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ABSTRACT

Northern Hemisphere stratospheric variability is investigated with respect to chaotic behavior using time

series from three different variables extracted from four different reanalysis products and two numerical

model runs with different forcing. The time series show red spectra at all frequencies and the probability

distribution functions show persistent deviations from a Gaussian distribution. An exception is given by the

numerical model forced with perpetual winter conditions—a case that shows more variability and follows

aGaussian distribution, suggesting that the deviation fromGaussianity found in the observations is due to the

transition between summer and winter variability. To search for the presence of a chaotic attractor the

correlation dimension and entropy, the Lyapunov spectrum, and the associated Kaplan–Yorke dimension are

estimated. A finite value of the dimensions can be computed for each variable and data product, with the

correlation dimension ranging between 3.0 and 4.0 and the Kaplan–Yorke dimension between 3.3 and 5.5.

The correlation entropy varies between 0.6 and 1.1. The model runs show similar values for the correlation

and Lyapunov dimensions for both the seasonally forced run and the perpetual-winter run, suggesting that the

structure of a possible chaotic attractor is not determined by the seasonality in the forcing, but must be given

by other mechanisms.

1. Introduction

Climate predictability is limited by the fact that the

irregular patterns observed for the variability of specific

components of the climate system can be chaotic or

stochastic. Chaotic systems are regulated by deter-

ministic differential equations, nonlinearly coupled with

each other, while stochastic systems are regulated by the

statistical properties of the system. The study of non-

linear dynamical systems shows that it is possible to

distinguish between these two forms of variability from

the analysis of the time series of a single variable

(Grassberger and Procaccia 1983a,c). Deterministic

dynamical systems are associated with the presence of

an attractor set characterized by a finite, even though

fractal, dimension and a converging value of the entropy

of the system, which represents a measure of the un-

certainty associated with the measurement of a state.

Stochastic systems are instead characterized by a lack of

convergence to a finite dimension and dynamical en-

tropy. In addition, chaotic systems are characterized by

sensitivity to initial conditions and, thus, by the presence

of exponentially divergent trajectories on the strange

attractor. The coefficient of the exponential divergence

of trajectories that were initially infinitesimally close

takes the name of Lyapunov exponents. The time series

analysis of finite-size Lyapunov exponents yields infor-

mation on the predictability of slow-varying dynamics,

corresponding to large-scale flows in geophysical sys-

tems, when the fast-varying dynamics are unresolved

(Aurell et al. 1997; Boffetta et al. 1998).

While these mathematical features are certainly at-

tractive for the characterization of the variability of the

climate system, their application to uncontrolled ex-

periments has a problematic history. Using observa-

tions, the existence of an attractor for climate was instead

studied from different sources of data, ranging from
18O/16O ratio in deep sea cores (Nicolis andNicolis 1984;

Vautard andGhil 1989) to local surface variables such as

local surface pressure, relative sunshine duration, and

zonal wave amplitude (e.g., Fraedrich 1986, 1987; Zeng

et al. 1992; Weber et al. 1995). While some of these

studies found a strange attractor with a finite dimension,

ranging from 3 to 13, others did not find signs of de-

terministic chaos (the same problem appears for other

natural systems: see, e.g., the study by Carbonell et al.

1994 for the search for deterministic chaos in solar
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activity). In particular, the positive results were criti-

cized by Grassberger (1986) and Ruelle (1990) [in turn

criticized in an analytical study by Essex and Nerenberg

(1991)], who addressed the problem of sparse data as

well as the errors of the estimates. An argument against

the characterization of deterministic versus stochastic

variability through the determination of a finite corre-

lation dimension was suggested by Osborne and Pro-

venzale (1989) [subsequently criticized in an analytical

study by Theiler (1991)], who showed that a finite di-

mension can be found in systems that are not deter-

ministic but that possess random, self-similar time series

that exhibit fractional Brownian motion (Mandelbrot

and VanNess 1968). A further problem was highlighted

by Lorenz (1991), who showed that, using a system of 21

ordinary differential equations, the dimension of the

attractor determined from the analysis of the time series

of one of the variables is lowered by sparse data and

depends on the chosen variable. Even if these results

seemed to preclude the determination of the existence

of an attractor for the climate system, Lorenz (1991),

followed by Elsner and Tsonis (1992) and Tsonis et al.

(1993), proposed that the atmosphere might be viewed

as a loosely coupled system and that the finite attractor

dimensions found by some of these studies might indeed

correspond to the dimension of a subsystem. In this

study we again raise the question of the existence of

a finite attractor, but guided by the studies described

above we restrict our attention to a climate subsystem,

represented by the Northern Hemisphere extratropical

stratosphere.

The dominant time scale in the extratropical strato-

sphere is the seasonal cycle, since the dynamical evolu-

tion of the stratosphere is strongly dependent on available

sunlight. The seasonal lack of sunlight leads to a strong

meridional temperature gradient, which is particularly

strong at the edge of the polar night. There, the polar

vortex forms in autumn and reaches its maximum

strength in midwinter, but weakens to a complete wind

reversal in late spring. While radiative processes main-

tain the polar vortex, planetary-scale Rossby waves

(dominantly zonal wavenumbers 1–3), which are domi-

nantly caused by longitudinally asymmetric heating and

topography at Earth’s surface, cause strong disruptions

of the vortex in so-called stratospheric sudden warming

(SSW) events [first described in Scherhag (1952, 1953),

and documented in, e.g., Labitzke (1981)]. These events

are observed in midwinter as abrupt changes in the

stratospheric wind, temperature, and geopotential

height patterns. The presence of large-scale waves thus

introduces variability on shorter time scales to the win-

ter stratosphere: the time scale on which waves are able

to propagate and interact with the mean flow (on the

order of days) and the radiative time scales on which the

flow recovers to radiative equilibrium (on the order of

weeks). The large wave amplitudes throughout North-

ern Hemisphere winter are able to consistently weaken

the polar vortex, thereby keeping the vortex from

reaching wind speeds comparable to its Southern

Hemisphere counterpart, where vortex wind speeds

grow continuously into winter and wave amplitudes

exhibit a minimum in midwinter (Hirota et al. 1983),

indicating that wind speeds may be too strong even for

zonal wave 1 to propagate (Plumb 1989). The spring

transition in both hemispheres is dominated by the fi-

nal warming, which is induced by both radiative forc-

ing and tropospheric waves (see, e.g., Black et al.

2006). The summer circulation, on the other hand, is

comparably quiet, as Rossby waves are not able to

propagate through the easterly winds which dominate

the summer stratosphere (Charney and Drazin 1961).

This behavior leads to a significant difference in vari-

ability between the summer and winter season in the

stratosphere.

The chaotic behavior of the stratospheric variability

has been investigated using the low-dimensional Holton–

Mass model (Holton and Mass 1976) forced by a time-

independent forcing at the lower boundary by Yoden

(1987a,b, 1990) and Christiansen (2000). Analyzing the

bifurcations of the Holton–Mass model, Yoden (1987a,b,

1990) showed the existence of a quasi-periodic state

branching off the periodic vacillations through the pres-

ence of aHopf bifurcation. Further analysis (Christiansen

2000) showed a route to chaos determined by the con-

secutive presence of three Hopf bifurcations. A simple

prototype of SSW events was also studied in a highly

truncated version of theHolton–Massmodel byRuzmaikin

et al. (2003). Considering that external forcing, such as

baroclinic instabilities in the troposphere or gravity

waves, can act as a stochastic forcing to the stratospheric

variability, the low-order model by Ruzmaikin et al.

(2003) was modified to include stochastic forcing by

Birner andWilliams (2008). Their study found that even

small to moderate strengths of the stochastic gravity

wave forcing can be sufficient to cause a SSW event for

cases for which the deterministic system would not have

predicted a SSW event. The Holton–Mass model was

modified byHardiman andHaynes (2008) to include the

effect of upper level forcing. The vortex response asso-

ciated with SSW events was studied as a nonlinear

forced oscillator by Esler and Matthewman (2011). For

a review of these studies on stratospheric variability, see

Haynes (2005).

This study investigates the variability of the extra-

tropical stratosphere at 10 hPa and 608N, corresponding

to the location where theWMO threshold for SSW events

APRIL 2014 BAD IN AND DOME I SEN 1495



is defined (McInturff 1978). Zonal wind, temperature,

and geopotential height data are analyzed in four re-

analysis datasets. To further evaluate the difference

between winter and summer variability, idealized model

simulations were performed: one forced with a seasonal

cycle (to evaluate the difference between the idealized

model and the reanalysis data), and one model simula-

tion forced with perpetual winter conditions (to assess

the role of the seasonal cycle in determining the struc-

ture of the chaotic attractor).

Given the availability of long time series for different

variables allows us to address the following questions:

1) Is there a finite attractor for a specific climate sub-

system, here represented by stratospheric variability?

2) Do the dimension and characteristics of a possible

attractor depend on the choice of the analyzed variable,

as found by Lorenz (1991) through the study of a math-

ematical attractor?

2. Theoretical background

a. Phase space embedding

Given a set of partial differential equations, if the

system can be expanded into n orthogonal functions, it is

possible to transform it into a set of n ordinary differ-

ential equations in the expansion coefficients xi (e.g.,

Lorenz 1960):

_xi 5 fi(x1, . . . , xn), i5 1, . . . , n , (1)

where the dot on the xi indicates a time derivative. The

resulting trajectories span an n-dimensional phase space

forming an invariant manifold. If the system is chaotic,

the invariant manifold is called a strange attractor—

a geometric object characterized by a fractal dimension

d , n that can be a noninteger (e.g., Mandelbrot 1977).

If all but one variable x(t) are eliminated from (1), the

system is reduced to a nonlinear differential equation of

order n:

x(n) 5 f [x, x0, . . . , x(n21)] , (2)

where primes indicate differentiation. The system spans

a phase space that can be embedded in an m 5 2d 1 1

dimensional space created by the discretization of the

nonlinear differential equation and defined by the delay

coordinates

x(t)5 fx(t), x(t1 t), . . . , x[t1 (m2 1)t]g , (3)

where t is a time lag (Whitney 1936; Takens 1981). The

choice of a variable x(t) has thus the potential to reduce

the problem to the analysis of a time series of only one

variable of the given system (i.e., the time series of an

observable).

b. Dimensions and entropies

The dimension of a strange attractor corresponds to

the Hausdorff dimension, which has an upper bound

in the box-counting dimension. Considering a set inRm,

if the space is covered with a regular grid of boxes of

length � and if N(�) is the number of boxes that contain

at least one point of the set, self-similarity implies

N(�)} �2D0 , where D0 is the box-counting dimension.

Attractors can be described in more detail by their

measures—that is, the probability distribution to find a

trajectory in a subset of the attractor, or, more heuris-

tically, a quantity describing how frequently different

parts of the attractor are visited by the trajectories of the

dynamical system considered (Eckmann andRuelle 1985).

For a strange attractor with a nonhomogeneousmeasure

it is possible to give a formal generalization of the con-

cept of dimension in order to give more weight to the

parts of space that are visited more frequently by the

dynamics. Following Renyi (1971), given a dynamical

system with measure m, and denoting with p�(x) the

probability to find a trajectory in a ball U�(x) of radius �

around x, it is possible to define the correlation integral

Cq(�)5

ð
x
pq21
� dm(x)[ hpq21

� im . (4)

If the attractor is self-similar, (4) satisfies

Cq(�)} �(q21)D
q , �/ 0. (5)

Equation (5) defines a family of q dimensions

(Hentschel and Procaccia 1983)

Dq 5 lim
�/0

1

q2 1

lnCq(�)

ln�
. (6)

The solution with q 5 0 yields the capacity dimension,

obtained by covering the attractor with a regular grid

of N boxes of length �, so that hp�im 5 1/N(�) and D0 5
2lim

�/0
lnN(�)/ln�; q 5 1 yields the information (or

Shannon) dimension D1 5 lim
�/0

hln p�im/ln�. Finally, for
q . 1, (4) can be estimated from the correlation Cq(m)

between the points obtained by the projection of

the delay vectors (3) in the m-dimensional embedding

space. The correlation integral can be calculated as

Cq(m, �)5
1

N(N2 1)(q21) �
N

i51

"
�
i6¼j

Q(�2 jjxi 2 xjjj)
#q21

,

(7)
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where Q(x) is the Heaviside function so that Q(x)5 1 if

x . 0 and Q(x) 5 0 if x # 0. Equation (7) can be cal-

culated for the case q 5 2 making use of an Euclidean

norm (Grassberger and Procaccia 1983a,c), for which

case D2 assumes the name of correlation dimension:

C2(m, �)5
1

N(N2 1)
�
N

i51

"
�
i 6¼j

Q(�2 jjxi 2 xjjj)
#
. (8)

After computation ofC2 as a function of � form5 1, . . . ,

M, the correlation dimension can be calculated from (6)

as the slope

D252
› lnC2(�)

› ln�
. (9)

A convergence of D2 for increasing values of m at a di-

mension D2 � M indicates the presence of a finite corre-

lation dimension. It is possible to prove thatD2 represents

a lower bound forD1, whereD2 is easier to calculate for a

limited amount of data (Grassberger and Procaccia 1983a).

If now the phase space is partitioned in disjoint boxes

Pj and pj 5
Ð
Pj
dm(x) is the fraction of the measure con-

tained in the jth disjoint box, it is possible to define the

order-qRenyi entropies (Grassberger andProcaccia 1983b)

hq52lim
t/0

lim
�/0

lim
m/‘

1

tm(q2 1)
ln �

i
1
,...,i

m

pq(i1, . . . , im),

(10)

which can be interpreted as the time rate of loss of in-

formation as the trajectories evolve (Eckmann and

Ruelle 1985).Using q5 1 in (10) defines theKolmogorov–

Sinai entropy (Kolmogorov 1958; Sinai 1959) that is null

for ordered systems, finite for deterministic chaotic sys-

tems, and infinite for stochastic systems. Using (7), and

with q 5 2 one obtains

h2(m, �)52ln
C2(m, �)

C2(m1 1, �)
, (11)

which can be interpreted as the number of pairs of tra-

jectories that escape U�(x) whenm is increased tom1 1.

While the determination of h1 is often limited by sparse

data, it is possible to prove that h1$ h2 (Grassberger and

Procaccia 1983b). The calculation of h2 allows thus for the

determination of a lower bound for the entropy of the

system.

c. Lyapunov exponents and relation between
dimensions

The Lyapunov exponents are the coefficients of ex-

ponential separation of neighboring trajectories on a

strange attractor and are thus representative of the sen-

sitivity to the initial conditions of the system. The spectra

of Lyapunov exponents are here calculated following the

algorithm of Sano and Sawada (1985). The number of

Lyapunov exponents is the same as the dimension of the

embedding phase space, while the ordered Lyapunov

spectra l1 $ � � � $ lm define the dimension (Kaplan and

Yorke 1979)

DKY5 j1
1

jlj11j
�
j

i51

li , (12)

where the sum is over the first j nonzero Lyapunov ex-

ponents. Equation (12) is referred to as Kaplan–Yorke, or

Lyapunov, dimension. It is possible to prove (Grassberger

and Procaccia 1983c) that the Dq are nonincreasing

functions of q, so that the different dimensions listed are

linked by the relationship

Dl #D2#D1#D0#DKY , (13)

where Dl is the number of positive Lyapunov expo-

nents. Systems in which the equalities in (13) hold are

called monofractals, while systems that possess large

differences between the different dimensions are called

multifractals. The hierarchy of dimensions and entropies

allows for the calculation of lower and upper bounds for

the dimension and entropy of the chaotic attractor,

when the direct calculation of the box-counting and in-

formation dimension, as well as the Kolmogorov–Sinai

entropy, are strongly affected by the limitations in the

length of the time series.

d. Practical considerations regarding the calculation
of the dimension of the attractor

The determination of the box-counting dimension D0

is particularly difficult to determine owing to the need to

create boxes of infinitesimal size in order to cover the

strange attractor. At the same time, the information

dimensionD1 is also affected by finite-size datasets. The

correlation dimension D2 will thus be calculated. Each

time series will be analyzed separately. To embed the

time series, different choices for the embedding di-

mension and the time delay can bemade. For a summary

of the possible choices see, for example, Tsonis et al.

(1993). In this study, the maximum embedding di-

mension will be defined as (Ruelle 1990)

M5 2 log10N , (14)

whereN is the number of data points in each time series.

It can be noted that the logarithmic growth of the re-

quired embedding dimension represents a major obstacle
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in the embedding of the system. In fact, the arguments

produced byGrassberger (1986) andRuelle (1990) against

some of the results found for the climate attractor rely on

the observation that some of the studies that claimed to

find a finite attractor for climate used a maximum em-

bedding dimension larger than the value predicted by (14).

The delay time will instead be evaluated as the

first minimum of the mutual information (Fraser and

Swinney 1986). Once each time series is embedded, the

correlation integrals are calculated varying the values of

the embedding dimension from m 5 1 to m 5 M and

calculating the slopes (9). One hundred values of � are

used betweenN�/1000 andN�, whereN� is the maximum

interval between the data. The slopes are calculated

using central differences. For deterministic chaos, the

slopes must converge to the same value ofD2 for a large

enough interval of �.

3. Data

The variability in time of the extratropical strato-

sphere is analyzed using daily mean values of three

different variables extracted from four reanalysis data-

sets and two different idealized model simulations. The

three variables examined are the daily and zonal mean

zonal wind, temperature, and geopotential height. All

quantities are evaluated at 10 hPa and at the grid point

closest to 608N.

a. Reanalysis data

The following reanalysis datasets are used for the

analysis: the Interim European Centre for Medium-

Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-Interim) (Dee et al. 2011) from 1 January 1980 to

31 December 2011, yielding a total of 11 688 daily data

points; the 40-yr ECMWF Re-Analysis (ERA-40) re-

analysis (Uppala et al. 2005) from 1 January 1958 to

31 December 2001, yielding a total of 16 071 data points;

the National Centers for Environmental Prediction

(NCEP) reanalysis (Kalnay et al. 1996) from 1 January

1948 to 31 December 2012, yielding a total of 23 742

points; and the NCEP–U.S. Department of Energy

(DOE) Atmospheric Model Intercomparison Project II

(AMIP-II) reanalysis (R-2) dataset (Kanamitsu et al.

2002) from 1 January 1979 to 31December 2012, yielding

a total of 12419 data points. The seasonal cycle has been

removed from each reanalysis time series by subtracting

the climatological seasonal cycle for leap years and non-

leap years separately.

b. Model data

The model used for this study is the Geophysical

Fluid Dynamics Laboratory (GFDL) three-dimensional

atmospheric spectral dynamical core model at T42 res-

olution on 40 hybrid s-pressure levels up to 0.02 hPa

(with 28 levels above 200hPa) and a sponge layer starting

above 0.8 hPa. The model uses a Newtonian relaxation to

a zonal mean equilibrium temperature profile based on

Held and Suarez (1994) in the Polvani and Kushner

(2002) setup (using g 5 4Kkm21 and � 5 210K). The

relaxation time scale is 40 days in the stratosphere.

Zonal wave-2 topography of height 3000m is used to

force stratospheric variability as defined in Gerber and

Polvani (2009).

Twomodel runs are performed: model I is forced with

a 360-day seasonal cycle (as defined in Kushner and

Polvani 2006), while model II is run without a seasonal

cycle (i.e., in perpetual winter conditions for the ana-

lyzed hemisphere). The specific run performed for

model I is documented in Sheshadri et al. (2014), while

the run performed for model II is described in Gerber

and Polvani (2009) (their run 9), except here run on

hybrid levels (instead of s levels). Themain limitation of

this model setup is the structure of the equilibrium

temperature profile in the tropical lower stratosphere, in

particular the location of the tropical tropopause, and an

improved equilibrium temperature profile has been

designed by Jucker et al. (2013) to address this issue.

However, the stratospheric variability at the stratospheric

location chosen for this particular study is only affected to

a minor extent by the improved equilibrium temperature

profile.

Model I is run for 13 000 days, and the last 33 yearly

cycles are used for the analysis. The seasonal cycle is

removed by subtracting the 360-day climatological sea-

sonal cycle from each model year. Model II was run for

29 900 days. Results are reported as daily mean values

for both model runs.

4. Results

a. Variability in the different datasets

1) TIME SERIES VARIABILITY AND TRENDS

By removing the seasonal cycle from the presented

time series, the characteristic change in stratospheric

variability between summer and winter season becomes

more obvious. Figure 1 shows the time series of zonal

mean zonal wind at 608N and 10 hPa for all datasets.

Sudden (in midwinter) and final (at the end of winter)

stratospheric warming events can be observed as sudden

drops in the wind. The NCEP data shows a positive

temperature trend of’88C in the first 50 years, which is

reflected in a positive trend in geopotential height, fol-

lowed by a negative trend of’2.58C in the remainder of

the time series (not shown). The early positive trend in
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the NCEP data is likely due to inconsistencies in the early

measurements, as documented inKistler et al. (2001), while

the negative trend is likely due to sensitivity to climate

change. A positive drift can also be observed in the ERA-

40 data for the early years of the reanalysis (not shown).

Model II shows a frequency of SSWs corresponding to

one major warming about every 200 days, which com-

pares very well with the frequency in reanalysis data of

six SSWs per decade, considering the level of complexity

of the model. Because model II is forced by permanent

FIG. 1. Time series of zonal mean zonal wind at 608N and 10 hPa between 1980 and 2011 for (a) ERA-Interim,

(b) NCEP, (c) NCEP2, and (d) ERA-40; and (e) model I with the seasonal cycle removed, and (f) model II with the

time mean subtracted. The NCEP, NCEP2, and ERA-40 time series have been cropped in order to show the same

interval of years as ERA-Interim.Model II has been cropped in order to allow for better comparisonwithmodel I. As

expected, stratospheric variability is considerably larger during winter as compared to the summer season. Model II

shows a continuous strong variability as expected during permanent winter conditions.
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winter conditions, it shows continuous variability through-

out the time series (Fig. 1).

2) FREQUENCY SPECTRA

The frequency spectra of the respective time series

are more difficult to distinguish between the different

datasets. The zonal mean temperature spectra for the

reanalyses and the two model simulations are shown in

Fig. 2. Generally, a red spectrum with slope 22

(dashed lines) can be observed for all the time series

beyond a cutoff frequency of about 1022 cpd, which is in

contrast to the troposphere where a white spectrum

dominates beyond a cutoff frequency of about 0.4 cpd

(Keppenne and Nicolis 1989). The cutoff frequency of

about 1022 cpd is in agreement with the value found in

the idealized modeling studies by Scott and Polvani

FIG. 2. Frequency spectra for zonal mean temperature at 608N and 10hPa for (a) ERA-Interim, (b) NCEP,

(c) NCEP2, (d) ERA-40, (e) model I, and (f) model II. Dashed lines with slope 22 are plotted for comparison.
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(2006) and Scott et al. (2008) that find dominant time

scales for the stratospheric frequency spectrum

of about 100 days even when forcing the system with

shorter time scales, thus suggesting that the stratosphere,

at least to a certain extent, determines its own internal

variability.

Despite the removal of the annual cycle, the NCEP

temperature and geopotential height spectra (not shown)

show a peak around the yearly cycle. The peak disappears

in the spectra for the subinterval from 1 January 1979 to

31 December 2012, which eliminates the positive tem-

perature trend over the first 50 yr.

Model I shows a more complex spectral structure,

with a flatter slope between 21 and 22 between 1023

and 1021 cpd and a slope of less than 22 for higher

frequencies. Model II reflects the higher variability

produced by permanent winter forcing.

3) PROBABILITY DENSITY FUNCTIONS

The structure of the variability can be studied through

the probability density functions (PDFs) of the different

variables (Fig. 3). In all the reanalyses and model I, the

PDF profiles for all variables show persistent deviations

from the Gaussian distribution. The deviations show

a large number of events within the Gaussian tails with

an asymmetry between positive and negative values in

the PDF. The different variables do not differ signifi-

cantly from each other in the distribution except for the

noisier distribution for geopotential height. The PDFs

of the mean zonal mean wind and of the zonal mean

FIG. 3. PDFs of the zonal mean (a)–(c) zonal wind, (d)–(f) temperature, and (g)–(i) geopotential height for (left) ERA-Interim, (center)

model I, and (right) model II. The dashed line indicates a normal distribution. While the reanalysis and model I show deviations from the

Gaussian profiles for all variables, the PDFs of zonal mean zonal wind and zonal mean geopotential height for model II closely follow

a Gaussian distribution.
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geopotential height for model II are instead close to the

corresponding normal distributions. Deviation from

Gaussianity has been shown to hold in the atmosphere

at different spatial and time scales (e.g., Christiansen

2009). The deviations from Gaussianity could be either

related to the asymmetry between positive and negative

deviations from the climatological mean (i.e., strato-

spheric weak and strong vortex events) as documented

in, for example, Baldwin and Dunkerton (2001), or to

the difference between the summer and winter circula-

tion, where the summer circulation yields values closer

to the mean of the yearly average, while in winter vari-

ability is considerably higher and therefore yields larger

deviations from the mean. To determine which of the

two hypotheses for the deviation fromGaussianity holds

true, the PDFs for the ERA-Interim zonal mean zonal

wind are studied separately for winter, defined as

December–February (DJF; Fig. 4a), and summer, de-

fined as June–August (JJA; Fig. 4b). Both PDFs closely

follow the Gaussian distribution, suggesting that the

deviations from Gaussianity are due to the transition

between summer and winter variability. This confirms

the result frommodel 2, which is forced with permanent

winter conditions and where the lack of transition from

winter to summer variability results in PDFs that follow

distributions that are very close to Gaussianity. The asym-

metry between strong and weak vortex events can instead

be the reason for the slight asymmetry of the winter PDF

(Fig. 4a) toward a stronger tail for weak winds.

Even if deviations fromGaussianity are not enough to

draw conclusions about the presence of deterministic

chaos, some chaotic time series show different higher-

order statistics from Gaussian signals (e.g., Vautard and

Ghil 1989). To determine the existence of an attractor of

stratospheric variability, we will now determine the ex-

istence of finite correlation and Lyapunov dimensions.

b. Determination of the dimensions and entropy
of the attractor

1) MAXIMUM EMBEDDING DIMENSIONS AND TIME

DELAYS OF THE TIME SERIES

For the different datasets considered in this study, the

maximum embedding dimensionM varies between 8.13

and 8.95. The value ofM5 8 will thus be used throughout

the study. The delay time will instead be evaluated as the

first minimum of the mutual information (Fraser and

Swinney 1986). Because model II does not show a min-

imum in the mutual information, for this dataset the first

zero of the autocorrelation function has been used.

Because good practice requires a variation of the delay

time to check for the consistency of the results, the first

zero of the autocorrelation function has been used to

compare the results with those obtained using the first

minimum of the mutual information. The values of t

used for the different variables and datasets are reported

in Table 1, column 1. Results show that the first mini-

mum of the mutual information varies between 61 and

109 days. The values obtained from the first zero of the

autocorrelation function for model II are instead much

lower and vary between 38 and 64 days. Notice that

these values are different from the values that are usu-

ally given for the decorrelation time in the stratosphere,

which are determined as the e-folding time scale—that

is, the time when the autocorrelation function decreases

to 1/e [as discussed in, e.g., Baldwin et al. (2003) and

Gerber et al. (2008)].

FIG. 4. PDFs of the zonal mean zonal wind for ERA-Interim for

(a) JJA and (b) DJF. The dashed line indicates a normal distri-

bution. The distributions closely follow the Gaussian distribution

as suggested by the PDFs of model II, indicating that the deviations

from Gaussianity are due to the change in variability between

winter and summer.
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2) ATTRACTOR DIMENSIONS

Figure 5a shows the trend of C2(m, �) for the ERA-

Interim zonalmean zonal wind. For small values of �, the

slope of C2 (inset) is dominated by noise, while for large

values of � the data points tend to fill the embedding

space and the slopes of C2, calculated for different m,

do not converge. In the interval between 1, �, 10, the

slopes show convergence to D2 5 3.5 60.2. The con-

vergence of the slopes as a function of the embedding

dimension m for the ERA-Interim zonal mean zonal

wind to the value of 3.5 is shown in Fig. 5b. A summary

of D2 calculated for all the different variables in all

the datasets is reported in Table 1, column 3, where the

errors are calculated as the standard deviation of the

slopes in the interval chosen for the calculation of

the correlation dimension, and is summarized in Fig. 5c

(black dots). Results show that D2 varies between 3,

obtained for the zonal mean temperature and zonal

mean geopotential height for model II, as well as for the

zonal mean geopotential height for model I, and 4, ob-

tained for the NCEP zonal mean zonal wind. In partic-

ular, the results from the model integrations show that

the correlation dimension does not seem to depend on

the forcing specified and must thus be inherently linked

to other forms of forcing (e.g., the interaction with to-

pography). The calculation of the Lyapunov spectra

shows that the lower bound D2 . Dl is satisfied for all

variables and datasets (Table 1, column 2).

The Lyapunov spectrum allows us to calculate the

Kaplan–Yorke dimension (12). Results (Table 1, column

4; see also Fig. 5c, open dots) show a range of values

varying between 3.3, corresponding to the NCEP zonal

mean temperature, and 5.5, corresponding to the ERA-

Interim zonal mean geopotential height. The NCEP

zonalmean temperature is characterized by a value of the

maximum Lyapunov exponent that is much lower than

the values assumed by the other variables and time series

(Table 1, column 5).

The difference between the correlation and Lyapunov

dimensions is generally smaller for the zonal mean tem-

perature, for which case the dimensions calculated from

the ERA-40 are consistent. The model runs generally

show a larger difference between the two dimensions for

all the variables and datasets.

3) DYNAMICAL ENTROPIES

For small values of � and for values of m smaller than

the dimension of the attractor, for both deterministic

and stochastic processes, the Renyi entropies vary as

hq(m, �)’2ln�1 C, where C is a constant that assumes

the name of conditional continuous entropy. However,

for increasing values of m, for not too small values of �,

TABLE 1. Number of positive Lyapunov exponents (Dl), correlation dimension (D2), Kaplan–Yorke dimension (DKY), maximum

Lyapunov exponent (lmax), and correlation entropy (h2) for zonal mean zonal wind, temperature, and geopotential height for the re-

analyses and model time series.

t Dl D2 DKY lmax h2

Zonal mean zonal wind

ERA-Interim (mutual information) 97 3 3.5 60.2 5.3 0.084 0.9 60.3

ERA-Interim (autocorrelation) 40 3 3.2 60.4 5.3 0.082 .0.9

ERA-40 96 2 3.6 60.3 4.9 0.079 0.9 60 .3

NCEP 96 2 4.0 60.3 4.3 0.065 1.1 60.3

NCEP2 98 2 3.6 60.2 4.6 0.070 0.9 60.3

Model I 109 3 3.4 60.3 5.3 0.080 .0.3

Model II 64 3 3.4 60.3 5.3 0.072 .0.2

Zonal mean temperature

ERA-Interim 84 2 3.4 60.2 4.6 0.075 0.8 60.3

ERA-40 95 2 3.7 60.3 3.7 0.050 0.8 60.3

NCEP 92 2 3.7 60.2 3.4 0.046 0.8 60.2

NCEP (starting 1 January 1979) 78 2 3.2 60.1 3.2 0.045 0.7 60.3

NCEP2 92 2 3.3 60.2 3.7 0.055 0.9 60.1

NCEP2 (single longitude) 102 2 4.9 60.8 3.9 0.079 .0.8

Model I 94 3 3.2 60.2 5.0 0.072 0.8 60.3

Model II 38 3 3.0 60.6 5.0 0.072 .0.2

Zonal mean geopotential height

ERA-Interim 91 3 3.6 60.2 5.5 0.076 0.9 60.2

ERA-40 88 2 3.3 60.2 4.8 0.070 0.8 60.3

NCEP 101 2 3.4 60.3 4.8 0.065 .0.3

NCEP2 102 2 3.6 60.1 4.6 0.076 .0.3

Model I 61 3 3.0 60.4 5.1 0.073 0.6 60.2

Model II 41 3 3.0 60.5 5.4 0.076 .0.1
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the values for hq converge to a finite value, thus allowing

for the distinction between chaos and stochastic pro-

cesses (Cencini et al. 2000). Figures 6a,b show the trend

of h2(m, �) for the ERA-Interim zonal mean zonal wind

and the NCEP zonal mean geopotential height, respec-

tively. Results show a plateau in the curves that converge

to a value of 0.9 60.3 for the ERA-Interim zonal mean

zonal wind, while the curves do not converge to a finite

value for the NCEP zonal mean geopotential height. A

summary of the correlation entropy for all the variables

and datasets is reported in Table 1, column 6, and in Fig.

5c. Results show that the entropy does not converge to

a finite value for a number of datasets, making the cor-

relation entropy a difficult indicator for the presence of

chaotic behavior. For the datasets for which the entropy

converges to a finite value, results range between 0.6

60.2, corresponding to the time series of the zonal mean

geopotential height for model I, and 1.1 60.3, corre-

sponding to the NCEP zonal mean zonal wind. The

quantity h2 seems to be generally higher for the zonal

mean zonal wind and lower for the zonal mean geo-

potential height for all datasets.

4) SENSITIVITY TESTS

To assess the dependence of the results on the choice

of the delay time t, calculations were repeated for the

ERA-Interim zonal mean zonal wind choosing a delay

time determined by the first zero crossing of the auto-

correlation function of the time series. Despite the fact

that the value of the delay time obtained from the au-

tocorrelation function is less than half the value obtained

from the first minimum of the mutual information, the

results show good agreement for the calculation of the

dimensions. The calculation of the correlation entropy,

however, shows a lack of convergence and justifies the

choice of using the first minimum of the mutual infor-

mation, when it is present, for the time-delay parameter t.

To assess a possible impact of the positive trend in the

variables present in theNCEP dataset, calculations were

repeated for the subinterval from 1 January 1979 to

31 December 2012, consisting of 12 415 data points. The

results show a lower correlation dimension D2 5 3.4

60.1 for the shorter time series, compared to the value

of D2 5 3.7 60.2 for the complete time series. The

correlation entropies are in the same range, with value

of h2 5 0.8 60.2 for the shorter time series, while h2 5
0.7 60.3 for the complete time series.

Finally, the calculations were repeated using a single

longitude point rather than a zonal mean for the tem-

perature at 608N and 10 hPa for the NCEP2 time series.

Results show that the relationship between the di-

mensions (13) does not hold. The analysis of the time

series for the single point yields D2 5 4.9 60.8 and

FIG. 5. (a) Correlation functionsC2(m, �) and their slopes (inset)

for zonal mean zonal wind at 608N and 10 hPa for ERA-Interim.

(b) Slopes of the correlation functions C2 as a function of the em-

bedding dimension m for zonal mean zonal wind at 608N and

10 hPa for ERA-Interim. The values converge to the value of 3.5

(dashed line). (c) Summary of the correlation dimension (D2) and

the Kaplan–Yorke dimension (DKY) found in the reanalyses and

models for all three variables: (left to right) wind, temperature, and

geopotential height.
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DKY 5 3.9, while the analysis of the zonal mean tem-

perature yields D2 5 3.3 60.2 and DKY 5 3.7. The

analysis of the time series for the single longitude point

is in addition characterized by a lack of convergence of

the dynamical entropy. Studying a low-order primitive

equation model of the atmospheric circulation (Lorenz

1980), Sundermeyer and Vallis (1993) found that the

correlation dimension increases in presence of fast dy-

namics in the form of gravity waves. Further work is

required to study the presence of signatures of fast dy-

namics that may not allow for the calculation of the

dimension of the attractor of the system in the single

longitude measurements.

5. Discussion

While the existence of a strange attractor for climate

has proven difficult and is limited by a number of factors,

the aims of this study are to search for a finite attractor

for a specific climate subsystem, represented by extra-

tropical Northern Hemisphere stratospheric variability,

and to study the dependence of the dimension of the

attractor on the choice of the analyzed variable, using

four different reanalyses. Results are also tested for two

model runs with different forcings in order to test the

dependence of the dimension of the attractor to the

seasonality of the forcing. The analysis of the time series

yields a convergence to finite dimensions for all the

different variables and datasets. Convergence of the

dynamical entropies can however only be shown for a

subset of variables and datasets. The different dimen-

sions of the attractor follow the hierarchy of dimensions

Dl # D2 # D1 # D0 # DKY. Interestingly, however,

results show a large difference in values between the

correlation (D2) and the Lyapunov (DKY) dimensions,

suggesting the presence of a multifractal structure for

the attractor associated with the variability of the system

(Parisi and Frisch 1985; Halsey et al. 1986).

It is interesting to note how the time series generated

from the idealized numerical model simulations forced

by seasonally varying forcing and by permanent winter

conditions compare with the results from the reanalyses.

The model forced with a seasonal cycle exhibits a dif-

ferent frequency spectrum than the reanalyses, with

slopes that are shallower than the reanalyses at low

frequencies and steeper than the reanalyses at higher

frequencies. Further, both model simulations show

correlation dimensions that are lower (within the error

bounds) than the values obtained from the reanalyses

and Lyapunov dimensions higher than the values obtained

from the reanalyses. The two model simulations thus ex-

hibit a larger difference between the correlation and

Lyapunov dimensions than the reanalyses, suggesting

FIG. 6. (a) Correlation entropy h2(m, �) for zonal mean zonal wind at

608N and 10hPa for ERA-Interim for m 5 2–8 (curves from top to

bottom), and similarly (b) for zonal mean geopotential height at 608N
and 10hPa for NCEP. The quantity h2 converges to 0.9 60.3 (dashed

line) for the ERA-Interim zonal mean zonal wind, while it does not

converge for theNCEPzonalmean geopotential height. (c) Summary of

the correlation entropy found in the reanalyses and models for all three

variables: (left to right) wind, temperature, and geopotential height.
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that the numerical integrations might possess a different

multifractal structure than the observations. Interestingly,

this result holds both for the seasonally forced and for

the model forced with permanent winter conditions,

suggesting that the characteristics of a possible attractor

associated with the model variability must be influenced

primarily by other types of forcing (e.g., by interactions

with topography or by internal dynamics of the model).

It would be interesting to compare the results reported

here with the results of the same calculations conducted

for the Southern Hemisphere, which exhibits a consid-

erably different winter evolution in the stratosphere

(Plumb 1989); that is, the stratospheric variability is not

as strongly influenced by topographic forcing and SSW

events are rare.

The results obtained in this study thus question the

characteristics of a strange attractor for stratospheric

variability, leaving open the question if the climate sys-

tem can be modeled as a chaotic system or as a stochastic

system (Hasselmann 1976) (i.e., from the knowledge of

statistical, rather than deterministic, properties). On the

other hand, elements such as the redness of the spectra

and the deviation from the Gaussian tails for all the

variables suggest that other processes, such as stable

Levy processes (e.g., Penland andEwald 2008), might be

a possible representation of the system. Further work is

required to determine the presence of multifractal

structures and the correct statistical representation of

the variability.
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