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Abstract An empirical function is derived for predicting the rate-depth profile of particulate organic carbon
(POC) degradation in surface marine sediments including the bioturbated layer. The rate takes the form of a
power law analogous to the Middelburg function. The functional parameters were optimized by simulating
measured benthic O2 and NO3

�
fluxes at 185 stations worldwide using a diagenetic model. The novelty of this

work rests with the finding that the vertically resolved POC degradation rate in the bioturbated zone can be
determined using a simple function where the POC rain rate is the governing variable. Although imperfect,
the model is able to fit 71% of paired O2 and NO3

�
fluxes to within 50% of measured values. It further

provides realistic geochemical concentration-depth profiles, NO3
� penetration depths, and apparent first-order

POC mineralization rate constants. The model performs less well on the continental shelf due to the high
sediment heterogeneity there. When applied to globally resolved maps of rain rate, the model predicts a
global denitrification rate of 182±88 Tg yr�1 of N and a POC burial rate of 107±52Tg yr�1 of C with a mean
carbon burial efficiency of 6.1%. These results are in very good agreement with published values. Our
proposed function is conceptually simple, requires less parameterization than multi-G-type models, and is
suitable for nonsteady state applications. It provides a basis for more accurately simulating benthic nutrient
fluxes and carbonate dissolution rates in Earth system models.

1. Introduction

Around three quarters of primary production that is exported from the surface ocean is regenerated in the
water column, with the remaining fraction available for benthic mineralization [Sarmiento and Gruber,
2006]. Sedimentary processing of organic matter is thus globally important for the nutrient balance of the
ocean, particularly on long (kyr) time scales [Van Cappellen, 2003]. Benthic mineralization rates tend to
attenuate rapidly below the uppermost centimeters where the largest fraction of organic matter is
respired [Boudreau and Ruddick, 1991; Hedges et al., 1999; Martin and Sayles, 2004]. Consequently, the
depth distribution of reactive organic matter strongly determines the flux of redox-sensitive elements
across the sediment surface. Yet, broad trends in the attenuation of carbon oxidation in bioturbated
surface sediments are unknown at the global scale. This presents a major challenge and source of
uncertainty for an emerging generation of Earth system models (ESM) that are able to explicitly account
for vertical redox structure of sediments [Arndt et al., 2013].

Quantifying the rate of particulate organic carbon (POC) mineralization with depth in sediment models is
usually achieved by specifying the reactivity a priori [Berner, 1980]. The simplest approaches consider one
or more reactive fractions, each defined by an individual rate constant (so-called “G” models [Jørgensen,
1978]). At least three discrete fractions are required to accurately capture POC mineralization in surface
sediments where highly labile fractions are concentrated [e.g., Soetaert et al., 1996]. Although empirical
relations have been proposed to describe first-order rate constants for POC mineralization at the global
scale, they do not adequately capture the full reactivity spectrum of natural organic matter [Müller and
Mangini, 1980; Toth and Lerman, 1977; Tromp et al., 1995]. By contrast, continuum approaches treat
organic matter as a continuous reactivity distribution [Middelburg, 1989; Boudreau and Ruddick, 1991].
They have the advantage over multi-G models in that they generally require fewer parameters to
describe a greater range of degradation time scales. However, the rate constant in these approaches has
time dependence, and in contrast to multi-G models, their application to the bioturbated zone is not
easily achieved since particles of different ages are well mixed. The lack of a generalized approach
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comprises the transferability of different models on the regional and global scales [Arndt et al., 2013].
Thus, there is a real need to derive simple mathematical descriptions of benthic mineralization that can
be applied to bioturbated sediments and improve predictions of sediment feedbacks on ocean
biogeochemistry and climate.

In this study we present a new kinetic model for describing the rate of POC degradation with depth in
bioturbated marine sediments. It is empirically grounded and treats POC reactivity as a continuum rather
than a set of discrete fractions. The novelty of our approach rests with the fact that the rate-depth profile
of POC degradation, not the rate constant, is prescribed a priori. Furthermore, we show that it can be
defined from the rain rate of POC to the sediment and is thus designed with global model applications in
mind. We propose that this new model will more accurately describe the coupling between benthic and
pelagic biogeochemistry in ESMs.

2. Database

Benthic fluxes of oxygen (O2) and nitrate (NO3
�) from sites distributed worldwide were taken from the

database assembled by Bohlen et al. [2012]. Only in situ measurements from benthic chambers were
assembled for water depths <1000m because enhanced solute transport by irrigating animals is not
captured accurately using ex situ core incubations or diffusive flux calculations from pore water
concentration profiles [Glud, 2008; Devol and Christensen, 1993]. For depths >1000m, bioirrigation is
essentially zero and diffusive fluxes determined ex situ were also considered [Glud, 2008]. The database
was expanded with new data from the Oregon/California margin [Berelson et al., 2013], the NW African
margin [Dale et al., 2014], and the NW Iberian margin [Alonso-Pérez and Castro, 2014], giving a total of 185
paired O2 and NO3

�
flux measurements (Table S1 in the supporting information). Eighty-two stations are

on the continental shelf (0 to 200m), 50 stations on the slope (>200 to 2000m), and 53 lie in deeper
waters (>2000 to 5100m). The database includes sites from a broad range of settings encountered in the
contemporary ocean, such as sediments underlying oxygen-deficient zones and sandy shelf environments.
We also assembled ammonium (NH4

+) fluxes from 135 sites which are used to calculate benthic carbon
oxidation rates (see below). In what follows, NO3

�
fluxes are reported as the sum of NO3

�+NO2
� and

negative fluxes denote uptake by the sediment. Details on the ranges of O2, NO3
�, and NH4

+
fluxes in the

database are provided by Bohlen et al. [2012].

3. Numerical Model
3.1. Model Architecture

Benthic fluxes at each site were simulated using a 1-D reaction-transport model. The model considers a
limited diagenetic network based on one solid species (POC) and five solutes in the uppermost 50 cm of
sediment. Solutes considered were O2, NO3

�, nitrite (NO2
�), NH4

+, and so-called oxygen-demanded units
(ODUs). The latter lumps together reduced products of anaerobic organic matter diagenesis such as
sulfide, dissolved Fe(II) and Mn(II) [Soetaert et al., 1996]. The involvement of more variables is not
warranted due to the higher number of parameterizations required yet poorly known at the global scale.
POC was transported in the sediment by accumulation (burial) considering compaction and mixing by
bioturbation. Solutes were transported by advection due to accumulation, molecular diffusion, and
nonlocal transport by bioirrigation. Solute mixing by bioturbation is minor compared to molecular
diffusion and was neglected. Partial differential equations were used to solve the concentration changes
with time. For POC (in dry weight percent, %)

1� ϕ xð Þð Þ∂POC xð Þ
∂t

¼
∂ 1� ϕ xð Þð Þ �DB xð Þ∂POC xð Þ

∂x

� �
∂x

� ∂ 1� ϕ xð Þð Þ � vsolid xð Þ �POC xð Þð Þ
∂x

� 1� ϕ xð Þð Þ �RPOC xð Þ
(1)

where t (year) is time, x (cm) is depth below the sediment-water interface, ϕ (dimensionless) is porosity, DB

(cm2 yr�1) is the bioturbation coefficient, vsolid (cm yr�1) is the solid burial velocity, and RPOC is the rate of
POC degradation.
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For solutes (Ci(x) in mmol cm�3 of pore fluid)

ϕ xð Þ∂Ci xð Þ
∂t

¼
∂ ϕ xð ÞDS xð Þ∂Ci xð Þ

∂x

� �
∂x

� ∂ ϕ xð Þvsolutes xð ÞCi xð Þð Þ
∂x

þ ϕ xð Þαi Ci 0ð Þ � Ci xð Þð Þ þ Σϕ xð ÞRi xð Þ
(2)

where DS (cm
2 yr�1) is the tortuosity-corrected molecular diffusion coefficient of species i, αi (year

�1) is the
bioirrigation coefficient, and ΣRi is the sum of biogeochemical reactions affecting Ci.

Sediment porosity was assumed to decline exponentially with sediment depth [Boudreau and Bennett, 1999]:

ϕ xð Þ ¼ ϕ fð Þ � ϕ 0ð Þ � ϕ fð Þð Þ � exp �px � xð Þ (3)

where ϕ(0) is porosity at the sediment-water interface, ϕ(f ) is the porosity in compacted sediment, and
px (cm

�1) is the attenuation coefficient.

Molecular diffusion coefficients were calculated from the coefficients in seawater (DSW) at in situ salinity,
temperature and pressure using the Stokes-Einstein equation, and further corrected for tortuosity
according to the modified Weissberg equation [Boudreau, 1997]:

DS xð Þ ¼ DSW

1� 2 � ln ϕ xð Þð Þ (4)

Temperature and salinity were set to measured values where available and otherwise estimated with a
salinity of 35 and temperature as given in the World Ocean Atlas 2009 [Locarnini et al., 2010].

The burial velocities of solutes and solids in sediment undergoing steady state compaction were defined
from the sediment accumulation rate, ωacc (cm yr�1) [Berner, 1980]:

vsolutes xð Þ ¼ ϕ fð Þ �ωacc

ϕ xð Þ (5)

vsolid xð Þ ¼ 1� ϕ fð Þð Þ �ωacc

1� ϕ xð Þ (6)

Bioturbation intensity decreased with depth in the sediment [Christensen, 1982]:

DB xð Þ ¼ DB 0ð Þ � exp�x2

2x2S
(7)

where DB(0) (cm
2 yr�1) is the bioturbation coefficient at the sediment water interface and xS (cm) is the

halving depth.

Bioirrigation also decreased with sediment depth and was assumed to affect all dissolved species equally:

α xð Þ ¼ α 0ð Þ � exp �x
xirr

� �
(8)

where α(0) (year�1) is the irrigation coefficient at the sediment-water interface and xirr (cm) is the irrigation
attenuation coefficient.

The reaction network listed in Table 1 includes the major reactions of the O and N cycles. Mineralization of
organic matter entailed aerobic respiration (R1), nitrate reduction (R2), nitrite reduction to N2 (i.e.,
heterotrophic denitrification, R3), and anaerobic respiration (R4). The electron acceptors are used
sequentially in the order O2, NO2

�, and NO3
� using Michaelis-Menten kinetics [Bohlen et al., 2011] and

appropriate half-saturation constants (Table 2). Organic matter was chemically defined as POC(NH3)rNC
where rNC is the N:C molar ratio, such that POC mineralization releases N from organic molecules to the
pore water in the form of NH4

+ in this proportion. The stoichiometric coefficients relating POC oxidation to
the reduction of electron acceptors (rO2, rNO2, and rNO3) were defined assuming a carbon oxidation state of
�0.45 instead of zero, i.e., more reduced than Redfield stoichiometry [Anderson, 1995; Sarmiento and
Gruber, 2006]. Details on their calculation are provided elsewhere [Dale et al., 2014]. NO2

� dynamics are
described explicitly to provide a more realistic coupling between heterotrophic denitrification, nitrification
(R5 and R6), and anammox (R7) [Bohlen et al., 2011]. In this study, denitrification, that is, total fixed N loss as
N2, refers to the sum of N loss by R3 and R7.

Global Biogeochemical Cycles 10.1002/2015GB005087

STOLPOVSKY ET AL. BENTHIC CARBON MINERALIZATION 814



Table 2. Model Parameters

Description Value Unit Source

Temperature of the bottom water, T Variable °C Locarnini et al. [2010]
Salinity of the bottom water, S 35 - Locarnini et al. [2010]
Sediment accumulation rate, ωacc Variablea cm yr�1 Burwicz et al. [2011]
Bioturbation coefficient at surface, DB(0) Variableb cm2 yr�1 Boudreau [1997]
Bioturbation halving depth, zbt 5 cm Boudreau [1997] and Teal et al. [2008]
Bioirrigation coefficient at surface, α(0) Variablec year�1 Meile and Van Cappellen [2003]
Bioirrigation attenuation coefficient, xirr 2 cm Archer et al. [2002]
Porosity at sediment surface, φ(0) Variabled - This study
Porosity in compacted sediment, φ(f ) 0.9·φ(0) - This study
Porosity attenuation coefficient, px 0.2 cm�1 This study
O2:POC ratio for aerobic respiration, rO2 118/106 mol O2/mol C Dale et al. [2014]
NO3

�:POC ratio for nitrate reduction, rNO3 236/106 mol NO3
�/mol C This study

NO2
�:POC ratio for nitrite reduction, rNO2 157.3/106 mol NO2

�/mol C This study
N:C ratio in organic matter, rNC 16/106 mol N/mol C Redfield et al. [1963]
Kinetic constant for NH4

+ aerobic oxidation to NO2
�, k5 0.15 · 109 M�1 yr�1 of NH4

+ e

Kinetic constant for NO2
� aerobic oxidation to NO3

�, k6 0.15 · 109 M�1 yr�1 of NO2
� e

Kinetic constant for anammox, k7 0.30 · 1010 M�1 yr�1 of NO2
� e

Kinetic constant for aerobic ODU oxidation, k8 0.15 · 109 M�1 yr�1 of ODU e

Kinetic constant for anaerobic ODU oxidation, k9 0.15 · 106 M�1 yr�1 of ODU e

Michaelis-Menten constant for aerobic respiration, KO2 8 μM e

Michaelis-Menten constant for nitrate reduction, KNO3 10 μM e

Michaelis-Menten constant for nitrite reduction, KNO2 1 μM e

aCalculated as a function of water depth.
bCalculated as a function of sediment accumulation rate: DB(0) = 15.7 ωacc

0.69.
cThe average bioirrigation coefficient in surface sediments (α, year�1) was calculated as a function of bottomwater O2 concentration and total sediment oxygen

uptake [Meile and Van Cappellen, 2003]. Following Thullner et al. [2009], α(0) was calculated from α . The same irrigation coefficient was applied to all solutes,
although this is only an approximation [Meile et al., 2005].

dSurface porosity in fine-grainedmuds was taken to be 0.9 on the shelf and 0.95 in deeper waters [Reimers et al., 1992; Boudreau and Bennett, 1999]. Themodel is
not designed to simulate biogeochemical dynamics in sands since this requires amore complex description of pressure-driven advection rates through the surface
sediments, which are poorly known at the global scale.

eVarious sources, including Van Cappellen and Wang [1995], Dhakar and Burdige [1996], Berg et al. [2003], and Bohlen et al. [2011].

Table 1. Reaction Network Used in the Modela

Process Stoichiometryb Rate Expression

R1 POC(NH3)rNC + rO2 O2→ ΣCO2 + rNC NH4
+ RPOC· O2½ �

O2½ �þKO2

R2 POC(NH3)rNC + rNO3 NO3
�→ ΣCO2 + rNC NH4

+ + rNO3 NO2
�

RPOC·
NO�

3

� �
NO�

3

� �þ KNO3

·
KNO2

NO�
2

� �þ KNO2

·
KO2

O2½ � þ KO2

R3 POC(NH3)rNC + rNO2 NO2
�→ ΣCO2 + rNC NH4

+ +½ rNO2 N2 RPOC·
NO�

2½ �
NO�

2½ �þKNO2

·
KO2

O2½ �þKO2

R4 POC(NH3)rNC + “an oxidant”→ ΣCO2 + rNC NH4
+ + rO2 ODU

RPOC·
KNO3

NO�
3

� �þ KNO3

·
KNO2

NO�
2

� �þ KNO2

·
KO2

O2½ � þ KO2

R5 NH4
+ + 1.5 O2→NO2

� + H2O + 2 H+ k5 · [O2]·[NH4
+]

R6 NO2
� + 0.5 O2→NO3

� k6 · [O2] · [NO2
�]

R7 NH4
+ + NO2

�→N2 + 2 H2O k7 · [NO2
�] · [NH4

+]
R8 ODU +O2→ an oxidant k8 · [O2] · [ODU]
R9 ODU+ 0.5 NO3

�→ an oxidant + 0.5 NH4
+ for depths ≤ 200m k9 · [NO3

�] · [ODU]
ODU+ 0.8 NO3

�→ an oxidant + 0.4 N2 for depths > 200m

aModel parameters are listed in Table 2.
bΣCO2 = dissolved inorganic carbon. Water is omitted from R1 to R4 for clarity.
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R4 represents the sum of POC oxidation with “other oxidants” such as metal oxides and sulfate. The reaction
product, ODU, can be oxidized by O2 (R8) or NO3

� (R9). We assumed that ODU mainly consists of sulfide in
shelf sediments (<200m water depths), such that NO3

� is converted to NH4
+ (e.g., during dissimilatory

nitrate reduction to ammonium [Otte et al., 1999]). On the slope and in deep-sea sediments, ODU consists
mainly of dissolved reduced metals which can be oxidized by NO3

� yielding N2 [e.g., Dhakar and Burdige,
1996; Hulth et al., 2005]. The diffusion coefficient for ODU is defined accordingly. By definition, oxidation of
1mol of ODU requires four electrons, that is, 1mol of O2 or 0.8mol of NO3

� for reduction to N2 or 0.5mol
of NO3

� for reduction to NH4
+ (Table 1).

3.2. Parameterization of Transport Process and Biogeochemical Reactions

The parameterization of transport processes relied on global empirical relationships where possible (Table 2).
These relationships are essentially “best fit” empirical approximations using data from a range of different
environments. They are associated with a high uncertainty due to the scatter caused by the natural
heterogeneity of the seafloor and only approximate transport rates at any given location. Nonetheless, given
the dearth of information on the distribution of transport rates in sediments at the global scale, there is
currently no better alternative [Archer et al., 2002]. Even less information is available about how the kinetic
parameters in the model vary globally. Reported rate constants in diagenetic models for a given reaction
often span many orders of magnitude [Dale et al., 2012]. This is probably because they integrate the effect of
several environmental variables, including ionic strength and pH, thermodynamic constraints, and microbial
community structure. We parameterized the N cycle from a few selected studies where the constants were
well constrained by field data (Table 2). It is nonetheless inevitable that some sites in the database will be
inadequately represented by the broad approach adopted here. However, as shown later, those sites tend to
adhere to specific types of environment for which our model is not designed to simulate.

3.3. POC Mineralization Kinetics

Continuum models are advantageous over multi-G models since they avoid the sometimes arbitrary
partitioning of organic matter reactivity into a finite number of fractions each with a hard-to-define
reactivity [Middelburg, 1989; Boudreau and Ruddick, 1991]. Continuum model theory assumes that the rate
of POC degradation, RPOC(t), can be described as the sum of an infinite number of discrete fractions that
are each degraded according to first-order kinetics [Boudreau and Ruddick, 1991]:

RPOC tð Þ ¼ ∫
∞

0
k �g k; 0ð Þ � exp �k � tð Þdk (9)

where g(k,0) is a probability density function that determines the fraction of POC having a reactivity k at time
t=0 or more precisely the POC fraction having a reactivity between k and k+dk where dk is an infinitesimal
increment in k. Boudreau and Ruddick [1991] proposed to assign the gamma distribution to g(k,0), for which
RPOC(t) can be expressed as

RPOC tð Þ ¼ ν � aþ tð Þ�1 �POC tð Þ (10)

where a (year) is defined as the average lifetime of the reactive components in the bulk POC pool and ν
(dimensionless) controls the shape of the gamma distribution when k→ 0. In this case, k(t) is equal to
ν·(a+ t)�1. The power model proposed by Middelburg [1989] defines k(t) analogously:

k tð Þ ¼ h � age0 þ tð Þq (11)

where age0 denotes the apparent initial age of the organic matter mixture and h (0.16) and q (�0.95) are
empirical constants derived from a database of apparent first-order rate constants [Middelburg, 1989]. The
rate equations for the reactive continuum and power models are mathematically equivalent when q=�1.

These models show that the complete spectrum of POC reactivity can be described using a limited number
of parameters compared to multi-G approaches, which require two parameters per fraction (reactivity and
initial concentration). However, the age and reactivity of POC are poorly constrained in bioturbated surface
sediments [Middelburg, 1989; Boudreau and Ruddick, 1991; Meile and Van Cappellen, 2005; Rothman and
Forney, 2007]. Ages of reactive tracers within this layer depend on the burial velocity and bioturbation
rate as well as the reactivity of the tracer [Meile and Van Cappellen, 2005]. So far, POC ages in
bioturbated sediments have only been determined assuming simple first-order degradation kinetics
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[Meile and Van Cappellen, 2005]. POC ages for the application of reactive continuum models are virtually
unknown; a fact worsened by the fact that the more reactive POC fractions may be preferentially taken
up and displaced by benthic macrofauna [Smith et al., 1993].

For the present study, we assume that the rate of POC degradation in the bioturbated zone essentially follows
the general form of the power law model. Replacing time, t, with depth, x, leads to the following function
describing the depth-dependent rate of POC degradation (mmol cm�3 yr�1):

RPOC xð Þ ¼ B0 · x þ B1ð ÞB2 (12)

where B0 (mmol cm�3�B2 yr�1), B1 (cm), and B2 (dimensionless) are parameters defining the shape of the
decrease of the rate with sediment depth. The objective of this paper is to provide proof of concept for
this approach by constraining the B coefficients with field data. We are aware that other functions defining
a steep downcore decline in reactivity and reaction rate could also be used to fit the observations, and we
strongly emphasize the purely empirical nature of the power function. We chose the power function
rather than a different form because observations of POC degradation both in the laboratory and in
marine sediments demonstrate that it provides a realistic description of time-dependent mineralization
[Middelburg, 1989; Boudreau and Ruddick, 1991; Boudreau et al., 2008].

If one assumes, as a first approximation, that the rain rate of POC to the seafloor (RRPOC, mmolm�2 d�1)
provides an upper limit of the total amount of POC available for degradation, then

RRPOC ¼ ∫
∞

0
B0 · B1 þ xð ÞB2dx (13)

This purely theoretical approach implies that all POC will be degraded at infinite sediment depth. If RRPOC is
known, the value of one parameter can be determined from the other two using equation (13). For example, for B1

B1 ¼ � 1þ B2ð Þ �RRPOC �B�1
0

� � 1
1þB2 (14)

This equation is valid for B2<�1. The effect of B0 and B2 on RPOC(x) is shown in Figure 1 for typical values
derived in this study and a RRPOC of 10mmolm�2 d�1. Low B2 values are associated with high rates of
carbon degradation at the surface and a rapid decrease over the bioturbation layer by several orders of
magnitude. By comparison, RPOC(x) is much less sensitive to variations in B0, with lower values tending to
shift the profile toward higher rates at the very surface and lower rates of degradation at greater sediment
depth. Hence, the attenuation of RPOC(x) with sediment depth is mainly controlled by B2, whereas B0
exerts a relatively minor scaling effect over the range of 0.5 to 1 (see below).

Figure 1. POC degradation rate as a function of (a) variable B2 and fixed B0 and (b) variable B0 and fixed B2. Note that the
value of B1 is calculated directly from B2 for a given value of B0 (equation (14)).
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RRPOC at each station was derived from the depth-integrated rate of POC degradation in the bioturbated
layer, RPOCB (mmolm�2 d�1), and the fraction of the POC deposited on the seafloor that is buried below
the bioturbated layer:

RRPOC ¼ RPOCB

100%� CBE
�100% (15)

where CBE is the organic carbon burial efficiency in percent, calculated from the sediment mass
accumulation rate (Fsed, g cm

�2 yr�1) using an empirical function [Dale et al., 2012]:

CBE ¼ A1 � A2
1þ Fsed

A3

þ A2 (16)

Fsed ¼ ρsed � 1� ϕfð Þ �ωacc (17)

where A1 (0.5%), A2 (75%), and A3 (0.07g cm
�2 yr�1) are parameters applicable to sediments underlying normal

oxic bottom waters and ρsed is the density of dry sediment (2.5g cm�3). CBE is typically calculated at around
10 cm depth where POC content in surface sediments tends to reach asymptotic levels. This depth also
broadly coincides with the average depth of the bioturbated layer [Boudreau, 1997; Teal et al., 2008].

RPOCB was approximated from a mass balance of the measured benthic fluxes, Ji, where i=O2, NO3
�, and

NH4
+ [Dale et al., 2014]:

RPOCB ¼
2 � JNH4 � 472

530 � JO2 � 472
530 � JNH4 � rO2 � JNO3 � rO2

2 � rNC � 472
530 � rNC � rO2 þ 472

530 � rO2
(18)

NH4
+
fluxes were always directed out of the sediment and were negligible for sites >1000m water depth

[Bohlen et al., 2012]. For shallower sediments where NH4
+
flux data were unavailable, the median flux of

the other stations was used instead. It should be noted that RPOCB calculated according to equation (18)
includes a somewhat poorly defined contribution by degradation processes occurring in deeper sediment
horizons underlying the bioturbated surface zone. A fraction of reduced solutes produced by oxidation of
organic matter in deeper sediments will diffuse upward into the surface layers and be oxidized, thus
contributing to the total sink of O2 and NO3

�. However, the fraction of reducing equivalents that are
retained in sediments due to adsorption (e.g., NH4

+ and Fe2+) and mineral precipitation and burial (e.g.,
iron sulfides) as well as burial of dissolved solutes increases with sediment depth. Hence, although
diagenesis is ongoing below the bioturbated layer, it will not be fully communicated to the oxidative sinks
at the surface sediments. In addition, a fraction of the deposited POC is highly refractive (by nature of the
power law) and does not undergo degradation on early diagenetic time scales. As an independent
constraint on this approach, published rates of global POC burial are compared to the model-predicted
values (see section 4.2.2).

3.4. Accuracy of Model Simulations

We used RRPOC as a governing parameter to find a relationship between B2 and RRPOC that best
determines the rate-depth profile of POC degradation together with the independent parameter B0. The
principle constraint on the POC degradation kinetics is the database of O2 and NO3

�
fluxes. The

simulated flux, Jc,i where i=O2 or NO3
�, was considered to be acceptable if it was within a defined

tolerance limit, Δi (mmolm�2 d�1) of the measured flux:

Jm;i � Δi < Jc;i < Jm;i þ Δi (19)

Δi was defined as a fraction (d) of the measured flux, Jm, attributable to model error, and a minimum flux,
γ (mmolm�2 d�1):

Δi ¼ Jm;i

�� �� �d þ δ where
δ ¼ γ if Jm;i

�� �� �d < γ

δ ¼ 0 if Jm;i

�� �� �d ≥ γ

(
(20)

d includes the uncertainty from various sources, such as the calculation of RPOCB, CBE, and the global
parameterizations. Considering these rather large uncertainties, modeled fluxes are shown against
deviation intervals of d=25% and 50% of Jm,i.
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It is necessary to define a minimum toler-
ance limit, γ, to provide some latitude for
simulating the stations where measured
fluxes are very low. This is because even
very small absolute differences between
the modeled and measured flux will
translate into large relative errors as the
fluxes get smaller. The γ was approximated
as the lowest flux that is statistically
larger than zero which can be estimated
from a hypothetical sediment incubation
experiment. To find this value, we first
defined an error-free concentration time
series for a 30h sediment incubation experi-
ment (Figure 2). We then selected seven of
these points, at the start of the incubation
and every 5h thereafter, to which a maxi-
mum ±5% random error was added. This
represents a typical subsampling frequency
with errors due to natural heterogeneity,
sample handling, analytical precision, and
so on. The first example for NO3

� (circles
in Figure 2) shows that the flux calculated

from the subsampled data is identical to the standard error (SE) when the absolute flux is 0.1mmolm�2 d�1; that
is, the flux is indistinguishable from zero. As the flux increases, the relative SE decreases (triangles in Figure 2). It
also decreases as the number of data points and the length of the incubation increase, an approach often
needed to obtain reliable flux estimates in slowly accumulating sediments [e.g., Jahnke and Jahnke, 2004].

The minimum flux that can be calculated scales positively with bottom water concentration. For a typical bottom
water O2 concentration of 150μM [Thullner et al., 2009], the value of flux that is equal to the SE is
0.35mmolm�2 d�1 for the subsampling frequency applied in Figure 2 (data not shown). Hence, we define
these fluxes as the corresponding minimum tolerance limits (0.1mmolm�2 d�1 for NO3

� and
0.35mmolm�2 d�1 for O2). In other words, the modeled tolerance limit at sites where |Jm,i|d< γ (i.e., very low
measured fluxes) is set to these values. In practice, this applies to NO3

� only, since almost all O2 fluxes in the
database are > 0.35mmolm�2 d�1.

3.5. Boundary Conditions and Model Solution

Fixed concentrations were imposed for solutes (Dirichlet boundary) at the sediment surface (x=0 cm).
Measured bottom water concentrations were applied to O2, NO3

�, and NH4
+, whereas NO2

� and ODU
were set to zero since they do not accumulate in seawater to a significant degree. The rain rate was used
as a flux condition for POC. At the bottom (x= 50 cm), a zero gradient boundary was applied for all species
(Neumann boundary). The set of coupled partial differential equations was solved using the NDSolve
algorithm in MATHEMATICA 8 using finite differences [Boudreau, 1996] over an uneven grid with a total of
100 depth intervals. Close to the sediment-water interface where reaction rates are highest, a
submillimeter-scale grid resolution was used, while at greater depth the resolution increased to a
maximum of 1 cm. For each station, the model simulation time was sufficiently long (5 L/ωacc years, where
L=50 cm) so that steady state was reached. The model was >99% mass conservative and a typical steady
state run required <5 s on a personal computer (2.9GHz CPU and 8.0GB RAM).

4. Results and Discussion
4.1. Derivation of a Predictive Function for POC Mineralization in Sediments

Our objective was to find an empirical function relating the depth distribution of POC mineralization to rain
rate (RRPOC). This is an attractive master variable because (i) POC fluxes to the seafloor are reasonably well
known and routinely computed by ESMs [e.g., Dunne et al., 2007] and (ii) POC reactivity appears to be

Figure 2. Hypothetical bottom water concentration time series for
NO3

� in a benthic incubation experiment. The solid circles and trian-
gles denote an error-free decrease in NO3

� corresponding to fluxes of
0.1 and 2.0mmolm�2 d�1, respectively, for an initial NO3

� bottom
water concentration of 40 μM. The open symbols denote the concen-
trations of seven subsamples withdrawn at discrete intervals from this
time series to which a maximum ±5% random error has been added.
The flux ± SE for each subsampled set of data is indicated.
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correlated with rain rate [Emerson et al., 1985; Murray and Kuivila, 1990; Soetaert et al., 1996; Boudreau, 1997;
Martin and Sayles, 2006].

Due to the low sensitivity of RPOC(x) to B0 (Figure 1), we began searching for the functional formof the relationship
between B2 and RRPOC that best simulated the entire database of O2 and NO3

�
fluxes. Following many tests

and sensitivity analyses, it became clear that B2 was best described by a power law relationship of the type

B2 ¼ m · RRPOCn (21)

where m and n are empirical coefficients. These coefficients were constrained by simulating the fluxes at all
stations in the database collectively using a sorting algorithm. In this procedure we fixed the value of B0 and
m at their lowest values and varied the value of n with fixed step size (0.01). Subsequently, m was increased
one step size (0.02), and the procedure was repeated after increasing the value of B0 (step size 0.1) and so on
over the complete range of parameters. The ranges of B0, m, and n tested that gave realistic O2 and NO3

�

fluxes were 0.3 to 1.2, �6 to �1, and �1 to 0, respectively.

The optimized parameter values were obtained by finding the coefficient values that gave the lowest overall
model-data misfit for O2 or NO3

�
fluxes. The minimum sum of squares for the entire database of fluxes was

obtained with
B ¼ 0:5 m ¼ �3:73 n ¼ �0:17 (22)

The rate-depth profile of POC degradation can thus now be calculated from the rain rate using equation (12),
where B0, B1, and B2 are defined using equations (22), (14), and (21), respectively. B2 varies between
approximately �3.7 and �2.0 for the range of RRPOC in the database, which is more negative than the
exponent �0.95 in the Middelburg [1989] model yet more similar to the range of �1.7 to �1.4 derived for
shallow subsurface sediments by Jørgensen and Parkes [2010]. Values ranging from �2.6 to �2.0 were
determined for muddy Holocene sediments in Aarhus Bay by S. Flury et al. (Controls on subsurface
methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark), submitted to
Geochimica et Cosmochimica Acta, 2015).

The measured versus modeled O2 and NO3
�
fluxes using this function are shown in Figure 3. O2 fluxes could

be simulated at 180 stations (97% of all stations) andmostly within 25% of themeasurements. Modeled NO3
�

fluxes were simulated at 132 sites (71% of total). Paired O2 and NO3
�
fluxes were simulated at 131 stations

within 50% tolerance limits (71% of all stations). Thus, the performance of the transfer function largely
depends on its ability to simulate NO3

�
fluxes. The mean relative error of the calculated NO3

�
flux is 48%,

which can be broadly assumed to represent the uncertainty in the simulated degradation rate function.

Most outlying NO3
� data were associated with low nitrate fluxes (<0.5mmolm�2d�1) on the shelf (<200m) and

upper slope (>200–1000m) where 60% of sites were fitted. Despite relatively high rates of denitrification, these

Figure 3. Measured versus modeled benthic fluxes of (a) O2 and (b) NO3
� using the optimized parameters of the transfer

function (equation (21)) for shelf (0–200m), slope (200–2000m), and deeper sediments (>2000m). The solid line indicates
the 1:1 correlation (measured=modeled), the dashed lines indicate the 25% deviation, and the dash-dotted lines indicate the
50% deviation.
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sites are characterized by low nitrate fluxes because nitrification at these sites creates a weak NO3
� concentration

gradient at the sediment surface and hence low diffusive flux [e.g., Devol et al., 1997; Berelson et al., 1998]. A large
error for simulating low NO3

�
fluxes is to be expected because, as mentioned, small absolute differences in the

flux are likely to be associated with a high relative error. Oxygen does not suffer from the same uncertainties
because (i) the sediments always act as a sink for O2 and (ii) the O2 flux is closely linked to the POC rain rate,
whereas NO3

�
flux is not.

The weakness of the model to accurately simulate the low NO3
�
fluxes on the shelf is rooted in the global

parameterizations of biologically mediated transport and kinetic processes. To demonstrate this point,
NO3

�
fluxes for individual stations lying outside of the tolerance limits could be better simulated by fine

tuning the parameterization of bioirrigation rates as well as nitrification (not shown). However, applying
the same adjustments to the other fitted stations resulted in a loss of model accuracy for those stations.
Thus, it is our opinion that no single set of biogeochemical and transport parameters is able to simulate all
the shelf sites simultaneously, such that the number of fitted stations cannot be increased with the
empirical transport functions currently used.

We also observed that NO3
�
fluxes at many of the outlying sites could not be fit with the model for a broad

range of m and n coefficients. These include sites on the Peru margin [Bohlen et al., 2011], the Mid-Atlantic
Bight [Laursen and Seitzinger, 2002], and Monterey Bay [Berelson et al., 2003]. Bottom waters on the Peru
margin are near anoxic, and here the model underestimated the NO3

�
flux into the sediment. We suspect

that biological NO3
� transport by vacuolated bacteria (e.g., Thioploca spp.) and protists (e.g., foraminifera)

enhances NO3
� uptake at these sites [Bohlen et al., 2011; Prokopenko et al., 2011]. In contrast, the Mid-

Atlantic Bight sites are shallow (maximum water depth 15m) and sandy. The permeability of sand is
greater than fine-grained mud, such that boundary layer current and topography interactions will enhance
the exchange of pore water with seawater by pressure-driven advective processes [Huettel et al., 1996]. N
cycling in sands can thus exhibit large differences compared to fine-grained muds [e.g., Cook et al., 2006;
Rao et al., 2007]. N fluxes in shallow sediments also tend to display high seasonal variability, as exemplified
in the Monterey Bay data. More generally, it is likely that intraannual variability and sediment grain size
effects play an important role in generating the observed misfit between modeled and measured NO3

�

fluxes on the continental shelf.

4.2. Further Model Ground Truthing

The predictive function relating carbon reactivity with rain rate is primarily constrained by the large database
of O2 and NO3

�
fluxes. As further validation of the approach, model results were compared with sediment

geochemical data as well as global rates of POC burial and denitrification.
4.2.1. Sediment Profiles
Measured O2 and NO3

� profiles are mostly unavailable at the sites in our database. Therefore, we selected
sites where pore water data were available from key ocean settings including the continental shelf (41 and
114m), slope (241 and 1025m), and deep sea (3073m) (Figure 4). Two of these sites, stations WE206 and
241 on the Washington and Mauritanian margin (respectively), are located in high-nitrate-low-oxygen
(HNLO) areas where oxygen-deficient waters impinge on the seafloor. In general, the model captures the
trends in NO3

� and O2 profiles through the bioturbated layer, although imperfectly. At the deep-sea site in
the Southern Ocean (PS2361-1), for example, the model underestimates the increase in NO3

�

concentration below the sediment surface due to nitrification [Smetacek et al., 1997]. The model also
predicts that O2 is not depleted within the upper 10 cm. Although corroborating field data are unavailable
here, incomplete O2 consumption in the bioturbated layer in deep-sea sediments is to be expected due to
very low rates of carbon degradation [Wenzhöfer and Glud, 2002]. Bioirrigation is responsible for the small
subsurface peak in modeled NO3

� at St. NH14A on the Washington margin. The same peak is seen at
St. 241 on the Mauritanian margin in both the field and modeled data. However, the model tends to
underestimate POC content at the same site (Figure 4c). This is very likely due to much higher measured
sediment accumulation rates in this productive margin of 0.35 cm yr�1 [Dale et al., 2014] compared to the
value of 0.05 cm yr�1 calculated using the generic algorithm based on water depth [Burwicz et al., 2011]. In
general, though, POC contents of up to 2% on the shelf and <0.5% in the deep sea agree well with global
data sets [Seiter et al., 2004].
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We further compared modeled and measured nitrate penetration depth (NPD) for an additional set of 30
stations that was used to validate the Muds model [Archer et al., 2002]. NPD should be sensitive to our
predictive function because RPOC(x) determines the depth where organic matter is degraded and thus the
depth where NO3

� is consumed (by denitrification) and produced (by nitrification). NPD was defined as
the sediment depth where NO3

� concentration falls to 2% of the local bottom water level. RRPOC and
bottom water O2 and NO3

� are available for these stations and were used as boundary conditions. The
results demonstrate that the model is able to predict the NPD at 26 out of 30 stations (87%) to within 50%

Figure 4. Model-predicted (curves) and measured (red circles) (a) O2 and (b) NO3
� concentrations, (c) POC content,

(d) POC degradation rate, RPOC, and (e) the first-order mineralization constant, k, in the bioturbated layer for several stations.
As indicated at the top of the figure, the stations differ in their water depth, POC rain rate (in mmol m�2 d�1), and sedi-
mentation rate (in cm yr�1) derived from the water depth (Table 1). References for stations (see Table S1 in the supporting
information): St. NH14A =Washington margin [Devol and Christensen, 1993], St. H = Arctic shelf [Devol et al., 1997], St.
241 =Mauritanian margin [Dale et al., 2014], St. WE206=Washington margin [Hartnett and Devol, 2003], and St. PS2361-
1 = Southern Ocean [Supplement to Smetacek et al., 1997].
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or 1 cm (Figure 5). At many deep-sea stations, the NPD exceeded 25 cm, analogous to the Southern Ocean site
in Figure 4e. These results are encouraging because the 30 stations were not included in our original database
and so constitute independent validation of our model.
4.2.2. Global POC Burial and Denitrification Rates
Global predictions of POC burial and denitrification were made by applying the benthic model on a gridded
ocean seafloor. Spatially resolved bathymetry, bottom water temperature, O2 and NO3

� concentrations, and
RRPOC data on a 1° × 1° resolution were taken from Bohlen et al. [2012]. The model was forced using these
boundary conditions for each grid point on the continental margin (≤2000m) and at a coarser resolution
(10° × 10°) for the deep sea (>2000m). Sedimentation rates and mixing by bioturbation were calculated as
previously, whereas bioirrigation was determined assuming that RRPOC is a good approximation for
sediment oxygen uptake (see Table 2).

Benthic denitrification rates were calculated as the sum of canonical denitrification and anammox at each
grid point. Integrating globally gives a total N loss of 182 ± 88 Tg yr�1 of N, where the error denotes model
uncertainty (48%) discussed above (Table 3). This agrees well with other predictions based on diverse
approaches including mass balances, benthic models, and ESMs (93–2030 Tg yr�1). Global POC burial rates
calculated at the base of the bioturbation zone amount to 107± 52 Tg yr�1 of C, which are at the lower
end of previous values based on sediment data (Table 3). However, the 1° × 1° grid applied for our
estimates does not fully resolve shelf bathymetry and the shelf area is underestimated. The shelf area
(0–200m) is equal to 11.42 · 106 km2 in our grid, whereas high-resolution data predict an area of
27.12 · 106 km2 [Eakins and Sharman, 2012]. Furthermore, POC burial fluxes derived from marine
productivity and particle export data tend to be much higher than those derived directly using sediment
data, possibly because they do not properly consider sediment resuspension on the continental margin
and downslope transport [Burdige, 2007; Dunne et al., 2007]. Our globally averaged CBE of 6.1% is similar
to the range of 7.9 to 9.4% reported by Burdige [2007] yet markedly lower than determined by ESMs
(13–34% [Dunne et al., 2007; Palastanga et al., 2011]). Bearing in mind that our model was not tuned to
POC burial and denitrification rates, the good agreement between our model and previously published
rates suggests that the carbon degradation function is suitable for predicting benthic carbon
mineralization in global models.
4.2.3. Comparison With Previous Empirical Approaches
Our derived function is conceptually simple and requires only one independent variable (rain rate) to fully
describe the depth distribution of the rate of carbon degradation in the bioturbated zone. From a practical
standpoint, it is desirable to be able to describe benthic POC degradation in ESMs using a master variable

Figure 5. Comparison of measured (blue) and simulated (red) nitrate penetration depths (NPD in cm, log scale) for sites
compiled by Archer et al. [2002] that are independent to those in our database. The numbering on the x axis denotes
the data set number given in Table 2 in Archer et al. [2002]. For most sites, the NPD exceeded the core length (25 cm); i.e.,
nitrate was not fully depleted at the base of the core sediment depth. The vertical axis is thus clipped at 25 cm. Modeled
NPD agrees with the measurements for all sites except #25, 27, 32, and 40.

Global Biogeochemical Cycles 10.1002/2015GB005087

STOLPOVSKY ET AL. BENTHIC CARBON MINERALIZATION 823



that is well known at the global scale. This avoids the use of parameterizations based on site-specific data and
allows for more realistic nonsteady state model experiments as well as future and paleo-applications.
Alternative empirical relations for the apparent rate constant of aerobic (kaer) and anaerobic (kanaer)
organic matter mineralization versus sedimentation rate have been widely cited [Müller and Mangini, 1980;
Toth and Lerman, 1977; Tromp et al., 1995]:

kaer ¼ 2:97ωacc
0:62 (23a)

kanaer ¼ 0:057ωacc
1:94 (23b)

These relations show that for a given sedimentation rate, the rate constant decreases by 2 to 3 orders of
magnitude from the oxidized surface to the underlying anoxic layers. This huge disparity may reflect the
fact that a fraction of fresh labile material is extremely reactive and already respired aerobically by the
time it reaches the anaerobic sediment layers, rather than being specific to electron acceptors [Ingall and
Van Cappellen, 1990; Middelburg et al., 1993]. Furthermore, the sharp discontinuity between the rate
constants for aerobic and anaerobic mineralization is contrary to the continuum nature of the reactivity of
marine organic matter [Middelburg, 1989; Boudreau and Ruddick, 1991].

Focusing on the bulk carbon pool mineralized in the bioturbated layer (upper 10–20 cm), Boudreau [1997]
compiled data from various sites worldwide (n= 23) and also proposed a relationship between
sedimentation rate and the rate constant, which he termed k1:

k1 ¼ 0:38 �ωacc
0:59 (24)

k1 can be assumed to represent the mean reactivity of the organic matter mineralized in the specified layer,
although the highly reactive fractions mineralized on daily/weekly time scales are not captured by this
function [Boudreau, 1997].

We compared our model results with these empirical relationships by first calculating the apparent depth-
dependent first-order rate constant for POC degradation, k (year�1). This was achieved by dividing the
simulated RPOC(x) by the simulated POC content (in consistent units):

Table 3. Global Rates of POC Burial (Tg yr�1 of C) and Benthic Denitrification (Tg yr�1 of N) Listed From Highest
to Lowest

Rate Method Reference

POC buriala

780 (34%) Earth system model Dunne et al. [2007]
309–637 (7.9–9.4)b Data compilation Burdige [2007]
160 Revised from Berner [1982] Hedges and Keil [1995]
140 Data analysis Baturin [2007]
130 Global benthic model Wallmann et al. [2012]
126 Fluvial inputs and burial Berner [1982]
107 ± 52 (6.1 ± 3%) Global benthic model This study
30 (13%) Earth system model Palastanga et al. [2011]

Denitrification

2030 Global benthic model Archer et al. [2002]
300 Water column data Codispoti et al. [2001]
285 Predictive algorithm Middelburg et al. [1996]
280 Isotope mass balance Brandes and Devol [2002]
190 Box model Deutsch et al. [2004]
182 ± 88 Global benthic model This study
180 Revised from Brandes and Devol [2002] Gruber et al. [2004]
153 Predictive algorithm Bohlen et al. [2012]
149 Earth system model Somes et al. [2013]
146 Global benthic model Thullner et al. [2009]
109 Earth system model DeVries et al. [2013]
93 Box model Eugster and Gruber [2012]

aNumber in parentheses is the global mean carbon burial efficiency (%) where available.
bFrom a number of independent studies. The range of values considers low POC burial in sandy shelf sediments.
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k xð Þ ¼ RPOC xð Þ
POC xð Þ (25)

As an example, depth profiles of RPOC(x),
POC content, and k(x) are calculated for the
stations in Figure 4. The first-order rate
constant k(x) decreases rapidly with
sediment depth by several orders of
magnitude over the bioturbated zone
(Figure 4e). This reflects the increasingly
refractive nature of POC below the
sediment surface and implies that most POC
(75%, data not shown) will be degraded in
the uppermost 1–2 cm, in accordance with
observations [Hedges et al., 1999]. Note that
this is true even for the deep-sea site where
simulated O2 is not depleted over the upper
10 cm. This further agrees with calculations
of e-folding depths for organic matter
decomposition of 0.3 to 3 cm in pelagic
sediments [Martin and Sayles, 1996]. These
workers showed that highly reactive
fractions accounted for over 60% of bulk
POC mineralization at two thirds of the sites
investigated. Calculated k(x) values at the
sediment surface also vary with water

depth, decreasing from 4 to 5 yr�1 on the shelf to 0.75 yr�1 in the deep sea due to mineralization of
reactive organic matter during transit through the water column [e.g., Martin et al., 1987].

The mean k over a defined sediment depth, kx , can then be calculated as

kx ¼ 1
x
∫
x

0k xð Þdx (26)

Themean k for the bioturbated layer (upper 10 cm) for all the fitted stations in the database was described by
the following power law (Figure 6):

k10 ¼ 1:02 �ωacc
0:5 (27)

For the stations in the database, k10 ranges from 0.01 to 0.4 year�1. The scaling coefficient in equation (27) is
higher than predicted by Boudreau’s function (1.02 versus 0.38), which probably derives from very high POC
mineralization rates close to the sediment-water interface which were not considered in his function for k1. It

is interesting to note that our k10 values are much closer to the empirical function for aerobic mineralization
compared to anaerobic mineralization (equations (23a) and (23b)). This shows that the mean rate of organic
matter degradation in the bioturbated zone is dominated by the very reactive fractions degraded in the
oxidized layer, even though bioturbated sediments deposited at continental margins quickly become
anoxic within a few millimeters [Wenzhöfer and Glud, 2002]. Importantly, however, the rapid decrease in k
with sediment depth (Figure 4e) clearly illustrates that the use of a 1-G model is conceptually incorrect.

4.3. Implications for Global Rates of Benthic O2 and NO3
� Uptake

Global model applications that explicitly consider benthic POC degradation in a 1-D framework typically do
not calculate RPOC(x) a priori. Instead, RPOC(x) is calculated directly from POC content and a predefined first-
order rate constant(s), in other words, a G-type model. For example, the HAMOCC2 ESM uses a pseudo-2-G
model, whereby one POC pool is simulated with different prescribed rate constants for aerobic and
anaerobic respiration [Palastanga et al., 2011]. The DCESS model takes a similar approach, although in that
case the rate constants depend on bioturbation intensity and rain rate [Shaffer et al., 2008]. The diagenetic
“Muds” model parameterizes k for discrete carbon respiration pathways as a function of the bioturbation

Figure 6. Relationship between the mean first-order rate constants
(k) in the bioturbated layer (upper 10 cm) versus sedimentation rate
at the stations from the database (black symbols and regression
curve). The green line indicates the function derived by Boudreau
[1997], and the red and blue lines are the rate constants for aerobic
and anaerobic organic matter mineralization proposed by Tromp
et al. [1995] and Toth and Lerman [1977], respectively. Note that
these previous functions are all empirically derived and the data are
omitted here for clarity.
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coefficient or rain rate [Archer et al., 2002]. Vertically integrated benthic models have also been used to
calculate POC degradation rates using a single rate constant, as commonly employed by the Baltic Sea
modeling community [Neumann et al., 2002; Eilola et al., 2009; Gustafsson, 2012]. In those cases, the rate
constants are often tuned to tracer distributions in the water column rather than benthic flux or
geochemical data. Other examples abound in the literature (reviewed by Arndt et al. [2013]), which attests
to the current lack of consensus of how best to parameterize benthic POC mineralization.

We calculated global POC burial and denitrification rates with our model by adopting the pseudo-2-G
approach used in HAMOCC2 as an example of other published approaches [Palastanga et al., 2011].
Reaction and transport rates were calculated as previously after modifying the POC degradation rate to be
the product of POC content and the first-order rate constants used by Palastanga et al. [2011]. The
constants were defined according to aerobic (kox) and anaerobic POC respiration (kax). kox was equal to
0.01 year�1 for water depths <2000m and 0.005 year�1 for depths >2000m, whereas kax values were
lower in both regions (0.008 and 0.002 year�1, respectively). These rate constants were tuned to surface
POC content measurements in HAMOCC2, although the prime focus of the study was long-term
(10–100 kyr) P and O2 dynamics in the ocean [Palastanga et al., 2011].

O2 fluxes calculated using the pseudo-2-G model are significantly underestimated by around a factor of 3
compared to the database (Figure 7). NO3

�
fluxes are approximately half the measured values. In view of

the fact that ODU loss from the sediment is minimal, these findings imply that the bulk reactivity of POC
using the prescribed rate constants is too low and that insufficient water column O2 is respired by the
sediments. Consequently, too little POC is degraded. Global POC burial rates estimated by upscaling the
model using the gridded data as before indeed show that POC burial equals 840 Tg yr�1 compared to
107 Tg yr�1 using the transfer function (Table 3), which is equivalent to a global CBE of 48%. Interestingly,
the global denitrification rate (177 TgN y�1) is very similar to the previous value of 182 TgN y�1 despite the
offset in NO3

�
fluxes (Figure 7b). We believe this to be coincidental, resulting from a greater importance of

coupled nitrification-denitrification compensating for reduced rates of denitrification fueled by NO3
�

diffusing into the sediment from the overlying water column.

This exercise does not invalidate the results of Palastanga et al. [2011] since the physical and biogeochemical
structures of their diagenetic model are very different to ours. Furthermore, the global distribution of bottom
water redox conditions and POC rain rate in HAMOCC2 may differ from the the gridded maps used here. It
shows, however, that surface POC content may not be the ideal metric to validate benthic models where
fluxes of redox-sensitive species are the research focus. More importantly, it highlights the lack of a
generalized and transferable approach for incorporating benthic processes in ESMs at the regional and
global scales [Arndt et al., 2013]. Proper consideration of this aspect is critical to determine the benthic
feedbacks on the coupled carbon-climate system on time scales similar to the oceanic N and P residence

Figure 7. Comparison of measured versus modeled benthic fluxes of (a) O2 and (b) NO3
� using the optimized parameters

of the transfer function (equation (21)) and first-order kinetic constants in the pseudo-2-G model from Palastanga et al.
[2011]. The solid line indicates 1:1 line (measured =modeled), the dashed lines indicate the 25% deviation, and the
dash-dotted lines indicate the 50% deviation.
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times (103–104 year). This includes seafloor buffering of CO2 due to carbonate dissolution. At present, the
global rate of carbonate dissolution in sediments due to metabolically derived CO2, that is, originating
from organic matter respiration, is very poorly constrained. We propose that our parameterization of POC
mineralization would greatly improve our understanding of these feedbacks in ESMs.

5. Conclusions

Marine sediments regulate the long-term balance of oceanic nutrients and atmospheric O2. Yet there is no
consensus of how benthic mineralization should be parameterized in Earth system models (ESM) that
couple climate dynamics with marine and terrestrial biogeochemistry. In this study, a straightforward
function to calculate the depth-dependent rate of POC degradation in bioturbated marine sediments at
the global scale was derived by simulating O2 and NO3

�
fluxes at 185 stations using a diagenetic model.

The rate was described using a power function characterized by three empirical coefficients, one of which
(B0) has a fixed value and the other (B1) is obtainable from the third (B2) and the POC rain rate to the
seafloor. The simplicity of this function allows carbon degradation rates in surface sediments to be
constrained from one governing variable that is routinely used in ESMs, i.e., POC rain rate. It also captures
the essential elements of the continuum nature of organic matter degradation in sediments as opposed to
the parameter-intensive multi-G approach. Using this function, O2 and NO3

�
fluxes were simulated at 71%

of all stations. Although by no means a perfect agreement, the function does predict global denitrification
and POC burial rates that are well within previous estimates. The function is not suitable to simulate NO3

�

fluxes in sandy sediments, which may contribute to the uncertainty in global POC burial and denitrification
rates. Very low NO3

�
fluxes on the shelf and slope are also not captured due the complex and

heterogeneous environmental conditions encountered there. This alludes to a more general problem of
predicting benthic fluxes on the shelf and suggests that no single model is suitable for these
environments. Nonetheless, the function provides a basis for more accurately simulating POC degradation
considering the downcore decrease in POC reactivity in the bioturbated zone.

The distribution of POC degradation rates in surface sediments has a fundamental effect on key benthic
processes. Our model predicts that most of the POC degradation occurs within the top sediment layer.
Therefore, metabolites produced via POC degradation, such as dissolved phosphorus and CO2, can largely
escape into the overlying bottom water. Only a minor fraction may be consumed by secondary reactions,
e.g., the dissolution of pelagic carbonate by metabolic CO2 and the precipitation of authigenic phosphorus
minerals. Conventional 1-G models tend to overestimate rates of secondary reactions since a larger
portion of the total POC degradation is allocated in deeper sediment horizons where the metabolites
accumulate, precipitate, or react with sediment components. ESMs aiming to simulate benthic POC
degradation, pelagic carbonate dissolution, and N and P turnover in sediments could thus be enhanced by
coupling the ocean model to the simple benthic module presented in this paper.
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