C, SEDIMENT SEHR	FEIN					
00:48:25		2615	2662	M4						
00:48:45		2615	2663	M4						
00:55:34		2618	2667	UP,C,440 FOTOS		Sec. 1	- 00			
00:56:23		2617	2665	TOF						
00:57:02		2617	2666	BOPL2						
				1						
	1					1				

6h' 8821

STATION SO-41	:	162 FS 21.03.86
LOKATION	:	EOLO SEAMOUNT
**************** KOORDINATEN BODENSICHT OFOS	****	**************************************
	-	ENDE : 38 DEG 33.78 MIN 14 DEG 12.94 MIN
PROFILSTRECKE	EDI	START SUEDOESTLICH VON EOLO ZWISCHEN 1020 m ADVENTIVHUEGEL UND HAUPTMASSIV BEI 38-33.7N 14-12.00E IN 1268 m TIEFE (1.BODENSICHT), FAHRT SUEDLICH AM ADVENTIVHUEGEL VORBEI,KURSAENDERUNG NACH 290 GRAD UND ZU- RUECK UEBER ADVENTIVHUEGEL-TOP(1030 m), DANN RICHTUNG 180 GRAD HANGABWAERTS
PROFILTIEFEN:		START: 1268 M ENDE: 1300 M (RS904-0E0S)
TECHNISCHE DATEN	:	NAVIGATION SCHIFF: GPS,SATNAV NAVIGATION OFOS : RS 904
		BLITZE : FL1,FL2,FL3,FL4 LAMPEN : L3
(ZEITEN IN GMT)		S/W-VIDEO : 21:32:50-23:16:34 FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 21:33:21 LETZTES PHOTO : 23:16:06 ANZAHL PHOTOS : 310
DATENFILES:	-2	162FS.GEO (DATENFILE) 162FS.DAT (TITELBLATT) RS162FSO.DAT (POSITIONEN TOP+HANG)
FUNKTION :		OK
KURZFASSUNG DER BEOBACHTUNGEN:		FAST TOTALE SEDIMENTBEDECKUNG AUF DEM GESAM- TEN PROFIL (90-100 %).KEINE LAVA-AUSBISSE. KEINE TEKTONISCHEN STRUKTUREN.AM SUEDLICHEN BZW.SUEDOESTLICHEN HANG DES ADVENTIVHUEGELS UND SPEZIELL IN EINER TOP-MULDE(CALDERA?) INDIKATIONEN VON NIEDRIGTHERMALEM HYDROTHER- MALISMUS: SEDIMENTVERFAERBUNGEN (GELB,ROT- BRAUN,BRAUN EFE-MN-OXIHYDROXIDEJ)UND LAGIGE
44 HE		WEISSE SEDIMENTIMPRAEGANTIONEN(SIO2,SULFATE, KARBONATE?),DEUTLICHE TRUEBUNGEN IM WASSER. AN SUEDLICHER FLANKE DES ADVENTIVHUEGELS Z.I SEDIMENTUEBERDECKTE LAVAAUSBISSE.
HAUPTINDIKATIONE SCHWERPUNK	N: T:	22:29:52 (1224 m)- 22:50:31 (1046 m) IN TOP-MULDE MIT RANDHOEHEN VON 1062m IM OS- TEN UND 1034m IM SUEDEN (1074m IM ZENTRUM): 22:44:34-22:51:34 , ZENTRUM 22:48-22:50

UREN AAA	12108	15-893	1,13, 3	33:03:05 F 1370 1240 HC, M3, HH, C, GELDI
				23:04:40 L207 J265 C,TRUEBUNG
STATION	: 51	J-41-10	215	23105121 F 1292 1280 84
NAVIGAT		SCHIFF	GPE	GERAEL: KS AN PACI 2021 00:80:00
21-MAK-8	36	1000	104	23:16:06 P 1308 1348 B0PL.MA
21:00:52		1289	184	L,ZU WASSER ZUIDD
21:01:17		2185	205	C,WASSERTIEFE 1263m, 38-33.16N, 14-11.34E
21:31:20		1242	1258	TUN
21:32:50		1244	1296	BOT,M4
21:33:21	P	1247	1304	BOP1,M4
21:42:06		1251	1269	C,SEDIMENT SEHR EINFOERMIG
21:46:21		1265	1286	C, TRUEBUNG?
21:51:29		1259	1308	M4
22:07:56		1373	1394	M4
22:08:07		1371	1394	M4
22:08:18		1371	1395	M4
22:08:44		1381	1394	M4
22:09:03		1379	1393	M4
22:09:09	÷	1366	1393	M4
22:10:25		1364	1388	C,ZEIT = GMT-35 SEC
22:12:57		1349	1379	C.KURS ZURUECK RICHTUNG HUEGEL
22:13:45		1339	1377	M4
22:17:43		1260	1396	C,ZEIT OK
22:19:31		1246	1405	++
22:24:11	P	1167	1340	C, TRUEBUNG
22:25:08	P	1140	1326	C, TRUEBUNG
22:26:10	P	1132	1300	C, TRUEBUNG
22:29:04		1098	1269	M4
22:29:52	P	1091	1246	M4,HM,C,WEISSE FLECKEN,C,RS-TIEFE 1224 m
22:31:07	P	1088	1222	H3, HC, C, OUTCROPS VON KRUSTEN
22:31:51		1086	1202	M3,HC
22:34:36	P	1086	1180	M3,HM,C,WEISSE FLECKEN,HC,C,GELBLICH-BRAUN
22:34:36	P	1086	1180	HM.C.GELBLICHE IMPRAEGANATIONEN.M3.HC
22:35:10	P	1036	1161	HM.M3.HC.C.AUSTRITTSLOECHER?
22:36:38	100	1067	1143	M3.HM.HC
22:37:12	P*	1067	1130	HC.C.LAGIGE KRUSTEN.HM.C.GELB+BRAUN.M3
22:37:25	P*	1067	1128	HC.C.LAGIG-HUEGELIG.HM.C.GELB+BRAUN.M3
22:39:17		1066	1115	HC.HM.M3
22:40:03		1071	1110	M4
22:40:31		1068	1105	H4
22:41:15		1060	1098	C.RUTSCHUNGSBAHNEN.Z.T.MIT DUNKLEM MATERIAL
22:42:15	P	1087	1089	M4
22:44:34	P	1090	1087	M3.HC.HM.C.RS-TIEFE=1062 m
22:45:28	2.2	1074	1085	M3.HC.HM
22:47:09		1051	1084	M3-HM-HC
22:47:43	P+	1047	1085	HM_M3_HC
22:47:59	P*	1039	1084	HMD.M3.HC.C.BRAUNE + GELBE SEDIMENTIMPRAEGNATION
22:48:09	P+	1034	1084	HMD_HC_M3.C_BRAUNE + GELBE SEDIMENTIMPRAEGNATION
22:48:09	• •	1034	1084	C.R5904-TIEFE 1074 m
22:48:29	P*	1028	1084	HMD.M3.HC.C.MARKANTE KRUSTENHUEGEL
22:49:56	P.t	1039	1084	HMD.M3.HC.C.ZUSAETZLICH ROTBRAUNE IMPRAEGNATIONE
22:50:31	• •	1053	1084	M3.HMD.HC
22:51:34	P	1070	1075	M4.C.RS-TIEFE 1046 m
22:52:03	1.	1084	1070	M4.TOP ADVENTIVHUEGEL
22:53:07		1101	1072	M4.C.RS-TIEFE 1034 m
22:53:54		1127	1079	
22:54:17	P	1140	1087	M3.HC.HM.C.LEICHT GELBE IMPRAEGNATIONEN
22:56:38	P	1189	1110	M3.HC
22:57:54	÷	1202	1132	M3.HC
22:59:10	1	1231	1149	M4
22:59:51		1242	1160	14
23:01:02	P	1255	1196	L?.M3.T
23:02:33	P	1263	1210	HC.M3.L7.HM.C.GELBE IMPRAEGNATIONEN
				······································

23:03:05 P 1270 1240 HC, M3, HM, C, GELBE FLIESS-STRUKTUREN 23:04:40 1287 1265 C, TRUEBUNG 1292 23:05:21 P 1280 BUISAT M4 23:08:00 1302 1344 M4 1348 BOPL,M4 1308 23:16:06 P 23:16:34 1314 1355 UP,C,310 PHOTOS 23:17:10 1316 1324 TOF 2.5.0

of activity of the second second second

A TEL ROLL AND AND AND AND ADDRESS OF MILLING AND AND AND

REALIZED AND ALTER ALTERNATION OF ADDITION AND A STATEMENT, THE

LIVE HOLTHIRE REPAYING J. DR. TR. GRO

21

.

1062

12:502: 6.

20103501

a she digt a .

1084 WHD. HC. HC. C. HOADHC 4

STATION SO-	-41	:	187 FS 23.03.86
LOKATION		:	PALINURO
*****	****	****	*****
KOORDINATEN	-	:	BREITE (N) LAENGE (E)
BODENSICHT	OFO	S	START: 39 DEG 28.98 MIN 14 DEG 51.16 MIN ENDE: 39 DEG 29.24 MIN 14 DEG 54.30 MIN
PROFILSTRECI	<e< td=""><td>CONNEL CONNEL C</td><td>START CA. 2 KM OESTLICH VOM TOP HAUPTKRATE PALINURO (1.BODENSICHT 283 m), PROFIL HANGAB WAERTS UEBER OESTLICHE LAVAZUNGE IN RICHTUN 140 GRAD BIS 800 m TIEFE, DANN RICHTUNG 40 GRAD AUF OESTLICHEN BENACHBARTEN SEAMOUNT. AUF DEM SEAMOUNT KURSE IN DIVERSEN RICHTUN- GEN, VORWIEGEND AUF KALDERARAND.</td></e<>	CONNEL CONNEL C	START CA. 2 KM OESTLICH VOM TOP HAUPTKRATE PALINURO (1.BODENSICHT 283 m), PROFIL HANGAB WAERTS UEBER OESTLICHE LAVAZUNGE IN RICHTUN 140 GRAD BIS 800 m TIEFE, DANN RICHTUNG 40 GRAD AUF OESTLICHEN BENACHBARTEN SEAMOUNT. AUF DEM SEAMOUNT KURSE IN DIVERSEN RICHTUN- GEN, VORWIEGEND AUF KALDERARAND.
PROFILTIEFE	4:		START: 283 M ENDE: GOG M (RS904-DEDS)
TECHNISCHE	DATE	N:	NAVIGATION SCHIFF: GPS,SATNAV NAVIGATION OFOS : RS 904
1			BLITZE : FL1,FL2,FL3,FL4 LAMPEN : L3
(ZEITEN IN (3MT)		S/W-VIDEO : 20:50-23:49 FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 20:49:48 LETZTES PHOTO : 23:48:54 ANZAHL PHOTOS : 676
DATENFILES		-	187FS.GED (DATENFILE)
			187FS.DAT (TITELBLATT)
FUNKTION		:	OK
KURZFASSUNG BEOBACHTUNG)	DER EN:		STARKE SEDIMENTBEDECKUNG (70-100 %), SEDIMENTE VON 270-G00 m FLECKENARTIG MIT SANDIGEN DUNKLEN VULKANISCHEN ASCHEN BEDECKT. KORALLENBRUCHSTUECKE (TOT) VON 270-300 m TIEFE,Z.T.LEBENDE FORMEN (GELBE TENTAKELN) IM BEREICH 270-290 m. DEUTLICHE LAVAAUS- BISSE NUR VON 270-330 m IM TOPBEREICH IN FORM VON PLATTIGEN UND LOBIERTEN SCHICHTLA- VEN.SONST NUR IN FORM VON EINZELNEN OUT- CROPS IN VORWIEGEND SEDIMENTBEDECKTEM TER- RAIN,ODER AN VERWERFUNGSFLAECHEN. GERINGE TEKTONIK,ETWAS AUSGEPRAEGTER AM WESTLICHEN HANG DES SEAMOUNTS MIT CALDERA, 720-640 m.HYDROTHERMALINDIKATIONEN WENIG AUSGEPRAEGT: PARTIELL BRAUNSCHWARZE SEDI- MENTIMPRAEGNATIONEN (MN-OXIHYDROXIDE?) UND SEHR LOKAL GELBE PRAEZIPITATE AUF LAVEN

- 326 -

STATION	: 504	41-1871	FS	NU NET TIT DESERTERS
NAVIGATI	ON SC	CHIFF:	GPS	S.SAT GERAET: RS
23-MAR-8	6			101,2,20,2,7 M 717 317 4 72:00:00
20 . 47 . 33		297	206	TON AN AN ALT DIS TONICHER
00.40.40	D	010	200	
20:49:48	r	319	290	BUP1, M4, IF, C, ASCHEN
20:00:02		373	296	SUIT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20:50:14	P	328	300	M3,L,C,MOEGLICHERWEISE AUCH CC?
20:50:26		328	303	M4,TE
20:50:43	P	324	313	M4, TF
20:51:29		318	323	M4.TF
20:52:23		291	329	M4.TF
20=54=07	p	200	201	MATE EC
20.J1.07		000	301	The second
20:04:37	P	302	296	D+, L, M3. HM, L, BRAUNSCHWARZE SEDIMENTIMPREAGNATION
20:54:42	P	305	290	L,M2,TF M BOT CEA 4 Intersor
20:55:20	P	306	285	FC,C,GELB,L,TF,M2
20:56:48	P	308	280	FC.M4.TF.C.GELB
20:57:54	P	309	269	HC?.SP.FC.M2
20.50.07	D D	217	075	- MATE EC
20.00.07		017	2/J	20:42:45 P 609 642 NUMPERS
20:08:26	r	317	281	EL, M4, IE , H, EM RIA CTA COSCELEC
20:58:53	P	328	286	SL,M3,FC,TF,C,SCHOENES PHOTO KORALLEN
21:00:10	P	328	299	SL, M3, FF, FC, TF
21:01:06	P	329	324	++.M2.L.HC?.SL.TF
21:01:47	P	334	328	FC.HM.M4.TF.C.DUNKLE LINEAMENTE
21:02:20	P	388	344	M3_HC7_L_TF
21 .02.55	•	200	256	
01.00.10		330	3.36	
21:03:18	P	410	360	HU: M3 MIE J. CH 927 - 028 65:00:20
21:03:32		416	365	M4 H0J. (** 053' ' 010 - 06180-55
21:04:27	P	420	379	M4,TE
21:05:36		426	400	M4,TE
21:05:51	P	440	410	HC?.M3.TF
21:06:01	P	462	419	M4 TF
21:07:10		492	429	MATE DE DE DE PERISE
01=00=07	D	501	AEO	23:14:50 F 512 580 HH, HS, D TT AM
a1.08.07	r	501	400	DATE CONTRACTO OTTATAT
21:09:51		533	482	L,GEFLECKIES SEDIMENI
21:13:45	P	599	544	HM, M4, TF, C, BRAUNSCHWARZE SEDIMENTIMPRAEGNATIONEN
21:14:01	P	602	569	HM,M4,TF
21:19:13		604	618	H4 PARTIES ALS PAIDLESS
21:22:00	P	630	639	MACHARACENER VOD 100 CC:10:00
21:31:55		687	676	C.SEDIMENT SEHR EINFOERMIG
21:43:19	P	724	847	HM_MA PM 103 920 9 DOLECTED
21 . 44 . 46	1	705	946	MA BH LAB 202 Stappage
01 . 45 . 00		210	010	MA Chi I GAD ATH
A1:40:44	-	11	633	
21:45:42	Р	712	818	HC?,M3,Langes of a second locatest
21:47:25		713	791	23:32:22:20 500 647 Line A
21:47:47		719	785	M4 PM 828 828 8011010101
21:49:08	P	751	777	M3.L J.SM. MT 802 NE2 64:50:00
21:50:00	P	770	770	122 122 122 123 123 123 123 124 14 14 14 14 14 14 14 14 14 14 14 14 14
21.51.54	•	797	760	MA AN SAC DOE & CARDARD
01.50.15		792	700	
21:52:15		791	765	m4
21:54:34	P	814	790	M3,L,HM?
21:55:08		815	788	M3,L,HM? D0 G0G 010 9 S6:34:85
21:55:24		814	791	M4
21:56:04	P	816	302	C.L.M3 90 605 VDA GOSPASSC
21:56:59	P	818	806	M4 907 103 1803 (1+96+00
01:57:40	•	020	010	MA
00+00-11		020	012	
22:00:11		822	828	L, OHLIELSEKEIUN
22:03:56		816	836	M 43
22:11:28	P	720	832	C, FAECHERKORALLE, M4
22:12:53		724	810	M4
22:13:24		730	808	MA
22:15:20	P	702	799	C.FAECHERKORALLEN.M3.L
1	1232	A. 1 1 2 2 3 4	01 100203	

	*							
22:17:16		686	770	++,M4				
22:19:59		712	728	M4				
22:20:46	P	715	720	M3,L				
22:20:57	P	716	717	HM?, L, M3, C, MN-0	XIDE			
22:21:01		717	714	M4				
22:21:51	P	710	708	M4				
22:23:28	P	708	706	M3, L, HC?,				
22:23:51		737	711	M4				
22:25:00	P	714	719	M4				
22:25:10		712	720	M3.L				
22:25:31		711	724	L, M3				
22:25:59		739	735	M4	2011			
22:38:34	P	630	717	M3.L.++.HM?				
22:38:50		632	714	++.M3.L	1021 2 22	1.1		
22:39:21	P	633	708	D+	et in del ge			
22:39:30		634	689	++		P 1 9		
22:41:19	P	604	654	D+				
22:42:16		606	643	M4				
22:42:45	P	609	643	M3.LHM?				
22:43:09		613	648	M3.L				
22:43:47	P	620	650	M4.HM				
22:44:33		629	653	M4				
22:45:50		639	660	M4				
22:47:00		660	681	M4,				
23:00:15		735	750	M4	16 (BSC.			
23:00:56		721	753	M4				
23:04:30		630	738	M3.L.HM.++				
23:05:40		619	731	++.LOB				
23:09:29		595	693	++				
23:12:22		511	643	++				
23:13:22		512	623	++				
23:14:34		513	596	++.BOT				
23:14:50	P	512	583	HM.M3.L				
23:15:12		512	578	++				
23:15:54		514	565	M3.L				
23:16:42		520	564	H4			11-35 1 1 f T	
23:18:09		532	562	M4			10112:12	
23:21:23	P	601	589	HM.M3.L.C.GELBE	FLECKEN	AUF I	AVA (FE-0)	(IDE7)
23:22:58	2.0	634	601	M4				
23:23:02	P	628	601	M4				
23:28:11	- A.	595	661	M4	Part Part		CL 254 CL 200	
23:29:47		510	660	L-M3				
23:31:55	P	530	645	FC.M4				
23:32:20	•	538	637	L.M3			19 19 19 19	
23:32:25		536	635	M4				
23:33:43		534	598	D+.M2.L				
23:36:02		530	537	M4				
23:40:42	P	\$32	542	M4				
23:43:56	P	539	550	HM.M4				
23:45:39	P	614	557	FC.M3.L				
23:45:53	P	610	565	M4				
23:48:54	P	603	589	BOPL				
23:49:08		607	605	UP				
23:49:11		608	604	TOF				

•

111 1 100 1 1

STATION SO-41 :	209 FS	25.03.86
LOKATION .	PALINURO	
**************************************	**************************************	*************** LAENGE (E)
BODENSICHT OFOS	START: 39 DEG 29.85 MIN 14 ENDE: 39 DEG 30.16 MIN 14	DEG 57.58 MIN DEG 58.33 MIN
PROFILSTRECKE :	START 300 m OESTLICH VOM TOP D STEN SEAMOUNTS DES PALINURO-MA ETWA 39 DEG 29.7 N,14 DEG 57.5 SICHT BEI G46 m),PROFIL HANGAR OESTLICHE LAVA-ZUNGE IN RICHTU BIS 932 m TIEFE.	ES OESTLICH- SSIVS BEI E (1.BODEN- WAERTS UEBER NG 80 GRAD
PROFILTIEFEN:	START: 646 M ENDE: 931 M (R5904-0F05)
TECHNISCHE DATEN:	NAVIGATION SCHIFF: SATNAV NAVIGATION OFOS : RS 904	
	LAMPEN : L3	
(ZEITEN IN GMT)	S/W-VIDEO : 12:30-13:00 FARB-VIDEO: NICHT RECORDED ERSTES PHOTO : 12:30:26 LETZTES PHOTO : 13:00:00 ANZAHL PHOTOS : 115	
DATENFILES :	209FS.GEO (DATENF 209FS.DAT (TITELB RS209FSO.DAT (POSITION	ILE) LATT) EN TOP+HANG)
FUNKTION :	ок	
KURZFASSUNG DER BEOBACHTUNGEN:	VOLLKOMMENE SEDIMENTBEDECKUNG GANZEN PROFILBEREICH.STEILABFA (12:36) MIT EINIGEN LAVAAUSBIS INDIKATIONEN VON HYDROTHERMALI	(100 %) IM LL UM 666 m SEN.KEINE SMUS.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<b>*********</b> ******

2

2

2

- 329 -



- 330

1

STATION : S	3041-2091	ES	
NAVIGATION	SCHIFF:	SAT	GERAET: RS
25-MAR-86			
12:25:17	600	526	TON
12:30:37	633	616	BOIJ
12:30:44	691	619	M4
12:34:28	725	668	M4,
12:36:25	810	694	D
12:41:05	883	822	M4
12:45:24	882	905	M4,C,EINFOERMIG
12:56:29	933	939	M4
13:00:04	993	968	BOPL
13:00:08	990	965	UP,C,115 PHOTOS
13:00:19	997	957	TOF