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Abstract 

 The North Atlantic receives the largest dust loading of any of the world’s oceans due to its proximity 

to North African deserts and prevailing wind patterns. The supply of biologically important trace 

elements and nutrients via aerosols has an important influence on biogeochemical processes and 

ecosystems in this ocean region. In this study we continuously sampled aerosols between July 2007 and 

July 2008 at the Cape Verde Atmospheric Observatory (CVAO), which is situated on an island group close 

to the North African continent and under the Saharan/Sahelian dust outflow path. The aim of our work 

was to investigate temporal variations in aerosol concentration, composition and sources in the Cape 

Verde region over a complete seasonal cycle, and for this purpose we undertook mineralogical and 

chemical (42 elements) analyses of the aerosol samples and air mass back-trajectory calculations. 

Aerosol samples were also collected during a research cruise in the (sub-) tropical Northeast Atlantic 

Ocean in January 2008.  

The concentration of atmospheric Al, a proxy for mineral aerosol concentration, at CVAO was in the 

range 0.01 – 66.9 µg.m-3 (maximum on 28-30 January 2008) with a geometric mean of 0.76 µg.m-3. It 

showed distinct seasonal variations, with enhanced Al concentrations in winter (geometric mean 1.3 

µg.m-3), and lower concentrations in summer (geometric mean 0.48 µg.m-3). These observations have 

been attributed to dust transport occurring in higher altitude air layers and mainly north of the Cape 

Verde during summer, whilst in winter the dust transport shifts south and occurs in the lower altitude 

trade winds with consequent greater influence on the Cape Verde region. The elemental composition of 

the aerosols closely agreed with mean upper crustal abundances, with the exception of elements with 

pronounced anthropogenic sources (e.g. Zn and Pb) and major constituents of sea water (Na and Mg). 
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Mineral analysis showed that clays were the most abundant mineral fraction throughout the whole 

sampling period, with an increase in quartz and clays during strong dust events and an associated 

decrease in calcite. This could have important implications for the estimation of release of for example 

Fe from mineral dust with clays having a higher Fe solubility than quartz. 

The elemental composition and mineralogy of aerosol samples collected during the cruise were 

indistinguishable from those collected at the CVAO during the same period, although mean atmospheric 

Al was 65% higher at the CVAO than those measured on the ship due to the irregular and uneven nature 

of dust transport.   

Air mass back-trajectories showed an important role for southern source regions of the North 

African deserts during summer, with 92.5% of the samples indicating a contribution from the Sahel. 

Significantly elevated ratios of V, Ni, Cu, Zn, Cd and Pb with Al were present in samples originating from 

the Sahel compared with samples with a more northerly origin. This was likely due to enhanced 

anthropogenic emissions related to the greater population densities in the Sahel compared with the less 

developed Saharan regions further north. 

Ratios of other elements and trends in rare earth elements could however not be used to distinguish 

differences in source regions. Similar source material compositions, the mixing of dust from different 

regions during transport, and the pooling of samples over a 1-3 day collection period appears to have 

diluted specific signals from source regions.   

1 Introduction 
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Aeolian dust forms an important source of iron (Fe) and other biologically important trace elements 

and nutrients to microbial organisms in the global surface ocean (Baker et al., 2007; Duce and Tindale, 

1991; Jickells et al., 2005). Transport of dust from the Sahara and Sahel regions of northern Africa results 

in increased dissolved Fe concentrations in the North Atlantic Ocean (Measures et al., 2008; Rijkenberg 

et al., 2008; Rijkenberg et al., 2012; Sarthou et al., 2007; Ussher et al., 2013), which influences di-

nitrogen fixation (Mills et al., 2004; Moore et al., 2009; Rijkenberg et al., 2011; Schlosser et al., 2014) 

and the structure and functioning of microbial communities (Hill et al., 2010).  

The importance of mineral dust as a source of trace elements and nutrients to the open ocean has 

stimulated research into its production, transport, deposition and subsequent dissolution in surface 

waters. Over the last two decades, satellite measurements have proved indispensable in the evaluation 

of dust sources and the provision of transport pathways. While they provide unparalleled spatial and 

temporal coverage of dust transport, it is however hard to extract quantitative information on aerosol 

concentration and composition from satellite observations. In-situ aerosol measurements are therefore 

essential to obtain accurate data (Mahowald et al., 2005). Due to the sporadic nature of dust transport, 

long-term measurements of aerosols, such as those made at Bermuda, Miami and in the Canary Islands 

(Gelado-Caballero et al., 2012; Prospero and Lamb, 2003; Trapp et al., 2010) are essential in order to 

build up a picture of dust fluxes and composition. 

The chemical composition and mineralogy of transported dust can be used to identify the original 

source of the dust. Through a combination of mineralogical and geochemical measurements, Chavagnac 

et al. (2007) traced the source of mineral dust particles collected in sediment traps in the Northeast 

Atlantic to the Anti-Atlas Moroccan mountains. Furthermore, Muhs et al. (2010) identified the source of 

mineral particles in the soils of the Canary Islands to the Sahara and Sahel desert regions. Recent 
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research indicated the importance of dust composition and mineralogy for trace metal solubility 

(Aguilar-Islas et al., 2010; Sholkovitz et al., 2012), which highlights the need to link dust samples to 

specific sources.  

Tracing individual Northwest African dust storms to specific source regions may be complicated due 

to several factors. Desert dust undergoes a continual process of uplift and deposition, mixing soils and 

smoothing out differences between the original source rocks (Schütz and Sebert, 1987). During long-

range transport, homogenisation of air masses and physical selection for particles of similar size and 

mineralogy results in the composition of the transported dust reflecting the average composition of a 

large source region (Guieu et al., 2002; Schütz and Sebert, 1987). In addition, air-masses from densely 

populated or industrialised areas are often mixed with air-masses transporting the mineral aerosols, 

further altering the chemical composition of the bulk aerosol (Chester et al., 1999). 

Aerosols collected at long-term monitoring sites in Barbados and Miami showed a high degree of 

homogeneity in chemical composition of north African dust by the time it had crossed the Atlantic 

Ocean. African dust reaches the western Atlantic predominantly during the summer via complex 

easterly weather systems, which entrain material from a wide area and transport this at high altitude, 

resulting in large-scale mixing and homogenization (Carlson and Prospero, 1972; Prospero and Carlson, 

1972; Trapp et al., 2010). Analysis of aerosol samples collected closer to the north African continent, 

however, is often able to distinguish dust from different source regions. Various studies, interpreted 

with the aid of air-mass back trajectory calculations, have detected distinct signatures from aerosols 

originating in different desert regions for samples collected over the Mediterranean (Guieu et al., 2002), 

at sites in Spain (Querol et al., 2007), on the Canary Islands (Moreno et al., 2006) and along the West 

African margin (Stuut et al., 2005). Sample collection over a 3-year period on the island of Sal (Cape 
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Verde archipelago) allowed allocation to one of three African source regions (Chiapello et al., 1997) 

(Figure 1). Distinct Fe/Ca, K/Ca, Si/Al and Ca/Al ratios were found for samples originating from each of 

these regions related to higher amounts of Ca and enhanced Si/Al ratios in northern Saharan soils 

(Chiapello et al., 1997). Further work on this dataset showed that the ratio of the clay minerals illite / 

kaolinite formed a good indicator of aerosol origin, due to the higher abundance of kaolinite in the Sahel 

and southern Sahara (Caquineau et al., 1998). 

Situated within the main transport area of dust over the tropical North Atlantic, the Cape Verde 

Islands form an excellent location to study dust inputs to this ocean region. Aerosol measurements over 

the tropical Northeast Atlantic are limited in both spatial and temporal coverage, with observations 

restricted to occasional research cruises (Baker et al., 2006; Sarthou et al., 2003; Sholkovitz et al., 2012), 

land-based observations from the Canary Islands (Gelado-Caballero et al., 2012; Neuer et al., 2004) and 

a limited number of studies on Cape Verde (e.g. Chiapello et al., 1997; Chiapello et al., 1995; Fomba et 

al., 2013). In this article we present a continuously collected set of chemical aerosol measurements 

covering a complete seasonal cycle for 42 elements in the tropical Northeast Atlantic. It is one of very 

few sets of long term measurements in the area and is the first study in the eastern tropical North 

Atlantic to present a continuous set of chemical measurements over a full annual cycle. The dataset is 

supplemented with mineralogical analysis of a selected number of samples, enabling a rare opportunity 

to interpret mineral composition in conjunction with chemical composition. Furthermore, we present a 

unique set of concurrent measurements made during a research cruise in the vicinity of Cape Verde in 

January and February 2008, during which high aerosol dust concentrations were experienced, enabling 

the comparison of independent measurements of corresponding air-masses on land and at sea. 
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2 Methodology 

2.1 Aerosol Sample Collection 

2.1.1 Aerosol sampling approach 

Atmospheric aerosols (total suspended particles – TSP) were collected on 47 mm diameter, 

polypropylene (0.45 μm nominal pore-size, Sterlitech) and polycarbonate filters (0.4 μm pore-size, 

Nuclepore). The polypropylene filters were used for leaching experiments to be reported in a separate 

article, while the polycarbonate filters were used to measure total chemical (via total acid digestion) and 

mineralogical composition (X-Ray Diffraction (XRD) analysis). The polycarbonate filters were cleaned 

before use by soaking overnight in 1 mol.L-1 HCl solution (Romil, SpA grade) and then rinsed thoroughly 

with deionised water (MilliQ water, >18.2 MΩ cm-1, Millipore). The cleaned filters were subsequently 

dried in a class-100 laminar flow cabinet. 

2.1.2 Cape Verde Atmospheric Observatory 

Aerosol sampling was undertaken at the Cape Verde Atmospheric Observatory (CVAO) (Carpenter et 

al., 2010) in the period between 2 July 2007 and 11 July 2008. The CVAO is situated on the northwest 

coast of the island of São Vicente (16° 51' N, 24° 52' W), around 800 km off the west-African coast. 

Contamination from potential local aerosol sources can be disregarded due to a very stable north-

easterly wind direction at the site resulting in sampled air that had not crossed land for more than 900 

km since leaving the African mainland.  

A low-volume aerosol sampler was installed at the top of a 30 m high sampling tower at the CVAO. 

The system comprised two rotary vane vacuum pumps (Piccolino VTE 8, Gardner Denver Thomas) 

drawing air through two pairs of 47 mm filters (two polycarbonate and two polypropylene filters). 
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Thermal mass flow meters (Top Trak 826, Sierra Instruments) monitored the flow rates of air through 

the filters. A data logger (built in-house) monitored the analogue electrical signal from the mass flow 

meters and recorded the data on a Compact Flash memory card. For each pair of sample lines, the same 

type of filter was used in order to achieve an even distribution of flow between the two filters.  

Typical flow rates through each filter were ca. 30 standard L.min-1, but this decreased as the filters 

became loaded with dust, particularly for the polycarbonate filters. Filters were changed three times per 

week (more often during intense dust events) and stored in a freezer (-20 °C) prior to shipment to 

Southampton for analysis. Filter freezing was deemed necessary as sample solubility has been observed 

to decrease with storage time at room temperature, but not when filters were stored frozen (Buck et al., 

2006). Direct comparisons of elemental measurements on samples obtained on the CVAO using our low 

volume collector and a high volume Berner Impactor aerosol collector from Prof. Herrmann (TROPOS, 

Leipzig, Germany) showed excellent agreement (Carpenter et al., 2010). Nevertheless, higher total Fe 

concentrations were observed on filters sampled during periods of high dust loadings using the low 

volume collector, compared with the total Fe in PM10 collected using the high volume system 

(Carpenter et al., 2010). This observation was attributed to a greater number of larger particles sampled 

using the low volume system which were not collected using the PM10 Berner sampler. 

2.1.3 Research cruise aboard RRS Discovery (D326) 

Aerosol samples were also collected during a research cruise aboard the RRS Discovery in the 

tropical and subtropical eastern North Atlantic. A total of 29 sets of samples were collected in the period 

between 8 January and 4 February 2008. The area covered during the cruise is shown in the cruise track 

in Figure 1. 
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A low volume sampler similar to the system installed at the CVAO was constructed for ship-board 

use. This system also contained rotary vane vacuum pumps and thermal mass flow meters. In order to 

reduce the risk of sample contamination from the ship and minimise the quantity of sea spray reaching 

the filters, the sampler was located on the deck above the bridge, as near to the bow and as high above 

the sea surface as practicable. In addition, a Perspex shroud surrounding the filter holders was used to 

reduce the quantity of sea-spray reaching the filters. During periods of rainfall, the sampler was 

switched off to avoid contamination of the filters. To reduce further the risk of contamination from the 

ship’s fume stacks, an automatic control system was incorporated to prevent sampling when the wind 

direction was from the stern or the wind speed dropped below a threshold value of 2 m s-1. Filters were 

generally changed every 24 hours and more frequently during a dust event. The samples were stored 

frozen (-20°C) until analysis. 

2.2 Sample analysis 

2.2.1 Total Acid Digestion 

A microwave-assisted acid digestion procedure was used to dissolve the aerosol particles (Anton 

Paar Multiwave 3000 Microwave). The digestion approach completely dissolved the aerosol samples 

together with the polycarbonate filter material, producing a solution suitable for inductively coupled 

plasma mass spectrometry (ICP-MS) analysis.  To minimise contamination, all work was carried out in a 

class-1000 clean laboratory. All Teflon digestion vessels were cleaned before use by soaking overnight in 

a large beaker of ca. 6 mol.L-1 HCl (AR Grade, Fisher) placed on top of a hot-plate set to ca. 150°C. The 

Teflon-ware was subsequently rinsed with deionised water before soaking overnight in a large beaker of 

ca. 8 mol.L-1 HNO3 (AR Grade, Fisher) heated on a hot-plate at 150 °C. The apparatus was rinsed 

thoroughly and dried in a clean-air drying cabinet. 
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Whole polycarbonate sample filters (half a filter for samples from the ship-board system) were 

placed in digestion vessels together with 3 ml concentrated HCl (sub-boiling distilled, ca. 11.5 mol.L-1), 3 

ml concentrated HNO3 (sub-boiling distilled, ca. 15.5 mol.L-1) and 2.5 ml concentrated HF (SpA grade, 

Romil). A 60 min programme was used for the microwave procedure, during which the temperature was 

increased linearly to 160°C over the first 15 min, held at that temperature for 35 min before a further 

linear temperature increase to 175°C during the final 10 min of the programme. During this process a 

pressure of approximately 18-19 bar was reached. Digested samples were transferred to 30 ml Teflon 

pots and evaporated on a hot plate at 140°C until only ca. 0.5 ml remained. To avoid the formation of 

insoluble fluorides, 0.25 ml of perchloric acid (SpA grade, Romil) was added and evaporation continued, 

with the hot plate temperature increased to 170°C when the perchloric acid began to evaporate. A 

further aliquot of 0.25 ml perchloric acid was added during the middle of this process before allowing 

the samples to evaporate to dryness. The residues were re-dissolved in 2% v/v HNO3 (sub-boiling 

distilled, ca. 0.3 mol.L-1), transferred to pre-weighed, acid-washed 30 ml low-density polyethylene (LDPE, 

Nalgene) bottles, diluted to ca. 20 ml and weighed prior to analysis. 

An acid-cleaned (unused) filter was digested with each batch of samples to verify the cleanliness of 

the procedure and to provide a filter blank for the procedure. 

2.2.2 Certified Reference Material (CRM) 

To verify the effectiveness of the digestion procedure, 20 mg of a CRM (standard reference material 

1648a; urban particulate matter, NIST, USA) was included with every batch of samples. As this reference 

material contains refractory fractions, but is not directly representative of mineral aerosols, a finely 

ground loess sediment was also analysed regularly. This material was used for the GeoPT13 inter-
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laboratory inter-comparison exercise organised by the International Association of Geoanalysts, and its 

composition determined accurately with the consensus values publicly available (Potts et al., 2003).  

To compensate for sample inhomogeneity, reference materials usually specify a minimum certified 

mass, which can be 250 mg or more and is often far greater than the amount of aerosol material 

typically collected on filters (Buck and Paytan, 2012; Morton et al., 2013). For the CRMs used in this 

work, the NIST 1648a CRM specifies that 5 mg or more should be analysed, whereas in the case of the 

loess material, a minimum quantity is not specified. However, several of the participants of the 

intercomparison exercise obtained satisfactory results with 10 – 20 mg of material (Potts et al., 2003). In 

this study, the estimated mass of material collected on the filters varied from 5 µg to 3.8 mg, with a 

geometric mean of 0.55 mg. While this is 1 – 2 orders of magnitude less than the 20 mg of CRM used, 

this should not invalidate the use of a reference material since a smaller quantity of sample should be at 

least as soluble as the CRM, particularly if the composition of the two materials is similar.  

Good elemental recoveries were obtained when comparing the measured values for the two 

reference materials with certified / consensus values. Mean recoveries were better than 90% for most 

elements, with values dropping to 74% for the heavier rare earth elements (Table 1). 

2.2.3 ICP-MS analysis 

Total elemental concentrations in the dust samples were obtained using an ICP-MS instrument (X-

SERIES 2, Thermo Fisher Scientific) in the standard configuration with an autosampler (ASX-510, Cetac). 

A total of 42 elements were determined simultaneously (see Table 1). Standard solutions were prepared 

from 5 international rock reference materials. In addition, synthetic standard solutions were prepared 

from certified single element standard solutions (Romil) for Ga, Ag, Cd and Sn due to poorly defined 
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reference values for the rock standards. All sample and standard solutions were spiked with a final 

concentration of 50 µg.L-1 Be and 20 µg.L-1 In and Re to correct for instrumental drift. Mean instrumental 

blank values were in the range < 4.2 x 10-9 µg.m-3 to 4.2 x 10-4 µg.m-3, while mean digested filter blanks 

were in the range 1.2 x 10-8 µg.m-3 to 1.0 x 10-2 µg.m-3 and were higher than the instrumental blanks for 

most elements. Filter blank concentrations were typically less than 5% of sample values, with the 

notable exception of Ni, Cu and Zn, for which the blank concentration was approximately 10% of the 

geometric mean sample concentration. All sample values have been corrected for blank interference by 

subtracting the mean digestion blank values shown in Table 1. 

2.2.4 XRD Analysis 

For selected samples, XRD spectra of aerosol material on the polycarbonate filters were obtained to 

determine the relative abundance of different minerals in the dust. Samples were analysed on a 

Panalytical X'Pert pro diffractometer instrument fitted with a Cu X-ray tube. Operating conditions were 

35kV, 40mA with a step size of 0.02° 2Θ and a scan rate of 0.308° 2Θ/ minute, and utilising 0.5° fixed 

slits. Samples were carefully placed on a silicon disc and scanned from 2° 2Θ through either 55° or 76° 

2Θ. Spectra were processed using the Siroquant v2.6 software package to quantify the minerals present.  

Siroquant uses the Rietveld method to quantify absolute mineral abundances.  It is a standard-less 

technique that uses crystal structural data and least squares refinement of Rietveld parameters to 

calculate an XRD pattern to match a sample XRD pattern, calculating the weight percent of sample 

mineralogy and compensating for preferred orientation of mineral grains.  Relative errors of ±3% are 

given for crystalline phases by Hillier (2000) using the Rietveld method, Hill et al. (1993) quote 2-7% for 

phases with abundance >15 wt.%, increasing to ~10% for phases at about 2 wt.%, increasing further for 
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phases at <1wt.%. Detection limits are of the order of ±0.5-2% for crystalline phases, for clays precision 

values are ±10-20% of the amount present, with corresponding clay ratio errors of ±20-40%. 

2.3 Back-trajectory Calculation 

Each sample was interpreted in terms of air-mass source by calculating five-day isentropic air-mass 

back-trajectories using the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model 

(Draxler, 1999; Draxler and Hess, 1997; Draxler and Hess, 1998) with the GDAS meteorological dataset. 

Trajectories were calculated for arrival heights of 30, 750, 1500, 2000, 2500 and 3000 m above the 

sampling location. In case of sample collection at the CVAO, trajectories were calculated for 12 h time 

intervals, finishing at 1200 h and 0000 h GMT. For samples collected during cruise D326, trajectories 

were calculated for the start and end of every sampling period, and if the sampling period was greater 

than 18 h, a third trajectory was calculated for the mid-point of the sampling period.  

3 Results & Discussion 

3.1 Aerosol concentration and composition 

A summary of the data from the CVAO and cruise D326, including the range of concentrations with 

mean values and standard deviation for each element is presented in Table 2. The full elemental data 

set is provided in the appendix. Previous studies have shown that aerosol datasets are log-normally 

distributed (Kok, 2011) and therefore the geometric mean corresponds with the modal concentration 

and facilitates comparison with other datasets. Application of the Kolmogorov–Smirnov to the combined 

CVAO and D326 datasets after log-transformation showed that the data fitted the normal distribution 

for 35 of the 42 elements measured by ICP-MS (all except Na, Mg, K, V, Cr, Sr and Ag). A visual inspection 
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of the distributions that failed the test indicated that this was due to a small number of outliers at low 

concentrations or to slight deviations from normality, but that the underlying distribution was still log-

normal. 

Aluminium is used as a tracer for dust inputs into the ocean as it is not actively taken up by marine 

phytoplankton, and therefore dissolved Al has a relatively long residence time of 3 – 5 years in surface 

seawaters (Orians and Bruland, 1986). The element is also frequently used as a tracer for mineral 

aerosol mass (Guieu et al., 2002; Hsu et al., 2010) due to its high crustal abundance of 8.04% (Taylor and 

McLennan, 1995). It is possible to use other elements with predominantly crustal sources instead of Al 

as a tracer of mineral aerosol mass, and this is facilitated by the lower detection limits of modern ICP-MS 

instrumentation. Trapp et al. (2010) opted to use Mn as a crustal tracer after obtaining a stronger 

correlation between TSP (total suspended particles; obtained by weighing the filters before and after 

sampling) and Mn than between TSP and Al; an observation which the authors attributed to analytical 

problems (ICP-MS detector saturation) caused by the high Al concentrations in their samples. 

No direct measurements of TSP mass were made during this study, and in the absence of any 

evidence that another element was better and to facilitate comparison with many previous studies, Al 

was chosen as a crustal tracer for this work. Moreover, our use of Al as a tracer is further justified by 

very strong correlations between Al and many other elements of predominantly mineral origin (e.g. for 

Al vs Mn: R2 = 0.998 and Al vs Fe: R2 = 0.996, n = 153). Furthermore, there was no evidence of detector 

saturation at high Al concentrations and Al recovery from CRMs was close to 100% (Table 1).  

3.1.1 Cape Verde Atmospheric Observatory 
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Figure 2a shows total atmospheric concentrations of Fe and Al over the course of one year at the 

CVAO as well as the estimated aerosol concentrations derived from the Al data. Iron and Al in the 

aerosol samples were present in measurable quantities throughout the year at the CVAO site, but a 

number of periods with elevated aerosol concentration are apparent in the dataset. The data indicates a 

marked difference between summer and winter concentrations. Periods of elevated aerosol 

concentrations were more frequent and more intense during the winter months, with the highest 

concentrations observed during December 2007 and January 2008. Samples collected during the 

summer months (May-October) showed a geometric mean atmospheric Al concentration of 0.48 µg.m-3, 

whereas samples collected during the winter (November-April) showed a significantly higher geometric 

mean Al of 1.3 µg.m-3 (student’s t-test: p < 0.001). A seasonal pattern in dust concentrations on Cape 

Verde was also reported by Chiapello et al. (1997; 1995) and linked to varying meteorological conditions 

related to seasonal shifts in the Intertropical Convergence Zone (ITCZ). In summer, the ITCZ is positioned 

at 6-10°N and dust is transported in the Saharan Air Layer (with a base at 1-1.5 km and a top to 5-7 km 

altitude) and therefore above the atmospheric layer of the trade winds, with consequently low dust 

concentrations on Cape Verde. The conditions in summer allow long-range transport of mineral dust to 

the western North Atlantic Ocean (e.g. Barbados and South Florida) (Prospero and Carlson, 1972), where 

dust concentrations are then at their maximum (Prospero and Lamb, 2003).  In winter, dust transport 

occurs at lower altitudes in the trade wind layer below 1.5 km – 3 km altitude and mineral dust 

concentrations over the eastern tropical and subtropical North Atlantic (including Cape Verde) are at 

their maximum. These conditions in winter are facilitated by a shift south of the ITCZ of up to 10°, and 

dust transport reaches South America (Prospero and Carlson, 1980).   

3.1.2 Research cruise RRS Discovery (D326) and comparison with CVAO 
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During the research cruise aboard the RRS Discovery, two periods with enhanced airborne dust 

concentrations were encountered (Figure 2b).  The first event was in the period from 17 to 22 January 

2008 and a second more intense and prolonged dust event was encountered between 25 January and 1 

February 2008. A MODIS true colour satellite image of the region around the time of peak dust 

concentrations on 30 January 2008 is shown in Figure 3. There was a notable similarity between the 

peaks in aerosol Al concentrations observed aboard RRS Discovery and measured at CVAO during the 

corresponding period, although higher Al concentrations were measured at CVAO with peak 

concentrations (66.9 µg.m-3 Al) almost twice the maximum shipboard values (36.2 µg.m-3
 Al). Mean Al 

concentrations for the two sets of measurements also showed higher values at the CVAO (10.5 µg.m-3
 Al 

D326 vs 17.3 µg.m-3
 Al CVAO).  

An annual arithmetic mean atmospheric Al concentration of 2.9 µg.m-3 was observed at CVAO 

between July 2007 and July 2008, while the arithmetic mean Al concentration between 7 January and 4 

February 2008 (during cruise D326) at CVAO was 17.3 µg.m-3. Using the upper crustal abundance (UCA) 

of Al, this monthly arithmetic mean value (CVAO January 2008) corresponded to a theoretical mineral 

dust concentration of 214.9 µg.m-3. Chiapello et al. (1995) reported maximum monthly mean mineral 

dust concentrations of 120, 95 and 70 µg.m-3, for 1992, 1993 and 1994, respectively. An arithmetic mean 

shipboard concentration of 10.5 µg.m-3 Al was observed during the same period, which equates to 131 

µg.m-3 mineral dust. Buck et al. (2010)(2010) recorded a peak of 5.95 µg.m-3 Al (corresponding to about 

74 µg.m-3 dust) on 26 July 2003, during a research cruise passing ca. 200 km west of Cape Verde. Thus 

during January 2008 the observed dust loadings were high for the region.  

Mean measured atmospheric Al concentrations observed at CVAO during the cruise period were 

65% higher than the shipboard measurements. This can be explained by the difference in location of the 
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vessel and the CVAO (RRS Discovery was sailing between 175 and 1050 km to the west/northwest of 

CVAO during the dust event of 25 Jan – 1 Feb) (see Figure 1) and is probably due to the ephemeral and 

heterogeneous nature of dust plumes. This heterogeneous nature is apparent in the satellite image in 

Figure 3. It is noteworthy that during the first half of this dust event, while the ship was sailing to the 

west of the Cape Verde Islands (less than 300 km from the CVAO), mean atmospheric Al concentrations 

were similar (one filter at CVAO covering 25 – 28 January 2008 measured a value of 21.2 µg.m-3 Al, while 

six filters covering a similar period on the ship led to atmospheric Al concentrations in the range 14.0 – 

32.0 µg.m-3 with an average of 21.1 µg.m-3). During the second half of the dust event, after the ship had 

moved north of the Cape Verde Islands (see Figure 1), aerosol Al concentrations experienced on the ship 

were significantly lower than at the CVAO. 

A comparison was made between elemental abundances of 28 samples collected during the cruise 

(covering 8 January to 4 February 2008) with 11 samples from the CVAO (covering 7 January to 4 

February 2008) that most closely matched the cruise period. Elemental concentrations were normalized 

by conversion to ratios with Al before applying student’s t-test to compare the two sets of samples. 

With the exception of Pb/Al, no statistically significant differences were found, indicating that we were 

sampling the same dust plume. For Pb, enhanced levels were found in the shipboard samples (Pb / Al = 

0.003, standard deviation = 0.005, n = 28) compared to those from CVAO (Pb / Al = 0.0008, standard 

deviation = 0.001, n = 11). One explanation for the higher Pb content and higher variability of the 

shipboard measurements is that it was the result of slight contamination from the ship’s exhaust, which 

despite our best efforts to control (aerosol sampling conducted only whilst stack fumes were blown 

away from the position of the collector) was situated only 20 m from the sampling location. However, 

since no other elements typical of stack contamination were elevated relative to samples from CVAO, 
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the difference may be due to the presence of more anthropogenic aerosols from continental sources in 

the shipboard samples. 

3.1.3 Enrichment factors 

The overall composition of the aerosols collected at both CVAO and during cruise D326 closely 

agreed with mean UCAs, with the exception of a limited number of elements (Figure 4). Elements with 

abundances significantly higher than UCA were either major constituents of seawater (Na, Mg) or 

elements often associated with anthropogenic activities (e.g. Cd, Cr, Ni, Pb, V, Zn). 

Depletion or enrichment of elements relative to a specific source is assessed using enrichment 

factors (EF) (Chester et al., 1999; Herut et al., 2001), and for marine aerosols are determined relative to 

crustal values: 

    
  
 

   
   

  
 

   
     Equation 1 

 Where   
 

 and    
 

 are the concentrations of the trace elements of interest and Al in the aerosol 

particulate sample, and   
  and    

  are the concentrations of the same two elements in crustal material. 

An EF value > 10 is often taken to mean that a certain element is significantly enriched relative to typical 

crustal values and that a significant proportion of this element is derived from non-crustal sources.  

By separating the CVAO dataset into quartiles based on total Al concentration and calculating mean 

crustal EF values for the upper and lower quartiles it becomes clear that the EF factors for elements with 

non-crustal sources vary strongly with mineral aerosol concentration (Figure 5). In the upper quartile of 

the CVAO dataset, the EF values for all elements were <10, while during less dusty periods the overall 

chemical composition of the aerosol load was greatly enriched in elements with non-crustal sources 
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relative to UCA. These were all either major components of seawater (Na, Mg) or elements often 

associated with anthropogenic activities (Ag Cd, Cr, Cu, Ni, Pb, Sn, V and Zn). Enrichment factors for 

these elements showed considerable variability, which agrees with findings by (Fomba et al., 2013). 

3.1.4 Excess V, Ni, Cu, Zn, Pb 

V, Ni, Cu, Zn and Pb are often associated with urban and industrial pollution and the burning of oil 

and coal; however they are also naturally present in minerals in significant quantities, with mean UCAs 

ranging from 20 to 71 µg g-1 (Taylor and McLennan, 1995). To allow a more detailed assessment of the 

non-crustal or ‘excess’ fractions of these elements, the crustal values were subtracted from the 

observed concentrations (Trapp et al., 2010). Crustal values were calculated using total Al 

concentrations and UCA values for the element in question (Taylor and McLennan, 1995). The excess 

atmospheric concentrations of V, Ni, Cu, Zn and Pb throughout the 1 year sampling period at the CVAO 

are presented in Figure 6, together with total Al concentrations for comparison. 

Excess V and Ni concentrations showed significant concentration maxima and a strong correlation 

with total Al (R2 = 0.89 [V] and 0.75 [Ni]). There are no significant V or Ni signals in Figure 6 that do not 

correspond with elevated Al concentrations (except for Ni on 2 August 2007), indicating that these 

elements may be present in the mineral component of the aerosol samples at concentrations higher 

than UCA or that a secondary source of Ni is strongly associated, i.e. internally mixed, with mineral dust. 

In the case of excess Cu and Zn, there was no relationship with Al (R2 = 0.17 and 0.04, respectively), 

despite concentration maxima all coinciding with peaks in Al, indicating possible non-crustal sources of 

these elements. Excess Pb showed a large number of concentration maxima throughout the year, with 

the most intense events occurring during the winter months (November to March). Although there is 
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not a correlation between excess Pb and Al (R2 = 0.05), nearly all of the significant peaks in excess Pb 

coincided with a concentration maxima in total Al. This is also apparent for the concentration maxima in 

excess Cu and Zn, suggesting that mineral dust was mixed with non-crustal particles enriched in these 

elements. Dust is frequently mixed with particulate pollutants in the Saharan Air Layer (Rodríguez et al., 

2011). In addition to sources related to industrial and local population centres on the African continent, 

pollutants from Europe and North America can be rapidly transported to Africa where they are mixed 

with dust-laden air masses (Astitha et al., 2010; Fomba et al., 2013; Gangoiti et al., 2006; Kallos et al., 

1998). Koçak et al. (2005) observed higher levels of excess Pb in dust-rich air from Africa than in air from 

other sectors, which they suggested may be due to Saharan dust acting as an impaction or adsorption 

surface for finer anthropogenic aerosols, although they could not rule out the possibility of higher 

anthropogenic emissions from Africa being partly or wholly responsible for the observation. Similarly, 

the observed coincidence of peaks in excess Ni, Cu, Zn and Pb with peaks in Al in this work is consistent 

with mixing and association of polluted air with mineral aerosols, although we cannot rule out the 

possibility that the source minerals may contain naturally higher concentrations of these elements than 

the mean upper crustal abundances used for the calculations.  

3.1.5 Mineralogy 

A total of 28 samples from CVAO and 7 samples from cruise D326 were analysed for mineralogy. 

Since small amounts of material were collected on the filters, the more heavily laden filters were 

generally selected for XRD analysis. An effort was made to select CVAO filters that covered a variety of 

dust events occurring both in winter (November – March, 22 samples) and summer (April – October, 6 

samples), but with extra samples covering the cruise period (3 January – 4 February 2008, 8 samples)  to 

compare with the 7 samples selected from cruise D326. Selected samples are indicated in the plot in 
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Figure 2. This somewhat arbitrary selection of samples should not introduce bias into the conclusions, as 

the principal objectives of this activity were to investigate mineralogical differences between dust 

events originating from different source regions, and to compare the mineralogy of the CVAO and 

shipboard samples collected simultaneously. 

Due to the low quantity of material on the filters, no extraction of the bulk or clay mineral fraction 

was carried out for XRD analysis and samples were run as collected. A consequence of not grinding and 

preparing samples using standard XRD techniques means that the mineral grains are very likely to show 

some preferred orientation, i.e. alignment along particular mineral faces, rather than be randomly 

orientated, creating systematic errors in observed diffraction intensities. This is likely to have had a 

significant impact on the intensities of clay peaks, for example the expandable clay fractions 

(illite/smectite and/or smectite) which are present in some of the filter samples, but the quantification 

procedure has not accounted for their occurrence. In addition, in two samples, marked preferred 

orientation of the quartz fraction was suspected, leading to quartz estimates in excess of 90%. Such 

values are considered very unlikely in natural aerosol samples in the Atlantic Ocean (Weaver, 1989; 

Table 3) and these results have been discounted. Sodium chloride from sea spray was detected in many 

of the filter samples and the results were re-normalised after its removal from the data. Gypsum was 

identified in most of the samples, and whilst there is gypsum in the source regions it is also possible that 

a part of its occurrence was the result of reactions of SO2 or sulphate with calcite during atmospheric 

transport, as mineral dust particles are often mixed with sulphate (Dall'Osto et al., 2010; Formenti et al., 

2003). Glaccum and Prospero (1980) also observed gypsum in samples collected on the Cape Verde and 

postulated that the gypsum had grown on the filters due to reactions between calcite and atmospheric 

SO2 or dissolved sea-salt sulphate. Our sampling conditions were similar to those of Glaccum and 
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Prospero (1980) with a high relative humidity at the coastal sampling site, together with the presence of 

sulphate in marine aerosols and a relatively long (>24 h) sampling duration which created favourable 

conditions for the gypsum crystals to form. Figure S1 (in appendix) indicates that gypsum levels 

increased with sampling duration and sampled volume of air during aerosol collection on CVAO, 

suggesting in situ formation. The question whether the gypsum was formed during dust transport or in-

situ on the filters provides uncertainty on the relative proportions gypsum and calcite in the samples, 

but does not affect the relative abundance of the other minerals in the collected dusts. Therefore, the 

possibility that some gypsum originated from arid soils cannot be excluded, but it is believed that the 

dominant contribution has come from reactions during transportation and/or in-situ. We therefore 

assumed that gypsum was a conversion product of calcite and stoichiometrically converted it to calcite. 

The relative amounts of minerals in the CVAO samples are presented in order of increasing Al 

concentration (Figure 7).  The maximum and mean of the mineral data are tabulated (Table 3), together 

with literature data on North African aerosols collected during dust events. Although the absolute values 

are not comparable, in part because of the semi-quantitative nature of our mineral analysis, there are 

distinct trends between the datasets. The proportion of quartz had a mean of 15%, in reasonable 

agreement with literature values (Table 3), with typically higher contributions at higher dust loadings 

(Figure 7). The calcite content was up to 90.7%, with a mean of 28.4%, and compared with a mean of 

8.2% by Glaccum and Prospero (1980) and lower values by Avila et al. (1997) and Jeong and Achterberg 

(2014). The uncertainty regarding the gypsum contribution in our samples may well have contributed to 

the observed differences between our data and literature values. The total combined clay mineral 

content was up to 84.7%, with a mean of 52% and highest contributions at high dust loadings; sorting 

the results by total atmospheric Al concentration, the combined clays represented 34±28% by mass of 
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the samples in the lower quartile of the dataset, whereas in the upper quartile clays represented 66±6% 

of sample mass. 

The most abundant clay fraction in our samples was illite (up to 53.2, mean 26.4%), which is 

somewhat lower than the findings for North African dust by Glaccum and Prospero (1980) (mean 54%) 

and Jeong and Achterberg (2014) (mean 72%) at Cape Verde and Avila et al. (1997) (mean 37%) in Spain. 

These workers collected their samples during dust outbreaks, which likely skewed the illite abundances 

to higher values (see below) relative to our data which included a mix of samples with high and low dust 

loadings. Under low dust loadings, pyrophyllite was observed (in four samples), with a maximum 

abundance of 61.7%.  Pyrophyllite has been reported for Silurian and Devonian rocks of the Sahara of 

Algeria (Chennaux and Dunoyer de Segonzac, 1967), and our dust samples may represent material 

sourced from this area which corresponds to source regions 1 and 2 (Fig. 1), also indicated by 

backtrajectory analysis for these samples. The kaolinite content was up to 57.6% with a mean of 18.7%, 

with lowest percentages observed under low dust loadings. Our findings were higher than those by the 

other workers (Table 3), which may be due to their focus on dust events with lower kaolinite 

abundances. The chlorite abundance was relatively low (up to 23.3%, mean: 6.9%), which is higher than 

findings by Glaccum and Prospero (1980) (mean of 4.3%) and (Jeong and Achterberg, 2014) (mean 3%).  

Smectite, possibly including interstratified illite/smectite, was evident in some of the XRD analyses, but 

there was no clear source region distinction. 

Quartz tends to dominate among the larger particle sizes present at high aerosol loadings (Kandler 

et al., 2009; Shi et al., 2005), reflecting the higher durability of quartz grains to mechanical abrasion 

relative to other minerals. Individual clay mineral grains typically feature submicron sizes, but these 

individual submicron grains are hardly deflated in the source regions because of their strong tendency 
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for agglomeration. Clay minerals in the atmosphere therefore typically occur as larger agglomerates 

(Jeong et al., 2014). Nevertheless, at lower aerosol concentrations, where insufficient energy is available 

to transport the larger particles, a greater proportion of less durable minerals such as clays is present 

(Kandler et al., 2009). Glaccum and Prospero (1980) investigated the mineral composition of material 

collected during dust outbreaks at the Cape Verde, Barbados and Miami in 1974, and observed small but 

significant differences between average mineral composition at Cape Verde and that at Barbados and 

Miami, with higher mean percentages of quartz and lower mica-illite at the Cape Verde (20% quartz 

content) compared with the western Atlantic sites (14% quartz content). The changes in mineralogy 

were related to the larger quartz particles (often > 50 µm on Cape  Verde) having a higher settling 

velocity in the dust plumes relative to the mica-illite (0.1-0.4 µm) (Glaccum and Prospero, 1980). Our 

data sets obtained at the CVAO and cruise D326 showed no strong differences in mineralogical 

composition or in chemical composition (as discussed in Section 3.1.2), as they were collected at a 

distance of just a few hundred kilometres.  

Leaching experiments have demonstrated that aerosol Fe solubility is highly dependent on the 

chemical form and reactivity of Fe in each sample and, in particular that Fe is significantly more labile in 

clay minerals than in more refractory phases such as quartz which has a low Fe content of typically only 

a few µg g-1  (Götze et al., 2004) compared to 3-4 % for illite clays (Jeong and Achterberg, 2014; Journet 

et al., 2008; Schroth et al., 2009). The octahedral sites of clays in the crystal structures of clay minerals 

can accommodate a significant quantity of Fe. As such, when estimating aerosol inputs of soluble Fe to 

the oceans, it is necessary to consider the mineral composition of dust.  

Our data indicates pronounced variations in dust concentration with relatively small variations in 

mineralogy. In this study, mean total clay content in the 33 samples selected for mineralogical analysis 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

25 

 

varied from 34 to 66% between the lower and upper quartiles of the dataset (sorted by total 

atmospheric Al concentration), an increase by a factor of approximately two. This compares with the 

mean atmospheric Al concentration of 1.2 and 32.8 µg/m3 in the same groups; a 27-fold increase. 

Considering total atmospheric Al concentrations in the dataset as a whole, there is a much greater range 

of values: mean values for the lower and upper quartiles of the Al-sorted dataset are 0.17 µg/m3 and 

26.0 µg/m3, respectively, corresponding to a 153-fold difference. Furthermore, Glacuum and Prospero 

(1980) reported differences in illite content of only 10% between samples collected on either side of the 

Atlantic (54% Cape Verde and 64% Barbados) and a recent compilation of elemental ratios by (Shelley et 

al.), 2015) reveals only minor differences in major elemental composition of samples collected close to 

the African and American continents. The soluble elemental fluxes delivered to the ocean surface are 

therefore a strong function of the absolute dust concentration, but the intrinsic particle solubility will 

ultimately be determined by processes including clay content and cloud processing during transport 

(Baker and Croot, 2010). 

3.2 Composition in relation to source regions 

In order to further investigate aerosol sources, each sample was assigned to a source category based 

upon the region(s) crossed by the back trajectories. Air-masses crossing the African continent were 

subdivided into the three regions according to Figure 1 (Chiapello et al., 1997). Where different source 

regions were indicated for different arrival heights, all source regions crossed were included in the 

sample category. 

Back trajectories for the majority of samples (122 of 154 samples from the CVAO and 9 of 29 

samples collected at sea) suggested air-masses crossing more than one of the north African regions, 

while purely marine sources were indicated for 7 out of 29 samples from the research cruise. On one 
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occasion, air-mass back trajectories indicated contributions from the North American continent in the 

air-masses reaching the ship.  

3.2.1 Seasonal changes at CVAO 

Meteorological conditions can change relatively rapidly, resulting in sharp changes in the source 

region(s) of atmospheric particles arriving at the sampling location over the course of a few hours. Since 

in most cases the samples were collected over a period of 2-3 days, a large proportion of the samples 

contained contributions from more than one source region as described in Fig. 1, which presents a 

challenge when investigating the characteristics of specific source regions. To establish clear differences 

within the CVAO dataset, a comparison was made between the climatologically distinct summer and 

winter periods at Cape Verde.  

Samples obtained during periods with significant dust concentrations (Al equivalent to >1 μg.m-3 

TSP) between July 2007 and July 2008 were separated into summer and winter periods. These periods 

were selected based on a marked changes in aerosol Al concentration occurring in early November 2007 

and late March 2008 and differ slightly from the October and March seasonal boundaries chosen by 

Chiapello (1997; 1995).  

During the summer months, our data showed that 92.5% of samples contained a contribution from 

the Sahel (Region 1). This is in line with previous reports, since dust from the Sahel and southern Sahara 

is transported to the Atlantic Ocean via the SAL, which occurs predominantly in summer (Prospero and 

Lamb, 2003). During winter, there is a marked decrease in samples containing contributions from Region 

1 (52.3% of samples), as Regions 2 (South and Central Sahara) and 3 (North and West Sahara) become 
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more important due to dust transport to the Cape Verde being controlled by the north-easterly trade 

winds. 

3.2.2 Elemental ratios 

Elemental ratios (nss Mg/Al, nss K/Al, nss Ca/Al, Fe/nss Ca and nss K/nss Ca; nss means non sea salt) 

were used as geochemical signatures to establish aerosol source regions. These ratios have previously 

been found to act as useful finger prints of source region (Chiapello et al., 1997; Gelado-Caballero et al., 

2012; Guieu et al., 2002; Lafon et al., 2006; Moreno et al., 2006). Additionally, the elemental ratios of 

V/Al, Ni/Al, Cu/Al, Zn/Al, Cd/Al and Pb/Al were investigated to determine the relative contributions of 

anthropogenic elements from different source regions to the aerosol samples. As far as possible, 

samples were selected with back trajectories indicating one of the three Chiapello source regions. Due 

to a lack of samples exclusively from Region 3, samples from Region 1 (Sahel), Region 2 (South / Central 

Sahara) and Regions 2 + 3 (S/C Sahara + NW Sahara) were compared. 

Table 4 shows the mean ratios for each of the regions, together with the number of measurements, 

and their standard deviations. The values for the three regions were close and with relatively large 

standard deviations, particularly for Region 1 (Sahel). Significant differences (p < 0.05) were found 

between Regions 1 (Sahel) and 2 (South / Central Sahara) for nss Mg/Al (p = 0.034) and nss K/Al (p = 

0.042). Between Regions 1 (Sahel) and 2+3 (NW & South / Central Sahara) there were significant 

differences for nss Mg/Al (p = 0.016) and nss K/Ca (p = 0.043). Hence the only clear difference between 

Sahel and Saharan samples is in the nss Mg/Al ratio, with significantly higher values in samples 

originating from the Sahel (0.30 ± 0.19) than in the South / Central Sahara (0.17 ± 0.05) or NW & South / 

Central Sahara combined (0.16 ± 0.04). This is the opposite trend to previous observations of higher 

Mg/Al ratios towards the north and lower values in the Sahel (for a summary of previous observations, 
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see Gelado-Caballero et al., 2012). Our 2-3 days sampling duration may have resulted in collection of 

aerosols from multiple source regions, removing distinct geochemical signatures in other elements that 

have been observed by others (Chiapello et al., 1997). Furthermore, the coastal location of the CVAO 

further complicated our analysis due to the presence of significant quantities of sea salt in the samples. 

Large corrections were applied to Mg, K and Ca values (50%, 19% and 12% average correction, 

respectively) to remove the marine component and this may be the source of a significant proportion of 

the variability in ratios involving these elements.   

A summary of a similar analysis for the anthropogenic elemental ratios (V/Al, Ni/Al, Cu/Al, Zn/Al, 

Cd/Al and Pb/Al) is shown in Table 5. In contrast to the ratios involving crustal / marine components, 

clear differences are apparent between Region 1 (Sahel) and Regions 2 and 3 (South / Central Sahara 

and NW Sahara), with higher values for all ratios found in samples with more southern origins. 

Statistically significant differences between samples originating from Region 1 (Sahel) and from Region 2 

(South / Central Sahara) were found only for Cd/Al (p < 0.004) and Pb/Al (p = 0.002) ratios, while a 

comparison of samples originating from Region 1 (Sahel) with those indicating Regions 2 & 3 (South / 

Central Sahara and NW Sahara) show significant (p < 0.01) differences for all 6 elemental ratios listed in 

Table 5. Differences are greatest for Cd and Zn, which show ratios with Al approximately 4 times greater 

in the Sahel. Guieu et al. (2002) reported Pb/Al ratios for Saharan dust samples collected in Corsica of 

0.00069 ± 0.00022, which are comparable with our value of 0.0013 ± 0.0014  for Regions 2 & 3 (South / 

Central Sahara and NW Sahara). Our higher values of anthropogenic elements for the Sahel (Region 1) 

are likely due to the higher population density in this region, resulting in higher anthropogenic 

emissions, compared with the more remote desert areas to the north. This contrasts with findings by 
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Rodriguez (2011), which identified greater anthropogenic contributions from more northern sources. 

However this study was conducted further north at the Canary Islands. 

3.2.3 Rare Earth Element patterns 

Rare earth elements (REE) are relatively immobile in sediments and are subjected to little 

fractionation during chemical and physical weathering (Muhs et al., 2007). Therefore, REE patterns in 

sediments represent a signature of igneous processes that occurred during the formation of the parent 

rock and can be used as indicators of the provenance of sedimentary materials (Muhs et al., 2007). The 

REE patterns were calculated for the data from the CVAO to facilitate differentiation between aerosol 

source regions. Absolute REE concentrations (µg.kg-1 – calculated using total Al concentrations and 

assuming 8.04% w/w Al) were normalised to chondritic meteorite compositions (taken from Taylor and 

Gorton, 1977) according to Equation 2, where the chondrite normalised REE concentration for a given 

REE element in a sample is given by   
   ,     

   and     
   refer to the absolute amounts of the REE 

and Al measured in the sample, and      
   is the chondritic meteorite composition as given by 

Taylor and Gorton (1977). 

  
    

    
   

    
   

   

     
    

    

   
 Equation 2 

Figure 8 presents REE patterns plotted using mean values for samples from five different source 

region categories according to air-mass back-trajectories. A very similar REE pattern was obtained for 

samples from all regions, with light rare earth elements (LREE) significantly enriched relative to the 

heavy rare earth elements (HREE), a relatively flat and uniform HREE pattern and a marked depletion in 

Eu relative to its neighbouring elements, Sm and Gd. This pattern is typical of sedimentary materials 
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derived from post-Archean continental crust and is found in sediments from around the world with 

remarkable uniformity (Taylor and McLennan, 1995). Profiles typically differ the most in the level of 

HREE enrichment and the degree of Eu depletion relative to the other REEs (termed a negative Eu 

anomaly – formed during magma crystallisation into stable plagioclase with preferential Eu 

incorporation into this mineral and consequent depletion of Eu in the rest of the magma). A visual 

inspection of the CVAO data in Figure 8 shows that there is more variation in these two parts of the REE 

pattern.  

To facilitate the comparison of REE data for source identification three parameters were calculated: 

the Europium anomaly, EuN/Eu*, where EuN is the Chondrite normalised Eu concentration and Eu* is the 

“expected” Europium concentration based on interpolation between Chondrite normalised Sm and Gd 

concentrations (Eu* = (SmN x GdN)1/2). EuN/Eu* is < 1 for a negative Europium anomaly (Eu depleted 

relative to its neighbouring REEs) and >1 for a positive anomaly. LaN/YbN, a measure of the LREE 

enrichment relative to HREE, is calculated from the ratio of the Chondrite normalised values for La and 

Yb, with higher values indicating more LREE enrichment. GdN/YbN is a measure of HREE depletion, with 

higher values indicating more depletion of the heavier elements relative to Gd. Uncertainties in the 

calculated REE metrics were determined from the measurements of 23 independent digestions of the 

loess sediment that was used as a reference material. The standard deviations of these measurements 

were 0.014 (EuN/Eu*), 0.12 (LaN/YbN), and 0.078 (GdN/YbN). 

All of the CVAO data fell within, or were very close to literature values for African dust of EuN/Eu* ~ 

0.55 – 0.80; LaN/YbN ~ 5 – 12.5, and GdN/YbN ~ 1 – 2.5 (Muhs et al., 2007). GdN/YbN values for all five 

source regions span a very similar range and have similar mean values, suggesting that there is little 

difference in the HREE values between the different source regions (Figure 9a). LaN/YbN and EuN/Eu* 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

31 

 

values showed some differences between the different regions, although there was a large amount of 

overlap between the values for different regions (Figure 9b). Despite the scatter a general trend can be 

observed (Figure 9b), with samples from Region 1 (Sahel) tending towards higher LaN/YbN and lower 

EuN/Eu*, Regions 2 + 3 (Sahara) tending towards lower LaN/YbN and higher EuN/Eu* and Regions 2 (and 

samples with a mixture of Regions 1, 2 and 3) coming somewhere in between. EuN/Eu* appeared to be a 

better indicator of source than LaN/YbN, with most samples from Regions 1 and from Regions 1+2+3 

showing EuN/Eu* < 0.7, and most samples from Regions 2 and 2+3 showing EuN/Eu* > 0.7. However, 

these patterns were too weak to be used as an accurate indicator of aerosol source. Our CVAO 

observations are consistent with the findings of Moreno et al. (2006), who conducted a geochemical 

study of dust samples collected in various locations across the Sahel and Sahara and found only 

relatively small variations in REE concentrations.  

Figure 9c,d show the REE Eu anomalies plotted against GdN/YbN  and LaN/YbN, respectively, for 

samples collected during the research cruise. In agreement with the corresponding data for the CVAO 

data, samples from Region 1 again showed a low Eu anomaly (< 0.68), with the two samples containing a 

contribution from Region 3 showing higher Eu anomalies (0.70 – 0.76). However the small number of 

samples and the high degree of scatter precludes any meaningful analysis of the distribution in terms of 

source region. Despite this, a wide distribution of Eu anomalies were measured in the shipboard 

samples, and when plotted in a chronological order (Figure 10a) revealed a clear distinction in EuN/Eu* 

ratios between the first dust event (16-20 January 2008) and the subsequent two events (25-27 January 

2008 and 28 – 31 January 2008). 

During the first dust event (16-20 January 2008) Eu anomalies were in the range 0.71 – 0.76. Air 

mass back-trajectories corresponding to this period indicated a mixture of Regions 1 and 2 as the source 
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of the dust for this period. In the second event (25-27 January 2008) Eu anomalies were significantly 

lower: 0.66 – 0.68 (p < 0.001) and the back-trajectory analysis indicated Region 2 as the dominant 

source region, shifting to Region 1 towards the end of the period. The third event (28-31 January 2008) 

was characterised by intermediate Eu anomalies (0.68-0.71), and during this period the South and 

Central Sahara (Region 2) formed the dominant aerosol source region. 

Figure 10b shows Eu anomalies for the CVAO obtained during the same period as cruise D326, with 

two dust events arriving at CVAO with peak concentrations on 21 January and 29 January 2008 and 

corresponding with the first and second/third dust event encountered on D326. A similar reduction in 

the EuN/Eu* ratios was noticeable in the CVAO dataset, however the source regions differed. At the 

CVAO, the first event (peaking 21 January 2008) had back trajectories originating in Regions 2 and 3, 

whereas the later event (29 January 2008) originated from a mixture of Regions 1 and 2. This lack of 

correspondence between the air-mass back trajectories despite the REE signatures suggesting a similar 

shift in source region may be due to the difficulties of accurately classifying air-mass back trajectories for 

samples collected over longer periods. However, these results demonstrate the ability of REE ratio 

measurements to distinguish dust from different sources, particularly when shorter (<24 hour) sampling 

periods are used such that atmospheric conditions do not change significantly during the collection of an 

individual sample. 

3.2.4 Clay mineralogy as source fingerprints 

Separation of the XRD samples according to air mass classification allows a more informed analysis 

of the mineral data. Source area 2, i.e. the South and Central Saharan region was characterized by a 

positive statistical correlation between %kaolinite, %quartz and Al concentration (r2=0.92, n=5; and 

r2=0.56, n=6 respectively).  The relationship with illite/kaolinite ratio was negative (r2=-0.34, n=5) and as 
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might be expected calcite had a negative correlation (r2=0.55, n=6) with Al content. By comparison, 

samples originating from a mix of sources 1 (Sahel region) and 2, exhibited a positive relationship 

between Al and the quartz/calcite ratio (r2=0.83, n=10) only. The negligible correlation between 

%kaolinite and this sample grouping (r2=0.01, n=8) inferred that the ‘quartz’ and ‘Al’ signal from Source 

1 dominated, over that for Source 2 to the north. Samples designated as from sources 2 and 3 (North 

and West Sahara) had a positive correlation between Al and the quartz/calcite ratio (r2=0.91, n=5) and 

also with illite (r2=0.84, n=5). Although, Al content was negatively correlated with %kaolinite (r2=-0.27, 

n=5). During the dust events it seems reasonable to infer that Source 3 dominated over Source 2, given 

the importance of illite and the relative unimportance of kaolinite. Finally, several samples were likely to 

comprise a mix of aeolian sources 1, 2 and 3, in which positive correlations were seen between Al and 

both the quartz/ kaolinite ratio (r2=0.92, n=5) and the quartz/calcite ratio (r2=0.98, n=5). Again the 

subsidiary role of the South and central Saharan region (Source 2) was inferred by the reduction of 

kaolinite in the presence of Al. 

Aeolian dust from the South and Central Saharan region (Source 2) appeared unique in terms of its 

kaolinite signal and reduction in illite with increasing Al, although the significance of this source in terms 

of quantity was likely to be low, when compared to regions both to the north and south.  Also illite 

appeared to be preferentially sourced from the North and West Sahara, in agreement with findings by 

others (Caquineau et al., 1998). All regions showed a reduction in calcite content and an increase in 

quartz with increased Al content. 

Illite / kaolinite clay ratios are thus a useful indicator of African source regions (Caquineau et al., 

2002; Caquineau et al., 1998), due to much greater abundance of kaolinite in the Sahel and southern 

Sahara than in the regions further north. Possibly due to the mixed nature of many of the CVAO 
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samples, there is considerable scatter in the Illite / kaolinite ratios. However when plotted against 

Eu/Eu*, a separation was obtained between the groups of samples (Figure 11).  Samples including 

contributions from the Sahel (Region 1) showed lower Illite / kaolinite and Eu/Eu* ratios, while samples 

originating exclusively from the Sahara (Regions 2 and 3) displayed higher Illite / kaolinite and Eu/Eu* 

values (with the exception of one point). These observations are comparable to other studies (Goudie 

and Middleton, 2006). Therefore the combined use of mineral and elemental tracers can aid in the 

unravelling of source regions of dust samples. 

4 Conclusions 

During the course of a one year period at the CVAO numerous dust events of varying intensities 

were observed and the seasonal changes in aerosol concentration were noticeable with higher levels in 

winter compared with summer periods. A clear shift in aerosol back-trajectories was seen, with dust 

sources from the Sahel region more important during the summer, being replaced by more northern 

sources during the winter period when north-easterly trade winds dominate dust transport to the 

region. Despite this there was a high level of consistency in the chemical composition of the collected 

dust samples, with many of the 42 elements displaying a strong correlation to Al. A unique opportunity 

to sample simultaneously on land and at sea was obtained during January 2008 during which mean 

mineral dust concentrations were estimated at up to 215 µg m-3. Although measured dust 

concentrations differed significantly between the two sets of measurements, both sets of samples 

showed considerable chemical and mineralogical similarity, with REE patterns indicating the same 

trends. 
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Overall, trends in REE patterns were noticeable when comparing samples from climatologically 

different periods, particularly in the shipboard samples, but the longer sampling periods (1-3 days) used 

for the samples from CVAO resulted in most of these containing a contribution from a mixture of source 

regions. Nevertheless, combined with illite/kaolinite ratios from XRD analysis, differences can be 

observed between aerosols from the Sahel and from the more northern Sahara region. 

Enrichment factors suggest that elements typically associated with anthropogenic activity (Ag, Cd, 

Cr, Cu, Ni, Pb, Sn, V, Zn) were enriched relative to their crustal abundance at low aerosol concentrations. 

However, all of these elements showed positive correlations with Al, and their concentrations were 

highest during dust events. V, Ni and Pb showed most pronounced anthropogenic contributions, yet 

showed a strong association with mineral dust that is possibly the result of mixing of anthropogenically 

derived aerosols with mineral dust during transport. An analysis of anthropogenic elemental ratios 

according to aerosol source region revealed significantly higher levels of these elements in samples from 

the Sahel. Cd/Al and Zn/Al were particularly elevated in samples originating from this region, with levels 

4 times greater than in samples indicating source regions in the less populated Sahara regions further 

north. 

Mineral analysis showed an important presence of quartz, with a slightly higher abundance during 

periods of high dust concentration. However, clay minerals, in particular illite, were the most abundant 

minerals in almost all samples, showing a marked increase at elevated dust concentrations. This has 

important implications for the estimation of the release of biogeochemically important species such as 

Fe from mineral dust due to the higher Fe solubility of clays. Nevertheless, the observed variations in 

mineral composition were relatively minor in comparison with variations in absolute aerosol 
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concentrations at CVAO. This highlights the importance of continuous high resolution measurements of 

aerosol concentrations in conjunction with studies of aerosol composition. 
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Tables 

Table 1. Average instrumental blank concentrations (dilute HNO3; n = 13 measurements), average 

filter blanks for total acid digestions (n = 18), and mean % recovery (± 1 standard deviation) from 

Certified Reference Materials (CRMs) in total acid digestions. All blank values have been converted into 

atmospheric units ng.m-3, using filter digestion volume of ca. 20 mL and assumed sample air volume of 

100 m3. 

Element 
Instrumental 
Blank Mean 

Digestion Blank 
Mean 

LOESS CRM % recovery NIST1648a % recovery 

Na < 0.097 10 109% ± 8% 108% ± 7% 

Mg 0.13 2.2 109% ± 8% 102% ± 6% 

Al < 0.052 4.6 107% ± 9% 105% ± 7% 

K  0.37 3.5     

Ca < 0.42 9.7 110% ± 8% 106% ± 7% 

Sc < 0.0016 0.0029     

Ti < 0.038 1.5 103% ± 11% 100% ± 9% 

V < 0.0022 0.039 101% ± 13% 104% ± 13% 

Cr < 0.0024 0.94 101% ± 12% 96% ± 11% 

Mn < 0.0021 0.019 105% ± 8% 101% ± 6% 

Fe < 0.035 1.4 107% ± 11% 105% ± 11% 

Co < 0.00038 0.0012 103% ± 11% 101% ± 13% 

Ni < 0.0022 0.089 96% ± 11% 89% ± 10% 

Cu < 0.0050 0.041 96% ± 9% 87% ± 7% 

Zn < 0.022 0.84 97% ± 9% 82% ± 9% 

Ga < 0.00067 0.0014     

Rb < 0.0011 0.0051 101% ± 9% 88% ± 9% 

Sr < 0.00096 0.064 103% ± 8% 96% ± 9% 

Y < 0.000096 0.11 85% ± 8%   

Nb < 0.00036 0.0087     

Ag < 0.00033 0.0040     

Cd < 0.00024 0.0012     

Sn < 0.00091 0.17     

Cs < 0.000078 0.00052 101% ± 4% 93%  ± 3% 

Ba < 0.0026 0.033     

La < 0.000086 0.0015 105% ± 12% 93% ± 4% 

Ce < 0.00017 0.005 105% ± 12% 95% ± 4% 

Pr < 0.000040 0.00033 107% ± 13%   

Nd < 0.00023 0.0012 105% ± 13%   

Sm < 0.00012 < 0.00012 104% ± 12% 89% ± 4% 
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Eu < 0.000032 < 0.000032 101% ± 8%   

Gd < 0.000051 0.00026 115% ± 11%   

Tb < 0.000015 < 0.000015 97% ± 8%   

Dy < 0.000023 0.00019 86% ± 7%   

Ho < 0.0000074 0.000013 81% ± 7%   

Er < 0.000016 0.000066 79% ± 6%   

Tm < 0.0000046 < 0.0000046 81% ± 6%   

Yb < 0.000014 0.000078 75% ± 6%   

Lu < 0.0000042 < 0.0000042 74% ± 6%   

Pb < 0.00024 0.022 110% ± 11% 102% ± 5% 

Th < 0.000030 0.00044 100% ± 19%   

U < 0.000019 0.00018 91% ± 14%   



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

39 

 

Table 2. Atmospheric concentrations of trace elements in aerosols sampled at the CVAO from 2 July 2007 to 11 July 2008 and during a 

research cruise D326 aboard RRS Discovery from 8 January to 4 February 2008. Values less than the blank are indicated by n.d.; Ga was not 

measured for the samples from D326. 

    CVAO July 2007 – July 2008 RRS Discovery (D326) - January 2008 

Element Min Max 
Arithmetic 

mean 

Geometric 
mean 

Standard 
deviation 

Min Max 
Arithmetic 

mean 

Geometric 
mean 

Standard 
deviation 

Na (µg.m-3) 0.61 12.3 3.93 3.51 1.90 n.d. 11.7 5.41 4.82 2.67 

Mg (µg.m-3) 0.11 9.57 0.99 0.76 1.03 n.d. 5.16 2.13 1.47 1.58 

Al (µg.m-3) 0.01 66.9 2.89 0.76 6.99 n.d. 36.2 10.5 2.24 11.3 

K (µg.m-3) 0.04 10.7 0.77 0.36 1.37 0.001 6.06 1.99 0.81 1.91 

Ca (µg.m-3) 0.06 15.3 1.38 0.74 1.99 n.d. 9.22 3.27 1.56 3.08 

Sc (ng.m-3) 0.003 11.6 0.54 0.16 1.24 0.01 6.37 1.86 0.47 1.99 

Ti (µg.m-3) 0.0001 3.78 0.16 0.04 0.40 n.d. 1.95 0.60 0.13 0.62 

V (ng.m-3) 0.12 80.7 5.33 2.82 8.78 n.d. 41.4 13.9 4.94 13.4 

Cr (ng.m-3) 0.39 64.0 4.09 2.42 6.75 n.d. 34.8 11.2 5.18 10.9 

Mn (ng.m-3) 0.12 606 25.8 7.11 63.5 n.d. 307 93.3 22.3 98.2 

Fe (µg.m-3) 0.01 33.4 1.58 0.45 3.61 n.d. 18.5 5.38 1.25 5.72 

Co (ng.m-3) 0.01 14.5 0.69 0.22 1.56 n.d. 7.98 2.41 0.64 2.53 

Ni (ng.m-3) 0.04 29.3 2.06 1.22 3.03 n.d. 15.6 5.06 2.13 4.92 

Cu (ng.m-3) 0.02 23.6 1.44 0.65 2.66 n.d. 13.6 4.23 1.81 4.18 

Zn (ng.m-3) 0.36 52.7 6.31 4.32 6.95 n.d. 61.0 11.1 6.16 12.3 

Ga (ng.m-3) 0.04 5.43 1.22 0.74 1.24 n/a n/a n/a n/a n/a 

Rb (ng.m-3) 0.02 63.8 2.83 0.86 6.55 n.d. 31.0 9.42 2.71 9.89 

Sr (ng.m-3) 0.74 194 13.8 7.24 23.7 n.d. 133 36.7 17.4 37.4 

Y (ng.m-3) 0.01 25.2 1.48 0.46 3.20 n.d. 12.7 4.60 1.88 4.16 

Nb (ng.m-3) 0.002 14.6 0.61 0.19 1.52 n.d. 6.57 2.06 0.89 2.00 
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    CVAO July 2007 – July 2008 RRS Discovery (D326) - January 2008 

Element Min Max 
Arithmetic 

mean 

Geometric 
mean 

Standard 
deviation 

Min Max 
Arithmetic 

mean 

Geometric 
mean 

Standard 
deviation 

Ag (pg.m-3) 0.15 256 23.0 10.0 33.6 n.d. 115 40.0 19.1 33.6 

Cd (pg.m-3) 0.77 169 24.8 17.2 21.7 n.d. 165 40.8 27.7 35.2 

Sn (ng.m-3) 0.001 3.18 0.30 0.17 0.42 n.d. 2.46 0.60 0.37 0.60 

Cs (pg.m-3) 0.85 2935 147 47.4 319 n.d. 1514 480 149 502 

Ba (ng.m-3) 0.03 434 21.1 5.43 48.2 n.d. 243 74.2 17.2 76.5 

La (ng.m-3) 0.01 37.6 1.54 0.42 3.91 n.d. 19.4 5.59 1.21 6.12 

Ce (ng.m-3) 0.01 80.3 3.25 0.83 8.34 n.d. 40.3 11.8 2.54 12.9 

Pr (pg.m-3) 1.14 8307 362 94.0 890 n.d. 4642 1361 288 1486 

Nd (ng.m-3) 0.004 34.6 1.38 0.35 3.53 n.d. 17.5 5.15 1.08 5.61 

Sm (pg.m-3) 0.66 6453 263 66.7 664 n.d. 3356 988 201 1078 

Eu (pg.m-3) 0.10 1446 59.1 14.7 149 n.d. 743 224 48.7 240 

Gd (pg.m-3) 0.87 6484 268 68.4 672 n.d. 3440 1026 215 1115 

Tb (pg.m-3) 0.07 828 34.4 8.82 86.1 n.d. 438 131 26.8 142 

Dy (pg.m-3) 0.39 4289 182 46.8 448 n.d. 2289 684 147 742 

Ho (pg.m-3) 0.09 810 34.6 8.96 84.7 n.d. 435 130 27.8 141 

Er (pg.m-3) 0.29 2385 101 26.2 249 n.d. 1285 384 81.2 416 

Tm (pg.m-3) 0.05 340 14.5 3.79 35.6 n.d. 183 54.9 11.7 59.5 

Yb (pg.m-3) 0.24 2191 93.1 24.3 228 n.d. 1193 355 76.0 386 

Lu (pg.m-3) 0.04 315 13.6 3.59 33.0 n.d. 172 51.6 11.2 56.0 

Pb (ng.m-3) 0.03 18.9 2.09 1.19 2.50 n.d. 17.6 4.28 2.24 3.98 

Th (ng.m-3) 0.001 8.92 0.37 0.10 0.92 n.d. 4.43 1.30 0.27 1.40 

U (pg.m-3) 0.80 2218 97.4 31.1 229 1.71 1102 333 91.0 355 
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Table 3. Mean mineral composition of aerosols with North African origins, including maximum 

contributions for our study. 1Aerosols collected during dust events at Sal, Cape Verde, 1974. 2Aerosols 

collected during dust events in Montseny, Spain between 1984 and 1992.  3Aerosols collected during 

dust events at CVAO, Cape Verde, in December 2007 and January 2008. 

 Quartz Calcite Total 
Clays 

Mica / 
Illite 

Kaolin Chlorite Mont- 
morillonite 

Pyro- 
phyllite 

Micro- 
cline 

Plagio- 
clase 

This study           

Max 36.4% 90.7% 84.7% 53.2% 57.6% 23.3% 0.3% 61.7%   

Mean (n=33) 15.0% 28.4% 52.0% 26.4% 18.7% 6.9% 0.02% 4.7%   

Glacuum and 
Prospero (1980) 

          

Mean (n = 3)1 19.6% 8.2% 64.6% 53.8% 6.6% 4.3%   2.2% 5.4% 

Avila et al. (1997)           

Mean (n= 13)2 18% 7.5% 62.2% 37% 7%      

Jeong and 
Achterberg (2014) 

          

Mean (n=2)3 8% 2% 81% 72% 6% 3%    2% 
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Table 4. Selected mean elemental ratios in samples originating from specific African regions. Mean 

values are given with uncertainties of 1 standard deviation. Nss stands for non-sea salt. Significant 

differences (p < 0.05) between samples from Region 1 and Region 2, and between those from Region 1 

and Regions 2 & 3 are indicated in bold. There were no statistically significant differences between 

samples originating from Region 2 and Regions 2 & 3. 

 Sahel 
(Region 1) 

South / Central Sahara 
(Region 2) 

NW & South / Central Sahara 
(Regions 2 & 3) 

N° Samples 21 11 13 
nss Mg/Al 0.30 ± 0.19 0.17 ± 0.05 0.16 ± 0.04 
nss K/Al 0.23 ± 0.06 0.20 ± 0.03 0.20 ± 0.03 
nss Ca/Al 0.57 ± 0.18 0.50 ± 0.23 0.52 ± 0.11 
Fe/nss Ca 1.1 ± 0.4 1.3 ± 0.5 1.2 ± 0.3 
nss K/nssCa 0.48 ± 0.13 0.46 ± 0.13 0.39 ± 0.10 
Fe/Al 0.58 ± 0.04 0.56 ± 0.05 0.58 ± 0.04 

 

Table 5. Selected anthropogenic mean elemental ratios in samples originating from specific African 

regions. Mean values are given with uncertainties of 1 standard deviation. Significant differences (p < 

0.05) between samples from Region 1 and Region 2, and between those from Region 1 and Regions 2 & 

3 are indicated in bold. There were no statistically significant differences between samples originating 

from Region 2 and Regions 2 & 3. 

Region Sahel 
(Region 1) 

South / Central Sahara 
(Region 2) 

NW & South / Central Sahara 
(Regions 2 & 3) 

N° Samples 33 13 14 

V/Al 0.0044 ± 0.0024 0.0028 ± 0.0026 0.0021 ± 0.0008 
Ni/Al 0.0020 ± 0.0011 0.0013 ± 0.0018 0.0008 ± 0.0005 
Cu/Al 0.00099 ± 0.00050 0.00068 ± 0.00058 0.00055 ± 0.00020 
Zn/Al 0.0099 ± 0.0088 0.0055 ± 0.0090 0.0025 ± 0.0022 
Cd/Al 0.000048 ± 0.000034 0.000018 ± 0.000017 0.000013 ± 0.000016 
Pb/Al 0.0025 ± 0.0014 0.0011 ± 0.0011 0.0013 ± 0.0014 
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Figure1. Cruise track in northeast Atlantic Ocean as blue line for D326 aboard RRS Discovery (8 

January – 4 February 2008). Stations are marked in red together with their station numbers. Black lines 

on and along African continent are from scheme used by (Chiapello et al., 1997) to classify air-masses 

originating from the African continent. Region 1: Sahel; Region 2: South and Central Sahara; Region 3: 

North and West Sahara. 
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Figure 2. a) Total Fe and Al atmospheric concentrations observed at the CVAO in the period between 

2 July 2007 and 11 July 2008. Grey shading indicates cruise period. b) Total Fe and Al concentrations 

from samples collected aboard RRS Discovery during a research cruise (D326) in the eastern tropical and 

sub-tropical North Atlantic between 8 January and 4 February 2008. In both panels, the y axis for Al is 

offset to facilitate viewing of the Fe data. 
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Figure 3. Terra/MODIS true colour image of Cape Verde region taken at 12:25 UTC 30 Feb 2008. The 

approximate locations of the CVAO (green) and RRS Discovery (red) are indicated by crosses. Source: 

NASA/GSFC/Earth Science Data and Information System (ESDIS) 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

49 

 

 

 

Figure 4. Mean composition of samples collected at CVAO and during cruise D326 plotted together 

with mean upper crustal composition (UCA) (Taylor and McLennan, 1995). All values have been 

normalised to 8.04% wt. Al. 
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Figure 5. Mean crustal enrichment factors for total elemental concentrations determined at CVAO, 

illustrating the difference in enrichment factors between the upper (T25– [Al] > 2.4 µg.m-3) and lower 

(B25 – [Al] < 0.23 µg.m-3) quartiles of the dataset (ranked in order of atmospheric total Al 

concentration). Samples with < 1 µg.m-3 TSP equivalent ([Al] < 0.080 µg.m-3) have been excluded from 

the calculations. Enrichment factors of 1 and 10 are marked by dashed lines. 
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Figure 6. Temporal trends of excess atmospheric concentrations of selected pollutant aerosol 

species at CVAO. Values are excess concentrations, calculated by subtracting the crustal component 

from the value total digestion (using total Al concentrations and UCA for the element in question). Total 

Al concentrations (in cyan) are included for reference. 

 

Figure 7. Mineral composition (% wt) of selected samples at CVAO, in order of increasing total Al 

concentration. Two samples indicated by asterisks contain 0.3% montmorillonite, which is not shown in 

the bar.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

53 

 

 

 

Figure 8. Chondrite normalised rare earth element (REE) patterns for samples collected at the CVAO 

between 2 July 2007 and 11 July 2008. Mean values are plotted from 5 groups corresponding to 

different source regions identified from air-mass back-trajectories (labelled according to Chiapello et al., 

1997). 16 samples containing very low concentrations (Al < 3.8 µg/filter) have been excluded.  
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Figure 9. a) Ratios of EuN/Eu* vs GdN/YbN for individual samples collected at the CVAO between 2 

July 2007 and 11 July 2008. Samples associated with Regions 1 + 2, and with very low concentrations (Al 

< 3.8 µg/filter) have been excluded. b) Ratios of EuN/Eu* vs LaN/YbN ratio for individual samples collected 

at the CVAO between 2 July 2007 and 11 July 2008. Samples associated with Regions 1 + 2, and with very 

low concentrations (Al < 3.8 µg/filter) have been excluded. Samples from Region 1 and Regions 2+3 have 

been circled.c) Ratios of EuN/Eu* vs GdN/YbN for individual samples collected during research cruise 

D326 between 8 January and 4 February 2008. Eight samples associated with predominantly marine 

sources are not shown. d) Ratios of EuN/Eu* vs LaN/YbN for individual samples collected during research 
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cruise D326 between 8 January and 4 February 2008. Eight samples associated with predominantly 

marine sources are not shown. 

 

 
Figure 10. a) Plot of EuN/Eu* vs date for individual samples collected during research cruise D326 

between 8 January and 4 February 2008. Total atmospheric Al concentration is included to indicate the 
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timing of the dust events encountered. b) Plot of EuN/Eu* vs date for individual samples collected at 

CVAO during the period of the research cruise. 

 

Figure 11. Illite / kaolinite ratios for selected samples at CVAO, for which XRD measurements were 

obtained, plotted against the Europium anomaly, EuN/Eu*. 
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Highlights 

Aerosol time-series measurements on the Cape Verde reveal seasonal variations 

High aerosol loadings in winter at Cape Verde related to dust transport in trade winds 

Dust supply during summer originating mainly from the Sahel region  

Dust supply during winter originating mainly from the North and West Saharan region  

Clay dominant mineral in aerosols over Cape Verde, influencing iron solubility 


