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Adaptation to enemy shifts: rapid
resistance evolution to local Vibrio spp.
in invasive Pacific oysters

Carolin C. Wendling† and K. Mathias Wegner

Coastal Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Wadden Sea Station Sylt, Hafenstraße 43, List 25992, Germany

One hypothesis for the success of invasive species is reduced pathogen

burden, resulting from a release from infections or high immunological fitness

of invaders. Despite strong selection exerted on the host, the evolutionary

response of invaders to newly acquired pathogens has rarely been considered.

The two independent and genetically distinct invasions of the Pacific oyster

Crassostrea gigas into the North Sea represent an ideal model system to study

fast evolutionary responses of invasive populations. By exposing both

invasion sources to ubiquitous and phylogenetically diverse pathogens

(Vibrio spp.), we demonstrate that within a few generations hosts adapted to

newly encountered pathogen communities. However, local adaptation only

became apparent in selective environments, i.e. at elevated temperatures

reflecting patterns of disease outbreaks in natural populations. Resistance

against sympatric and allopatric Vibrio spp. strains was dominantly inherited

in crosses between both invasion sources, resulting in an overall higher resist-

ance of admixed individuals than pure lines. Therefore, we suggest that a

simple genetic resistance mechanism of the host is matched to a common viru-

lence mechanism shared by local Vibrio strains. This combination might have

facilitated a fast evolutionary response that can explain another dimension of

why invasive species can be so successful in newly invaded ranges.

provided by O
1. Introduction
Species invasions can be considered as evolutionary ‘experiments in nature’ [1]

that generate new phenotypes in action [2,3]. Surprisingly, the evolutionary poten-

tial of invaders to adapt to altered abiotic and biotic selection pressures in the

transition from colonization to expansion has rarely been considered [3,4]. Only

recently it has been shown that the adaptation to novel climatic conditions can

outweigh or at least match the majority of factors promoting invasion success [5].

One important factor for invasion success is reduced pathogen burden that

can result from release from parasite infections i.e. the enemy release hypothesis

[6] or immunological superiority [7]. Owing to rapid coevolutionary dynamics

host–parasite interactions should also lead to adaptive clines and at least for

parasites the rapid adaptation to invasive hosts has been demonstrated [8].

For the host itself an invasion of a new habitat often involves exposure to

novel pathogens or parasites [9]. Instead of a release from infection pressure

a shift to newly acquired pathogens can be observed. However, the importance

of adaptation to new pathogen communities has so far not been investigated.

Here, we present a unique study system, where two independent invasions

of Pacific oysters Crassostrea gigas (Thunberg, 1793) led to genetically divergent

populations [10,11]. Both invasions of the Pacific oyster into the European

Wadden Sea occurred throughout the 1990s. While the southern invasion

wave can be traced back to the Oosterschelde, the northern invasion stems

from British hatchery produced spat farmed on the island of Sylt [12]. Using

independent invasion events has a clear-cut advantage over the comparison

of adaptive differences between source and invasive populations. For one,

adaptations to local selection pressures will be independent and will have
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furthermore occurred over a similar time span [2]. Yet, only

few studies focused on populations with independent inva-

sion histories [4]. Both invasive populations also differ in

their selective history of disease outbreaks. In hot summer

months with water temperatures exceeding 198C, southern

oysters were frequently subjected to strong selection by

oyster summer mortality with mortality rates exceeding

60% and affecting all size and age classes [13].

A complex interaction of external and internal factors

including high temperatures and pathogens like herpes viruses

or bacteria of the genus Vibrio spp. (in particular, Vibrio
splendidus) are suggested to be involved in mortality events

affecting oyster larvae [14], juveniles [15–17] and adults

[18,19]. Although herpes viruses (OsHV) were observed

during mortality events in the Wadden Sea in 2005 [13], high

mortality rates in comparison with low infection rates suggest

that also other factors were involved. On top of that screening

of oysters from Texel and Sylt for herpes viruses in Pacific

oysters by PCR in July 2011 did not give positive results for

OsHV-1 (M.Y. Engelsma 2011, personal communication). Fur-

thermore, resistance towards disease has a genetic basis [20],

making it a likely target for selection.

Since the northern population has been spared from dis-

ease so far, the aim of this study was to test whether rapid

evolution along differential selection gradients within the

two invasion waves led to local host adaptation to sympatric

disease agents, i.e. Vibrio spp. To answer this question, we

conducted two consecutive experiments: in a first reciprocal

infection experiment, we determined disease resistance and

the underlying efficiency of the cellular immune response

towards sympatric and allopatric V. splendidus strains in

adult Pacific oysters stemming from both source populations.

In order to determine the influence of environmental con-

ditions the experiments were carried out at average summer

water temperature (178C) and elevated temperature (218C)

associated with disease outbreaks. To then generalize our find-

ings, we tested the resistance of laboratory-bred larvae against

a broad range of Vibrio strains. Here, we also included crosses

between the invasion sources and can therefore not only detect

signatures of selection within each invasion wave but are

also able to predict whether admixture will put new superior

genotypes into action [21–23] that can decisively influence

the further spread of biological invasions. We found clear evi-

dence of rapid immunological adaptation to sympatric Vibrio
spp. communities and demonstrate that resistance against

these is dominantly inherited resulting in increased fitness of

admixed populations. Our findings therefore add a new facet

to the factors explaining invasion success: rapid adaptation

to enemy shifts.
2. Material and methods
(a) Vibrio community structure
Pacific oysters were sampled at six sites covering the entire

Wadden Sea (electronic supplementary material, figure S1) in

September 2011. Haemolymph samples were taken from each

oyster and 4 ml were spread on Vibrio selective thiosulfate citrate

bile sucrose agar (TCBS) plates (Fluka Analytica, Sigma-Aldrich,

Steinheim, Germany). Plates were incubated at 258C for 24 h,

before we counted the colony forming units (CFU). A random

subset of 11–18 single colonies per site were resuspended in 3 ml

nutrient solution 1.5% NaCl (1000 ml distilled water, 5.0 g
peptone, 3.0 g meat extract) and cultured at 258C under constant

shaking for 24 h. An aliquot of each liquid culture was used for

direct amplification of 16s rRNA, GyrB and PyrH. Amplification

followed previously established protocols [24] and PCR products

were purified and sequenced at the Institute for Clinical Molecular

Biology (IKMB), Christian-Albrechts-University Kiel, Germany.

Each remaining culture was cryopreserved in medium þ50%

glycerol at 2808C until further use.

(b) Infection experiments
We performed two sets of infection experiments. One using adult

oysters to measure resistance and cellular immune response against

two strains of V. splendidus and the other using laboratory-bred

larvae to measure resistance against a wide variety of Vibrio strains.

(i) Adult infections
Adult sampling and acclimation. In May 2012, healthy adults that

were showing no signs of disease were collected three weeks

prior to the experiment from two sites covering the northern

(Sylt Island: 5582.330 N, 8826.570 E) and southern (Texel Island:

53808.850 N, 4854.530 E) population (electronic supplementary

material, figure S1). Oysters were acclimated to the experimental

temperatures of 17 and 218C in constant temperature rooms (temp-

erature shifts during acclimation less than 0.58C per day). We chose

178C as it represents contemporary average summer water temp-

eratures, and 218C as a representative for future predicted water

temperatures [25]. Oysters were kept in a flow through system

and fed three times a week with 50 000 to 80 000 cells per ml21 of

Isochrysis 1800 Instant Algae (Varicon Aqua Solutions, Worcester,

UK). One week prior to the experiment oysters were cleaned of epi-

bionts and were notched on the dorsolateral side of the shell closest

to the adductor muscle with a small hand drill.

Adult infections. For the adult infection experiment, we selected

two previously described closely related isolates of V. splendidus
from each location (O7w_July from Sylt and Tx5.1 from Texel, as

described in Thieltges et al. [26]). Bacteria of the Splendidus clade

have been shown to be involved in mortality events affecting

oyster larvae [14], spats [15] and adult oysters [27,28]. Both strains

have been successfully used in past studies [26] and did not show

temporal bias in virulence [17] at 178C. The strains will be referred

to as Vibrio north and Vibrio south for geographical reference. To

test for patterns of local adaptation across environments, we

used a three-factorial design including origin (north, south), temp-

erature (17 and 218C) and infection (control, Vibrio north and Vibrio
south). We used a total of 220 oysters and kept half of the oysters

from each site (n ¼ 55) at average summer water temperature

(178C) and the other half at elevated temperature (218C). Exper-

iments were carried out in one constant climate chamber where

oysters were kept individually in single 1 l aerated glass jars

placed in temperature controlled water baths. To avoid block

effects, jars were randomly distributed over 21 water baths, each

containing eight jars at 178C and eight jars at 218C. We exchanged

the water every second day.

For each experimental group, 20 oysters were infected with

Vibrio north or Vibrio south, and the remaining 15 oysters

with nutrient solution 1.5% NaCl (as sham control). Treatments

followed the infection protocols described in Wendling &

Wegner [29]. Briefly, we injected 108 cells of bacterial culture or

an equal volume of nutrient solution 1.5% NaCl with a syringe

into the adductor muscle through the predrilled hole.

Adult cellular immune response and resistance. Cellular immuno-

logical parameters, bacterial load expressed as culturable Vibrio
counts and survival were assayed as described in Wendling &

Wegner [29]. In short, we monitored survival of all animals daily

and additionally collected five random oysters from every treat-

ment group at days 1, 3 and 7 to extract haemolymph (800 ml)

from the adductor muscle. In fractions of the haemolymph, we:

http://rspb.royalsocietypublishing.org/
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(i) measured the total number of circulating haemocytes (THC)

using an automated cell counter (Scepter, Merck Millipore, Darm-

stadt, Germany), (ii) estimated phagocytosis activity per unit of

haemocyte protein using neutral red-stained, heat stabilized zymo-

san as described in Pipe et al. [30], and (iii) determined infection

intensity by plating out 4 ml of haemolymph on TCBS plates to

count CFU.
 publishing.org
Proc.R.Soc.B

282:20142244
(ii) Larval infections
Larval crossing and rearing. Over a 2 day period in July 2012, we

created 40 full-sibling families from randomly collected northern

(Sylt) and southern (Texel) oysters (electronic supplementary

material, figure S1). We bred four crossing groups with 10

families each: NN (Northfemale � Northmale), NS (Northfemale �
Southmale), SN (Southfemale � Northmale) and SS (Southfemale �
Southmale) by stripping gametes directly from the gonads. Ferti-

lization was performed at a ratio of 200 spermatozoa per

oocyte, with 4 � 105 oocytes per family. One hour after fertiliza-

tion embryos were transferred to rearing tanks at a concentration

of five embryos ml21. Larvae were kept at 218C with salinity at

28 psu in 2 l rearing tanks filled with 0.45 mm filtered, ultraviolet

(UV)-treated seawater (exchanged every 48 h) and fed Isochrysis
galbana (10–150 cells ml21 depending on age).

Larval infection. On day 10 after fertilization we conducted

controlled infection experiments with 76 different Vibrio strains

isolated from all sites throughout the entire Wadden Sea (electronic

supplementary material, figure S1). We created three groups by

pooling families with equal larvae contributions: NORTH (all

NN families), HYBRIDS (all NS and SN families) and SOUTH

(all SS families). Experimental challenges were carried out using

sterile 96-well culture plates as described in Wendling et al. [24].

Briefly, 10–15 larvae per group were placed in one well containing

0.45 mm filtered, UV-treated seawater and bath challenged with

the Vibrio isolates at a concentration of 107 cells ml21. Each combi-

nation (larval group � Vibrio isolate) was assayed in duplicates.

Survival was observed three days post infection using an inverted

microscope by counting the amount of dead larvae.
(c) Data analysis
All statistics were performed in the R v. 2.15.2 statistical environ-

ment (R Development Core Team, 2011) and only minimal

adequate models of generalized linear models (GLMs) were

fitted unless stated otherwise. All data were checked to meet

underlying assumptions and proper model fits.
(i) Vibrio community structure
Phylogenetic analysis. A detailed description of our analysis pro-

cedure is given in Wendling et al. [24]. Briefly, after assembly

and alignment of concatenated sequences, we constructed a phylo-

genetic tree using maximum-likelihood in PhyML v. 3.0 [31] from

the 2560 positions long alignment. We applied the general time
reversible model plus a discrete g-distribution to account for rate het-

erogeneity among sites plus invariant sites (GTR þ G þ I) [32] as

suggested by the Akaike information criterion (AIC) given by

jMODELTEST [33]. Allovibrio fischerii was used as outgroup and 14

reference strains were included for species identification. A radial

cladogram was drawn using the Interactive Tree of Life web

service at http://itol.embl.de/ [34].
(ii) Adult infections
Survival. We performed two independent logistic regression ana-

lyses for each temperature, with survival as the dependent

variable and oyster origin (north, south), Vibrio origin (north,

south), as well as all interactions as independent variables.

Oysters that survived longer than nine days were recorded as
survivors, while oysters used for immunological analyses were

dropped from the analysis.

Cellular immunological parameters and infection intensity. We

used a multivariate analysis of variance (MANOVA) using the

Pillai’s trace statistics with all response variables (i.e. total haemo-

cyte counts, phagocytosis rate (%) and amount of CFU) as

dependent variable and oyster origin, temperature, Vibrio origin

and time and all interaction terms as independent variables.

(iii) Larval infections
Resistance against all strains was assessed as survival on day 3 of

the infection experiment. We used a binomial generalized linear

model to identify local adaptation with numbers of surviving

and dead larvae as the dependent variable and oyster origin

(NN, SS, hybrids) as well as Vibrio group as independent variables.

We grouped Vibrio strains to contrast effects between both larvae

sources (Sylt and Texel) and other sites (Husum, Büsum, Wilhem-

shaven, Norden). To further identify differences in oyster survival

depending on geographical origins of Vibrio isolates, we used a

linear weighted regression with survival rate averaged over all

Vibrio strains per site (weighted by sd21) as the dependent variable

and geographical distance of to the Vibrio community to the north-

ern site as the independent variable for all crossing groups. Since

the relationship between survival rate and geographical distance

in the hybrid group was not linear, we chose a quadratic poly-

nomial regression to determine the relationship between survival

rate and geographical distance of the Vibrio community.

We used a heuristic approach to identify Vibrio strains causing

patterns of local adaptation. To do so, we calculated the deviance

explained by the interaction term of a generalized linear model

predicting survival by cross type and Vibrio strain. We repeated

this analysis after removal of each Vibrio strain and recorded the

resulting deviance change of the interaction term when compared

with the model containing all strains. We then ordered all 76

strains based on their contribution to the interaction deviance

term and subsequently removed strains in descending order

until the crossing group � Vibrio strain interaction term was not

significant any more. Strains that were removed from the model

this way can be considered to show patterns of local adaptation.

We conducted a Fisher’s exact test to identify whether Vibrio
origin and genetic affiliation were responsible for the observed

pattern of local adaptation.
3. Results
(a) Vibrio community structure
We successfully genotyped 76 different Vibrio strains for all

three genes (16s, PyrH, GyrB), of which we could unambigu-

ously assign 75 strains to nine different Vibrio species from

three distinct clades (figure 1), i.e. the Splendidus clade (92%),

the Vibrio core (7%) and the Anguillarum clade (1%). Within

the Splendidus clade, we found seven different species

(V. chagasii, V. crassostreae, V. cyclitrophicus, V. gigantis,
V. kanaloae, V. splendidus, V. tasmaniensis), while all members

of the Vibrio core belonged to the species V. alginolyticus, and

the member of the Anguillarum clade was identified as

V. aestuarianus. The Vibrio community composition did not sig-

nificantly differ between all sampling sites (Unifrac significant

test, p ¼ 0.07) and overall was dominated by the Splendidus
clade (electronic supplementary material, figure S1).

(b) Infection experiments
We infected two different life stages to address two different

scientific questions. First, we were interested in differences of

http://itol.embl.de/
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immune response between sympatric and allopatric infections,

for which we had to use adults. To extrapolate our results

obtained from adult infection experiments to a wider range of

Vibrio isolates, we conducted a larvae infection experiment.
(i) Adult infections
Survival. Upon infection, mortality started at day 1 and con-

tinued until day 5 with no more deaths observed until day

7. Therefore, experiments were terminated at day 7. Infection

and temperature significantly increased mortality (logistic

regression: infection x2
1 ¼ 20:82, p , 0.001; temperature:

x2
1 ¼ 16:86, p , 0.001). At 178C mortality did not differ with

respect to oyster and Vibrio origin, x2
3 ¼ 2:37, p ¼ 0.5.

However, at 218C, oysters from north and south showed
significantly lower mortality rates when infected with their

sympatric strain compared with the allopatric infection: sig-

nificant oyster origin � Vibrio origin interaction: x2
3 ¼ 14:3,

p ¼ 0.003 (figure 2).

Cellular immune parameters and infection intensity. After

7 days, we lost all southern oysters that had been infected

with Vibrio north at 218C and therefore excluded day 7

from the analysis. Infection with either Vibrio isolate signifi-

cantly increased the amount of total culturable Vibrio
counts, i.e. CFU and cellular immune parameters (figure 3).

To specifically examine local adaptation between oysters

and Vibrio, we excluded the control group from further analy-

sis. Cellular immune parameters and infection intensity

significantly increased with warmer temperatures (table 1

and figure 3). CFU was highest after 12 h and decreased

http://rspb.royalsocietypublishing.org/
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throughout the experiment, reaching values indistinguishable

from those of controls after one week. Cellular immune par-

ameters peaked on day 3 showing mainly a response to the

immune challenge (figure 3a,c). Oyster origin and Vibrio
strain did not show a significant effect at 178C, but at 218C,

oysters from south and north showed significantly lower

infection intensities and higher cellular immune response

when infected with sympatric strains (significant origin �
strain � temperature interaction, table 1).
40ph
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y 7

da
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Figure 3. Infection intensity (total culturable Vibrio counts) and cellular
immunological parameters at 178C (left side) and 218C (right side) measured
on days 1 (i.e. 12 h), 3 and 7 after infection for each treatment (control: black
circles, Vibrio south: light grey triangles, Vibrio north: dark grey squares,
mean +++++ s.e.m., n ¼ 90). (a) Infection intensity: CFU, (b) total haemocyte
counts, (c) phagocytosis rate.
(ii) Larval infections
Three days after artificial fertilization, we lost four families

(1 NN, 1 SS and 2 SN). Resistance of cross types varied sig-

nificantly between Vibrio strains (F1,391 ¼ 6.47, p ¼ 0.01), but

did not depend on phylogenetic distance between strains

within each cross type (Mantel test: northern oysters: p ¼
0.91, southern oysters: p ¼ 0.63, artificial hybrids: p ¼ 0.87)

nor for the whole dataset (Mantel test: p ¼ 0.77). On the

other hand, we observed a significant main effect for oyster

origin (binomial GLM: x2
2 ¼ 55:04, p , 0.001), Vibrio group

(binomial GLM: x2
2 ¼ 31:32, p , 0.001) with the interaction

between Vibrio group and oyster origin explaining most of

the variation (binomial GLM: x2
4 ¼ 183:64, p , 0.001). For

both northern and southern cross types (R2 ¼ 0.84 and

R2 ¼ 0.62 respectively, figure 4a), we observed a linear

relationship with distance to the infecting Vibrio community,

i.e. both cross types displayed highest survival rates when

infected with sympatric Vibrio spp. strains. By contrast,

hybrids were equally resistant to northern and southern

Vibrio spp. strains as the pure cross types (NN and SS) and

showed lowest survival at intermediate distance from both

origins (quadratic distance R2 ¼ 0.81; figure 4a) indicating

that resistance to infection with sympatric Vibrio strains is

dominantly inherited. Averaged over all Vibrio sampling

sites, hybrids had a higher mean survival than pure lines

(ANOVA: F2, 280 ¼ 5.38, p ¼ 0.006; figure 4b).
Out of the tested 76 Vibrio strains, our heuristic approach

identified 10 strains from several groups within the V. splen-
didus clade that showed typical local adaptation patterns

(figure 4c). Out of these 10 strains the major proportion

(60%, Fisher’s exact test: p ¼ 0.05) was isolated from the

sites where brood stocks were collected (i.e. Sylt and Texel,

figure 4c) indicating that the evolution of specific resistance

resulted from a local process over short period of time.
4. Discussion
Rapid evolution of invasive species in response to natural selec-

tion in the novel environment is a key feature in determining

http://rspb.royalsocietypublishing.org/
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nomial regression: Hybrids (t1, 23.59, p ¼ 0.04). (b) Mean survival rate (mean +++++ s.e.m., n ¼ 688) per host population. (c) Strains (%) identified to promote
local adaptation displayed per origin (left) and Vibrio species (right).

Table 1. Infection intensity (i.e. total culturable Vibrio counts) and cellular immune parameters (MANOVA, Pillai’s trace statistic). (Significant factors (a ¼ 0.05)
are highlighted in bold.)

fixed factors d.f. Pilai’s trace approx. F p

origin 1 0.005 0.1 0.96

temperature 1 0.91 158.6 <0.001

strain 1 0.012 0.2 0.88

day 1 0.81 71.2 <0.001

origin:temperature 1 0.06 1.0 0.39

origin:strain 1 0.22 4.8 0.005

temperature:strain 1 0.01 0.2 0.87

temperature:day 1 0.41 11.5 <0.001

origin:temperature:strain 1 0.19 3.9 0.01
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invasion success [5]. Based on controlled infection experiments

with two genetically divergent invasive populations of the

Pacific oyster C. gigas, we could show that rapid evolution

can also occur to adapt to a broad range of newly acquired

opportunistic pathogens encountered in the new habitat.

Oysters showed increased cellular immune efficiency giving

them higher resistance when infected with sympatric Vibrio
spp., suggesting that a common feature shared by otherwise

only distantly related Vibrio spp. strains can serve as a target

for local immunological adaptation. The dominant inheritance

of resistance in hybrids between the two invasions further

suggested that the genetic mechanism of resistance relies on

only few loci, thus facilitating a fast and independent evol-

utionary response over only 20 years since the introduction
of Pacific oysters into the Wadden Sea. This corresponds to

six to seven generations at most when considering that Pacific

oysters populations have been established in the mid-1990s

(K Reise 2012, personal communication; [35]) and that they

need approximately 3 years to reach maturity.

(a) Local adaptation to Vibrio communities is
environment dependent

For all oyster origins, we detected no significant difference in

disease resistance to either Vibrio strain at ambient water temp-

erature (178C). However, at higher water temperatures we

detected higher resistance to sympatric Vibrio mediated by a

stronger cellular immune response (figure 3b,c). High water

http://rspb.royalsocietypublishing.org/
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temperatures on the one side led to increased proliferation rate

of the pathogen (figure 3a), while it also led to an increased

immune response compared with 178C (figure 3b,c). Our exper-

imental results thus match the natural condition under which

oyster mass mortalities occurred, i.e. when water temperatures

exceed a critical value of 198C [36] leading to more favourable

conditions for Vibrio growth. This may suggest that immune

surveillance may be costly [7] and is enhanced when conditions

are favourable for bacterial disease. With the risk of disease

being increased with rising water temperature [37], the environ-

ment becomes more selective and allowed us to detect

otherwise cryptic patterns of local adaptation.

In invertebrates, phagocytosis provides an important com-

ponent of cellular immunity [38]. Upon pathogen infection,

haemocytes migrate actively towards the site of infection,

locally increasing the concentration of immune effectors attack-

ing the pathogen [39]. At high temperatures, a higher heartbeat

rate can result in enhanced production and circulation of

haemocytes [40]. Consistently, at higher temperatures, we

observed increased haemocyte counts (THC) and a higher pha-

gocytosis rate. And while we are aware that several other

molecular as well as cellular immune parameters may have

contributed to local immunological adaptation, it is neverthe-

less tempting to speculate that the increased number of THC

and the enhanced phagocytosis rate are involved in limiting

the pathogen load of the faster growing Vibrio population in

the case of sympatric combinations at elevated temperatures

(figure 3b).

By using 76 different Vibrio strains isolated from haemo-

lymph of six different oyster populations covering 535 km of

Wadden Sea coastline, we could further show that resistance

against sympatric Vibrio strains is valid for a broad range of

strains. Overall, Vibrio spp. communities associated with

oyster haemolymph showed similar species distributions

throughout the entire Wadden Sea (electronic supplementary

material, figure S1). This indicates that the taxonomic compo-

sition of strains used here was independent of the invasion

source of the host. While oyster associated microbiota can

assemble according to host genotype [41], Vibrio spp. in

oyster haemolymph are most probably taken up from the

environment and vary seasonally with environmental tempera-

ture [24,42]. Vibrio spp. are virtually absent from oyster tissue

during winter months [41], and their abundance and diver-

sity increases from spring to summer, reaches a peak during

spawning season before decreasing towards autumn [24].

Thus, Pacific oysters do not have a constant Vibrio community

but rather take up strains from the local environment making

it highly unlikely that the strains used here share a longer coe-

volutionary history exceeding the time since invasion into the

Wadden Sea. Warm summer months also showed the highest

chances of encountering highly virulent strains [24]. Therefore,

our sampling in September should have captured a representa-

tive high diversity of Vibrio spp., including several virulent

strains (figure 1).

The consistent pattern of resistance against sympatric Vibrio
strains suggests that strains causing the pattern of local adap-

tation in the community of oyster haemolymph symbionts

share a common factor to which oysters have adapted. Since

symbiont Vibrio strains were only distantly related, such a

factor is unlikely to be shared by descent. Horizontal gene

transfer is common in the genus Vibrio [43] and it is tempting

to speculate that the common factor was acquired in Vibrio
communities resident in oyster tissues. Horizontal gene
transfer as well as local adaptation are localized processes

and with 60% of the strains showing local adaptation stem-

ming from the source populations used for breeding, we can

confirm that adaptation to local pathogen communities was

such a localized process.

Vibrio are ubiquitous in the marine realm and pathogenic

strains are often generalists with a broad host range [43] that

encounter a vast range of resistance mechanisms from alterna-

tive host species [44]. Indeed, Vibrio communities associated

with benthic marine invertebrates including oyster populations

used here were not host specific and rather reflected a random

assemblage of Vibrio spp. from the environment [24,45]. For

generalist pathogens, adaptation to a particular host species

would be disadvantageous, as it will limit the host range

[46,47]. This results in asymmetric selection pressures in

host–parasite coevolution favouring host adaptation over

parasite adaptation. Indeed, it has previously been shown

that activation of the pipefish Syngnathus typhle immune

system is locally adapted to their phylogenetically divergent

Vibrio communities [48].
(b) Dominant inheritance facilitates fast adaptation
Hybrid larvae (H) stemming from crosses between both geneti-

cally differentiated invasions showed similar survival rates as

both parent populations (NN and SS) when infected with sym-

patric Vibrio strains (figure 4). The higher overall resistance

against a wider scope of pathogens of hybrids can spread

rapidly through the secondary contact zone. Such increased

resistance in the admixed population might have beneficial

effects during the invasion event by increasing the chance of

range expansion [23]. The clear-cut resistance pattern of hybrids

further suggests a simple underlying genetic architecture of

resistance that is dominantly inherited. Dominance of resistance

alleles over the susceptible alleles will lead to faster fixation of

resistance alleles, which might explain the fast rate of local adap-

tation and clearly demonstrates the evolutionary importance of

disease as a major selective force [49]. Indeed, extensive mortal-

ities associated with disease in several oyster species suggests

that adaptation can occur quickly within a few generations in

natural populations [20,50,51]. Direct field observations and lab-

oratory experiments of the Eastern oyster Crassostrea virginica,

of different genetic origin and parasite exposure histories,

revealed that resistance of C. virginica to two different protozoan

parasites, i.e. Minchinia nelsonii (MSX disease) and Perkinsus
marinus (Dermo disease) has evolved within a few generations

[51]. Also, in C. gigas the genetic basis for sensitivity to

summer mortality syndrome (SMS) varied with the intensity

of selection with narrow-sense heritability being higher in

sites where selection by SMS was stronger [20]. In addition,

resistance to V. harveyi and V. parahemolyticus in the clam

Meretriix meretrix is associated with single nucleotide poly-

morphisms in the I-type lysozyme gene [52]. If resistance of

Pacific oysters to Vibrio spp. has a similar genetic basis, rapid

evolution of disease resistance may result from a ‘regime

shift’, where extensive mortalities remove susceptible individ-

uals [53], supported by sweepstake reproductive success,

where only a small fraction of adults, i.e. the most resistant

ones, will reproduce successfully [53,54]. Hence abiotic and

biotic environmental threats can rapidly alter the genetic com-

position of a single oyster population, thereby creating

spatially and temporally varying populations that possess

higher fitness in their native habitat.

http://rspb.royalsocietypublishing.org/
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5. Conclusion
We could show that oysters can rapidly adapt to widespread

communities of pathogenic Vibrio spp. While invasion success

has partly been attributed to a release from parasites encoun-

tered in the native habitat (i.e. enemy release [6]), we can

now add a new facet for explaining invasion success: rapid

adaptation to enemy shifts. Conditions supporting rapid adap-

tation were the likely generalism of Vibrio spp. in terms of host

choice [43], a genetic mechanism shared by local Vibrio strains

and the dominant inheritance of resistance. Immunological

superiority in terms of reduced self-harm has been implicated

in invasion success [7], but it is unclear to which extent evol-

utionary potential of resistance/tolerance contributes to

population growth in new environments. Since any pattern

of local adaptation is constrained to a given environment

with all its abiotic and biotic features, evolutionary potential

of any host (invader and native) seems to be an important

aspect of species persistence in the light of fast changing

environments like coastal oceans. For Vibrio spp., a group con-

taining many widespread opportunistic pathogens, it is well

known, that virulence depends on environmental parameters,

such as temperature or salinity [55,56]. If temperature rises, as

predicted by current climate change models, an increase in

virulence has to be expected [37] that potentially disrupts

patterns of local host adaptation of all potential hosts.
Invasive species can have high evolutionary potential to

adapt to changing abiotic conditions [5]. If they also have a

higher potential to rapidly adapt to altered virulence of gener-

alist pathogens in general, far reaching consequences for future

development of marine ecosystems can be expected. Therefore,

knowledge of underlying genetic mechanisms of rapid local

adaptation and their interactions with the biotic and abiotic

environment will be a crucial component in predicting

evolutionary change in response to increasing virulence of

generalist pathogens resulting from rising temperatures.
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