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EINLEITUNG

Der enorme Zuwachs an Nutzungsarten in der Nordseeregion sowie die zunchmende
Ressourcenknappheit fiihrten in den letzten Jahren zu immer intensiveren und
vielschichtigeren Nutzungskonflikten. Mit dem Anstieg der Nutzungsvielfalt geht auch ein
steigender Bedarf an genauer Planung der Flichennutzung in Form von
Raumordnungsplinen und europdischen Direktiven einher (Wirtz et al. 2003). Im
Besonderen ist beispielsweise durch die Bauvorhaben von Offshore Windkraftanlagen in
Nord- und Ostsee die Notwendigkeit der rdumlichen Abgrenzungen kologisch wertvoller
Flichen von potentiellen Antragsflichen deutlich geworden. Die Entwicklung einer
Managementstrategie, welche die teilweise kontrdren Nutzungstypen langfristig vereint,
ohne dabei Naturschutzziele oder wirtschaftliche bzw. technologische Entwicklungen zu
beeintréichtigen, ist eine herausfordernde Aufgabe fiir die Entscheidungstriiger.

Gegenstand vieler wissenschaftlicher und politischer Diskussionen war in jiingster Zeit der
Konflikt zwischen ,,Offshore Windkraftanlagen®, »Meeresschutzgebieten (Ehrich et al.
2003) und ,,Fischerei“ innerhalb der AusschlieSlichen Wirtschaftszone (AWZ) der Nordsee.
In diesem Zusammenhang wurden viele wissenschaftliche Projekte initiiert, die zum einen
okologisch wertvolle Flidchen definieren und zum anderen mégliche Effekte von
Windkraftanlagen auf die marine Umwelt in der AWZ der Nord- und Ostsee untersuchen
sollten. Zu den speziell untersuchten Schutzgiitern zihlen Makrozoobenthos, Vogel,
Saugetiere, Landschaft und Fische. Das Schutzgut ,Fische* besteht vor allem aus der
bodenorientierten (demersalen) Fischfauna, da deren Vorkommen, im Gegensatz zur
pelagischen Fischfauna, geringeren rdumlichen und zeitlichen Schwankungen unterliegt
(Ehrich er al. 1998). Eine der Entscheidungsgrundlagen fiir einzelne Managementstrategien
bilden daher die Ergebnisse von rdumlichen und zeitlichen Analysen von
Bestandsentwicklungen und Verbreitungsschwerpunkten von demersalen Fischpopulationen
auf verschiedenen Mafstabsebenen. Nicht nur durch den oben beschriebenen
Nutzungskonflikt, sondern auch durch den Konflikt zwischen Ausbeutung und nachhaltigem
Umgang mit der natiirlichen Ressource ,,Fisch® gewinnt eine priizise Bestandsabschitzung
(,»fisheries-assessment") immer mehr an Bedeutung (Jennings et al. 2001).

Das primére Ziel einer Bestandsabschitzung in der Fischerei besteht in der Bewertung des
Befischungszustands einer Art, um bestimmen zu koénnen, bis zu welchem Grad diese
nachhaltig ausgeschopft werden kann (King 1995). Daher besteht eine wichtige Aufgabe
darin, festzustellen, ob die statistische Auswertung von Fangdaten die aktuelle Situation der
Abundanz einer Fischart widerspiegelt (Hilborn & Walters 1992). Fiir eine
Bestandsabschitzung werden Informationen iiber Artenzusammensetzung, Verteilung von
Biomasse, Abundanz der Fische, biologische Daten (Alter, Geschlecht und Reifegrad) sowie
weiteren Umgebungsvariablen wie Temperatur, Salzgehalt oder Fangtiefe benotigt. Ein weit
verbreitetes Monitoringwerkzeug sind jdhrliche Grundschleppnetz—Surveys (Gunderson
1993), bei denen Werte fiir die gewiinschten biologischen Variablen wie die Lingen- bzw.
Altersverteilung innerhalb einer Fischpopulation oder Abundanzindizes wie der "Catch per
Unit Effort" (CPUE; Einheitsfang; z. B. kg pro 30 min Schleppzeit, Anzahl der Tiere pro
Fang) mit Standardverfahren bestimmt werden. Zum einen werden die Ergebnisse der
wissenschaftlichen Surveys benétigt, um die Stidrken der rekrutierenden Jahrginge fiir eine
Fangmengenvorhersage abzuschdtzen zu konnen. Zum anderen dienen die
Haufigkeitsindizes der h6heren Jahrgéinge dazu, die Berechnungen von Bestandsgrossen, die
auf den durch Fischerei entnommenen Mengen basieren, zu verbessern. Die Giite einer
Bestandsabschétzung ist direkt von der Qualitit der Datenauswertung von Abundanzen und
Altersverteilungen einer Art in den spezifizierten Untersuchungsgebieten abhingig.

Vanessa Stelzenmiiller: Analyse rdumlicher und zeitlicher Variabilitit von Fischpopulationen



EINLEITUNG -5-

Eines der zentralen Probleme bei der Bestandsabschitzung ist es, einen Abundanzindex zu
finden, der sich proportional zum Fischbestand verhilt und somit Entwicklungstendenzen im
Bestand reflektiert. Eine Nichtberiicksichtigung dieses Problems kann dazu fithren, dass z.B.
hohe CPUE-Werte vorliegen, obwohl der Bestand einer Art in der Realitit kurz vor dem
Zusammenbruch steht, bedingt durch verinderte riumliche Muster in der Verteilung der
Tiere und dem Fang aus einer aggregierten Fischpopulation (Hilborn & Walters 1992). Da
die Présenz derartiger riumlicher Muster und ihre Veriinderungen innerhalb eines
Management-Gebietes (z.B. Nordsee) in der Fangstatistik derzeit jedoch nicht beriicksichtigt
wird, kann dies zu einer katastrophalen Situation fithren (Hilborn & Walters 1992). Ein
Beispiel dafiir ist der Zusammenbruch der Kabeljaupopulation in den Gewissern
Neufundlandes. Dort wurden hohe CPUE-Werte gemessen, wihrend dessen sich der
Zusammenbruch der Population durch Verinderungen in der rdumlichen Verteilungsmuster
ankiindigte (Hutchings 1996).

Dies gilt beispielsweise auch flir Untersuchungen innerhalb von Antragsgebieten fiir
Offshore Windkraftanlagen. Wenn die rdumliche und zeitliche Dynamik einer
Fischpopulation nicht adiquat abgeschitzt wird, kann dies zu Fehleinschitzungen moglicher
okologischer Auswirkungen fiihren. Im allgemeinen sind Skologische Daten durch riumliche
Muster charakterisiert, welche eine rdumliche Abhingigkeit (Autokorrelation) herbeifiihren
(Legendre 1993; Fortin ez al. 2002). Die Intensitdt der Musterbildung ("patchiness") wird
durch den UntersuchungsmaBstab bestimmt. Okologische Daten sind eine Verbundsstruktur
von mehreren rdumlichen Prozessen, die auf unterschiedlichen MaBstiben operieren. So
wird das Ausmal der rdumlichen Abhingigkeit in den Daten durch die unterschiedlichen

Prozesse und Muster, welche nicht notwendigerweise additive oder linear sind, bestimmt
(Fortin er al. 2002).

Die klassische Methode zur Bestandsabschitzung einer Bodenfischart in einem definierten
Untersuchungsgebiet umfasst einen Survey mit Standardnetz und einer speziellen
Beprobungsstrategie. Die Probenahmestationen werden zufillig im Untersuchungsgebiet
positioniert, um so unverzerrte Abschéitzungen des Vorkommens einer Fischart zu erhalten.
Wenn das zufillige Beprobungsmuster dabei auf einer passenden riumlichen Skala
angewendet wird, konnen zugrundeliegende rdumliche Strukturen in der Verteilung
»ausgeldscht™ werden, jedoch ohne dass der Bearbeiter hiervon Kenntnis erlangt. In diesem
Fall wiren dann Auswertungsmethoden der klassischen Fangstatistik (arithmetischer
Mittelwert, Varianz und Standardabweichung der Fangdaten in der Untersuchungseinheit)
anwendbar. Bedingt durch die Tatsache, dass die Skala der rdumlichen Verteilung einer zu
untersuchenden Fischart meist unbekannt ist, wird die Anwendung klassischer Methoden
allerdings vielfach zu Verzerrungen in der Berechnung von Abundanzindizes fithren
(Petitgas 1996; Maynou 1998). Das Vorhandensein eines Musters in der riumlichen
Verteilung einer Fischpopulation verursacht eine rdumliche Abhéingigkeit (Autokorrelation)
in den erhobenen Fangdaten, die auch durch eine zufillige Auswahl der Stationen nicht
beseitigt werden kann (Maynou 1998). Die Prisenz einer solchen rdumlichen Abhingigkeit
lasst die Zufélligkeit in der Verteilung der Probenahmeorte quasi ,,verschwinden®. Zufillig
gewonnene Daten sind aber die Voraussetzung fiir eine unverzerrte Berechnung der Varianz
der mittleren Biomasse (Aubrey & Debouzie 2000). Durch die Prisenz einer riumlichen
Abhéngigkeit in den Daten kann die Grundannahme fiir viele klassische statistische
Verfahren verletzt werden, némlich die der Unabhingigkeit der Messwerte (Fortin et al.
2002).
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Hintergrund und Anlass der Promotion

Kernfrage: Welchen Effekt haben rdumliche Verteilungsmuster von Fischpopulationen auf
klassische Berechnungen von Abundanzindizes ?

l Methode: Mittels der Geostatistik (Teilgebiet der raumlichen Statistik) wurden artspezifische ‘
| Verteilungsmuster modelliert und unverzerrte Abundanzindizes berechnet \

Datenbasis: Fangdaten von nicht kommerziellen, kommerziellen und gefdhrdeten Fischarten aus J
der Nordsee und kinstlich erzeugte Fangdaten

/ l

- /
| Kunstlich generierte » Fangdaten auf kleiner MaBstabsebene (ca. Wind- } Fangdaten auf grosser
| Fischereidaten mit | | parkgrésse) extrahiert aus der Datenbank des | MaRstabsebene extrahiert
| definierten Eigenschaften } ‘ German-small-scale Surveys, Institut fur | aus der Datenbank des, ;
| Seefischerei, Hamburg und Eigenerhebung Instituts fur Seefischerei, \
! ‘ | | Hamburg |
— J i
7~
Quantifizierung des [ Untersuchung der zeitlichen und Berechnung von
Einflusses von raumlichen Konsistenz von Fangwahrscheinlich-
Stichprobenumfang, ‘ Verteilungsmustern der Kliesche in > Kapitel 2 keiten einer
kieinskaliger Variabilitat ‘ der Deutschen Bucht gefdhrdeten Fischart
und mathematischer T 5 5 in der AWZ der
Verteilung der Daten Bewertung eines speziell fur die Nordsee mit Methoden
auf die Leistung geostatistische Analyse —> Kapitel 3 der nichtinearen
robuster geo- entworfenen Probenahmedesigns Geostatistik
oy s & /< Untersuchung des Einflusses von v
‘ »UntersuchungsmaRstab“ und —» Kapitel 4 Kapitel 6
Kapitel 1 ,Habitatassoziation* der Zielart auf
eine geostatistische Analyse
Untersuchung des Einflusses des
Fanggerates auf eine rdumliche —» Kapitel 5
Analyse und die dazugehérige
\ Bestandsabschatzung

Abb. 1: Darstellung der thematischen Positionierung der hier vorliegenden Arbeit und
Charakterisierung der Methodik und Arbeitshypothesen.
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Der Bedarf an prizisen Analysen von Verteilungsmustern einzelner Fischarten und deren
zeitliche Veranderung sowie an unverzerrten Berechnungen von Abundanzindizes im
Kontext eines aktuellen Nutzungskonflikts war der Anlass dieser Arbeit (Abb.1). Durch eine
Kooperation mit Dr. Siegfried Ehrich von der Bundesforschungsanstalt fiir Fischerei, Institut
fur Seefischerei in Hamburg standen fiir die Promotion einerseits die benétigten Fangdaten
zur Verfugung und anderseits konnten durch Seereisen mit dem Fischereiforschungsschiff
,,Walther Herwig IIT“ (Abb.2) eigene Daten.

Aus der Datenbank des Instituts fiir Seefischerei wurden Fangdaten auf kleiner und groBer
MafBstabsebene extrahiert. Zum einen waren dies Fangdaten von fischereilich genutzten und
nicht genutzten Fischarten (Kliesche, Wittling, Schellfisch, Kabeljau und Hering) aus der
Deutschen Bucht und der nordlichen Nordsee erhoben durch den German Small-scale
Bottom Trawl Survey (GSBTS), einem Monitoringprogramm zur Erfassung der
bodenorientierten Fischfauna (Ehrich ef al. 1998) (Abb.3). Hierbei ist von besonderer
Bedeutung, dass die GroBe der kleinskaligen GSBTS Untersuchungsgebiete (,Boxen®)
teilweise der raumlichen Dimension eines offshore Windparks entspricht. Zum anderen
waren dies auf groBer MalBstabsebene standardisierte Fangdaten der gefihrdeten

Wanderfischart Finte aus der AWZ der Nordsee und den angrenzenden Kiistenregionen
(Abb.4).
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Abb. 3 Riumlich Verteilung der Abb. 4: AusschlieBliche Wirtschaftszone (AWZ)

Standartuntersuchungsgebiete  (,Boxen®) des der Nordsee und Darstellung der Faggstationen
German Small-scale Bottom Trawl Survey (*) der anadromen Wanderfischart Finte (4/osa

(GSBTS) in der Nordsee. Jfallax).
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Durch eine weitere Kooperation mit Dr. Francesc Maynou vom Institut de Ciéncies del Mar
in Barcelona, Spanien wurde nicht nur die Arbeitsmethodik optimiert, sondern zusitzlich
auch kiinstliche Fangdaten mit definierten Eigenschaften generiert, um robuste
geostatistische Verfahren zu testen.

Die Arbeit beschiftigt sich mit der rdumlichen Analyse von Verteilungsmustern einzelner
Fischarten und deren zeitliche Verdnderung innerhalb diskreter Seegebiete, wobei die
Kliesche (Limanda limanda) die hier am intensivsten untersuchte Art ist. Sie ist die héufigste
Plattfischart in der Nordsee bzw. Deutschen Bucht (Daan ef al. 1990; Rijnsdorp et al. 1992)
und représentiert eine Art mit geringen Schwankungen in der PopulationsgrsBe in den letzen
Jahren (Heessen & Daan 1996). Aufgrund der Annahme, dass stabile Populationen
artspezifische Verteilungsmuster ausbilden (Hutchings 1996; Warren 1997), eignet sich

diese Art also besonders gut, um artspezifische Strukturausbildungen genauer zu
untersuchen.

Einerseits werden in dieser Arbeit einzelne Faktoren untersucht, die eine adéiquate riumliche
Analyse im Hinblick auf akkurate und prézise Abschétzungen, beeinflussen kénnen,
andererseits ist von besonderem Interesse welchen Einfluss artspezifische Verteilungsmuster
(,,Patches*) auf die Berechnung von Abundanzindizes haben und wie sich diese von den
klassischen unterscheiden. Denn artspezifische Verteilungsmuster und deren Verinderung
mit der Zeit, wie oben schon beschrieben, werden in den Methoden der klassischen
Fangdatenauswertung nicht beriicksichtigt.

Um addquate Analysen von rdumlichen Verteilungen der Fischpopulation in den
Untersuchungsgebieten zu erhalten und die dazugehorigen unverzerrten Biomasseindizes
berechnen zu konnen, wurden Methoden der Geostatistik eingesetzt. Die Geostatistik ist ein
Teilgebiet der rdumlichen Statistik (Chilés & Delfiner 1999). In den 60er Jahren wurden
diese Methoden entwickelt, um die Ausbeute von Erzreserven zu optimieren (Matheron
1963; Matheron 1971; Journel & Huijbregts 1978). Die Anwendung von geostatistischen
Methoden weitete sich dann auch auf andere Gebiete der Naturwissenschaften wie die der
Okologie aus (Sokal & Oden 1978b; Sokal & Oden 1978a; Legendre & Fortin 1989; Rossi et
al. 1992; Legendre 1993). Erst in den letzten Jahren ist der Einsatz der Geostatistik speziell
in den Fischereiwissenschaften deutlich angestiegen (Rivoirard ef al. 2000). Mit Hilfe dieses
Verfahrens wurden Probenahmekonzepte optimiert (Warrick & Myers 1987; Petitgas 1996),
mittlere Fangmengen von marinen Ressourcen und deren Variabilitit berechnet (Sullivan
1991; Conan et al. 1992; Warren 1997, Maynou 1998) und rdumliche Verteilungen
abgeschétzt (Simrad ef al. 1992; Maravelias et al. 1996; Roa & Tapia 2000). Eine der
attraktivsten Eigenschaften der Geostatistik fiir Fischereibiologen ist wohl die Moglichkeit
der Charakterisierung der rdumlichen Musterbildung von Populationen (Petitgas 1996).

Unmittelbar stellt sich hierbei die Frage, wie die fiir physikalisch stationdre Ressourcen
entwickelten Methoden auch auf mobile Ressourcen wie Fische (Hutchings 1996), Krebse
(Maynou et al. 1996),- Fischlarven (Bez & Rivoirard 2001) oder Plankton (Bulit ef al. 2003)
iibertragen werden kénnen. Die Antwort liegt darin begriindet, dass rdumliche Informationen
iber marine mobile Ressourcen meist innerhalb von Zeitperioden gesammelt werden, die
vergleichsweise kurz sind gegeniiber der Dauer von mesoskaligen Bewegungen der zu
untersuchenden Populationen (Rivoirard et al. 2000). Da rdumliche Muster aus theoretischer
Sicht als Ergebnis eines Zufallsexperiments angesehen werden, bedeutet dies fiir alle
raumbezogenen dkologischen Untersuchungen, dass wihrend der Probennahme kein neues
Zufallsexperiment "ausgefiihrt" wird, unabhingig davon, ob die Daten mit Hilfe der
Geostatistik ausgewertet werden oder nicht.
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Durch den besonders geringen Stichprobenumfang, wie er in der Fischereiforschung meist
iiblich ist, und der mathematischen Verteilung der Fangdaten entstehen oftmals Probleme bei
der Verwendung geostatistischer Methoden (Maravelias ef al. 1996; Rivoirard ef al. 2000).
Eine Mindestanzahl von 30-50 Stichproben werden von Legendre (1993) empfohlen. Doch
durch den Konflikt zwischen den Kosten eines Surveys und dem theoretischem Bedarf an
Stationen stehen in der Fischereipraxis oftmals weniger als 30-50 Stichproben fiir eine
geostatistische  Analyse zur Verfligung. Kenntnisse tber den Einfluss von
Stichprobenumfang und mathematischer Verteilung der Daten auf die Leistung géngiger
Verfahren der Geostatistik sind somit fundamental. Um akkurate und prizise Abschédtzungen
zu gewihrleisten, erwies es sich somit als notwendig, diese Problematik durch eine
geostatistische Simulationsstudie mittels kiinstlich erzeugter Fangdaten zu analysieren und
mdgliche Fehler zu quantifizieren. In Zusammenarbeit mit Dr. Maynou, ICM Barcelona,
wurde ein ,,Leitfaden® entwickelt, anhand dessen ein Anwender die fiir seine Datenlage
geeigneten Verfahren auswihlen kann, um die Modellierung und somit die Abschitzung der
mittleren Fangmenge einer Art optimieren zu kénnen (Kapitel 1).

Eine Methodik, mit deren Hilfe mégliche Effekt von Offshore Windkraftanalgen auf das
Schutzgut ,,Fisch“ anhand von Langzeit-Messdaten erfasst werden kénnen, wurde auf Basis
von kleinskaligen Langzeit-Monitoringdaten (GSBTS) entwickelt (Kapitel 2). Fiir Fangdaten
der Kliesche (Limanda limanda) wurde die zeitliche Konsistenz der riumlichen
Musterbildung in der Deutschen Bucht (Box A) untersucht. Artspezifischer
Verteilungsmuster von drei Gréfenklassen von Kieschen wurden auf dieser MaBstabsebene
charakterisiert und deren Effekt auf die klassische Abundanzabschitzung quantifiziert.

Auf Basis bereits gewonnener Erkenntnisse iiber rdumliche Muster von Fischpopulationen
innerhalb mesoskaliger Seegebiete und iiber robuste Verfahren der Analysemethode wurde
ein speziell fiir eine geostatistische Analyse optimiertes Probenahmedesign entwickelt, das
im Januar 2002 und 2003 wihrend einer Forschungsfahrt mit der Walther Herwig 111 (Abb.
2) in die Deutsche Bucht (Box A) getestet wurde (Kapitel 3). Dabei wurde untersucht, ob
sich die Modellierung der kleinskaligen Variabilitit in den Fangdaten von Kliesche und
Wittling (Merlangius merlangus) durch zusitzliche Stationen, mit geringem Abstand
zueinander, optimieren lisst ("star-survey") und welchen Effekt dieses Probenahmekonzept
gef. auf die rdumliche Analyse der Fangdaten hat. Zusitzlich wurde eine riumliche Analyse
der Fangdaten verschiedener biologischer Gruppen von Klieschen (GroBenklassen und
Geschlecht) durchgefiihrt und die Unterschiede bzw. Ubereinstimmung in der Ausbildung
von riumlichen Aggregationen bewertet.

Grundsitzlich spielt der UntersuchungsmaBstab eine groBe Rolle in ridumlichen und
zeitlichen Analysen von fleckenhaften Verteilungen (,,patches®). Ein ,,patch impliziert
dabei ein relatives diskretes Muster, doch diese Definition ist immer relativ zu dem
untersuchten System zu sehen (Pickett & White 1985). So sind die hier untersuchten und
modellierten Muster in der Verteilung der Fangdaten fiir die jeweilige MaBstabsebene zu
interpretieren. Daher war es notwendig, auch den Einfluss der ,,riumlichen Dimension des
Untersuchungsgebietes” auf eine geostatistische Analyse zu untersuchen (Kapitel 4). Die
Aggregation von Tieren als Reaktion auf die fleckenhafte Verteilung wichtiger Ressourcen
ist ein haufiger Grund fiir kleinskalige rdumliche Populationsmuster (Hanski 1999). Aus
diesem Grund wurde auch der Einfluss der Habitatassoziation (definiert durch die
Wassertiefe) auf die rdumlichen Muster in den Fangdaten in die Analyse einbezogen
(Kapitel 4). Fur diese Untersuchung standen besondere Fangdaten von Kabelajau (Gadus
morhua), Schellfisch (Melanogrammus aeglefinus), Wittling, Kliesche und Hering (Clupea
harengus) aus der nérdlichen Nordsee zur Verfiigung. Dieser in der Fischerei einzigartiger
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Datensatz wurde im Rahmen eines Vergleichsfischereiexperiments in der nérdlichen
Nordsee (Box D) im Sommer 1986 erhoben. Dabei wurden 127 Stationen in zwei sich
tiberlappenden Seegebieten mit unterschiedlichen rdumlichen Dimensionen befischt. Unter
anderem wurden Empfehlungen zur Modifikation von bestehenden Monitoringkonzepten
formuliert, um verbesserte Bestandsabschiitzungen erzielen zu kdnnen.

Um rdumliche Daten aus unterschiedlichen Fischerei-Surveys sinnvoll vergleichen zu
konnen, ist es notwendig, Unterschiede in der Erfassungsgiite riumlicher Muster von
Fischpopulationen in Abhéngigkeit vom eingesetzten Fanggerit zu analysieren. So wurde im
Rahmen meiner Dissertation auch der Einfluss des Fanggeritetypes auf die riumliche
Analyse von Fangdaten am Beispiel dreier Grofenklassen von Klieschen untersucht (Kapitel
5). Die zu vergleichenden Fangdaten wurden mit der 7m-Baumkurre und dem
Kabeljauhopser im Winter 2001 mit dem Forschungskutter ,,Solea® in der Deutschen Bucht
erhoben. Ein Resultat dieser Untersuchung war die qualitative Entwicklung von
Anforderungen an das Fanggerdit und die zu untersuchende Zielart, um eine prizise
geostatistische Bewertung von Monitoringdaten zu gewihrleisten.

Die Hauptverbreitungsmuster der gefihrdeten anadromen Wanderfischart Finte (4dlosa
fallax) wurden fiir mehrere Jahre auf groBer MaBstabsskala (AWZ der Nordsee) untersucht
(Kapitel 6). Hierzu wurden Methoden der nicht-linearen Geostatik verwendet, um potentielle
Schutzgebiet zu definieren. Im Rahmen der Kooperation mit Dr. Maynou wurden fiir die
AWZ der Nordsee und den angrenzenden Kiistengebieten Wahrscheinlichkeiten berechnet,
mehr als eine Dbestimmte Anzahl von Finten zu fangen. So konnten
Verbreitungsschwerpunkte definiert und Empfehlungen zum nachhaltigen Schutz dieser Art
formuliert werden.
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KAPITEL 1

Assessing the performance of linear geostatistical tools applied to artificial
fisheries data

M. M. Ruﬁnol, V. Stelzenmiiller’ , F. Maynouz**, and G.-P. Zauke®
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: Abstract
The geostatistical analysis of fisheries survey data often presents problems due to the skewed
distributions characteristic of such data as well as to the restricted number of samples, both
of which severely affect the reliability of the experimental variograms and kriging results
obtained. To analyse this problem, simulated catch data were generated with an underlying
spherical covariance function, two types of distribution function (Gaussian and log-
Gaussian), three levels of nugget variability (0 %, 30 % and 50 %) and different numbers of
samples (from 20 to 200). The degree to which the originally defined covariance structure is
recovered by common least squares and maximum likelihood methods, as well as the
performance of two commonly used estimators for the empirical variogram (classical and
robust), were assessed. Furthermore, the reliability of several goodness-of-fit criteria in
detecting the original model type was evaluated. Our results showed that employing
maximum likelihood methods instead of least-squares-based methods is advisable, especially
when dealing with a low number of samples and a high level of nugget variability. This is
true even for log-Gaussian distributed data, in view of the fact that these methods always
showed higher precision and greater accuracy in the estimated parameters, especially when
few samples are available. In all cases, the number of samples had a strong influence on the
methods tested. Both estimator types behaved similarly in the Gaussian case, although the
robust estimator performed considerably worse for log-Gaussian data. The Akaike
Information Criterion and a goodness-of-fit criterion with weights according to numbers of
pairs were the most powerful criteria for choosing the appropriate model type. Additional,
non-linear models are presented which may be used to calculate correction factors depending
on the sample size for the parameters nugget and sill of a spherical model fitted to any
fisheries data. In general, we recommend that more attention is devoted to the combination
of data distribution and number of samples for selecting the tools for structural variogram
analysis. Thus, the appropriate choice of geostatistical tools in the analysis of fisheries data
to obtain more accurate and precise abundance indices is essential.

Key Words: geostatistics, non-conditional simulation, robust estimator, goodness-of-fit
criteria, least squares methods, maximum likelihood, nugget variability.

In review: ICES Journal of Marine Science
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1 Introduction

In fisheries science, geostatistical analysis is mainly used to estimate species abundance
(Conan et al., 1992; Petitgas, 1993), to assess spatial structures and to derive ecological
parameters of the population studied (Petitgas, 1996). Mostly intrinsic linear geostatistical
methods are applied to evaluate fisheries survey data. Variograms based on sampling data,
possibly transformed to normality (Guiblin et al., 1995; Rivoirard er al., 2000), are
computed by using different estimator types for the empirical variograms. In most cases the
classical estimator (Journel and Huijbregts, 1978) is used to calculate the variogram (Lembo
et al., 1998; Maynou, 1998), although the robust estimator (Cressie and Hawkins, 1980) has
also been adopted, in order to reduce the influence of outlying observations (Maravelias et
al., 1996). The fit of the variogram model can be done visually (fitting by eye) (Petitgas,
1996) or automatically, using for example weighted least squares methods (WLS)
(Fernandes and Rivoirard, 1999; Pelletier and Parma, 1994; Rueda and Defeo, 2001).
Although both procedures often yield similar results, the semi-automatic procedure using
software is most generally advised. Problems in the geostatistical analysis of fisheries data
often arise due to the skewed distributions of fisheries catch data and to the restricted
number of samples, which greatly affects the accuracy and precision of the variograms and

kriging results obtained (Chilés and Delfiner, 1999; Cressie, 1991; Webster and Oliver,
2001).

To overcome the problem of skewed distributions, some authors have recommended
alternative approaches, such as removing the statistical outliers (Armstrong, 1984),
computing robust variograms (Cressie and Hawkins, 1980; Cressie, 1991), transforming the
data (Guiblin ef al., 1995), and other ad hoc methods. Regarding fisheries data, large-value
observations (sometimes inappropriately considered as outliers) are representative of the
population and should not be omitted in the geostatistical analysis (Rivoirard e al., 2000). In
case of a log-normal distribution, transformation of the data to normality and back-
transformation of the empirical variogram is possible, although the common presence of
“zero” densities within the study area makes this approach difficult (Guiblin ef al., 1995).
Rivoirard (2000) proposed an improvement of the parameter estimation for back-
transformed variograms, which agrees well with the general observation that spatial
autocorrelation is detected more easily with normally distributed data. Thus, the choices,
depending on the characteristics of the spatial phenomenon under study (Matheron, 1989),
among the several approaches recommended to overcome limitations due to the data
distribution may be the first step in which bias might be introduced into the analysis.

Different methods are recommended to estimate the underlying spatial covariance model,
either based on least squares fit of the empirical variogram (i.e. Ordinary Least Squares
(OLS), Weighted Least Squares (WLS) or Cressie’s modification of WLS (Cressie, 1991) or
based on maximum likelihood methods (Maximum Likelihood (ML) and Restricted
Maximum Likelihood (REML)). OLS fitting is not recommended because it gives the same
weight to each pair in the variogram (Cressie, 1991). However the first lags (short distances)
of a variogram are particularly important for the fit, since the behaviour of the variogram
near the origin determines the degree of regularity (Rivoirard et al., 2000). Further
recommendations about using different weights for the weighted least squares procedure
were made by Cressie (1991), Fernandes (1999), and Webster (1992). Cressie (1991)
advised maximum likelihood estimations in case of normally distributed data.

In fisheries, the spatial covariance model may vary with the species under study (Gonzalez-
Gurriaran et al., 1993; Maynou er al., 1996; Petitgas, 1997), the time of the day (Rivoirard
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and Wieland, 2001; Simmonds and Rivoirard, 2000), the sampling period (Freire et al.,
1991; Hutchings, 1996; Sobrino and Garcia, 1993), or the age of the individuals (Bez and
Rivoirard, 2000; Rivoirard et al., 2000; Stelzenmiiller et al., 2004). Thus the analysis of this
variation is one of the main objectives of many such studies. For example, the collapse of the
northern cod, Gadus morhua, in Newfoundland waters was preceded by a change in the
covariance structure (Hutchings, 1996). However, it is almost impossible to determine a
priori the underlying covariance structure, so that an objective criterion for model selection
is urgently required. The use of a semi-automated procedure has the advantage of speed,
reproducibility, and objectivity although an appropriate criterion has to be chosen (Fernandes
and Rivoirard, 1999; Rivoirard et al., 2000). The simplest criterion is to minimise the sum of
squares of the fitting errors (minimisation function), so that the smallest value indicates the
“best fit” (Barry et al., 1997). However, other authors recommended application of some
goodness-of-fit measures (by minimising the sum of squares errors divided by the sum of
square experimental values), preferably weighted by the number of pairs (Fernandes and
Rivoirard, 1999) or by the inverse power of distance 4 (Rivoirard et al., 2000). Another
recommended criterion for model selection is Akaike's Information Criterion (Akaike, 1973;
Webster and McBratney, 1989; Webster and Oliver, 2001), although this method is mainly
used for comparing the goodness-of-fit of different models. Finally, based on the model
defined, the estimation of the variables at the grid nodes of the spatial phenomenon is
commonly done by Ordinary Kriging (Matheron, 1971). As a result, a continuous contour
map displaying estimated species density is obtained as well as estimations of the global
mean and its variation, but the same arguments apply to the case of obtaining block estimates
of density or total abundance.

Often, in fisheries studies, data are restricted to the currently measured values, and no
additional sampling can be done. Therefore fishery surveys often have a relatively low
number of samples, sometimes much less than 100. Webster (1992), using sequential
Gaussian simulations with Monte Carlo methods (Deutsch and Journal, 1998), found that a
sample of 100 points gives moderate variogram confidence intervals, whereas at least 144
measurements were necessary for a good estimation. The authors concluded that variograms
based on less than 50 samples will be erratic and will not show the evident structure, while
the form of the variogram became clearer with increasing sample size. Still, in fisheries this
problem is difficult to overcome and leaves the researcher in a position of not applying
geostatistics at all or of doing it despite the problems stated above. Thus, knowledge of the
exact effects of reduced sample sizes in the estimation of the geostatistical model parameters
and a quantification of this variation is fundamental for the application of geostatistics to
fishery data.

Little work has been done on geostatistical simulation to test common methods and tools in a
fisheries context. One application of non-conditional simulations was done by Simmonds
(1992), who used three methods to generate a realisation of a random field with different
degrees of spatial correlation in order to investigate the relationship between survey
strategies and different spatial structures. Rivoirard (2000) employed a geostatistical
simulation study to explore different variogram estimators and methods to estimate the
variogram parameters. Employing the kriging method, simulations of fish and plankton
patches were performed by Kalikhman (2001) and Kalikhman (1997) to examine the effects
of various units of sampling distance on the adequacy of reconstruction of patchy
distribution fields.

The objective of this study is to obtain test the robustness of commonly used structural
variogram tools in fisheries data in recovering the underlying reference covariance function.
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The behaviour of estimation methods and goodness-of-fit criteria was assessed regarding
different combinations of factors such as distribution of the data (Gaussian and log-
Gaussian), the value of the relative contribution of nugget variability (0 %, 30 % and 50 %),
the type of estimator for the empirical variogram (classical and robust), the fitting method
(WLS, Cressie, ML and REML) and number of samples (20, 30, 40, 50, 70, 100 and 200).
For this assessment a non-conditional simulation of isotropic random fields was performed
following a random sampling scheme with known covariance function, data distribution and
different numbers of samples. In particular the following questions were addressed: i) which
fitting method best recovers the initially specified covariance function, taking into account
the factors considered, ii) which goodness-of-fit criterion better identifies the initially
specified covariance model, again taking into account the factors of influence mentioned
above, iii) which factors result in a lower bias in the estimation of the parameters, iv) what is
the minimum number of samples needed to recover the original covariance structure and
which degree of variability in the parameters can be expected with smaller sample sizes, and
v) is it possible to obtain an adjustment model depending on sample size to correct the
estimated model parameters in order to recover the true values of the parameters.

2 Material and Methods

2.1  Simulation of the data

Artificial catch data were computed by non-conditional simulations, following the second
order definition in Chilés (1999). The non-conditional simulation of the random function
{Z (x):xe R"} is a realisation of a random field (RF S(x)), randomly selected in the class of

all RFs with the same second-order moments as Z(x), namely with the same covariance and
variogram. The realisations S(x) were computed employing the Cholesky decomposition
method (Harbitz and Aschan, 2003; Press et al., 1992), using the geoR library of the R
package (Gentleman and Ihaka, 2000; Ribeiro JR. and Diggle, 2001). This method consists
of multiplying a vector of standardised normal deviates by the square root of the covariance
matrix. This classical method has been introduced in geostatistical applications by Davis
(1987). To match one of the goals of this study, namely to assess the robustness of
estimation methods and goodness of fit criteria also for a skewed distribution of the
parameters, more than 100 realisations of the simulated random field should be generated
(Chiles and Delfiner, 1999). Thus for each case studied, we computed 200 realisations. The
realisations were generated on a grid of 50 by 50 cells, both for the Gaussian and the log-
Gaussian RFs, of unit length.

For both types of RF, the reference covariance function was specified as composite function
consisting of a nugget model plus a spherical model, commonly used in fisheries
geostatistics (Cressie, 1991; Rivoirard et al., 2000), with a total sill of 0.3 and range 0.3. The
range was chosen as approximately 20% of the maximum distance of the random field to
avoid statistical fluctuations (Lantuéjoul, 2002). Fig. 1 shows an example of a realisation of
the RFs generated (left panel). The empirical variograms fitted to a sample of one realization
of the RF are also shown, with a plot of the reference variogram (Fig. 1, middle panel)
showing that for a given realization of the RF statistical fluctuations are present. Due to the
relatively low range specified (with respect to the maximum distance of the field) and the
large number of replicate sample we expect that the influence of statistical fluctuations is
minimum. The histograms of the process distribution of the artificial catch data, both for the
Gaussian and log-Gaussian processes, are shown in Fig. 1 (right panel). Further the Gaussian
RF had a mean of 3.0 and a standard deviation of 0.53 (Fig. 1). The log-Gaussian RF was
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slightly modified to include 10% of internal zeros, to provide a more realistic artificial catch
data set, with a mean of 1.17, a standard deviation of 0.67 and a skewness of 2.25 (Fig. 1).
We studied the importance of the following factors: (i) the height of the relative nugget
(nugget (Co) / nugget (Co) + partial sill (Cs) [%]) with 0, 30 and 50 % levels, and (i7) the
sample size with a number of 20, 30, 40, 50, 70, 100 and 200 random samples taken from the
generated RF.

al
1
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Fig. 1: Top, a realisation of a random process with nugget = 0, sill = 0.3 and range= 0.3 following a
Gaussian distribution function. Bottom, realisation of a random process with the same covariance
structure, following a log-Gaussian distribution function. Left: picture of the simulated surface of 50
x 50 cells; middle: empirical variogram (circles), WLS fit of this empirical variogram (solid line),
and “true” variogram of the simulated random process (dashed line); right: process distribution

histogram.

2.2 Detection of spatial autocorrelation

For each of the case studies, the Mantel test statistic (Legendre and Legendre, 1998; Mantel,
1967; Sokal, 1979) was computed to test its power in detecting spatial structures, especially
when they are constrained by the underlying covariance structure, the relative nugget or the
number of samples. We used the Euclidean distance to compute the matrix of geographical
distances and the Manhattan distance for the matrix of biological distance, as recommended
by Legendre (1998) for animal abundance data. To compute the Mantel Test it is typically
recommended to use 500-2000 permutations of the matrices to generate the statistical
distribution and to estimate the probability of obtaining a significant association between
two matrices (Jackson and Somers, 1989). To assess the performance of the test statistic, we
used 1000 permutations. Simulated sample data were regarded as significantly spatially
autocorrelated when the observed p-value was smaller than a=0.05.
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2.3 Geostatistical analysis of the simulated data
Experimental variograms

The spatial structure within the data is explored by computing the empirical variogram,
which is the basic structural tool of intrinsic geostatistics (Rivoirard et al., 2000). It is a
function of distance vector A, equal to the variance of all pairs of the variable measured at
locations separated by the distance 4. For each realisation, variograms were computed using
the classical estimator (Cressie, 1991) and the robust estimator, which is supposed to be
resistant against extreme values (Cressie and Hawkins, 1980):

p(h) = {ﬁ x{;]hz(x,.) ~z(x, )i%} %0.914 +0.988/N(h)) )

where 4 is the distance vector, N(4) is the number of pairs and z(x,) is the realisation of the

random function at location x;. Cressie (1991) justified the use of the robust estimator for
sample distributions departing to a small degree from normality.

Estimation of variogram models by different fitting methods

The appropriate model fit to the empirical variogram is the most important step in a
geostatistical analysis. Fitting may done by eye (Petitgas, 1996) but in order to reduce
subjectivity and to increase reproducibility, an automatic procedure is preferable (Fernandes
and Rivoirard, 1999). To fit theoretical variogram functions to the variograms of the
simulated sample data, least squares methods as well as maximum likelihood methods were
applied. Least squares methods approach the model which is “visually” close to the
variogram curve, by minimising the sum of squares of the differences between the generic
variogram estimator and a model (Chilés and Delfiner, 1999). Generalized least squares
(GLS) uses only the second-order structure of the variogram estimator and does not make
assumptions about the whole distribution of the data (Cressie, 1991). GLS is very difficult to
implement in practice, but some simplifications of it are often used. Most recommended is
the weighted least squares method (Webster and Oliver, 1992) where a weight is given to the
difference between estimator variogram and model. In this study, we used two least squares
fitting methods: weights equal to the number of pairs at each distance class (Cressie, 1991),
referred to as WLS, and a modification of this method introduced by Cressie (1985), referred
to as “Cressie”.

The maximum likelihood (ML) and the restricted maximum likelihood method (REML)
(Cressie, 1991), which do not require a computation of an empirical variogram, were also
applied to all simulated sample data sets. The maximum likelihood estimation procedure
relies on the assumption of a Gaussian distribution of the data. With ML estimation and
small to moderate sample sizes the estimators of the parameters are biased (Matheron, 1971).
The ML estimator is supposed to be more biased than the REML estimator (Cressie, 1991).

One objective of this study is to recommend a fitting method which recovers best the initial
values of the parameter of the covariance functions specified, depending on the combination
of the factors distinguished: distribution of the data, relative nugget, estimator type and
number of samples. Therefore to follow the recommendations as well as to test the most
common method, employing WLS spherical, exponential, gaussian and linear models
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(Cressie, 1991) were fitted. In contrast with Cressie, ML and REML only spherical models
were fitted. The estimation of the parameters was done by specifying initial start values for
each fitting procedure. For normally distributed data a fitting was carried out with random
initial values, within a 10 % variation around the true parameters.

2.4  Assessment of selected goodness-of-fit criteria

Several measures of the goodness-of-fit were computed to assess variogram models obtained
by WLS. One criterion was the value of the minimising function (Barry ef al., 1997), derived
from the fit procedure with WLS. The smaller the values, the closer the fit to the variogram
curve. A number of goodness-of-fit statistics (gof) were used to identify the model function
with the closest fit, regarding the squared difference between the variogram curve and the
model (Rivoirard et al., 2000): '

S -ymf
1=-2 2
A i @

where 7(h)is the empirical variogram and y(h)is the fitted model. The closer this gof'to 0,
the better the fit. Fernandes (1999) proposed weights for this approach.
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where weights @ () used are proportional to the number of pairs used to compute 7(h) (gof

2) and to the inverse square of the distance # (gof 3). Additionally, Akaike's information
criterion (Akaike, 1973) (AIC) was computed, which uses the squared residuals between the
experimental values and the fitted model (Webster and Oliver, 2001). Once again the
smallest AIC indicates the best fit.

Furthermore, cross-validation procedure (Isaaks and Srivastava, 1989) was carried out, to
compare the estimated and true values only using the information available in the simulated
data set. This bootstrap method is often used to compare different variogram models (Isaaks
and Srivastava, 1989; McBratney and Webster, 1986). The model with the closest values to
the mean standardised error (cros/) (equal to 0) and its standard deviation (cros2) (equal to
1), 1s regarded as the best fit.

2.5 Evaluation of the fitting procedures and gof criteria
Assessment of the fitting methods

To assess the capability of the fitting methods applied to recover the initially specified values
for the parameters nugget, sill and range of the spherical covariance function, medians (with
a 95 % confidence interval) of the estimated values for the parameters were plotted vs
number of samples for all factors (relative nugget, distribution of the data and estimator type
used). Subsequently a Wilcoxon test (Sokal and Rohlf, 1994) was computed for each
combination of fitting method and number of samples for both estimator types, to test if the
median of the estimates of the parameters of the spherical model differed significantly from
the initial ones. Furthermore Kruskal — Wallis tests (Zar, 1999) were carried out for each

Vanessa Stelzenmiiller: Analyse rdumlicher und zeitlicher Variabilitit von Fischpopulationen



KAPITEL 1: Assessing the performance of geostatistical tools -19 -

fitting method and estimator type (classical and modulus) to test the null hypothesis, that the
median of the distribution of the estimated values (nugget, sill and range) are the same in
each group (for each sample size). The alternative is that at least two groups are significantly
different. It was thus tested if the factor sample size has a significant influence on the
estimation procedure carried out by the different fitting methods described above.

Assessment of common goodness-of-fit criteria

The percentage of cases in which a goodness-of-fit criterion was able to identify the
spherical model as “best fit” (relative to the exponential, Gaussian and linear variogram
model), was plotted vs number of samples for the different factors of influence defined
above. Thus a qualitative assessment of each criterion in relation to corresponding
combinations of factors was achieved. '

2.6  Evaluation of adjustment models to correct the estimated model parameters
depending on sample size.

For this approach only those cases were considered in which the estimated model parameters
indicated a non-linear relationship with increasing sample size. This particular example is of
quite general applicability because it represents a commonly encountered situation in
fisheries geostatistics: large amounts of small-scale (nugget) variability and skewed data.
The estimated model parameters (nugget and sill) of the spherical models fitted to the
simulated log-Gaussian data with initial relative nugget of 50 % were used. Extreme values
were temporarily deleted from the data set and values of the nugget were subtracted from the
estimated sill to obtain the partial sill. Finally, estimated values of the model parameters
were standardised by the initial vatues of each parameter (nugget = 0.15 and sill = 0.15).

Several exponential functions, which describe a positive or negative asymptotic process,
were selected and fitted to the standardised parameters using a non-linear regression (Bates
et al., 1997). The one with the lowest residual sum of squares (RSS) was selected as the best
fit. Using these functions it is possible to achieve a correction for any sample size greater
than 20, in order to estimate the reference values of the parameters nugget and sill of a
spherical model fitted to any catch data displaying the above described characteristics.

3 Results
3.1  Detecting spatial structure (Mantel test)

The percentage of spatial autocorrelations in the simulated data detected by the Mantel test
statistic depending on the number of samples (20, 30, 50, 70, 100 and 200) is shown in Fig.
2a, regarding the factors “relative nugget” and “distribution type”, respectively. For
Gaussian-distributed data, the Mantel test indicates significant spatial autocorrelations in
40% to 80% of the cases, in the absence of a “relative nugget”. Not surprisingly, with
increasing nugget effects (30% and 50%) the power of the test is apparently decreasing. This
tendency is less pronounced as sample size increases, due to the fact that more samples are
taken within the radius of covariance of the field. For log-Gaussian-distributed data, the
power of the test is generally lower, with chances of greater than 50% to detect spatial
structures limited to cases without nugget effects and large sample sizes.
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The median values for Pearson correlation coefficient provided by the Mantel test (with 95
% confidence intervals) depending on the number of samples are shown in Fig. 2b, again
regarding the factors “relative nugget” and “distribution type”, respectively. The degree of
spatial autocorrelation detected using Pearson correlation index in the Mantel test was low
and decreased for scenarios from 0% to 50% nugget effect; however, variation with sample
size was marginal (Fig. 2b), unlike the percentage of significant cases. The low correlation
values can be attributed to the non-linear behaviour of the spherical covariance model at
medium distances, because the Mantel test using the Pearson correlation coefficient is only
able to detect significant correlations for linear behaviour, i.e. at short distances of the
spherical model. In the case of log-normally distributed data, the correlation detected was
even lower, regardless of the initial percentage of nugget and sample size (Fig. 2b).
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Fig. 2: (a) Percentage of trials in which the p-value from the spatial Mantel correlation was
significant. (b) median (and respective 95% CI, calculated with the Wilcoxon test ) of
correlation index for the spatial Mantel test. m 0 % relative nugget, ® 30% relative nugget
and A 50% relative nugget.
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3.2 Qualitative assessment of the fitting methods employed
Estimation of variogram parameters -nugget

Generally, for increased nugget variability more samples were needed to estimate the correct
nugget value of the reference function in all estimation methods (Fig. 3a and b). In the case
of the Gaussian-distributed process (Fig. 3a), Cressie’s method performed best, since even
with a small number of samples, correct nugget values were estimated. No significant
difference was observed between the classical and the modulus estimator, except for very
small sample sizes (n=20) and nugget values of 30 and 50%. The accuracy of WLS and
Cressie methods was high for large sample sizes, but diminished in the presence of high
nugget variability. The accuracy of the ML and REML methods followed a similar pattern,
but their precision was higher than the WLS and Cressie methods. The results of the
Kruskal-Wallis test showed that in the presence of nugget variability, the sample size was a
significant factor determining the accuracy of the nugget estimation (chi-square between
13.66 and 119.27, p<0.0001).

For log-Gaussian distributed processes, the simulation results were similar for the classical
estimator to the Gaussian-distributed process, but the modulus estimator performed very
poorly in estimating the correct nugget (Fig. 3b). The classical estimator behaved similarly,
in terms of precision and accuracy, to the case of the Gaussian process, both for WLS and
Cressie’s fitting methods. The behaviour of the ML and REML methods was also similar to
the Gaussian process, with similar levels of precision and accuracy. The Kruskal-Wallis test
detected a significant effect of sample size when the nugget component was 30 or 50% (chi-
square between 47.86 and 124.29, p<0.0001).

Estimation of variogram parameters -sill

The influence of various factors (nugget, sample size, fitting method) on the estimation of
the reference sill of the variogram is presented in Fig. 4a and b. Generally, the least square
methods show less precision than likelihood methods, but their accuracy at large sample
sizes is similar (Fig. 4a). For moderate amounts of nugget variability (30%), maximum
likelihood methods could estimate the sill parameter with high accuracy for increased sample
size. The importance of the nugget component does not have as much importance in the
estimation of the correct value of the sill, converging asymptotically towards the reference
value. The robust estimator performed different than the classical only for very small sample
size (n=20). The results of the Kruskal-Wallis test showed that sample size was a significant
factor with increasing nugget component (chi-square varied between 32.06 and 116.65,
p<0.0001). Regarding the log-Gaussian distributed data, weighted least squares methods
performed well asymptotically, although with lower precision than maximum likelihood
methods. It is remarkable to note that the robust estimator converged quicker (i.e. at lower
sample sizes) to the reference sill value for 30% nugget variability and 50% nugget
variability. Maximum likelihood methods performed well, with high precision and accuracy
for moderate to large sample sizes, although accuracy increased with increasing nugget
variability. The REML estimator showed higher instances of bias than the ML estimator.
The results of the Kruskal-Wallis test showed that sample size was a significant factor with
increasing nugget component (chi-square 30.54 and 80.33, p<0.0001).
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Estimation of variogram parameters -range

In general, the estimation of the range parameter produced the lower levels of accuracy and
precision, both for Gaussian and log-Gaussian data (Fig. 5a and b). Further in both cases,
increased accuracy was detected for the likelihood methods than for the least squares
methods. Between least squares methods, WLS and Cressie performed equally for both
types of data distribution. The robust estimator showed accuracy in estimating the range
parameter for Gaussian data, but systematically overestimated the range in the presence of
nugget variability in the case of log-Gaussian data. The results of the Kruskal-Wallis test for
the Gaussian data showed that sample size was a significant factor (chi-square between
24.29 and 91.58, p<0.0001). For the log-Gaussian data, sample size not in general a
significant factor, being significant only for the REML estimator (chi-square: 34.74,
p<0.0001).
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Fig. 3: Median values and 95% confidence intervals of the estimated variogram nugget parameter,
regarding Gaussian distributed data (a) and log-Gaussian distributed data (b). Factors of influence
and levels considered: fitting methods WLS, Cressie, ML and REML; nugget variability of 0%, 30%
and 50%. e classical estimator, ¢ modulus estimator and A fitting methods ML and REML.:
Estimates significantly different from the reference value (Wilcoxon test) are denoted by open
symbols, values not significantly different by closed symbols.
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Fig. 4: Median values and 95% confidence intervals of the estimated sill, regarding Gaussian
distributed data (a) and log-Gaussian distributed data (b). Factors of influence and levels
considered: fitting methods WLS, Cressie, ML and REML,; variability of 0%, 30% and 50%.
o classical estimator, ¢ modulus estimator and A fitting methods ML and REML.: Estimates
significantly different from the reference value (Wilcoxon test) are denoted by open
symbols, values not significantly different by closed symbols.
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Fig. 5: Median values and 95% confidence intervals of the estimated values of the range,
regarding Gaussian distributed data (a) and log-Gaussian distributed data (b). Factors of
influence and levels considered: fitting methods WLS, Cressie, ML and REML,; nugget
variability of 0%, 30% and 50%. e classical estimator, ¢ modulus estimator and A fitting
methods ML and REML.: Estimates significantly different from the reference value
(Wilcoxon test) are denoted by open symbols, values not significantly different by closed
symbols.
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3.3 Assessment of selected goodness-of-fit criteria

In the absence of nugget variability (Fig. 6a, top panel), the criteria AIC, gof2 and min
performed relatively well in the case of normally distributed data. These methods helped
identify the reference variogram in 40-50% of the cases, the proportion of correct fits
increases with sample size. The criterion gof7 ranks second regarding capability of detecting
the reference variogram, with 50% of the cases for sample size 200. The criterion gof3 is less
powerful, detecting the correct variogram in 40% of the cases for sample size 50 or above.
Cross-validation is able to detect the original function in only 20 % of the cases. With 30%
nugget (Fig. 6a, middle panel), the relative rank of the different gof criteria is very similar,
although the power of AIC, gof2 and min increases to 50 - 60% the probability of detecting
the reference variogram. The criterion gofI performs poorly, with chances of detecting the
reference variogram around 40% for small sample sizes and around 30% for larger sample
sizes. The power of the cross:validation criteria cros! and cros2 is also very low. With
increasing nugget effect (50%, Fig. 6a, lower panel) the results are very similar, with AIC,
gof2 and min performing reasonably well. It is remarkable that the power of gofI decreases
with increasing nugget variability and sample size.

Regarding log-Gaussian data (Fig. 6b), results obtained for the gof criteria are very similar to
the normally distributed data described above. Clearly, AIC, gof2 and min are the most
suitable methods to detect agreements between estimated and reference variograms, while
gof1 and gof3 only give poor results with increasing sample size and level of the pre-selected
nugget effect.

3.4 Evaluation of adjustment models to correct the estimated model parameters
depending on sample size

The adjustment models fitted to the standardised estimates of the spherical variogram model
parameter vs sample size are summarised in Fig. 7. The asymptotic behaviour of the
estimates with increasing sample size is represented very well by three-parameter
exponential models, showing low values of RSS. The correction factors for nugget (Fig. 7, a
and b) were lower than for the sill parameter (Fig. 7, ¢ to f). The types of models and the
estimated parameters of the adjustment models are listed in Table 1.
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Fig. 6: Percentage of cases in which the diverse “goodness-of-fit” criteria tested were able to
detect a spherical model as the best fit as with increasing sample size, with normal data (a)
and log-normal data (b). Here estimator types, with (o) for the classical estimator
(continuous line) and (a) for the modulus estimator (dashed line) and percentage of relative
nugget have been distinguished Crosl indicates the mean standardised error and cros2 its
standard deviation, obtained by cross-validation.
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Fig.7: Analysis of relationships between the standardised estimates of the spherical
variogram model parameters nugget and sill as a function of sample size, using non-linear
exponential models with the estimated parameters a, b, and c. The standardised parameter
estimates were derived using, ML (a and c¢), REML (b and d), WLS (e) and Cressie (f) in the
case of log-normally distributed data with a pre-selected relative nugget effect of 50 %.
Models employed and estimated parameters in Table 1. See text for more details.

Table 1: Analysis of relationships between the standardised estimates of the spherical variogram
model parameters nugget and sill with sample size using non-linear exponential models with the
estimated parameters a, b, and c. Factors of influence and levels considered: log-normally distributed
data with a relative pre-selected nugget effect of 50%. These models aim to adjust parameter
estimates to any sample size > 20. RSS is the value of the residual sum of squares and AIC is the
value of Akaike's information criterion.

‘1;2?:1?122 method/  non-linear adjustment model parameter RSS AIC
t0 adjust estimator model a b c
nugget ML a.e @/mmplesizeTd) 106 205  88.07 0.0006 -31.79
nugget REML g.e ®/mamplesizeted) 101 820  31.71 0.0004 -35.13
sill ML gt/ (amplesize ) 0 07 926 2043 0.0009 -29.46
sill REML g/ amplesize +0) 03 1357  20.60 0.0023 -24.24

sill WLS jasicat | €270/ Gamplesize®a) 997 12.38 1.62 0.0063 -18.16
sill WLS oquns € 0/ Gamplesizera) 916 079  -17.62 0.0055 -18.86
sill CressiCossica €70/ Camplesizeta) 905 1298 0.50 0.0049 -19.60
sill  Cressiepoque €@/ Gamplesize*e) 010 052  -18.55 0.0065 -17.90
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4 Discussion

This study focused on evaluating the robustness of the most common geostatistical methods
used in fisheries applications. Thus only a selection of possible factors (sample size, relative
amount of white noise, estimator type, fitting method, data distribution) effecting a sound
geostatistical analysis could be assessed here. Of course Gaussian and log-Gaussian data
distributions are not the only ones possible in fisheries (Rivoirard et al., 2000; Stefansson,
1996), but a log-Gaussian distribution represents one possible skewed distribution. Also, a
random sampling design constitutes the most simple design possible, in practice other
sampling designs like stratified random might be more common, but the complications in
estimating the parameters deriving from the sampling design were not the objective of this
work and deserve further study (see e.g. Kalikhman and Ostrovsky, 1997; Simmonds and
Fryer, 1992).

Our simulation study clearly indicates that the Mantel test has a high power to detect spatial
structures only for large sample sizes, absence of any nugget variability and normally
distributed data. Increasing random variability (viz. higher levels of nugget effects) decreases
the amount of autocorrelation present in the samples, and consequently, diminishes the
coefficient of correlation and the % of significant cases (Fig. 2). It has been previously
described that values of the correlation coefficient of the Mantel test need not be large in
order to be statistically significant (Legendre and Fortin, 1989). These authors have stressed
that the Mantel test statistic involves a linear model, being indicative only for the linear
component of the relationship between values from two distance matrices. Hence it tests the
null hypotheses “Hy: the variable is not autocorrelated as a gradient”, although non-
parametric coefficients (e.g. Kendall, Spearman) may also be used. Thus, non-linear spatial
relationships cannot be detected by the Mantel test. In this study, the overall underlying
covariance function has been defined as a spherical one, which is nearly linear only for small
distances. Consequently, the Mantel test will be appropriate only for small distances in non-
linear covariance functions.

Furthermore, our results showed that the factors sample size, nugget variability, fitting
method and estimator type have an important influence in recovering the reference
covariance structure. For normally distributed data, all the methods tested can provide
correct estimates of the sill for large sample sizes (100 samples or more), in some cases even
for 50 or 70 samples. Our results show that sample size is a very important factor in
determining the reliability of variogram parameter estimates. For sample sizes below 50,
estimates of the nugget and sill variogram parameter are doubtful for large amounts of
nugget variability, except for moderate amounts of nugget variability (30%) and Cressie’s
fitting method. This is consistent with Legendre (1989), who advised not to perform a spatial
autocorreation analysis with fewer than 30 sampling points. Webster (2001) recommended a
minimum of 100 sampling points to achieve moderate confidence in the empirical
variogram. Since in standard fishery surveys the number of samples are typically lower,
geostatistical evaluations are normally carried out at the limit of the reliability of these
methods. Thus, the best available tools should be selected, based on the knowledge available
for sample distribution.

Comparing the estimator types, our results showed no differences for Gaussian-distributed
data between the classical and the robust estimator in both accuracy and precision. Contrary,
in the log-Gaussian case, the robust estimator significantly underestimates the nugget and
overestimates the range parameter, regardless of any amount of nugget variability and
sample size, whereby accurate estimates were detected for the sill parameter. Genton (1998),
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for example, suggested applying both Matheron's and the robust estimator and comparing
the outcomes. On the other hand, McBratney (1986) pointed out that the robust estimator
was devised for the case when even after transformation to normality a variable may be
heavier in the tails of its distribution than normal. Thus, in our study the robust estimator did
not perform appropriately for log-Gaussian data with increasing nugget variability because it
departs importantly from the underlying distribution assumption. There are, however, some
reported examples from fisheries studies where the robust estimator had been successfully
applied even though the data included extreme values (Maravelias et al., 1996; Sullivan,
1991). In the presence of outliers in skewed distributions, application of the robust estimator
might drastically influence the estimation of variogram parameters, in much the same way as
the elimination of the outliers from the data set (M. Rufino, unpubl. data). We thus conclude
that it is best to consider the results of both estimators, and caution should be taken when
there is strong departures of normality in the data distribution.

Our assessment of the gof criteria reveals the poor behaviour of the cross-validation
procedure in defining the proper variogram model: it yields good results in only 20% of all
cases, regarding all sample sizes, levels of the nugget variability, types of estimator and data
distributions. This might be explained by the fact that the cross-validation procedure is able
to indicate the reference model only when the correct variogram model is supplied. We
recommend the application of goodness-of-fit criteria based on the Akaike Information
Criterion (AIC), or alternatively, with weights equal to the number of pairs (gof2), even for
small sample sizes. Other authors have also recommended the Akaike Information Criterion
for selecting the best model from several plausible ones (McBratney and Webster, 1986;
Webster and Oliver, 2001).

For the sill and nugget, underestimation was detected for any of the methods tested, with
increasing levels of nugget variability. Also with increasing nugget variability, more samples
are required to increase the accuracy of the estimates of these parameters. This finding is less
pronounced in the case of maximum likelihood method for estimating the range, where
accuracy is high regardless of sample size. The range parameter of variograms was in
general overestimated by all methods studied, with the lowest precision shown by the least
square methods, with deviations up to = 0.05 from the correct value. Further on, precision is
slightly higher for maximum likelihood methods when estimating any of the variogram
parameters, both for Gaussian and log-Gaussian data. Our results showed that maximum
likelihood methods (ML and REML) are robust against deviations of normality, which is an
assumption of these methods (Cressie, 1991).

Finally, the correction factors (Fig. 7) were very low for the example of the nugget, which is
the parameter that controls smoothness in the kriging procedure. Thus, even if the
differences do not appear very large on a contour map of kriging estimates, they can have a
large impact on the accuracy of the abundance estimates, so the choice of fitting method is
critical (Matheron, 1989).

5 Conclusions

Sample size proved to be a very important factor in determining the reliability of variogram
parameter estimation. For sample sizes below 50, estimates of the nugget and sill of
variograms are problematic, especially for least square methods. In this case, maximum
likelihood methods yield better results, even for log-normally distributed data and especially
for high levels of a nugget variability. They generally have higher precision and a higher
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accuracy in the estimation of the variogram parameters, especially the range. Although the
weighted least squares estimator (WLS) introduced by Cressie (1985) is widely adopted in
spatial analysis, probably due to its simple form, several authors point to its poor finite
sample behaviour (Miiller, 1999). Within the family of least square fitting methods,
Cressie’s method is more reliable than WLS, especially for estimating the sill and nugget, for
low number of samples (Cressie, 1991). Thus, given the low number of samples normally
occurring in a fishery survey, we suggest that the ML or REML method be employed for
estimation of the variogram model parameters. However, the higher the level of nugget
variability, the more critically must the estimates be evaluated. The proper selection of
models should be based on AIC or a goodness-of-fit criterion giving weights equal to the
number of pairs considered. Generally, a geostatistical approach in a fisheries context is
often carried out at the border of acceptability from a theoretical point of view; however, the
results of this simulation study show that the reliability of a structural analysis can be
improved when appropriate tools are employed. Another aspect that must be considered is to
correct the estimated variogram parameters derived from a small number of samples by
correction factors similar to the ones shown in Fig. 7, in order to obtain more precise
parameter estimates. For this purpose, the non-linear models provided in this study might be
used to express the relationships between the standardised estimates of the spherical
variogram model parameters nugget and sill with sample size (Table 1). However, this
approach needs further evaluation and verification with independent data sets before it can
be used in routine surveys. Further simulations studies are essential to account for other
types of data distribution or sampling designs. In general, we recommend that more attention
is devoted to the combination of data distribution and number of samples for selecting the
tools for structural variogram analysis. Thus, the appropriate choice of geostatistical tools in
the analysis of fisheries data to obtain more accurate and precise abundance indices is
cssential, taking into account the particular spatial phenomenon under investigation
(Matheron, 1989).
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KAPITEL 2

Meso-scaled investigation of spatial distribution of the flatfish species dab,
Limanda limanda (Linnaeus, 1758), within Ehe German Bight:
a geostatistical approach

Vanessa Stelzenmiiller', Gerd-Peter Zauke" ", and Siegfried Ehrich®

! Carl von Ossietzky Universitit, ICBM, D-26111 Oldenburg, Germany.
2 Federal Research Centre for Fisheries, Institute for Sea Fisheries, Palmaille 9, D-22767 Hamburg, Germany.
** Corresponding author. E-mail: gerd.p.zauke@uni-oldenburg.de.

Abstract

In the context of planning and building offshore windfarms within the inner German Bight,
this study tries to provide a method for evaluation of future long-term monitoring data in
order to assess possible effects on fishes. Data collected by the German Small-scale Bottom
Trawl Survey (GSBTS) during the summer cruises 1996-2000 in a small area of the inner
German Bight were supplied by the German Institute of Sea Fisheries as an example data set
for spatial analysis. Geostatistical tools were used to discover characteristics and persistence
of spatial structures of two different size classes of the demersal fish species dab, Limanda
limanda (Linnaeus, 1758), as a measure of natural variability. Spatial autocorrelation was
detected in the catch data for both size classes, and spatial structuring was persistent
throughout the time of investigation. Both size classes could be characterised by a moderate
degree of spatial dependency within the catch rates. Furthermore, larger dab tend to
aggregate in patches 3.2 km in diameter, whereas medium-sized dab aggregated in patches
with average diameters of 1.1 km. The modelled structures were used to calculate the mean
c.p.u.e. of dab within the survey area. This kriged mean was compared with the calculated
arithmetic mean. Furthermore, the geostatistical variance of the arithmetic mean was
compared to the ‘classical’ variance (neglecting the spatial structures). The contour plots of
biomass index, estimated by kriging based on the models fitted to the mean structures for all
years, displayed no locations with persistently increased fish biomass index for either size
class throughout the years.

Key' Words: dab, geostatistics, Limanda limanda, mean semivariogram, ordinary
blockkriging, spatial structure

pre-print: Proceedings of the Second International Symposium on GIS/Spatial analyses in Fishery
and Aquatic Sciences (Nishida, T., Kailola, P.J. & Hollingworth, C.E., Eds.), Fishery/Aquatic GIS
Research Group 2004, Kawagoe-city, Japan (2004). 249-268.
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1 Introduction

The inner part of the German Exclusive Economic Zone (EEZ) is a preferred area for
constructing offshore windfarms. One of the questions is how to detect possible effects on
fish populations after the windfarms have been put into operation. Classical methods to
obtain quantitative information within fish assemblages and to detect possible changes over
time are based on bottom trawl surveys, which are carried out under standard survey
protocol conditions, including standard fishing gear and sampling strategies.

Stations randomly distributed over an area can yield unbiased estimates of the variable of
interest only if the sampling-point observations are independent (Petitgas, 2001). When
random sampling is carried out at an appropriate spatial scale, it effectively extinguishes any
underlying spatial structure in the distribution of organisms. However, the scale of spatial
distribution of the target species is usually unknown, and this factor may result in a bias in
the calculation of estimates (Maynou, 1998). The presence of a spatial structure is indicated
by spatial autocorrelation between pairs of samples, viz. the realisation of a regionalised
variable (e.g. biomass of organisms) at one location influences the realisations at
neighbouring locations. Thus, when samples are not taken independently of one another and
when the population sampled is spatially structured, the computation of any variance
requires a model of the spatial correlation in the population (Matheron, 1971). Spatial
autocorrelation present in a data set can be analysed and modelled mathematically by
geostatistics.

Geostatistics was initially developed for the mining industry to optimise the exploration of
natural resources (Clark and Harper, 2001; Isaaks and Srivastava, 1989; Journel and
Huijbregts, 1978). In the past 25 yr, applications of this methodology in ecology have
increased continuously (Legendre, 1993; Robertson, 1987; Rossi ef al., 1992). In fisheries,
geostatistics is used to optimise sampling strategies (Petitgas, 1996), to estimate catch data
and corresponding variances, taking into account the existence of spatial structures (Conan et
al., 1992; Fernandes and Rivoirard, 1999; Maynou, 1998; Warren, 1997), as well as to map
the estimated distributions and spatial patterns of organisms (Lembo ef al., 1999; Maravelias
et al., 1996). Therefore the geostatistical approach was employed to investigate the
persistence and changes of spatial patterns with time. Additionally, the computation of

unbiased estimates of the mean fish biomass within an area of interest can be achieved by
this method.

The German Institute for Sea Fisheries provided for this study catch data from the German
Small-scale Bottom Trawl Survey (GSBTS) sampled in an area of about the same size as an
offshore windfarm with approximately 200 windmills. The development of the spatial
characteristics of the non-target flatfish species dab (Limanda limanda), the most common
flatfish species in the North Sea, is described. Although this species carries out seasonal
migrations between feeding and spawning areas, the spatial distributions of the fish in spring
and summer are supposed to be stable (Rijnsdorp et al., 1992). The objective of this study
was the application of geostatistical tools for the assessment of spatial structures and the
estimation and mapping of a demersal species. The advantages of a spatial analysis as a
means of providing information on natural variability and possible effects of windfarms on
the fish population were highlighted.
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2 Methods
2.1  Survey area and fishing surveys

The data used for this analysis are from an area of the inner German Bight (box A, Figure 1),
one of the eleven standard sampling areas of the GSBTS in the North Sea (Ehrich ez al,
1998). Sampling took place from 1996 to 2000 during summer. Catch data were assembled
aboard the German research vessel “Walther Herwig III”. Fishing was carried out under
standard IBTS (International Bottom Trawl Survey) protocol using a standard net GOV
(Chalut a Grande Ouverture Verticale), with a trawling time of 30 min at a trawling speed of
4 knots (1 knot=0.514 m s1). The locations of sampling stations (21 to 24) as well as trawl
directions were selected randomly within the area of investigation for each year of the
survey. The trawl positions were taken as midpoint of the haul converted to an absolute
measure in km (easting and northing) relative to 54°27'N and 6°58'E.
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Fig. 1: Survey area “box A” within the German Bight, with locations of the sampling stations
in 1996 as an example of the survey design.

2.2 Biological categories considered

In order to explore spatial structures depending on biological categories, such as size (age) of
fish (Fernandes and Rivoirard, 1999), the catch data for dab were separated into two size
classes: 9.5-19.5 cm (2-7 yr old; referred to as d2) and > 19.5 em (older than 7 yr; referred
to as d3) following Heessen and Daan (1996). The size-class < 9.5 cm was excluded from
the analysis as there were too few juveniles in the catches. The group d2 is supposed to be
the most important one, because dabs will mature at a length of 13 cm (Rijnsdorp et al.,
1992).

2.3 Preparatory data analysis

Numbers per 30 min trawl time within each size class were converted into biomass
(kg30min™ trawl time; c.p.u.e.) on the basis of the following length-weight relationship
(unpublished data):

weight [g] = a - length [cm]® with a=0.0074 and b=3.113 (D
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All catch data were tested for normality using the Shapiro-Wilk test (Royston, 1982). In
cases of deviation from normality, c.p.u.e.s were log-transformed and the log-transformed
data were used for further analysis. Catch data that had to be transformed were d2 and d3 in
1997, d3 in 1998 and d3 in 1999. Further linear and non-parametric regressions with one
covariate (Bowman and Azzalini, 1997) (north and east co-ordinates) were carried out to
investigate possible trends within the c.p.u.e.s (Kaluzny et al, 1998). Significant linear
trends within the catch data with east co-ordinates were detected for d2 in 1997 and 1998
and with north co-ordinates for d2 in 1999. These trends were taken into account for the
subsequent spatial analysis.

2.4 Geostatistical analysis
Variography

First an experimental semivariogram was calculated to analyse the spatial structure of dab,
followed by fitting of a theoretical variogram model. Using the spatial structure defined,
ordinary blockkriging, a linear method of spatial prediction was used to estimate the annual
mean c.p.u.e. within box A. For mapping predicted distributions of dab, ordinary
pointkriging was employed.

The structure of spatial variability of Z(X) (kg30min™ per size class) was assessed by an
experimental covariance function. Experimental semivariograms 7h) were used to describe
the spatial structure of fish biomass. The semivariogram outlines the spatial correlation of
data, measuring the half variability between data points as a function of their distance. In the
absence of spatial autocorrelation among samples, the semivariance is equal to the variance
of Z(*) . A monotonic increase of the semivariance with increasing separation distance () of
the sampling positions indicates the presence of spatial autocorrelation. When a linear trend
was present, c.p.u.e.s were detrended (Kaluzny er al, 1998). Only omnidirectional
semivariograms were computed using the classical estimator (Matheron, 1971):

N(h)

i) ={1/[2N@] } 3 [2(x; +h)-Z()]" (2
i=l
and the robust estimator (“modulus”), which is supposed to be resistant against extreme
values, introduced by Cressie and Hawkins (1980):

N(h) 0.5

?{(h):{[ 1/ [N()] }ZIZ(Xi+h)~Z(Xi)! } / [0.914+0.988 /ND)] (3)

i=1

where 2(*) is the realisation of biomass (c.p.u.e.) of dab for one size class at station %,

Z(%+h) is another realisation separated from *; by a discrete distance / (measured in km)
and V(%) is the number of pairs of observations separated by 4. Furthermore, to improve
knowledge of spatial structures, for each size class, average semivariograms (survey years
1996-2000) were computed (Rivoirard et al., 2000). The absolute average semivariogram
represents the average of the different individual semivariograms, weighted by the number
of pairs at each distance. It was thus assumed that the different spatial distributions can be
described by the same ecological process.

In many cases a transformation of the data is recommended, since the structure of the
transformed variable often is more regular than that of the untransformed variable (Rivoirard
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et al., 2000). This would lead to a biased estimate of the raw structure. However, to allow
ecologically sound interpretations and to establish the structure of the raw variable, an
appropriate back transformation is required after performing the structural analysis. We used
the following equation for the log-transformed data (Guiblin ef al., 1995):

y(h) = [mz + V&I‘(Z)] { 1- exp—[ c2yL (h) / Var(L)}} (42)
with
o2 =log [ 1+var(Z) / m2:| (4b)

where m is the mean of Z(x), L is the logarithmic transformation of the variable and 7:(? is
the structure of the transformed variable. A simulation study described in Rivoirard et al.
(2000) showed that the use of log-transformation, associated with a back transformation,
provides an improved method for estimating variogram parameters and estimation variance.
Subsequently, parameters (nugget, sill and range) of spherical and linear models were fitted
automatically (Cressie, 1991), to reduce subjectivity and to ensure reproducibility of the fit
(Fernandes and Rivoirard, 1999). Following Webster and Oliver (2001), firstly the types of
models regarding the general trends of the semivariogram curve (log back semivariograms)
were selected, and then models were fitted using a weighted least-squares method with
suitable weights. Least-squares methods are based on finding the model which is “visually”
close to the semivariogram curve by minimising the sum of squares of the differences
between the generic semivariogram estimator and a model (Chilés and Delfiner, 1999). Here
a weighted least-squares procedure recommended by Cressie (1991) was employed, where
more weight is given to the points near the origin, which is the crucial part in determining
the variogram parameters:

;mm{[ [0/ )] ]—1}2 )

where N(7) is the number of pairs used to compute the experimental semivariogram 7()
and 7™ s the fitted model (spherical, exponential or linear). In order to assess the
goodness-of-fit (gof) of the different models, for each fitting procedure an index
recommended by Fernandes and Rivoirard (1999) was computed:

gof={;m<h> [&(h)~«z<h)]2}/ {Z w(h) [%(h)]z} ©6)

where @A) is the number of pairs used to compute the semivariogram, 7(Mis the

experimental semivariogram and 7 (M is the fitted model. The closer the gof to zero, the
better the fit. Furthermore, the strength of spatial dependence (SpD) was calculated
(Robertson and Freckmann, 1995) as:

SpD = (1— nugget/ sill)-100 (M

This information was used to compare changes in the development of spatial autocorrelation
in catch data with time and among size classes. The greater this value (ranging from 0 to
100), the greater the spatial dependence. Low spatial dependency indicates a high sampling
and/or analytical error, or a spatial variability occurring at scales smaller than the minimum
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distance separating small sampling pairs (Robertson and Freckmann, 1995). Sokal and Oden
(1978) related the diameter of an aggregation of a species to the modelled range. Therefore
the effective range (eR) was compared for each model fitted, in order to detect
characteristics and changes of spatial patterns with time. The effective range for spherical
models is equal to the estimated range. In addition, the observed data were cross-validated
by ordinary kriging, which provides a measurement of the reproduction of the data by the
model defined and the kriging procedure. The results of this jack-knifing method are given
by standardised errors. If the mean of this standardised error (Zscore) is zero and the
standard deviation (SD-Zscore) approximately 1, then the model and the method employed
provide an adequate reproduction of the data (Isaaks and Srivastava, 1989).

Ordinary kriging

Mapping of density surfaces of the predicted dab biomass index was carried out for both size
classes with ordinary pointkriging. This method estimates the variable values at unsampled

locations using the observed values Z(X,) in the surrounding neighbourhood as follows
(Matheron, 1971):

206,) = YA ZX,) ®)

where 4 are charging weights attributed to each z(x,) subject to 2.=1in order to guarantee
unbiased estimates (Cressie, 1991). The uncertainty of the estimation of ordinary
pointkriging was expressed by mapping the kriging variance (Petitgas and Lafont, 1997).
Mean catch rate estimates over box A for both size classes 4(Xo) of dab were obtained by
ordinary blockkriging, a method used as a direct method of biomass assessment in fisheries
(Maynou, 1998). The computerised algorithm requires the area to be finely discretised. The
discretisation used here is a grid of 35 x 35 blocks, which was found to optimise speed and
precision of the computation. Variances were expressed as coefficients of variation of the
arithmetic mean (m) and were calculated using the classical estimator, which does not take
into account the spatial autocorrelation within the sampled data:

CVclass: (52/ n)O.S /m (9)

with s? as data variance and »n as number of stations. CVas Was compared with the
geostatistical estimation variance of the arithmetic mean (Matheron, 1971):

CVgoo= (687)"° / m (10)

with O¢ as the global estimation variance (Petitgas and Lafont, 1997), which is influenced
by the geographical position of the stations, the shape of the survey area and the model
fitted. Computations were done using R (version 1.7.1), a programming environment for
data analysis and graphics (http://www.r-project.org/) and R-geo (http://sal.agecon.uiuc.edu
/esiss/Rgeo/index.html), spatial data analysis (see also http://www.est.ufpr.br/ geoR/).

3 Results
3.1  Spatial population structures

Semivariograms revealed that the two size classes of dab displayed different spatial
structures during the time of investigation (Figure 2 - 3). For both size groups of dab, almost
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all spatial structures, including the mean structures (Figure 3), could be successfully
described by spherical and linear models (1997, d2, d3). The parameters nugget, sill and
range of the models fitted, the values of goodness-of-fit statistic, the measure of strength of
spatial dependency (Equation 7), the effective range, as well as the results of the cross-
validation, are compiled in Table 1, indicating valid models throughout the years and size
classes.

Models fitted to the semivariograms showed values for the goodness-of-fit statistic (gof)
close to zero for both size classes, pointing to reliable fitting procedures. For both size
classes the effective ranges and values of spatial dependence peaked in 2000 (d2: 8.62,
78.09; d3: 6.94, 77.62; Table 1). On the average, d2 and d3 developed a medium strength of
spatial dependency, indicated by the values of SpD (d2: 43.21; d3: 40.74) of the mean
structures. Size class d3 tend to aggregate in patches with a diameter of 3.2 km, Wthh is
more than double the mean patch diameter of d2 (1.1 km).
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Fig. 2: Experimental semivariograms of c.p.u.e. catch data for dab size class d2 and d3 (1996-1999)
with fitted spherical and linear (1997) models. Note that for the structural analysis in 1998 and 2000
of d3 the modulus estimator was used. Note: Figure 2 (f) varies in scale.
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Fig. 3: Mean spatial structures (1996-2000) of dab size class d2 and d3 with fitted spherical models
(model parameters in Table 1).

Table 1; Estimated parameters® of spherical and linear semivariogram models fitted with a least-
squares method to c.p.u.e. data for dab in the German Bight (sampling area box A, Figure 1).

Year Group Model Co C a Spd  gof Zscore SD-Zscore

1996 d2 Sph 132 46 39 258 0.06 0.00 0.96
1997 d2 Lin 8 12 na. 0.0 0.04 na. n.a.
1998 d2  Nug 124 0 00 00 0.06 na. n.a.
1999 d2  Sph 61 9 18 595 0.03 0.00 1.14
2000 d2 Sph 41 145 86 78.1 0.04 -0.01 1.28
Mean d2  Sph 30 23 1.1 432 001 0.00 5.15
1996 d3 Sph 12 19 23 618 0.05 -0.01 1.09
1997 d3 Lin 10 8§ na. 0.0 0.04 n.a. n.a.
1998 d3  Sph 118 271 21 69.6 0.02 0.00 2.55
1999 d3  Sph 15 11 71 417 0.01 0.00 3.65
2000 d3 Sph 12 41 69 776 0.06 -0.01 1.15
Mean d3  Sph 162 112 32 40.7 0.00 0.00 1.76

2 Group: size groups d2 and d3; Sph: spherical; Lin: linear; Nug: pure nugget, Co: nugget; C: sill (for linear
models = slope); a: range ; SpD: spatial dependency (Equation 7); gof: measure of the goodness-of-fit
(Equation 6); Zscore: mean standardised error of the crossvalidation; SD-Zscore: standard deviation of the
standardised error (see Methods section for details)

3.2 Geostatistical estimation of biomass (mean catch in weight)

The biomass index (c.p.u.e., kg30min™) of d2 varied between 26.5 (1996) and 40.2 (2000),
whilst c.p.u.e. of d3 ranged from 9.2 (1996) to 43.0 (1998) (Figure 4a, 4b). The c.p.u.e. of
medium-sized dab (d2) showed a slow increase from 1996 to 2000, whereas the biomass
index of d3 increased from 1996 to 1998 and decreased in 1999 and 2000 (Figure 4a, 4b).
The estimated geostatistical and arithmetic means were in good agreement. With one
exception (1996, d3), the geostatistical estimation variance (CVge0) was always smaller than
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the classical one (CVuas) (Figure 4a, 4b). The largest difference between the two
coefTicients of variation was found in 1997 for both size classes.
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[CIGeostatistical mean c.p.u.e. by OBK

-o- CVass (%), classical coefficient of variation

-+ CVgeo (%), geostatistical coefficient of variation

Fig. 4: Arithmetic mean c.p.u.c., geostatistical mean c.p.u.c. of dab size class d2 (above, a) and d3
(below, b), estimated with oridinary blockkriging (OBK), and coefficients of variation CV s (%)
and CVg, (%) (Equations 9, 10) of the arithmetic mean c.p.u.e. (see Methods section for details).

3.3 Geostatistical mapping

The patchiness of the distribution of both size classes was different in shape and size for
each year. For both size classes, the estimated maps of fish biomass index showed no
persistent area, with high density in box A throughout the years (Figure 5, 6). Similarities of
the geographical locations of the patch centres between size classes were obtained for 1996,
1997 and 2000. The mapped uncertainties for the kriged biomass index demonstrate that the
estimated locations, shapes and sizes of the patches are reliable.
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Fig. 5: Density of c.p.u.e. biomass index for dab size class d2 within box A estimated with ordinary
pointkriging (left panel) and estimated kriging variance (right panel) for the summer surveys 1996 —

1999 (a-).
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Fig. 6: Density of c.p.u.e. biomass index for dab size class d3 within box A estimated with ordinary
pointkriging (left panel) and estimated kriging variance (right panel) for the summer surveys 1996 —
1999 (a-¢).
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4 Discussion

Although the structural analysis of the biomass index of dab was carried out at the limit for
an application of geostatistics, due to the low numbers of sampling stations, the presence of
spatial autocorrelation was discovered for both biological categories considered. A minimum
of 30-50 sampling points is recommended by Legendre (1993), whereas here only 21 to 24
stations per survey were available. Hence data have been transformed, and also the classical
and modulus estimator has been used, both leading to less erratic semivariograms. Finally,
due to the modelling of the log-back transformed semivariograms and the results of the
goodness-of-fit statistic and cross-validation, one can have confidence in the modelled
structures (Table 1). Furthermore, by computing the mean semivariograms of the biomass
indices of d2 and d3, derived from summer surveys in box A and based on the survey design
applied, the persistence of spatial structures was obvious (Figure 3). Although the spatial
structuring of d2 and d3 in the German Bight' was only moderate, one has to take into
account the presence of spatial autocorrelation when estimating the mean catch rate of dab or
assessing variability. At least in part this may be due to the fishing gear used in this survey
(GOV), which is not specifically designed for catching dab, so that the population structure
of this species might not have been resolved completely.

In 2000, the strength of spatial autocorrelation in the catch rates of d2 and d3 were highest,
also the greatest patch diameters (d2: 8.6 km; d3: 7 km) were detected, and throughout the
investigation period, size class d3 aggregated in larger patches. This is consistent with the
idea that larger fish may tend to form larger associations than smaller fish (Rivoirard er al.,
2000). An analysis of the length frequency within one size class showed that, in most cases,
a length of 16.5 cm was predominant within the medium-sized class d2 and 19.5 cm was the
dominant length in d3. The difference between the modal values of the length frequencies
seems to be large enough to cause varying spatial patterns.

Distinguishing two size classes of a fish species in order to investigate different spatial
structures is related to the idea that fish distribution depends on the size of the individuals
rather than on their age (Fernandes and Rivoirard, 1999; Guiblin and Rivoirard, 1996). A
further reduction of variability and an improved assessment of spatial structuring may be
obtained when taking into account other biological categories such as sex. Furthermore, an
improvement of a spatial analysis when the c.p.u.e. of female and male dab are taken into
account raises the question whether reproduction may cause the development of spatial
patterns of fish density. This would be likely, because spawning occurs from Jan to Sep
(Rijnsdorp et al., 1992) and takes place in well-defined nursery areas situated in the south-
eastern North Sea (Daan ef al., 1990). Other marine organisms, especially benthic ones,
often develop patches, which could result from social behaviour or reproduction (Valiela,
1995). Patch formation of dab may be also caused by sediment composition (Ehrich, 1988),
distribution of the prey species (epizoobenthos) and fish behaviour due to reproduction.
Additionally, abiotic variables may also induce a spatial pattern, but salinity and temperature
were more or less homogeneous within the study area.

Because of the persistence of spatial patterns found for both size classes of dab throughout
the time of investigation, the models fitted to the mean structures were used for estimating
the density maps (Figure 5, 6). The detected conformance of the locations of the patch
centres in 1996, 1997 and 2000 could be explained by reproduction, when biomass indices of
two size classes were almost identical with fractions of female and male dab. The variability
of the location of high-density spots may be due to the fact that the area of investigation is
homogeneous, and probably a preferred feeding site for dab does not exist.
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During the time of investigation, the variability of the catch rates of d2 was small, whereas
the c.p.u.e. of d3 varied by more than 30 kg30mm This may be explained by increased
fishing effort in 1999 or a weak recruitment. The geostatistical coefficient of variation in
almost all cases showed lower values than the classical one, although differences between
the two coefficients were small. The geostatistical variance depends on the model specified,
sample locations, shape of investigation area and intensity of sampling (Petitgas, 1996,
2001). Therefore, the low number of sampling stations (21-24) of the surveys may have
resulted in increased geostatistical variances.

The main focus of the present study was to develop a strategy to evaluate long-term
monitoring data to assess possible effects of offshore windfarms on a fish population within
a meso-scaled area. The main advantage of the procedure used was that the detected spatial
autocorrelation within the catch data has been taken into account. Furthermore, additional
information about the spatial characteristics of the species studied, which may be correlated
with population dynamics (Warren, 1997), is provided. The species-specific aggregation
within an area is an interesting measure of variability. With this method, the differentiation
of natural and experimental variability is possible, after the sampling strategy has been
optimised. Then the natural variability within an area may be explored and possible effects
of offshore windmills on fish populations can be defined and evaluated, provided that an
appropriate reference area is available.
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KAPITEL 3

Improvement of the geostatistical analyses of demersal fish species in the
North Sea by additional small-scale catch data (star survey design)
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Abstract

Geostatistical tools have been used to investigate improvements of a spatial analysis and
subsequent reduction of uncertainty in estimates of catch per unit effort (cpue) for the dab,
Limanda limanda and whiting, Merlangius merlangus in the North Sea. A standard survey
design was modified by additional small-scale sampling, resulting in a star survey design,
which reduces small-scale uncertainty. Furthermore, the effects of biological variables such
as fish size or sex on spatial analysis were assessed and species-specific characteristics in
spatial patterns were analysed. Sampling took place in January 2001, 2002 and 2003 in a
meso-scaled area, in the German Bight. All biological categories considered displayed a
persistent spatial structuring in the cpue, which was described best by spherical and
exponential semivariogram models. Incorporation of the star survey design in 2002 and 2003
reduced the small-scale variability for dab, as indicated by lowered values of nugget effect
and an increased resolution of spatial dependency (especially for medium-sized and male
dab). For whiting no reduction of the small scale variability could be detected. Moreover, no
significant differences were found in the spatial structuring of the biological categories of
dab. Spatial distributions and characteristics in spatial patterns of female and male dab were
in good agreement, indicating that spawning behaviour might have caused the observed
patchiness. Differences in spatial structuring between the size groups of whiting were
significant and may be explained by differences in sensitivity to environmental variables.
For each of the species uncertainty in biomass estimates was reduced by approximately 50 %
in all cases, by adding nearby stations to the conventional sampling scheme, in an
inexpensive, timesaving and efficient manner.

Key Words: spatial structuring, semivariogram, whiting, Merlangius merlangus, dab,
Limanda limanda, star survey design, log-back-transformation, ordinary kriging.
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1 Introduction

Classical methods of obtaining quantitative information on fish assemblages and detecting
possible changes over time are normally based on large-scale bottom trawl surveys, carried
out under a standard survey protocol, mainly concentrated on standard fishing gear and a
standard sampling strategy. Unlike a large-scale bottom trawl survey design such as the
IBTS in the North Sea (International Bottom Trawl Survey; ICES, 1999), the GSBTS
(German Smale-scale Bottom Trawl Survey) monitors species abundance and composition in
small areas of 10 by 10 nautical miles (nm) distributed over the entire North Sea (Ehrich e#
al., 1998) since 1986. Within such areas (boxes), a minimum of 20 hauls selected randomly
are normally taken during 3 — 5 days. Because stations are randomly distributed,
observations are independent from each other, and mean and variance estimates can be
derived directly from the sample values without any assumptions about the spatial
distribution of the population (Petitgas, 2001). But in cases where random sampling is not
carried out on a specific spatial scale, any underlying spatial structure in the distribution of
the organisms can not effectively be extinguished, leading to a bias in the study. It is not
possible to detect such a bias a priori, since an appropriate scale of the spatial distribution of
any species of interest is generally unknown (Maynou, 1998).

Spatial autocorrelations are recognised as typical characteristics of natural populations, but
also of other environmental variables (Legendre and Legendre, 1998). Thus, an optimal
sampling design is needed as well as a sound spatial analysis of catch data, which takes the
ecology and the patchy distribution of fish into account (Francis, 1984). A valid estimate of
mean biomass and its variance for autocorrelated populations can be obtained by application
of geostatistics, regardless of the survey design (Rivoirard et al, 2000). In fisheries,
geostatistics is used to optimise sampling strategies (Petitgas, 1996), to estimate catch data
and corresponding variances, taking into account the existence of spatial structures (Conan et
al., 1992; Fernandes and Rivoirard, 1999; Maynou, 1998; Warren, 1997), as well as to map
estimated distributions and spatial patterns of organisms (Lembo et al., 1999; Maravelias er
al., 1996). Spatial structures may depend on the species and the age class considered
(Fernandes and Rivoirard, 1999; Maynou et al., 1996; Rivoirard et al., 2000); they can also
vary with time of day (Simmonds and Rivoirard, 2000; Wieland and Rivoirard, 2001), and
with the sampling period (Freire et al., 1992; Hutchings, 1996; Rueda and Defeo, 2001). The
importance of a sound spatial analysis is highlighted by the fact that the collapse of the cod
(Gadus morhua) in Newfoundland waters was, for example, preceded by a change in the
spatial structure of the population (Hutchings, 1996).

The focus of this study was to improve the results of the spatial analysis of demersal fish
species by attempting to reduce the geostatistical estimation variance. Thus, catch data for
dab and whiting normally taken within the GSBTS in the German Bight (box A) were
combined with data taken by a modified sampling scheme (referred to as star survey design),
which allows a sound modelling of small scale variability and could eventually enhance
estimates of semivariograms, especially near the origin. Such a design was recently
introduced into fisheries science in acoustic surveys, where transects crossed at a centre
point over an aggregation to improve the estimation of biomass of small aggregations of fish
(Doonan et al., 2003). Additional dense sampling stations within a sub-area are also used in
geosciences to improve estimations and to obtain more pairs of points at small distance
classes of the semivariogram (Isaaks and Srivastava, 1989). Further, Simrad et al. (1992)
suggested an increase of local density of samples to enhance knowledge of the small-scale
variability and better define the variogram at small distance classes, to obtain a more precise
estimate of the global variance. Hence, in order to reduce small-scale uncertainty, partial
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over-sampling within an sub-area was assigned to the existing survey strategy of the
GSBTS, since the application of geostatistics is generally not restricted to any survey design.
In addition, the effects of biological properties such as fish size or sex on the spatial analysis
were examined. So far there has been essentially no sound assessment of the spatial
structuring of dab and whiting in this area.

2 Materials and methods
2.1  Survey area and sampling design

The study was undertaken in an area of 10 x 10 nm located in the inner German Bight (box
A, Fig. 1), which is one out of eleven standard sampling areas of the German Small-scale
Bottom Trawl Survey (GSBTS) in the North Sea (Ehrich ef al., 1998), during January 2001,
2002 and 2003, to observe the winter distribution. Catch data were assembled aboard the
German research vessel “Walther Herwig III”. Fishing was performed under standard IBTS
(International Bottom Trawl Survey) protocol using the standard net GOV (Chalut a Grande
Ouverture Verticale), with trawling time of 30 min at a trawling speed of 4 knots. The
locations of sampling stations as well as the trawl directions were selected randomly for each
year of the survey. The trawl positions were taken as midpoints of the hauls converted to an
absolute measure in km (easting and northing), relative to 54°27'N and 6°58'E.
Additionally, to investigate small-scale variability as well as to improve the analysis of
spatial structures of demersal fish, the random sampling scheme was modified in 2002 and
2003. Across one randomly selected station within box A trawling was carried out several
times, resulting in a star survey design with 7 additional stations in 2002 and 4 in 2003 (Fig.
1). The largest distance between the midpoints of the station tracks was about 500 m. Fishing
was restricted to daylight to avoid the possibility of systematic errors due to this factor.
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Fig. 1: German Bight with sampling area box A and positions of the trawling midpoints in
2001,2002 and 2003, whereas stations belonging to the “star” are indicated with (+).
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2.2 Biological categories considered

In order to explore biological factors that might influence the spatial structure of fish
populations, the following biological categories (groups) within the catch data were
analysed. Spatial patterns can vary with age (Fernandes and Rivoirard, 1999); to correct for
this effect catch data for dab and whiting were separated into size groups, representing
different age groups. Regarding dab these were < 9.5 cm (excluded from further analysis as
there were too few juveniles in the catches), 9.5-19.5 cm (2-7 years old, referred to as d2)
and > 19.5 cm (older than 7 years, referred to as d3) (Heessen and Daan, 1996). Due to the
length distribution of whiting in the first quarter of the year in box A, the groups considered
differed in length in 2001/2002 vs. 2003: <21 cm vs. < 18.5 cm (0 - 1 years old, referred to
as wl) and > 21 cm vs. > 18.5 cm (2 - 4 years old, referred to as w2). Additionally catch
data for dab were stratified in two more biological groups, namely in female and male dab,
with females referred to as dfe and males as dma.

2.3 Preparatory data analysis

Numbers of fish per 30 min trawl time were converted into biomass in kg 30 min™ (catch per
unit effort, cpue), on the basis of the length-weight relationships for each species considered.
Furthermore, all data sets described above for 2002 and 2003 were analysed in two ways:
either including the additional stations at which the star survey was employed (labelled with
+) or eliminating those additional sampling stations (labelled with -). All catch data were
tested for normality using the Shapiro-Wilk test (Royston. P, 1982). In cases of deviation
from normality, cpues were log-transformed and the log-transformed data were used for
further analysis. Log transformation of catch data was not necessary for cpues of whiting
(w1 and w2 in 2002, w2 in 2003) and dab (d3 and females in 2001). Also linear and non-
parametric regressions with one covariate (Bowman and Azzalini, 1997) (north and east co-
ordinates) were carried out to investigate possible trends within the cpues (Kaluzny et al.,
1998). Significant linear trends within the catch data with north co-ordinates were detected
for size class one (wl) and two (w2) of whiting in 2002. Linear trends were significant for
medium-sized dab (d2) and males (dma) in 2001, as well as for both size classes of dab (d2,
d3) and males (dma) in 2002. These trends were taken into account for the subsequent spatial
analysis.

2.4 Structural analysis

The spatial structures of fish biomass (distinguished by species, sex and size group) Z(x)
were assessed by experimental semivariograms (h), using the log-transformed cpues, when
raw data did not follow a Gaussian distribution. The semivariogram outlines the spatial
correlation of data, measuring semivariance between data points as a function of their
distance. In the absence of spatial autocorrelation among samples the semivariance is equal
to the variance of Z(x). A monotonic increase of the semivariance with increasing separation
distance (/) of the sampling position indicates the presence of spatial autocorrelation. When
a linear trend was present, cpues were detrended (Kaluzny et al, 1998). Only

omnidirectional semivariograms were computed using the classical estimator (Matheron,
1971):

)= 3" (26, +h)— 2, )F <1>

2N(h) 5
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where Z(x;) is the realisation of fish biomass (cpue) at station x;, Z(x;+h) is another realisation
separated from x; by a discrete distance / (measured in km) and N(#) is the number of pairs
of observations separated by A.

In order to improve determination of spatial structures, a inter-annual mean semivariogram
can be computed, when a general constancy in the variographic structure between years can
be expected (Fernandes and Rivoirard, 1999). Thus, for each variable (Z(x)) under study
mean variograms (survey years 2001-2003) were computed using all stations sampled
(Rivoirard et al., 2000). It was thus assumed that the different spatial distributions can be
described by the same ecological process.

In many cases transformation of data is recommended, since the structure of the transformed
variable often is more regular than that of the untransformed variable (Rivoirard ef al.,
2000). This would lead to a biased estimate of the raw structure. However, to allow
ecologically sound interpretations and to establish the structure of the raw variable, an
appropriate back transformation of the experimental semivariogram is required. We used the
following equation for log-transformed data (Guiblin ef al., 1995):

¥(h) = (0* + var(@)) (L - exp— (o>, (W)var(L))
@
with o? = log (1 var(Zym?)

Where m is the mean of Z(x), var is the variance of Z(x), L is the logarithmic transformation
of the variable and y,(h) is the experimental semivariogram of the transformed variable. A

simulation study described in Rivoirard er al. (2000) showed that the use of log
transformation, associated with a back transformation of the experimental semivariogram,
provides an improved method for estimating variogram parameters and estimation variance.

Subsequently, parameters (nugget, sill and range) of spherical, exponential and linear models
were fitted semi-automatically (Cressie, 1991), to reduce subjectivity and to ensure
reproducibility of the fit (Fernandes and Rivoirard, 1999). Following Webster and Oliver
(2001), first the types of models regarding the general trends of the semivariogram curve
(backtransformed experimental semivariograms) were selected and then models were fitted
using a weighted least-squares method with suitable weights. Least-squares methods are
based on finding the model which is “visually” close to the semivariogram curve by
minimising the sum of squares of the differences between the generic semivariogram
estimator and a model (Chilés and Delfiner, 1999). Here a weighted non-linear least-squares
procedure recommended by Cressie (1991) was employed, where more weight is given to
the points near the origin, which is the crucial part in determining the semivariogram
parameters:

NG 1@1} ;
Zh: ( ){v(h) ©)

where N(h) is the number of pairs of points used to compute the empirical semivariogram
y(h) and y(h) is the fitted model (spherical, exponential or linear).
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2.5. Assessing differences in spatial structures

In order to compare the goodness-of-fit (gof) of the different models and to select the proper
one, for each fitting procedure an index recommended by Fernandes and Rivoirard (1999)
was computed:

S NOF® -v®F
= S NmROT

“4)

where w(h) is the number of pairs used to compute the variogram, 7(h)is the empirical
semivariogram and y(h)is the fitted model. The closer the gof to 0, the better the fit.

Furthermore, a proportion of model sample variance explained by structural variance was

" used as a normalised measure of spatial dependence (SpD) (Robertson and Freckmann,
1995):

SpD = (1-C,/[C, +C]) -100 )

Where Cj is the estimated nugget parameter and C is the estimated partial sill. This index
was used to compare changes in the developed strength of spatial autocorrelation among
species, size classes and sex with time and survey design. The greater this value (ranging
from 0 to 100), the greater the spatial dependence over the range of separation distances
modelled. A low spatial dependence indicates a high sampling or analytical error or that
dependence may occur at scales smaller than the average distance separating pairs in the first
distance lag of the semivariogram (Robertson and Freckmann, 1995). Sokal and Oden (1978)
related the diameter of an aggregation of a species as the modelled range. Therefore the
effective range (eR) was compared for each model fitted in order to detect characteristics and
changes of spatial patterns with time. The effective range for exponential models is three
times the estimated range.

In order to measure suitability and power of the modified sampling design, values of the
nugget parameter fitted to data without the star survey stations (nug.) were divided by values
of the nugget parameters fitted to catch data taking into account the star survey stations: nug.
+1/nug.+1. Ratios larger than one indicate a reduced small-scale variability of the modified
sampling scheme (showing a lower nugget effect); conversely, ratios smaller than or equal to
one indicate no reduction of small-scale variability due to the star survey. Furthermore, the
gof values of models fitted to data without star survey stations were divided by the ones
derived from modelling including them: gof / gof:. In analogy to the ratios of the nugget
values, values larger than one indicate an improvement of the fitting procedure due to the
modified sampling scheme, otherwise (<1) the modelling procedure (describing spatial
structures) was not improved by oversampling a sub-area. The higher the absolute values of
these ratios, the greater the reduction of small-scale variability or improvement of the fitting
procedure, respectively. To detect significant differences between the biological categories
distinguished, ANOVA (assuming normal distribution) or Kruskal-Wallis tests (not
assuming normal distribution) (Zar, 1999), were carried out with the indicators described
above (gof, SpD, eR), derived from models fitted to the cpue of 2001, 2002 and 2003
(including the star survey). The null hypothesis was tested, namely that the location
parameters of the distribution of the observed values (gof, SpD, ¢R) are the same in each
group (species, size group and sex). The alternative is that they differ in at least one
comparison (when p-values are < 0.05). Thus, it was tested whether any of the the factors
species, size group or sex has a significant influence on the observed spatial indicators.
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2.6.  Mapping density surfaces and biomass estimations

Mapping of density surfaces of the predicted biomass of dab (d2, d3, dfe and dms) and
whiting (wl and w2) was carried out with ordinary point kriging using a global
neighbourhood (Matheron, 1971). This method estimates the variable values at unsampled
locations using the observed values in the surrounding neighbourhood. The models fitted to
the annual (backtransformed) semivariograms were used for mapping, but in cases were no
structure was detected, models fitted to the mean structures were used for computing the
density maps (Fernandes and Rivoirard, 1999).

Biomass estimates for each variable under study were obtained by ordinary block kriging
(using the models fitted to the annual semivariograms), a method used as a direct method of
biomass assessment in fisheries (Maynou, 1998). The computerised algorithm requires the
area to be finely discretised, the discretisation used here is a grid of 0.5 x 0.5 blocks, which
was found to optimise precision of the computation. Variances were expressed as
coefficients of variation of the arithmetic mean (m) and were calculated using the classical
estimator, which does not take into account the spatial autocorrelation within the sampled

data:
SZ
CVy=y| = Im ©)
n

where s° is data variance and » is number of stations. CV; was compared with the
geostatistical estimation variance of the arithmetic mean (Matheron, 1971):
CV,, =05 Im Q)

geo

where of° is the estimate of the estimation variance, obtained from the variogram model
(Petitgas, 2001), which is influenced by the geographical position of the stations, the shape
of the survey area and the model fitted. Furthermore, the relative estimation error (survey
precision) was computed for the classical and geostatistical approach:

sp,, = (s*/n)/m 8)
spgeo = GEz/m (9)

. . . 3 . 2,
where s? is the variance, # the number of stations, m the arithmetic mean and 0" is the
estimate of the estimation variance, obtained from the variogram model .

3 Results
3.1 Structural analysis

The semivariograms clearly showed a spatial structure within the sampling area for the two
species investigated regarding all size and sex groups, with the exception of the groups d2,
dma and dfe for dab in 2001 and w2 for whiting in 2002 (Figs. 2-4). Parameters of all fitted
exponential, spherical and linear models, values of spatial dependency (SpD), effective
ranges (eR), goodness-of-fit statistics (gof) and calculated ratios of indicators without and
with consideration of the star survey design are presented in Table 1. For both size groups of
dab as well as for males and females almost all spatial structures, including the mean

structures (Fig. 5), can be successfully described by spherical and exponential models (Figs.
2-5).
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Table 1: Estimated parameters of spherical, exponential and linear semivariogram models fitted with
a least-squares method to cpue data for dab and whiting in the German Bight (sampling area box A,

Fig. 1).
Year ZSrt\?;y Spec Group Model C, C SpD a gof :Zg: :i %
esign
eq (5) eq (4)
2001 - L1 d2 nug 836 0 00 0.0 0.048 na. na.
2001 - Ll d3 lin 34 1 00 na. 0.052 na. na.
2001 - LI dma nug 854 0 0.0 0.0 0.09 n.a. n.a.
2001 - Ll dfe nug 58 0 00 0.0 0.101 na. na.
2002 - Ll d2 lin 3723 154 40 na 0.028 na. na.
2002+ L1 d2 lin 1962 211 00 na 0.005 1.9 53
2002 - Ll d3 sph 4827 68 14 3.1 0.030 na. n.a.
2002+ Ll d3 sph 11 42 794 37 0.033 4109 0.9
2002 - LI dma nmug 4638 0 0.0 00 0.026 na. na.
2002+ Ll dma exp 144 3292 958 08 0008 320 33
2002 - L1 dfe sph 0 2468 100.0 1.5 0.044 na. n.a.
2002+ Ll dfe sph 685 1131 623 29 0.003 0.0 16.1
2003 - L1 d2 lin 18 2442 0.0 na. 0.005 na. n.a.
2003  + L1 d2 exp 0 30 1000 1.3 0.006 19.3 0.8
2003 - L1 d3 exp 0 17 1000 05 0.019 na. na.
2003+ Ll d3 sph 6 11 660 32 0.017 0.2 1.1
2003 - L1 dma lin 13 3 00 na. 0.005 n.a. n.a.
2003+ LI dma exp 0 27 100.0 2.1 0.010 14.3 0.5
2003 - Ll  dfe sph 1 23 947 1.7 0.009 na. n.a.
2003+ LI dfe sph 8 15 658 3.0 0.009 0.3 1.0
mean + Ll d2 exp 492 3185 866 0.9 0.005 na. na.
mean  + Ll d3 sph 12 29 70.1 29 0.007 na. n.a.
mean + LI dma sph 431 2680 86.1 23 0.003 na. n.a.
mean -+ Ll dfe exp 313 620 664 0.7 0.006 na. na.
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Table 1 (continued)

Year sfrts;y Spec Group Model G, C SpD a gof rug. 1 gof.

design nug, +1  gof,

eq (3) eq 4
2001 - Mm wl sph 0 5 1000 2.3 0.024 na. na.
2001 - Mm w2 sph 0 02 747 39 0016 na. na.
2002 - Mm wl sph 0 294 1000 1.5 0.062 na. na.
2002 + Mm wl sph 0 412 1000 2.6 0.111 1.0 0.6
2002 - Mm w2 sph 0 9 1000 1.4 0.085 na. na.
2002 + Mm w2 nug 8 0 00 00 0.021 0.1 4.1
2003 - Mm wl sph 0 7 1000 1.7 0.009 na. na.
2003 + Mm wl sph 0 6 1000 2.7 0.021 1.0 0.4
2003 - Mm w2 sph 0 1 1000 44 0.006 na. na.
2003 + Mm w2 sph 1 1 56.8 4.8 0.004 0.6 14
mean + Mm wl exp 23 623 965 1.0 0.008 na. na.
mean + Mm w2 exp 7 9 563 12 0.000 na. na.
notes

Ll: Limanda limanda (with size groups d2 and d3 and males, dma and females, dfe), Mm: Merlangius
merlangus (with size groups w1 and w2); sph: spherical; exp: exponential; lin: linear; nug: pure nugget; Co:
nugget; C: sill (for linear models = slope); a: range (for exponential model effective range, eR =3a); SpD:
spatial dependency (eq 5); gof: measure of the goodness-of-fit (eq 4); nug. +1/nug,+1: ratios of nugget values
without (-) and with (+) consideration of the star survey stations; gof/gof:: ratios of goodness-of-fit values
without () and with (+) consideration of the star survey stations; n.a.: not applicable (sece Methods section for
details).

Regarding dab, effective ranges of the models fitted to the mean semivariograms only differ
slightly between size groups and sex (yielding 2.2 — 2.9 km). The same is true for the
indicator of spatial dependencies (SpD), yielding 86.6 and 86.1 for medium-sized (d2) and
male dab (dma) and 70.1 and 66.4 for size group d3 and females (dfe). However, the
parametric and non-parametric statistical tests applied showed no significant differences of
the observed indicators (gof, SpD, eR, see Table 1) between the biological categories
distinguished (d2, d3, dma and dfe). For either size group of whiting, the spherical model
adequately describes the spatial structures (Fig. 4, with the sole exception of f, Table 1),
whilst the mean structures were described best by exponential models (Fig. 5, a-b; Table 1).
On the average (viz. regarding mean variograms), the effective range is greater for size group
w2 than for wl (3.0 vs. 3.7), whereas the value for spatial dependence (SpD) is much smaller
for w2 than for wl (96.5 vs. 56.3). Non-parametric test statistics indicate significant
differences in the values of spatial dependency (x? = 4.35, df= 1, p-value = 0.036) and
goodness-of-fit (x2 = 3.85, df= 1, p-value = 0.049) of small and medium-sized whiting. Thus,
spatial structuring of fish density is more pronounced for small whiting, while models fit
better to experimental semivariograms of medium-sized whiting. Comparing mean values of
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SpD for dab and whiting, spatial dependency in cpues are rather similar for w1 and for d2
(96.5 and 86.6) and the differences are not statistically significant.

The ideal theoretical model variogram types are altered for dma in 2002 as well as d2, d3
and dma in 2003, when stations employing the star survey design are included in the analysis
(Table 1). In most cases, model types without specifying a sill changed to those with a sill.
The ideal model type for whiting (w2 in 2002) changed from one displaying spatial
structuring to a pure nugget effect. The nugget ratios without and with consideration of the
star survey design indicate a reduction of small-scale variability for dab in more than 50 %
of all cases (Table 1, five of eight cases), whilst for whiting no reduction was achieved by
the modified sampling design. Where small-scale variability was reduced, spatial
dependencies within the catch data increase. Ratios of the gof values without and with
consideration of the star survey design show a clear improvement of the ﬁttmg procedure in
50 % of all cases for dab and whiting (Table 1).
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Fig. 2: Empirical (log-back transformed) semivariograms for two size groups of dab (d2, d3) during
survey years 2001 (01), 2002 (02) and 2003 (03), without (-) and with (+) consideration of the star
survey design; spherical, exponential and linear models fitted by a least-squares.
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survey design; spherical, exponential and linear models fitted by a least-squares.
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consideration of the star survey design; spherical, exponential and linear models fitted by a least-
squares.
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Fig. 5 : Empirical (log-back transformed) semivariograms of mean structures for each of the
biological categories considered (d2, d3, dma, dfe , w1, w2) during survey years 2001 (01), 2002 (02)
and 2003 (03) with (+) consideration of the star survey design; spherical, exponential and linear
models fitted by a least-squares.

3.3 Mapping density surfaces and biomass estimations

Results of the kriging procedure based on the structural analysis clearly showed that patchy
distributions of dab and whiting were different in shape and size for each of the categories:
year and size or sex group (Figs. 6-8). Moreover, the distribution patterns of dab and whiting
indicate no persistent high-density areas within box A in January throughout the years,
although the patterns were different in each survey year.

Regarding dab, positions and shapes of high-density spots of size groups d2 and d3 were in
good agreement in each year (Fig. 6). The spatial distributions of females and males were in
good agreement in every survey year (Fig. 7). Comparing the density maps for dab of the
various size and sex groups in 2003, the estimated distribution patterns were very similar for
d2 and dma as well as for d3 and dfe. Centres of estimated high-biomass patches of small
and medium-sized whiting (w1 and w2) were similarly located in 2001 and 2002 (Fig. 8, a-
d), whereas in 2003 varying spatial distributions can be discerned in each of the two size-
groups (Fig. 8, e-f).

The catch data for dab and whiting showed a high variability of arithmetic and estimated
geostatistical means between years, but both were in good agreement within each year
(Table 2). Comparing the estimates of the mean cpue between the data sets without and with
consideration of the star survey design for dab and whiting, differences were marginal,
except for wl in 2002, where the mean cpues with and without the star survey vary by 7.2 kg
30 min™. In general, mean cpues of dab and whiting peaked in 2002.

In almost all cases, geostatistical variances of mean cpue for dab and whiting were clearly
smaller than the classical ones. When comparing the absolute values of the coefficients of
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variation for the analysis with and without star survey design, the uncertainty of the
estimated mean cpue was reduced in 50 % of all cases for dab and whiting due to the
modified sampling scheme. When the relative estimation errors for dab (sp. and spg.., see
Table 2) were compared, values of sp,., were lower than sp.; in all cases. More specifically,
values of the classical survey precision are reduced in all cases when considering the star
survey design. This was also true for the geostatistical survey precision, with the exception
of d2 and dma in 2003. For whiting, the geostatistical survey precision was always smaller
than the classical one (except for wl(+) in 2003, see Table 2) and classical relative
estimation errors were lowered when the star survey design was employed. In contrast, the

modified sampling scheme caused the geostatistical survey precisions to be lowered only for
w1 in 2003.

Table 2: Comparison of classical and geostatistical assessment of biomass indicators for dab and
whiting in the German Bight (sampling area box A, Fig. 1).

Star Arithmetic Kriged

Year survey N Spec Group meancpue  mean cpue C:,Vd C,I,/ geo SPel Pgeo
design (kg 30min))  (kg3ommy B B ) o)
eq6) eq(?) eq(®) eq (9
2001 - 21 L d2 68.4 69.0 15.3 9.2 159 58
2001 - 21 LI d3 14.5 14.8 9.4 8.7 11 12
2001 - 21 Ll dma 63.9 64.6 15.7 10.0. 158 64
2001 - 21 L1 dfe 19.5 19.6 8.7 8.6. 15 14
2002 - 23 L1 d2 88.3 87.5 15.3 15.1 393 197
2002 + 30 LI d2 81.3 85.2 14.8 11.0 257 104
2002 - 23 LI d3 15.6 16.3 11.5 10.3 42 18
2002 + 30 Ll d3 15.5 16.4 11.9 7.8 26 13
2002 - 23 Ll dma 65.8 68.6 25.7 21.6. 434 307.
2002 + 30 LI dma 60.5 63. 19.7 18.0 282 216
2002 - 23 Ll dfe 36.9 39.1 294 26.7 296 294
2002 + 30 LI dfe 354 38.7 28.8 20.8 184 182
2003 - 21 Ll d2 8.3 8.6 17.0 12.8 35 15
2003 + 25 Ll d2 7.9 84 19.1 14.4 27 18
2003 - 21 L1 d3 6.2 6.3 15.0 14.7 25 14
2003 + 25 Li d3 5.8 6.3 19.7 13.3 19 12
2003 - 21 LIl dma 7.1 7.6 19.0 13.3 34 14
2003 + 25 1Ll dma 6.8 7.2 223 15.9 26 20
2003 - 21 Ll dfe 73 75 16.0 14.5 29 16
2003 + 25 Ll dfe 6.8 7.6 19.5 13.2 23 14
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Table 2 (continued)
Year m?rtséy N Spec Group ineaﬂxllm C;tlllg melfmngzgue C:,Vd C.l,/ geo D Pgeo
design (kg 30min™) (kg 30min™) (%) (%) %) %)
eq6) eq() eq(8) eq (9)
2001 - 21 Mm wl 5.6 5.7 9.0 8.6 4 4
2001 - 21 Mm w2 0.8 0.7 11.2 11.2 1 <1
2002 - 23 Mm wl 41.2 427 9.1 8.4 160 32
2002 + 30 Mm wl 339 43.2 15.9 9.1 131 46
2002 - 23 Mm w2 2.9 2.9 22.5 213 18 13
2002 + 30 Mm w2 23 2.6 358 24.5. 15 14
2003 - 21 Mm wl 13.3 13.2 48 4.5 3 3
2003 + 25 Mm wl 133 13.3 59 42 2 2
2003 - 21 Mm w2 8.3 8.1 34 2.9 6 <1
2003 + 25 Mm w2 8.5 8.0 4.1 3.3 5 <1
notes

N: number of samples; CV,: classical variance of the arithmetic mean; CV,,: geostatistical variance of the
arithmetic mean; sp.: classical relative estimation errors; sp,.,: geostatistical relative estimation errors (see
Methods section for details); otherwise as in Table 1.
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Fig. 6: Density of dab biomass (cpue, kg 30min™) for size group d2 (a, c, €) and d3 (b, d, f)
during cruises 2001 — 2003 (with star survey design) within box A. Estimations with
ordinary kriging based on models fitted to annual structures. For d2 in 2001 and 2002 the
model fitted to the mean semivariogram was used for mapping. Note that the estimated
kriging variance (not shown) was highest at the borders of the investigation area.
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Fig. 8: Density of whiting biomass (cpue, kg 30min™) for size group w1 (a, c, €) and w2 (b,
d, f) during cruises 2001 — 2003 (with star survey design) within box A. Estimations with
ordinary kriging based on models fitted to annual structures. For w2 in 2002 the model fitted
to the mean semivariogram was used for mapping. Note that the estimated kriging variance
(not shown) was highest at the borders of the investigation area.
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4 Discussion
4.1  Survey design and geostatistical tools employed

Generally, only a limited number of stations can be sampled during a survey period of the
GSBTS, due to a compromise between sampling effort and available ship time. As available
ship time is a limiting factor, the addition of random nearby stations around a randomly
selected one is a time-saving solution, in order to increase local density of sampling stations.
Thus additional stations, belonging to the “star”, can be sampled very efficiently within one
day. Otherwise, ship time would be lost by approaching additional stations randomly
distributed within the total survey area.

In this study, structural analysis of cpue had to be carried out at the acceptable limit of a
geostatistical application. A minimum of 30-50 sampling points is recommended by
Legendre (1993), whereas here only 21-30 stations were available. Estimation and modelling
of the semivariogram is the keystone of a geostatistical analysis, hence in this study only
robust methods were employed, to derive best possible results. Modelling the log-back-
transformed semivariograms (backtransformed experimental semivariograms of log data)
generally resulted in very good fits according to low goodness-of-fit values (Table 1), which
agrees well with the findings of Rivoirard ez al. (2000).

However, the semivariogram model between the origin and the first experimental point is not
controlled by experimental information, because sample points are rarely close to each other
in fisheries surveys, unless samples are collected repeatedly at nearby stations (Petitgas,
2001). In this study we met the demand for nearby stations in 2002 and 2003 by employing
the star survey design, ensuring that assumptions about the behaviour of the variogram
models near the origin are more reliable. Spherical and exponential models assume a linear
behaviour at the origin, which is coincident with a medium irregularity. The nugget effect
has three physical interpretations which cannot be distinguished in practice (Petitgas, 1996).
These are a purely random component of the spatial distribution, and/or a measurement
error, and/or the sum of structures which have ranges smaller than the sampling grid.

4.2 Assessing differences in spatial structures

Three criteria exist to test for inter-annual changes in spatial distributions: density
histograms, density maps and variograms (Petitgas, 2001). We used the annual spatial
structures (variograms) as well as the density maps to assess differences in spatial
distribution of cpue between years. Homogenous oceanographic conditions in this area (8.
Ehrich, unpublished data) support the assumption of stationarity. Consequently, annually
varying locations of randomly selected sampling stations and placement of the additional star
survey stations are appropriate to make unbiased temporal comparisons of spatial patterns.

When the data for dab in 2002 and 2003 included the star survey design, model types
changed in 50 % of the cases compared to the analysis without this scheme. With the star
survey design, models with a sill were fitted more often than a pure nugget or linear models
(Table 1), indicating that the spatial resolution for dab was really improved by this
procedure. On the other hand, a simple increase of the number of stations alone (additional
random samples) can also improve the modelling procedure (Webster and Oliver, 2001)
making it is impossible to rule out the role the star survey design in the detected
improvement. Nevertheless, the main goal of this study was to reduce the nugget variability,
which requires partly over-sampling of a sub-area to provide densely located sampling
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stations and is clearly favouring the star survey design in addition to the saving of ship time
as mentioned above.

The calculated ratios of the nugget values without and with consideration of the star survey
design showed values smaller than one for dfe in 2002, d3 and dfe in 2003 (Table 1),
indicating no reduction of small-scale uncertainty. From these results we can infer that the
level of resolution of small-scale structures was increased for males, in contrast to females,
due to partly oversampling a sub-area. This fact points to a structuring of size group d3 and
females (dfe) at a smaller scale or to white noise being more important for these biological
categories. Possible reasons for an increased white-noise component are differences in fish
behaviour, which would likely be to influence catchability, or in spawning behaviour. In 50
% of all cases, the gof values of the models for dab were lowered when considering the star

survey design (Table 1) and improvements of the fitting procedure occurred in each of the
biological categories considered. ’

In general, no significant differences between the biological categories of dab were detected.
Regarding these results, spatial structuring of female, male, d2 and d3 were in good
agreement. This might be due to the fact that cpues of the different groups were in good
agreement (Table 2, Fig. 6 - 7, e-f). However, size group d2 could be on average
characterised by patches 2.6 km in diameter, where cpues were strongly autocorrelated, and
size group d3 by patches 2.9 km in diameter, where the spatial autocorrelation was only
moderate compared to d2. Furthermore, male dab (dma) during January, on the average,
formed patches 2.3 km in diameter and cpues were strongly autocorrelated, whilst females
formed patches 2.2 km in diameter and cpues showed only moderate spatial autocorrelations
compared to males. Computing the inter-annual mean semivariogram improves the
determination of spatial structures (Petitgas, 2001), as the low number of data points can
cause high fluctuations of the yearly semivariograms. Hence derived characteristics of
spatial structuring of the biological categories considered can be interpreted as “category-
specific” for the time of the year and area investigated.

Conversely, the modified sampling scheme did not result in an improvement of the analysis
of spatial structures of whiting: the values of the nugget effect did not decrease and
consequently, the values of spatial dependency did not increase for 2002 and 2003 when the
star survey design was taken into account (see nugget ratios in Table 1). Moreover, the
small-scale variability in those years increased, especially for whiting of size group 2, and in
one case the model type changed from a spherical to a pure nugget model. Furthermore, our
results show a significant difference in spatial dependency (x> = 4.35, df= 1, p-value =
0.036), between the two size groups of whiting with small whiting (wl) showmg a much
stronger spatial dependency than size group w2.

On the average, small whiting (w1) could be characterised by patches 3.8 km in diameter
and size group w2 by patches 6.3 km in diameter (Table 1). Fish caught within size group 1
(age group 0-1) are not expected to be sexually mature, thus the spatial structures obtained
cannot be associated with spawning. Although the differences among observed modelling
results for dab and whiting were not significant, patchiness seemed to be more pronounced
for small whiting (wl) than for medium-sized dab (d2). Likewise, effective ranges for
whiting were, on the average, larger than effective ranges for dab. These differences in
spatial structuring between species and among biological categories may be caused, among

other things, by a greater mobility near the bottom, which is to be expected for whiting
compared to dab.
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4.3 Assessing spatial distributions of fish biomass

Due to a study carried out by Stelzenmiiller et al. (in press), where a constancy of
variographic structure was found for dab within box A in summer and the assumption of
temporal stationarity, we used models fitted to the mean semivariograms of dab and whiting
to estimate the density maps in cases, where no spatial structure was obvious (d2, dfe, dma
in 2001, w2 in 2002 and for d2 in 2002, because of negative values received by ordinary
point kriging) according to results of Fernandes and Rivoirard (1999).

However it was reported that small dab (10 to 15 c¢cm) prefer water temperatures no lower
than 2.5 °C (Rijnsdorp et al., 1992). Thus, environmental variables probably induce spatial
structuring of medium-sized dab (d2) but not so for d3. On the other hand, size group d2
most likely also included fish which were sexually mature (11 to 14 cm, 2 to 3 yr of age);
therefore patchy distributions were probably influenced by fish behaviour. Dab and whiting
are high-fecundity serial spawners (Daan et al., 1990). Some of the serial spawners form
dense spawning shoals and it is likely that several males may contribute to fertilisation of a
given batch of eggs (Daan et al., 1990). Thus, the fact that the estimated density surfaces for
female and male dab appear visually more similar than the density maps of the two size
groups (Fig. 6, Fig. 7) could probably be explained by the above described spawning
process. Thus, spatial structuring of dab during January in the German Bight might have
been influenced by spawning behaviour rather than by other factors such as seawater
temperature, salinity or distribution of prey. Likewise, the similar effective ranges (eR),
interpreted as average patch diameters, for the mean structures of female and male dab point
to the development of a patchy distribution due to fish behaviour (spawning).

The estimated density maps showed similar distributions of high biomass patches for small
and medium-sized whiting (w1l and w2, Fig. 8). Daan et al. (1990) noted subtle differences
between distributions of juvenile and adult whiting. Furthermore, the winter distribution of
1-year-old whiting coincided with shallow, cold and less saline waters, whilst the 2-year-old
fish were found in deeper waters. This sensitivity of small whiting to temperature and
salinity may explain the differences in the characteristics of spatial distribution patterns
between the two size groups of whiting in that study. This agrees well with the fact that
within species, different age groups may behave differently in relation to the physical
environment (Daan ef al., 1990). Zheng (2001) showed that spatial patterns of whiting
abundance in winter were related to age, depth and sea-surface temperature. Although size
group w2 in this study most probably included sexually mature fish and spawning normally
occurs during January in the German Bight, spatial structures for whiting seemed to be
induced by other factors such as temperature or salinity, because of the strong patchiness
detected in cpues of small whiting and the similarities in locations of high-density spots for
the two size groups. Consequently, the distribution of small whiting is likely to be dependent
on the distributions of the adults. Further differences may be explained by the fact that larger
fish probably tend to form larger associations than smaller fish (Rivoirard ez al., 2000).

4.4 Biomass estimates

Due to the facts that values of the geostatistical variances were lower than the classical ones
in most of the cases analysed and that a clear spatial structuring of cpues for dab and whiting
could be detected, a spatial analysis of the catch data sampled within a meso-scaled area is
essential to obtain unbiased estimates of fish biomass in the area. Improvements in the
absolute values of the coefficients of variation as well as reduction of uncertainty of the
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estimated mean fish biomass for dab and whiting could be attributed to the modified
sampling scheme employing the star survey design.

The geostatistical variance depends on the model specified, sample location, shape of
investigation area and intensity of sampling (Petitgas, 1996, 2001). In case of dab, the
geostatistical estimation variances were much lower than the classical ones during 2002 and
2003, when considering the star survey design. Without this design, differences between
CVu and CVg, were much smaller (see Table 2). For whiting, the two variances (with and
without the star survey design) only differ slightly, with the sole exception of wl in 2002.
Therefore, species-specific differences in reduction of uncertainty of abundance estimates
are obvious. Furthermore, the relative estimation errors (sp.; and spg.,, Table 2) indicate that
the star survey design improved the abundance estimates. The geostatistical survey precision
was largely reduced for dab with star survey design, in contrast to whiting, where the star
survey resulted in an improvement of the survey precision only once, regardless whether this
could have happened also due to a simple increase in number of samples (see above). From
the results obtained in this study we can thus infer, that the stronger spatial dependency is
developed within cpue of fish, the more appropriate is the incorporation of a small-scale star
survey design.

In conclusion, the biological categories of dab and whiting studied here displayed persistent
spatial structures within the area of investigation and time of the year. Category-specific
characteristics derived from a spatial analysis, such as the explored differences in spatial
dependency between male and female dab or various size or age groups of whiting, must be
known in order to assess the variability of fish biomass in space and time within an area. To
investigate the role of fish behaviour (spawning) or other environmental variables on the
spatial distribution of fish, more biological categories as well as a spatial analysis of sea
water temperature and salinity should be taken into account in future studies. However,
employing a star survey design has proven to be an inexpensive, time-saving and effective
procedure, depending on the species or biological category studied, when explicitly a
minimised small-scale variability and unbiased estimates of fish biomass are the goal of
interest.
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Abstract

Geostatistics was employed to investigate spatial structuring of herring, cod, dab, haddock
and whiting at different spatial scales in the northern North Sea. Additionally, a structural
analysis of the maximum water depth was carried out to assess habitat associations of fish.
Linear, spherical, exponential and Gaussian models were fitted to the semivariograms,
showing clear spatial autocorrelations. At the smaller scale, spatial structuring was weak for
haddock, herring and dab, increasing at the greater spatial scale, with the exception of
whiting. Mean catch rates, estimated classically and geostatistically, were in good
agreement. Corresponding variances were clearly reduced at both spatial scales, when
accounting for spatial distribution of the fish. At the greater survey scale a high level of
habitat association was detected for haddock and whiting, while a poor habitat association
was found for cod, dab and herring. The smaller scale seems to be the threshold at which
spatial structuring of cpue could have marked influence on estimation error. Thus, survey
scale is important when analysing spatial patterns and estimating mean biomass indices, and
a sound analysis of relations in spatial structuring of fish and habitat conditions is essential
to derive more precise estimates.

Key Words: spatial analysis, universal kriging, variogram models, cod, dab, haddock,
herring whiting, habitat associations
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1 Introduction

Classical methods of monitoring the abundance of fish stocks and detecting possible changes
over time are normally based on large-scale bottom trawl surveys. These are carried out
under a standard survey protocol, e.g. using standard fishing gear and a standard sampling
strategy. A large-scale bottom trawl survey strategy such as the IBTS in the North Sea
(International Bottom Trawl Survey Group 1999) involves one or two samples in each ICES
statistical rectangle, the spatial unit of investigation in the North Sea. This design allows the
estimation of regional mean fish abundance. In contrast, the German Small-scale Bottom
Trawl Survey (GSBTS) aims to monitor species abundance and composition on a more local
scale, involving extensive sampling within a few days in small areas of 10 by 10 nautical
miles (nm). Such areas are distributed over the entire North Sea (Ehrich et al. 1998).

In general, local heterogeneity in the spatial distribution of fish cannot be detected by large
scale surveys. Nevertheless, local and meso-scale aggregation patterns of fish contribute
significantly to the error variance of global abundance estimates (Petitgas 2001). Thus,
locally increased sampling effort is required in order to reduce this variability. The sampling
intensity required is clearly related to the spatial patterns of fish populations under study.
Thus, in cases where random sampling is not carried out on a specific spatial scale, any
underlying spatial structure in the distribution of the organisms can produce bias in the
study. It is not possible to detect such a bias a priori, since an appropriate scale of the spatial
distribution of any species of interest is generally unknown (Maynou 1998).

A sound analysis of spatial patterns in fish distribution can be done by geostatistical
methods. In fisheries, geostatistics is used to optimise sampling strategies (Petitgas 1996), to
estimate catch data and corresponding variances, taking into account the existence of spatial
structures (Conan et al. 1992, Warren 1997, Maynou 1998, Fernandes & Rivoirard 1999), as
well as to map estimated distributions and spatial patterns of organisms (Maravelias et al.
1996, Lembo et al. 1999). Such spatial patterns depend on the species and age class
considered (Maynou et al. 1996, Fernandes & Rivoirard 1999, Rivoirard et al. 2000,
Stelzenmiiller et al. 2004); they can also vary with time of day (Rivoirard et al. 2000,
Wieland & Rivoirard 2001), and with the sampling period (Freire et al. 1992, Hutchings
1996, Rueda & Defeo 2001).

Aggregations in the distribution of fish in space can be caused by physical, chemical and
biological factors which control the activity of fish, such as feeding, predator avoidance,
migration, reproduction and habitat selection (Simrad et al. 1992). In fact most animals and
plants in aquatic and terrestrial environments are aggregated (Methven et al. 2003).
Numerous studies have been carried out to assess associations between environmental
factors, such as temperature, salinity or bottom depth, and fish distribution by employing
various methods. For example, spatial relationships between whiting and measures of
environmental conditions on large spatial scales were studied applying Generalised Additive
Models (GAM) in combination with GIS (geographic information system) (Zheng 2002) and
a test for associations between environmental conditions and distribution of ground fish
species was developed (Perry 1994), in which the null hypothesis of random relationships
between fish catch and habitat variables was tested using the empirical cumulative
distribution function of environmental variables compared to the same distribution weighted
by the catch (Paramo & Roa 2003).

This study focuses on the assessment of spatial patterns for herring (Clupea harengus), cod
(Gadus morhua), whiting (Merlangius merlangus), haddock (Melanogrammus aeglelfinus)
and dab (Limanda limanda) in the northern North Sea, analysed at two different spatial
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scales, and their effects on biomass estimates. The species analysed belong to the ten
dominant ones (in weight) in this area (Daan et al. 1990). They are of special interest in this
study, since differences in their aggregation behaviour and in the location of their
distribution centres in the North Sea can be assumed. Thus, our area of investigation is
located in the centre of the distributions of adult whiting and haddock, while the main
distribution areas of dab and cod are more southern and northern, respectively (Daan et al.
1990, Heessen & Daan 1996). The spatial evaluation of herring catch data derived from a
bottom trawl survey using a GOV is of particular interest, since herring abundance indices of

the IBTS 1% quarter surveys are the basis of herring stock assessment (Simmonds &
Rivoirard 2000).

For this analysis a unique data set was used, elaborated by the Institute of Sea Fisheries,
Hamburg in the year 1986. Within the scope of a comparative fishing experiment, 127
standard hauls were sampled in an area of 15 by 16 nm in the northern North Sea (Ehrich
1991), including one of the current standard monitoring areas of the GSBTS (box D) in its
north-western part. To address scale effects by application of geostatistical tools, this data set
is promising due to the great number of sampling stations, which is exceptional in fisheries
science. We also performed spatial analysis of the habitat with respect to variations in water
depth, which can be regarded as an indicator of other environmental variables that might
influence specific fish aggregation patterns, in order to further reduce bias in the abundance
estimates.

2 Material and Methods
2.1  Survey area, sampling and data

Data were collected during a comparative fishing experiment in June 1986 within an area of
15 by 16 nm in the northern part of the North Sea (57°43.5'N-57°58.5'N; 0°34"W-1°04"W)
using the German research vessels “Walther Herwig II” and “Anton Dohrn”. In total, 127
hauls were taken, each at randomly selected stations and towing directions (for details of the
experimental set up see Ehrich 1991), using the standard net GOV (Chalut 4 Grande
Ouverture Verticale) trawled for 30 min at a speed of 4 knots. In subsequent analysis the
space from which these 127 samples were derived is referred to as “total area”. From 1986
on, a smaller area of 10 by 10 nm was investigated within the GSBTS in the North Sea
(Ehrich et al. 1998) which is situated in the north-western part of the investigation area
mentioned above. For spatial analysis of samples taken in the 1986 survey from this smaller
area (59 stations), the area is called “box D” (57°48'N-57°58'N; 0°44W’-1°04'W) (Fig.1).
Additionally, the maximum catch depth (max. depth) was recorded, in the spatial analysis
referred to as “depth”. Trawl positions were taken as midpoints of the hauls converted to an
absolute measure in km (easting and northing), relative to 57°43.5'N and 1°04"W for data of
the “total area” and relative to 57°48 N and 1°04"W for data belonging to “box D”.

2.2 Preparatory data analysis

Biomass indices of herring (Clupea harengus), cod (Gadus morhua), haddock
(Melanogrammus aeglefinus), whiting (Merlangius merlangus), and dab (Limanda limanda)
are expressed as total catch in kg per 30 minutes trawl time (cpue). Differences in cpue
caused by either ship involved in this survey were assumed to be negligible (Ehrich 1991).
Unfortunately only incomplete information is available regarding length and sex, thus no
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biological categories were considered. All catch data were tested for normality using the
Shapiro-Wilk test (Royston. P 1982). As a result we employed a log-transformation (in
presence of “zero-catches” a small numerical constant was added), while depth data were not
transformed. Linear and non-parametric regressions of data with one covariate (Bowman &
Azzalini 1997) (north, east co-ordinates and depth) were carried out to detect possible trends
(Kaluzny et al. 1998).
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Fig. 1: Spatial distribution (post plot) of sampling stations within the area of investigation. (+)
sampling stations belonging to the area referred as “total area”. (D) sampling stations situated in the
area “box D”, belonging to the eleven standard monitoring areas of the GSBTS.

2.3 Structural analysis

The structure of spatial variability of Z(x) (log-transformed cpue for each fish species and
“depth”) was assessed by an experimental covariance function. Experimental
semivariograms 7() were used to describe the spatial structure of fish biomass and depth,
respectively. The semivariogram outlines the spatial correlation of data measuring the half
variability between data points as a function of their distance. In the absence of spatial
autocorrelation among samples the semi variance is equal to the variance of Z(x). When a
significant linear trend was encountered, data were detrended (Kaluzny et al. 1998).
Omnidirectional semivariograms as well as directional semivariograms were computed using

the robust “modulus’estimator, which is supposed to be resistant against extreme values
(Cressie (1980):

4
5(h) = {NL 3|2, + -2, )|§} %0.914 +(0.988/N () (1)
(h) x—(x; +)~h
where Z(x;) is the realisation of the variable under study (biomass and depth) at station x;,
Z(x;+h) is another realisation separated from x by a discrete distance /# (measured in km) and
N(h) is the number of pairs of observations separated by A. Spatial structuring of the
distributions of herring, cod, whiting, haddock, dab and depth were assessed within the “total
area” (127 stations) and “box D” (59 stations). Directional semivariograms (for whiting and
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haddock from “total area” with axis = 70°/160°, for dab from “total area” with axis =

130°/30°) were corrected by an anisotropy factor (0.3 for whiting ; 0.2 for haddock and dab)
due to the detected presence of a geometric anisotropy (Kaluzny et al. 1998).

Experimental semivariograms often show fluctuations preventing a straightforward
interpretation. Thus, Rivoirard (1997) suggested that a relative structure be computed in
which the experimental semivariogram is standardised by the sample variance, or that the
log-transformed variable be used with a back transformation of the analysed structure. The
log-transformation of the variable reduces the influence of high values and was employed in
this study. However, an appropriate back transformation of the experimental log
semivariograms is required before performing the structural analysis. We used the following
equation for log-transformed data (Guiblin et al. 1995):

y(h) = (m* +var(2)) (1 ~exp— (07, () /var(L))

)
with o =log (1+Var(Z)/ mz)

where m is the mean of Z(x), L is the logarithmic transformation of the variable and vL(h) is
the structure of the transformed variable. A simulation study described in Rivoirard (2000)
showed that the use of log transformation, associated with a back transformation, provides
an improved method for estimating variogram parameters and estimation variance. Thus
parameters (nugget, sill and range) of linear, spherical, Gaussian and exponential models
were fitted automatically (Cressie 1991) to experimental semivariograms of catch data and
depth measured in the “total area” and within “box D”.

To reduce subjectivity and to ensure reproducibility of the fit, a weighted least squares
procedure recommended by Cressie (1991) was employed, where more weight is given to
the points near the origin, which is the crucial part in determining the variogram parameters.
In order to assess the goodness-of- fit (gof) of the different models, for each fitting procedure
an index recommended by Fernandes (1999) was computed:

S NBF® - v}

= S NG} ©)

where N(h) is the number of pairs used to compute the semivariogram, 7(Ais the

experimental semivariogram and y(#) is the fitted model. The closer the gof'to 0, the better
the fit.

2.4 Assessing spatial structuring at different scales and water depth

In order to assess effects of the spatial scale on spatial structuring of fish distribution (“total
area” vs. “box D”), the strength of spatial dependence (SpD) was calculated for each model
(Robertson & Freckmann 1995):

SpD =(1-C, (C, +C)-100 @

where Cp is the nugget parameter and C the sill of the modelled covariance function. The
greater this value (ranging from 0 to 100), the greater the level of spatial dependence.
Additionally the value of the relative nugget (Cy/Cy+C) was calculated to compare the
fraction of variability explained by spatial structuring of catch data and the level of
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developed spatial structuring at different survey scales. Sokal (1978) related the diameter of
an aggregation of a species to the modelled range. Therefore the practical range (pR) was
computed for each model in order to detect characteristics of possible habitat associations
(relations of spatial patterns of fish to depth). The effective range for spherical models is
equal to the estimated range, the effective range of an exponential model being 3-a and that

for a Gaussian model \/§ a.

2.5 Mapping density surfaces and biomass estimations

Mapping of density surfaces of the predicted cpues of herring, cod, whiting, haddock and
dab as well as the maximum depth was carried out with ordinary kriging and universal
kriging (kriging in the presence of a drift when a linear trend was detected). For punctate
estimates of variable values at unsampled locations, the estimator given by Webster (2001)
~was employed:

2X,)= L A S (X) (5)
where “4iare charging weights attributed to each z(x i), Jr represents the drift by a set of

functions, fi(x), £ = 0,1,...K, of our choice (here simple polynomials of the order 1) and a are

the unknown coefficients. To apply this interpolation method a grid was drawn on the area

investigated with a mesh size of 0.5 km. The uncertainty of the estimation of ordinary and

universal kriging was expressed by computing the square root of the kriging variance

(kriging error).

Mean cpue estimates for each fish species regarding the “total area” Z(X,) and regarding
only “box D” were obtained by ordinary and universal blockkriging (with a drift equal to the
east co-ordinates) (Isaaks & Srivastava 1989). Blockkriging is used as a direct method of
biomass assessment in fisheries (Maynou 1998). The computerised algorithm requires the
area to be finely discretised; the discretisation used here is a grid of 2 x 2 blocks, which was
found to optimise the precision of the computations.

When an appropriate spatial model is fitted, then the mean cpue estimated by kriging is
expected to be similar to the sample mean (Isaaks & Srivastava 1989). Furthermore, in order
to compare the variability of the estimates at different spatial scales, coefficients of variation
of the arithmetic mean (m) and the mean cpue estimated by blockkriging (mgx) were
calculated. A classical estimator

CVetass = s | m (%) (6)
where s is the standard deviation, and the geostatistical estimator
CV e~ ke (squared root of mean kriging error) / mpx (%) N

where spatial structuring of data and number of samples were taken into account, were also
calculated.
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3 Results
3.1  Preparatory data analysis

Regarding catch data from the “total area” significant linear trends (o = 0.05) with east co-
ordinates and depth were detected for whiting (log-cpue = 4.84 - 0.109 east, R* =40.7 %, p
< 0.001; log-cpue = 10.9 - 0.07 depth, R*>=18.0 %, p < 0.001), haddock (log-cpue = 5.58 -
0.03 east, R?> = 18.9 %, p < 0.001; log-cpue = 8.06 - 0.028 depth, R?*=152 %, p < 0.001),
and dab (log (0.01 + cpue) = 1.5-0.12 east, R*=36.5 %, p < 0.001; log (0.01 + cpue) = 3.92
- 0.04 depth, R’=3 %, p = 0.028), but for cod only with depth (log (0.01 + cpue) = 6.75 -
0.04 depth, R* = 4.7 %, p = 0.008).

Regarding catch data from “box D™ a significant linear trend with east co-ordinates was
discovered for herring, whiting and dab (herring: log(1+cpue) = 4.1 - 0.08 ecast, R?=5.61 %,
p = 0.038; whiting: log-cpue = 5.1 - 0.1 east, R* = 34.0 %, p < 0.001; dab: log (0.01 + cpue)
= 1.21 - 0.09 east, R = 18.2 %, p < 0.001) and with depth for whiting (log-cpue = -9.65 +
0.09 depth, R* = 19.8 %, p < 0.001). These detected linear trends were taken into account for
the subsequent structural analysis.

3.2 Structural analysis

Regardless of the spatial scale, robust experimental semivariograms computed for herring,
cod, whiting, haddock, dab and depth show a clear spatial autocorrelation (Fig.2 and 3). In
any case, classical model types such as linear, spherical, exponential and Gaussian models
were appropriate. Parameters of the fitted models, values of the indicator of spatial
dependence (SpD), “goodness — of — fit” values (gof), the value of the relative nugget (rel.
C,) and the practical range (pR) are listed in Table 1.Spatial structures were analysed to
maximum distance of 18.5 km where the "total area" was concerned and of 8.5 km for "box
D". All models fitted show a “goodness — of — fit” value around zero, which indicates that
differences among the experimental semivariograms and models are small. The lowest value
of the gof was obtained for the spherical model regarding herring in box D (Table 1). Model
types changed in all cases between both survey scales, with one exception (whiting). For
herring, haddock, dab and depth the model type changed from linear regarding "box D" to a
model with a sill regarding the "total area". Thus only whiting and cod cpue of box D were
described by models having a sill.

At the greater spatial scale spatial dependence among catch data decreases in the following
order: haddock (SpDiotat area = 94.3), dab (SpDrotal area = 75.4), whiting (SpDiotal area = 62.9), cod
(SpDrogal area = 53.7) and herring (SpDiota area = 40.7). A high spatial dependence is also
obvious for the catch depth (SpDiotal area = 93.0). When comparing values of the relative
nugget at both spatial scales, a reduction of the relative nugget at the greater scale is detected
for cod (19.3 %), whereas an increase of 11.7 % is observed for whiting. Considering the
"total area”, the greatest practical range is visible for dab (17.8 km) and the smallest for
herring (2.8 km). Whiting (11.4 km), haddock (7.8 km), cod (6 km) and the maximum catch
depth (11 km) display intermediate values. Conversely, considering "box D" patch diameters
do not differ between whiting (5.4 km) and cod (4.5 km) (Table 1). Thus, patchiness is most
developed for cod at smaller survey scales, while within the “total area” herring showed the
highest level of patchiness.

Vanessa Stelzenmiiller:  Analyse rdumlicher und zeitlicher Variabilitit von Fischpopulationen



KAPITEL 4:

Effects of survev scale and water depth on the spatial assessment

- 80 -

riance

Semiva

Semivariance

Semivariance

8000

4000

90 A

herring

45 |

8000

4000

whiting

8000

90

0

Distance (km)

.
45 -
.
depth
T T

cod

4000 haddock

el

T
0 5 10 15

Distance (km)
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measure of maximum depth sampled within the total area with spherical, exponential and Gaussian
models, fitted by a least-squares method.
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exponential models, fitted by a least-squares method.
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Table 1: Estimated parameters nugget (Co), partial sill (C) , slope and range (a) of the linear (lin),
exponential (exp), spherical (sph) and Gaussian (gauss) models fitted to the cpue derived from the
“total area” (total) and to cpue derived from “box D” (box D). Also the practical range (pR), value of
the relative nugget (rel. Co), strength of the spatial dependency (SpD) and the values of the “goodness
- of - fit” statistic (gof) are listed.

variable arca  model Co Clslope a pR rel. Co (%) SpD gof
herring  total  sph 45938 31478 238 2.8 593 407  0.0005
herring boxD lin 10954.9 150.5 na. na. na. na. 0.0003
cod total  exp 37.6 43.6 2.0 6.0 463 53.7 0.0050
cod box D sph 60.4 448 45 45 574 426 0.0014
whiting  total  exp 18474  3138.0 3.8 114 37.1 629  0.0032
whiting boxD exp 1562.4  3145.8 1.8 54 332 668 0.0042
haddock total  exp 1064 17735 2.6 7.7 57 943  0.0082
haddock boxD lin 1313.3 69.1 n.a. na. n.a. na. 0.0050
dab total  gauss 1.6 49 103 17.8 246 754  0.0050
dab boxD lin 3.8 03 n.a. n.a. na. na. 0.0035
mx depth  total sph 44 58.8 11.0 11.0 7.0 93.0 0.0019
mx depth boxD lin 12.1 35 na. n.a. na. na. 0.0021

3.3 Mapping density surfaces and abundance estimates

The density maps derived from the kriging procedure and the corresponding kriging errors
are presented in Figures 4 and 5. It can be seen that herring and cod are distributed in clearly
defined patches within the "total area", while whiting and haddock display more overlapping
spatial distributions with highest biomass densities in the western part of the investigation
area. In contrast, dab is aggregated in one big patch also located in the western part of the
area. Regarding the maximum catch depth, we find a gradient running from northwest to
southeast throughout the area. In any case, the estimated uncertainties (Fig. 5) are highest at
the border of the investigation area.

Regardless of the spatial scale, haddock is the most abundant species investigated, followed
by whiting and herring, while cod and dab show lower abundance (Table 2). The mean
catches expressed as the arithmetic means (m) are in good agreement with mean catches
calculated by blockkriging (msx). The geostatistical variances (CVgeo) of mean cpue for
herring, cod, whiting, haddock and dab are clearly smaller in all cases than the classical ones
(CVelass). Generally, mean cpues calculated for “box D” are higher than those for the “total

2

area .
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Table 2: Estimates of the mean cpue of herring, cod, whiting, haddock and dab (m = arithmetic
mean, mpx = geostatistical mean) caught within the “total area” (total) and in “box D” (box D).
Variability of the estimates is expressed as standard deviation (s), kriging error (ke = square root of
the mean kriging variance), as well as the classical (CVous (%)) and geostatistcial (CVeeo (%))

coefficients of variation.

specie  area m mgx S ke CViass CVgeo
herring  total 723 721 906 369 1252 512
herring box D 83.7 822 111.7 447 1334 544
cod total 160 156 140 43 870 274
cod box D 177 161 145 54 822 335
whiting  total 633 628 81.7 332 1291 528
whiting box D 948 1240 927 420 978 338
haddock total 1993 1933 1047 213 525 110
haddock box D 2299 2161 1036 243 451 113
dab total 19 138 24 1.0 1224 532
dab box D 25 33 28 14 1120 43.0

Scale effects are less pronounced for the abundance estimates of cod, herring and dab, where
differences in the mean cpue and the corresponding measure of variability are low (Table 2).
Conversely, for haddock the scale effect is high due to the great reduction of the mean cpue
when considering the "total area" and due to the marginal increase of the variability of the
estimates. For whiting differences in the mean catches at both survey scales are highest, with
values from "box D" being twice as high as those for the "total area", associated with a slight
decrease of the corresponding variability at the greater spatial scale (Table 2).
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Fig.4: Density maps of herring, cod, whiting, haddock, dab as well as the maximum depth within the
total area, estimated with (universal) point kriging. Note that the scale differs due to the varying
abundance.
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Fig.5: Corresponding standard kriging errors of the density maps, estimated with (universal) point
kriging. Note that the scale differs due to the varying level of variances.

4 Discussion

At both scales investigated, spatial structuring of cpue at varying levels was observed (Table
1). Thus, a sound spatial analysis proved to be necessary to obtain unbiased estimates of
mean cpues and to assess spatial patterns in fish distributions. The keystone of a
geostatistical analysis is the estimation and modelling of the semivariogram and due to the
fact that fisheries data are often skewed, in this study only robust methods were employed.
Furthermore, the great number of sampling stations at the spatial scale of the "total area" and
modelling the log-back-transformed semivariograms generally resulted in very good fits
according to low goodness-of-fit indicators (Table 1), demonstrating the validity of this
spatial analysis.

The choice of the variogram model corresponds to a physical interpretation of the spatial
process from the data sampled (Petitgas 1996). In our study, linear, spherical and
exponential models could be fitted in almost all cases, assuming a linear behaviour near the
origin, which is coincident with a medium irregularity. Bulit (2003) associated a spherical
function with a system in which patches were more structured, whereas exponential
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functions indicate that patches have fuzzy edges. Spatial structuring of cpue data for dab

from the "total area" was described best by a Gaussian model, indicating a great regularity of
the spatial phenomenon (Petitgas 1996).

Cpues for haddock were spatially structured more obviously at the greater survey scale,
followed by dab, whiting, cod and herring (Table 1). Spatial structuring (SpD) was more
strongly developed for the "total area" regarding cod, while whiting showed an increased
level of spatial dependency in "box D" (Table 1, Fig. 6). At the greater survey scale spatial
structuring of fish contributes 41 % (herring) - 94 % (haddock) of the total variability.

Only small changes of water depth were detected in the area of "box D" (Fig. 4), which thus
represents the shallowest part of the "total area" (90 — 96 m), while the maximum bottom
depth is found in the south-eastern corner of the "total area". A depth gradient runs from
north-western to the south-eastern corner. Here changes in depth were assumed to indicate
changes in abiotic (e.g. temperature, salinity) and biotic factors (e.g. food availability). Thus
similarities between spatial structuring of cpue biomass index and depth can be interpreted
as a general habitat association. However, fish distribution patterns are not controlled by a
single factor (Rose et al. 1994).

At the greater spatial scale of the "total area", displaying a greater heterogeneity of the water
depth, the parameters rel. Cy, SpD and pR (Table 1) calculated for haddock are most closely
related to depth. This indicates that on this survey scale haddock developed the strongest
habitat association, followed by whiting, which aggregated in patches of 11.4 km in
diameter. The mapped density of cpue biomass index for haddock (Fig. 4) confirms the
strong association with depth, since high cpues of haddock coincided with the lowest depth.
Haddock maintain the same temperature range in winter and summer by changing their
depth distribution (Perry 1994). Thus thermal conditions might have marginal influence on
the detected strong habitat association. But due to the fact that the area of investigation is
situated in the centre of haddock distribution, catch ability is high and fish distribution is
thought to be quite uniform. Our results on the spatial distribution of corresponding cpue
values from "box D" support this view, as can be inferred from the weak spatial structuring
(liner model and relatively high nugget value ). Thus, homogenous habitat conditions are
most probably responsible for the nearly random distribution of haddock within "box D". In
an analysis of haddock predation on sand eel in box D, a weak aggregation behaviour of
haddock was obvious (Temming 2004). Stomachs of haddock contained more sand eel than
did whiting stomachs, indicating a competitive advantage of the benthivorous haddock due
to a more effective hunting method.

Similarly, whiting too was distributed in coincidence with depth (Fig. 4), showing high-
density patches in the area of least water depth. Furthermore, a spatial overlapping of high
cpues of whiting and haddock is obvious. This implies that whiting and haddock favour
analogous habitat conditions. In winter and spring the spatial pattern of the sea surface
temperature has a strong influence on the spatial distribution of whiting in the northern
North Sea, whereas such a relationship is absent in summer ( Zheng 2002). This may be due
to a stratification of the water body during summertime, because whiting can be regarded as
demersal. In our study, the inferred habitat association of whiting indicates that temperature
could have had some influence on the formation of spatial patterns, since this fish prefers
colder waters at greater depths. However, the fact that whiting also developed a mean level
of spatial structuring in "box D", in contrast to haddock, contradicts this conclusion. An
alternate explanation is that the spatial depth-dependent distribution of available food (e.g.
sand eels) might have influenced the distribution of haddock and whiting. In box D the local
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population of adult whiting was almost exclusively feeding on sand eels Mergardt (1997)
and a highly aggregative behaviour of whiting within box D, with highest fish concentrations
in the south-western part of the area, has been described (Temming 2004). These results and
our data support the hypothesis that in the study periods a patchy distribution of sand eels
might have determined the aggregation behaviour of whiting in this area.

Our results show that cod developed a weak habitat association at the greater spatial scale of
the "total area”, indicated by great differences in the estimated parameters pR and SpD in
comparison to the ones estimated for water depth (Table 1). Positive relationships of the
spatial distribution of cod to thermal conditions in cold northern waters, negative
relationships in warm waters and an absence of relationship in intermediate waters were
reported (Planque 1998); however, cod was not consistently associated with particular
depths either in spring or in summer (Perry 1994). Hence, the patchy distribution of cod in
our study was probably triggered by biotic rather than abiotic habitat factors. Although
habitat association of cod was weak, most patches were formed in the shallower part of the
"total area" (Fig. 4). Consequently, spatial structuring of cod cpue biomass index remains at

the same level in "box D", corroborating the idea that prey distribution might have triggered
the patchy distribution in this area.

The greatest practical range was found for dab at the greater spatial scale of the total area.
Whereas spatial structuring was strongly developed (SpD total area = 75.4), patchiness was low,
because dab aggregated in a single patch with a diameter of 18 km. Kriged dab biomass was
highest in a homogenous region, where changes in depth were marginal (Fig. 4), indicating
only a weak relation of dab distribution with habitat conditions. We assume that aggregation
of this fish was more closely related to biotic factors like food availability or social
behaviour. Furthermore, the centre of dab distribution is located in the southern North Sea,
so that the low level of patchiness might also be caused by the low fish abundance in our
study area. In contrast, patchy distributions of medium-sized and great dab were observed in
the German Bight, were dab is the most abundant species (Stelzenmiiller et al. 2004).

The lowest level of spatial structuring and no habitat association were observed for herring
at the greater spatial scale. Patchiness was most clearly indicated by the low patch diameter
of 2.8 km, whereas most of the patches were located in the western part where water depth is
least. At the smaller spatial scale almost no spatial structuring was detected, indicating an
almost random distribution of herring within box D. It was suggested that patch formation of
herring depends on topography and substrate of the seabed, water temperature, salinity,
water depth and food availability (Maravelias et al. 1996).

Regardless of the survey scale, haddock was the most abundant species both within "box D"
and the "total area", followed by whiting and herring. Generally, high kriged abundance in
this area is most likely due to the fact that haddock tends to concentrate around the Orkney
and Shetland Tslands for feeding (Zheng et al. 2002) and that our the investigation area is
situated close to the feeding grounds. Also the centre of high whiting abundance is reported

to be in the northern North Sea (Zheng et al. 2001), explaining the high mean biomass index
in this study.

Mean cpue biomass indices for all species investigated at both survey scales were obtained
by ordinary and universal blockkriging with a drift in relation to the east co-ordinates. When
employing the trend component, kriged estimates with minimised variability were received.
Classical and geostatistical estimates of mean biomass were in good agreement in almost all
cases, but a great reduction of corresponding variability was detected (Table 2),
demonstrating a considerable spatial phenomenon: At both survey scales the classical
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coefficient of variation indicated higher variability than the geostatistical coefficient of
variation (Table 2). The greatest absolute reduction of variability, when calculating the
geostatistical variance, was detected for whiting and herring within the "total area" and for
herring within "box D". With the sole exception of herring, the absolute reduction of
variability by geostatistical estimations was higher at the greater survey scale of the "total
area". The greatest difference in mean biomass index between the survey scales was found
for whiting and haddock, while this was quite stable for herring, cod and dab.

Our findings support the assumption of strong habitat association of whiting and haddock,
because mean kriged cpue biomass indices clearly increased within the area of box D, where
habitat conditions were inferred to be homogeneous. Conversely, for cod and dab the spatial
aggregation modelled in this study is not strongly associated with habitat conditions. Thus
differences in mean kriged abundance at both survey scales are marginal regarding these
species.

5 Conclusions

Although the differences in the spatial dimension at both survey scales investigated were
rather small, the degree of development of spatial structuring of fish density differed clearly
in any case. Hence, at small scale ("box D") spatial structuring of cpue biomass indices were
almost negligible for haddock, herring and dab, where variability is mainly due to random
effects and/or microvariability. Conversely, cod and whiting were the only species from
"box D" in which almost half of the total kriged variability is due to spatial structuring.

It is important to note that "box D" has a lower spatial dimension than does the total area and
that the spatial structuring of cpue biomass indices could have a strong influence on the
kriged estimation error under such circumstances. This view is supported by the fact that
differences between the modelling results for both scales were most pronounced for those
fish species in which a strong habitat association was detected by our spatial analysis.
Therefore, a more intensive sampling is recommended to capture most of the sample
variability and to reduce the nugget variability, even at the smaller scale, especially for those
species for which a clear distribution trend can be expected. This agrees with a simulation
study (Petitgas 2001), where allocating more sampling to the experimental design afier
detecting a trend resulted in a lowered bias and a better precision of kriged abundance
estimates. Our results show that considering fish aggregation patterns for biomass estimates
by applying geostatistics can lead to an enormous reduction of the estimation error, even at
smaller scales.

Furthermore, habitat associations inferred in this study were more pronounced with
increasing survey scale, indicating that for some species a great proportion of variability,
calculated from large-scale survey designs (like IBTS), could be due to species-specific
aggregation patterns, resulting in more precise estimates.

The location of the area of investigation compared to the distribution centres of the species
might have played an important role when analysing the spatial distribution of the fish and
interpreting possible factors, which give reason for patch formations. Thus, our results
should be considered in the design for monitoring programs, for example in the context of
the construction of offshore windmills or the installation of Marine Protected Areas, since an
accurate assessment of spatial distribution patterns of target species within different areas at
different times requires an exact knowledge of the level of habitat association and species-
specific distribution patterns.
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In summary, the survey scale is important when analysing spatial patterns and estimating
mean biomass indices. In the future more effort should be invested in sound analysis of
relations in spatial structuring of fish spatial distribution and habitat conditions, so as to
detect small-, meso- and large-scale trends in distribution patterns and to derive more precise
estimates.
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Assessing impact of fishing gear type on the analysis of spatial distribution
of the dab (Limanda limanda) within the German Bight
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Abstract

This study focuses on the impact of fishing gear type on analysing spatial patterns of three
size classes (age groups) of Limanda limanda (dab) in the German Bight, employing
geostatistics. During a comparison fishing experiment in December 2001 within a 10 x 10
nautical miles sized monitoring area, the gear efficiencies of a 7m-beam trawl and an otter
trawl for different size groups of dabs were investigated. A structural analysis, carried out for
each size group of dab and type of gear, showed a presence of spatial autocorrelation in the
catch data in any case. The restricted maximum likelihood estimation method (REML) was
used to estimate parameters of spherical and Gaussian models. An increased gear efficiency
of the 7m-beam trawl was detected for small and medium sized dab, while gear efficiency
was similar but lower for large dab. Results show that separate spatial analysis for three size
classes (age groups) of dab were essential to avoid interaction of spatial information and to
decrease variability. Further, the use of an efficient sampling gear leads to an improved
resolution of spatial structuring, but does not result necessarily a reduction of nugget
variability. In cases of high abundance and similar gear efficiency, ecological parameters
derived from a spatial analysis are also in good agreement. We conclude that both abundance
and gear efficiency are affecting a robust spatial analysis. Thus, satisfying results cannot be
obtained, when one gear is used for several target species, unless the gear efficiency and/or
species abundance is high. Therefore, to achieve reliable results of a structural analysis and
an accurate spatial assessment of fisheries data, we recommend considering the combination
of the abundance of the target species (biological group) and efficiency of the sampling gear.

Key Words: dab, gear efficiency, REML, spatial distribution pattern, variogram
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1 Introduction

Conflicting interests in management plans for the North Sea and especially for the German
Bight such as plans for the implementation of Marine Protected Areas (MPA) vs. plans for
the operation of offshore windmills requires growing attention and precaution. The latter
produced contradicting discussions about their impact on the marine life. These conflicting
interests call for long term monitoring programs assessing the impact and influence of MPAs
and wind parks on the marine environment in the North Sea, in particular regarding possible
changes in the spatial distributions of various species, including fish, within distinct areas.
Such impact assessments are cost-effective and the proper choice of an experimental design
is very crucial for this procedure.

Regarding a simple random sampling design, such as normally implemented for the
identification of MPAs or for monitoring windmill construction sites, observations are
assumed to be independent from each other, and mean and variance estimates can be derived
directly from the sample values without any assumptions about the spatial distribution of the
population (Petitgas 2001). But in cases where random sampling is not carried out on a
specific spatial scale, any underlying spatial structure in the distribution of the organisms can
eventually lead to a bias in the study. It is, however, not possible to detect such a bias a
priori, since an appropriate scale of the spatial distribution of any species of interest is
generally unknown (Maynou 1998). Furthermore, classical abundance estimates could mask
a population decline, as fishing might have been performed on an aggregated population and
catch rates could be locally high (Hilborn and Walters 1992). For example, the stock
decrease of Atlantic cod (Gadus morhua) in the waters of Newfoundland was not associated
with a clear signal in the cpue-data (Hutchings 1996) but with a change in the distribution
pattern. A sound analysis of spatial structuring of fish can be achieved by geostatistical
methods. In fisheries, geostatistics is used to optimise sampling strategies (Petitgas 1996), to
estimate catch data and corresponding variances, taking into account the existence of spatial
structures (Conan et al. 1992; Warren 1997; Maynou 1998; Fernandes and Rivoirard 1999),
as well as to map estimated distributions and spatial patterns of organisms (Maravelias et al.
1996; Lembo et al. 1999). Spatial structures depend on the species and the age class
considered (Maynou et al. 1996; Fernandes and Rivoirard 1999; Rivoirard et al. 2000;
Stelzenmiiller et al. 2004a) they can also vary with time of day (Rivoirard et al. 2000;
Wieland and Rivoirard 2001), and with the sampling period (Freire et al. 1992; Hutchings
1996; Rueda and Defeo 2001). Further geostatistical methods were used to estimate
probabilities to catch more than a certain amount of fish in order to define Marine Protected
Areas (Stelzenmiiller et al. 2004b).

Quite often environmental impact studies rely on data obtained from different fishing gears,
~ assuming that no bias will be introduced by this fact. Although some information is
available, indicating that selectivity and vulnerability of the target species differ between
different types of fishing gear (Gunderson 1993), an exploration of possible effects of two
different standard gears on a spatial analysis of catch data is still missing. As a consequence,
this study focuses on the assessment of the impact of different fishing gears on the analysis
of spatial structuring of catch data for the dab, Limanda limanda, employing geostatistics.
This flat fish is a common and abundant species in the German Bight (Rijnsdorp et al. 1992).
A comparative fishing experiment was carried out in December 2001 in the German Bight
within box A, one of the standard monitoring areas of the German small-scale bottom trawl
survey (GSBTS) (Ehrich et al. 1998). Randomly distributed stations were sampled by a 7m-
beam trawl and an otter trawl from the German research cutter “Solea”. Since in a previous
study it has been shown that different biological categories might have different spatial
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patterns (Stelzenmiiller et al. 2004a), we distinguished three size classes (age groups) of dab.
Our results provide essential information which might help to optimise monitoring
strategies, e.g. in the context of establishing offshore wind parks.

2 Material and Methods
2.1  Survey area and experimental set up

The study was undertaken in an area of 10 x 10 nautical miles (nm) located in the inner
German Bight (box A, Fig. 1), which is one of the standard sampling areas of the German
Small-scale Bottom Trawl Survey (GSBTS) in the North Sea (Ehrich et al. 1998), during
December 2001 (Fig. 1). Catch data were assembled aboard the German research cutter
“Solea”. Two different survey standard gears were used to compare their catch efficiency
and their ability to detect spatial patterns of fish biomass indices. The first net was the so-
called cod trawl. This otter trawl has an opening height of 3.5m and a horizontal opening
between the wingend tips of about 23m. The net is provided with a rubber disc roller gear.
The codend is equipped with a fine mesh liner (20mm). The second net was a 7m-beam
trawl. It is characterised by a 7m beam, 5 tickler chains and an overall net length of ca 21m.
The normal 80mm codend is also fitted with a 20mm mesh liner.

In total 49 stations were sampled during daylight, 25 stations with the 7m-beam trawl
(referred to as nl) and at 24 stations with a cod trawl (referred to as n2). Each day the gear
has changed to avoid the effect of changing environmental conditions during the period. The
locations of sampling and trawl directions were selected randomly. The trawling time was 30
min. at a trawling speed of 3.5 knots. The trawl positions were taken as midpoints of the
hauls converted to an absolute measure in km (easting and northing), relative to 54°27'N and
6°58'E.

Fig. 1: Location of the investigation area box A within the German Bight.
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2.2 Biological categories considered

Spatial patterns can vary with age (Fernandes and Rivoirard 1999). To correct for this effect
all catch data for dab (Limanda limanda) were separated into three size groups, representing
different age groups. Regarding dab these were < 9.5 cm (0-2 years old, referred to as d1),
9.5-19.5 cm (2-7 years old, referred to as d2) and > 19.5 cm (older than 7 years, referred to
as d3) (Heessen and Daan 1996). Taking into account these categories will help to reduce the
random errors in the spatial models.

2.3 Preparatory data analysis

Numbers of fish per 30 min trawl time were converted into biomass in kg 30 min™ (catch per
unit effort, cpue) on the basis of the length-weight relationships for each biological group
considered. Due to the differences between the swept area of the fishing gear employed, data
were standardized to biomass per 10 000 m? (kg ha™) to ensure comparability. Therefore the
swept area of each haul was calculated by multiplying the towed distance over ground
(satellite positions) by the effective width of the gear (nl1 =7 m, n2 =23 m). A box-and-
whisker plot (Tukey 1977) was computed to explore the presence of extreme sample data.
Data were defined as outliers when the values were greater in magnitude than 99 % of all
sample data. Furthermore, large values of the sample data were scrutinised by creating post
plots, where cpue biomass indices were plotted proportional to the highest sample value at
each sampling station. A nonparametric one-way Analysis of Variance (Kruskal-Wallis rank
sum test) (Hollander and Wolfe 1973) was performed for each biological group to test if
cpues of both nets employed (nl and n2) differ significantly.

2.4 Structural analysis

For this study the structure of spatial variability of Z(x) (cpue of each biological group
separated by the factor “gear” and total catch d2) was assessed by an experimental
covariance function. Experimental semivariograms ¥(h) were used to describe the spatial

structure of fish biomass. The semivariogram outlines the spatial correlation of data
measuring the half variability between data points as a function of their distance. In the
absence of spatial autocorrelation among samples the semivariance is equal to the variance
of Z(x). Omnidirectional semivariograms were computed using the classical (Matheron
1971) and the robust “modulus” estimator, which is supposed to be resistant against extreme
values (Cressie (1991):

2(h) ={~.-1-— 312G, +h) - Z(x, )|%} (0.914 +(0.988/ N()) (1)
N(h) Xy~ (x;+i)~h

where Z(x,) is the realisation of the variable of study (biomass) at station x;, Z(x;+h) is

another realisation separated from x by a discrete distance # (measured in km) and N(#) is

the number of pairs of observations separated by A.

Extreme values, which are common in sample data derived from a winter survey may spoil
the structural analysis (Rivoirard et al. 2000), therefore the effect of extreme values on the
latter was assessed. Webster (2001) recommend to perform a structural analysis with and
without these outliers, if they cannot be regarded as measurement errors, to assess the effect
on the experimental semivariances. Thus the structural analysis of d3 (all catch data), n2 d2
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and n2 d3 were carried out by removing temporally the most extreme value from the sample
data.

Parameters of Gaussian and spherical models were fitted using a generic estimation method,
namely the restricted maximum likelihood (REML) parameter estimation (Cressie 1991),
which does not require the computation of experimental semivariograms. The basic idea
behind maximum likelihood is to find the values of the parameters for which the observed
data are most likely (Diggle 2002). In general, maximum likelihood estimators should be
preferred compared to least squares because maximum likelihood is based on careful
consideration of how “errors” arise and are distributed, whereas least-squares estimators for
most non linear problems are essentially ad hoc (Hilborn and Walters 1992). Further REML
has proven to generate robust estimates even for a small number of samples and a skewed
sample distribution (Rufino et al. submitted).

Additionally, Akaike's information criterion (4/C) was computed as a measure of the
“goodness-of-fit” to select the most suitable model (Akaike 1973). The model associated
with the lowest AIC should be chosen (Webster and Oliver 2001). Sokal (1978) related the
diameter of an aggregation of a species to the modelled range in the semivariogram.
Therefore the practical range (pR) was compared for each model fitted in order to detect
difference of spatial patterns with sampling gear. The practical range for spherical models is
equal to the estimated range and for the Gaussian model equal to sgr¢(3) a. In addition, the
observed data were cross-validated by ordinary kriging, which provides a measurement of
the reproduction of the data by the model defined and the kriging procedure. The results of
this jack-knifing method are given by standardised errors. If the mean of this standardised
error (Zscore) is zero and the standard deviation (SD-Zscore) approximately 1, then the
model and the method employed provide an adequate reproduction of the data (Isaaks and
Srivastava 1989).

2.5  Density maps

Mapping of density surfaces of the predicted cpue biomass index for dab (d1, d2, d3 derived
with nl) was carried out with ordinary point kriging, based on the models fitted using all
sample data. This interpolation method estimates the variable values at unsampled locations
using the observed values Z(X;) in the surrounding neighbourhood (Matheron 1971):

2(x,)=Y 42(X,) 3)

where ; are charging weights attributed to each Z(X;) subject to Z; = 1 in order to guarantee
unbiased estimates (Cressie 1991). The uncertainty of the estimation of ordinary
pointkriging was expressed by mapping the corresponding kriging variance (Isaaks and
Srivastava 1989).

2.6  Estimation of cpue biomass indices

Mean cpue estimates within the area of investigation for all biological groups distinguished
(x,) were obtained by universal block kriging (Isaaks and Srivastava 1989). Block kriging

is used as a direct method of biomass assessment in fisheries (Maynou 1998). The
computerised algorithm requires the area to be finely discretised; the discretisation used here
was a grid of 1 x 1 blocks, which was found to optimise precision of the computation.
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When the model fitted is appropriate than the mean cpue estimated by kriging is expected to
be similar to the sample mean (Isaaks and Srivastava 1989). Furthermore in order to
compare variability of the estimates coefficients of variation of the arithmetic mean (m) and
the mean cpue estimated by blockkriging (mzk) were calculated using the classical estimator

CVcIass =5/m [%] (4)
were s is the standard deviation and the geostatistical estimator
CVges= ke (squared root of mean kriging error) / mpx [%] %)

were spatial structuring of data and number of samples were taken into account. For the
block kriging procedure all data were used.

3 Results
3.1  Preparatory data analysis

Since small dab (d1) were only caught with the 7m beam trawl (nl), possible influence of
the fishing gear on spatial structuring could not be compared for the smallest size class.
Results of the nonparametric ANOVA show, that the cpue biomass index for d3 does not
differ significantly (o = 0.05) with gear (y* = 2.96, p = 0.085, df = 1), in contrast to d2 (y*
=25.8, p<0.001, df=1).

The post plots presented in Figure 2 show that highest dab biomass was detected in the
centre of the investigation area, independently from fishing gear used and size class of dab
considered. For the smallest size class (d1) high abundance was also detected in the north-
eastern corner of the area. For d3 the 7m-beam trawl produced highest cpue values again in
the centre, but also in the north-western and eastern parts of box A. These values were
considered to be correct and to be part of the sample data.

3.2 Structural analysis

Small dab displayed a weak level of spatial structuring of cpue (Fig. 3 a). A spherical model
was fitted (Table 1) with a mean patch diameter of 4.9 km and a relative nugget of 59.4 %,
indicating that almost 60 % of the total variability are not caused by the spatial component.
Experimental semivariograms of cpue biomass index for medium sized dab (Fig. 3 b, )
show a high level of spatial structuring. In both cases, Gaussian models gave the best fit to
the data (details of the model parameters can be found in Table 1). The practical range of
medium sized dab was estimated to be between 6 and 6.4 km. In all cases the highest level of
spatial structuring was detected for large sized dab, indicated by values of the relative nugget
of 0 %. Cpue biomass index for d3 was described best by spherical models, regardless of the
gear used (Fig. 3 ¢, f). Catch data of large dab (d3) were analysed using a spherical
variogram model. A difference between the estimated patch diameters of d3 is obvious (d3:
1.8, n1 d3: 1.7, n2 d3: 2.7; Table 1). Results of the cross-validation show, that the fitted
models and the kriging method give a fair description of the data (Table 1).
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Fig. 2: Spatial distributions (post plots) of sampling stations within box A. With (o) stations sampled
with the 7m-beam trawl and (x) stations sampled with the cod trawl. Proportional to the highest cpue
a relative measure of abundance at sample locations are provided for the three size classes of dab (d1,
d2, d3) and both sampling gears (nl, n2). See material and method section for more details.
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Table 1: Estimated parameters nugget (Co), partial sill (C) and range (@) of the exponential (exp),
spherical (sph) gaussian (gau) models and pure nugget (nug) fitted to the cpue of all biological
categories of dab considered. Also the practical range (pR), value of the relative nugget (rel. Cy), the
values of the “goodness-of-fit” measure (4IC) and the results of the cross-validation (Zscore, SD-
Zscore) are listed.

group model Co C a PR rel Cy (%) AIC Zscore  SD-Zscore
nldl sph 0.01 0.00 490 490 59.38 -36.90 -0.01 1.00
nld2  gau 1497 8898 348 6.03 14.40 137.40 -0.05 0.89
n2d2  gau* 093 1146 3.67 6.36 7.48 106.10 0.02 1.07
nld3  sph 0.00 035 165 1.65 0.00 50.04 0.00 1.02
n2d3  sph* 0.00 009 274 274 0.00 13.93 0.04 0.95

d3 sph* 0.00 0.16 181 1381 0.00 51.59 0.01 0.98

* models were fitted to catch data with removed outliers; with nl: 7m-beam trawl, n2: otter trawl, d1: dab of <
9.5 cm (0-2 years old), d2: dab of 9.5-19.5 cm (2-7 years old) and d3: dab of > 19.5 cm (older than 7 years)

3.3 Density maps and cpue biomass indices

The density maps obtained by the kriging procedure and the corresponding kriging errors are
presented in Figure 4. Results show that the smallest size class developed mainly two
communicating patches located in the centre of box A (Fig. 4, nl d1), while medium sized
dab were distributed in one dominating patch also in the centre of the box. Patchiness was
developed most for the largest size class, patches of highest biomass were detected in the
centre and in the northern part of the area. Thus, spatial distributions of the three size classes
were in good agreement. In any case, kriging errors were highest in the southern part of the
box A (Fig. 4, right panel).

Vanessa Stelzenmiiller: Analyse rdumlicher und zeitlicher Variabilitit von Fischpopulationen



KAPITEL 5: _ Assessing the impact of fishing gear type on the spatial distribution of dab -99.-

16
0.01
£ £
= = 0.009
= =
o o
= = -
0.008
: N S 0.07 0.007
2 4 6 8 10 12 14 16 18 0" 2 hate 8’ 10 124" 1818
East (km) East (km)
164
105
E E
< <
& £ 75
= =
o o
- | =
16 s
nld2 6 - 15
02 4 '6 8 10 12 14 16 18 012 48810012 14 16 18
East (km) East (km)
18 18
0.32
£ .
‘ £ g
=] [}
= = ;
0.12
0 0.02

0 2 4 6 8 10 12 14 16 18 0 2%'4lie 8 10192 14 1618
East (km) East (km)

Fig. 4: Density maps of biomass indices for three size classes of dab (d1, d2, d3), derived
with ordinary point kriging using catch data of the 7m-beam trawl (left panel) with
corresponding kriging variance (right panel). Note the scales differs due to the varying level
of abundance and variance.

In general, the most abundant group was the medium sized dab, regarding the 7m-beam
trawl yleldmg a mean cpue of 15.5 kg ha™. With the cod trawl a mean biomass index of 4.6
kg ha™ was obtained (see Table 2). With the 7m-beam trawl we found a mean cpue biomass
index for d1 of 0.12. kg ha™. Large dab were the second abundant group with total mean
catch of 0.91 kg ha™. leferences in the mean catch of d3 were small between the two
sampling gears (n1d3: 1.01 kg ha™, n2d3: 0.82 kg ha’ 1. The geostatistically estimated mean
cpues were in all cases in good agreement with the arithmetic means (Table 2), but in
general, a great reduction of the estimation variance was achieved when taking spatial
structuring into account (C¥Vciass vS. CVgeo; Table 2).
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Table 2: Estimates of the mean cpue of all biological categories of dab considered (m = arithmetic
mean, mogx = geostatistical mean), using all sample data. Variability of the estimates is expressed as
standard deviation (s), kriging error (ke = squared root of the mean kriging variance), as well as the
classical (CV,ss) and geostatistcial (CVy.,) coefficients of variation.

group m  Mogx S ke CVeuss (%) CVieo (%)
nldl 0.12 0.12 0.10 0.05 825 454
nld2 1487 1547 10.19 6.24 68.5 40.3
n2d2 4.02 4.64 3.97 2.09 98.9 45.0
nld3 1.01 1.01 0.60 0.44 59.1 43.6
n2d3 0.79 0.82 0.53 0.23 675 28.1
d3 0.90 0.91 0.57 0.28 63.4 313

otherwise as in Table 1

4 Discussion
4.1  Experimental set up and gear efficiency

Gear efficiency by species varies with vessel and gear characteristics, sensory capabilities,
behavioural responses of the target species and a variety of environmental variables like light
condition, temperature, bottom type (Gunderson 1993). Thus, in this study only the overall
gear efficiency can be evaluated, while the influence of single factors can not be elucidated
within our experimental set up.

Furthermore, juvenile flatfishes should not be targets for otter trawl surveys (Gunderson
1993) while at least up to 95% of juvenile American plaice (Hippoglossoides platessoides)
and yellowtail flounder (Limanda ferruginea) were not be detected by an otter trawl survey
in waters off Newfoundland (Walsh 1991). The catch data in this paper also show that in
general dab is more vulnerable to the beam trawl equipped with tickler chains than to the
otter trawl equipped with a rubber disc ground rope. This is well known for a flatfish like
dab but it is also shown that the differences decrease with increasing fish length.

This study is not focused on the presentation and explanation of differences in catch rates. It
focuses on the spatial analysis of dab distribution, based on catch data of two different gears
providing at least representative catches for dab of medium and large sizes. Due to the fact,
that the size of the study area resembles a possible construction site of offshore windmills a
spatial analysis of catch data is of special interest, especially since adequate information of
the variability in fish distribution pattern in space and time, depending on sampling gear, is
lacking.

4.3 Structural analysis

Although structural analyses were carried out at the limit for an application of geostatistics,
due to the low numbers of sampling stations, the presence of spatial autocorrelation was
discovered for all categories considered. Generally, a minimum of 30-50 sampling points is
recommended (Legendre 1993), whereas in this study only 24 (cod trawl) and 25 (7m-beam
trawl) stations per sampling gear were available. Hence robust geostatistical tools were used
and the influence of extreme values on the semivariograms was assessed. Finally, results of
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the goodness-of-fit statistic and cross-validation show that the modelled structures give a fair
description of the data (Table 1).

Our results show a presence of spatial autocorrelation in cpue, regardless of the biological
group and sampling gear, whereby the lowest level of spatial structuring was observed for
small dab. The estimated patch diameter for d1 is 4.9 km, smaller than those of medium
sized dab (6.0 - 6.4 km). This is consistent with the idea that larger fish may tend to form
larger associations compared to smaller fish (Rivoirard et al. 2000). In this study, Gaussian
models were found to represent best the spatial structuring of d2, regardless of the gear used,
indicating a great regularity of the spatial phenomenon (Petitgas 1996). Such continuous
behaviour at small distances between sample points could be attributed to the geographically
dense distribution of the stations (Fig. 2). The good agreement of the Gaussian models fitted
for both types of gear (nl and n2), although gear efficiency differs, indicate that the detected
spatial patterns might be a general characteristics of these size groups of dab, at least in
winter time. Conversely, in summer a spherical models described best the detected persistent
spatial structures for medium and large sized dab in box A (Stelzenmiiller 2004a). In this
study, however, sampling was done with another gear and ship (viz. a GOV, Chalut a Grande
Ouverture Verticale, aboard the German research vessel “Walther Herwig III”).

Our results show, that calculated average patch diameters only differ marginally for d2 (6.0 —
6.4 nm). On the other hand this agreement in the range parameter of the variogram models is
probably due to an increased biomass of this biological group. This idea is supported by a
reported breakdown in the spatial structure of the Atlantic cod (Gadus morhua) in the North
Western Atlantic. It coincides with a decline in their abundance (Warren 1997; Bowman and
Azzalini 1997). Occurring differences in the values of the relative nugget are probably
attributed to differences in the gear efficiency. Thus, the low biomass of small sized dab
might have caused the weak spatial structuring of this biological group.

The good agreement of cpues of d3 for both fishing gear gave support to perform a structural
analysis of large sized dab regarding all 49 sampling locations. The resulting practical ranges
are different from those obtained for both gears alone (Table 1). We infer that either the low
abundance of this biological group and/or the generally reduced gear efficiency of both gears
for large sized dab might have affected the structural analysis. The nugget variability has
three physical interpretations, which cannot be distinguished in practice 1) purely random
component of the spatial distribution, 2) measurement error and 3) a sum of structures which
have ranges smaller than the sampling mesh grid (Petitgas 1996). Our results show, that the
efficiency of the sampling gear has an influence on the modelled nugget variability and
relative nugget respectively, whereby gear efficiency can be assigned as a “measurement
error”.

4.4  Spatial distribution patterns of biomass indices

Mapped spatial distributions of fish biomass indices show that all biological categories were
most abundant in the centre of the area, while the corresponding distribution patterns
differed clearly among the size (age) groups investigated. An intermediate level of
patchiness was found for small sized dab, a low level for medium and the strongest level for
large sized dab, indicating that underlying causes for the patch formation might differ for the
distinguished size classes. Possible reasons include the distribution of prey species (such as
epizoobenthos) and/or different fish behaviour due to reproduction (Valiela 1995).
Additionally, abiotic variables may also induce a spatial pattern, but salinity and temperature
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were more or less homogeneous within the study area and information on other variables is
not available. In any case, application of geostatistics resulted in a reduction of the
variability of mean catch estimates, since geostatistical coefficients of variations always
showed lower values than the classical ones. Furthermore, our results show that medium
sized dab were the most abundant biological group followed by large and small sized dab.
Possible reasons for the relatively low abundance of small dab might be due to a low
recruitment in the previous years and/or to the selectivity of the gears. The fishing mortality
is a good reason for the relative low abundance of large dab.

5 Conclusions

Our results indicate that a spatial analysis of fishery data may be greatly improved when
considering different biological categories such as size (age) groups because interaction of
different spatial information is avoided and the variability of the estimates much lower.
Furthermore, in cases of high detected biomass indices and similar gear efficiencies, we
inferred likewise similar ecological parameters from this spatial analysis, e.g. range
parameters of the variogram models. Thus, when fish abundance is high, possible effects of
gear efficiency on the structural analysis are assumed to be of minor importance.
Conversely, the lower the fish abundance the more efficient must be the sampling gear to
ensure accurate spatial assessments (Fig. 5). Hence we assume, that abundance and gear
efficiency are both affecting a robust spatial analysis. Employment of an efficient sampling
gear on the other hand does not imply necessarily low nugget variability (n1d2 vs. n2d2).
Although the nugget effect has a marked influence on the geostatistical estimation variance,
a reduction of nugget variability should not be the main indicator for a satisfying structural
analysis.

Effect of gear efficiency on structural analysis

Gear efficiency
aouepunge sajpadg

D Criteria for a spatial assessment

Accuracy of structural analysis

Fig. 5: Qualitative relationship between gear efficiency, accuracy of a structural analysis, species
abundance and effect of gear efficiency on structural analysis of catch data of a given target species.
The grey shaded box indicates the necessary qualitative criteria for a satisfying spatial assessment.

Furthermore, utilisation of an efficient sampling gear resulted in an improved resolution of
the spatial patterns. Assuming that in a standard survey a given sampling gear will not have
the best efficiency for all target species and/or biological groups of interest, we cannot
expect optimal results from a structural analysis in any case. In Figure 5 the optimal
qualitative criteria for a spatial assessment of catch data derived from this study are compiled
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(shaded box). Hence, to achieve reasonable results of a structural analysis and a satistying
accuracy and validity of a spatial assessment of fisheries data, we recommend considering
the combination of the abundance of the target species and the efficiency of the sampling
gear when interpreting the results.
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KAPITEL 6

Spatial analysis of twaite shad, Alosa fallax (LACEPEDE, 1803), in the
Southern North Sea: Application of non-linear geostatistics as a tool to
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Abstract

This study aims to evaluate the suitability of non-linear geostatistics and indicator kriging
(IK) as a tool in environmental impact assessment and nature conservation, in particular to
search for potential Special Areas of Conservation (SAC) for the endangered fish species
twaite shad, Alosa fallax (LACEPEDE, 1803) within the German Exclusive Economical Zone
(EEZ) of the North Sea. To analyse the spatial distribution of this fish species, data on
standardised biomass index (catch per unit effort, c.p.u.e., kg x 30 min™) from 1996 to 2001
were used, regarding the third and fourth quarters of each year, respectively. Thereby we
assume that the spatial distribution can be described as a time-invariant process. This
assumption is supported by information on annual sampling effort, allocation of hauls and
spatial distribution of the positive catches. All indicator variograms obtained for different
cp.ue. cut-off values displayed distinct spatial structures, clearly indicating that the
indicator variables were spatially autocorrelated. Gaussian models were fitted by least-
squares methods and were evaluated with a goodness-of-fit statistic. Subsequently, IK was
employed to estimate the probability of exceeding the c.p.u.e. cut-off values for the twaite
shad in the investigation area. These were highest in the Weser- and Elbe-estuary, probably
because of migrations of twaite shad to and from estuaries at the time of investigation due to
spawning, while within the German EEZ of the North Sea no such areas with increased
probabilities could be discerned. Thus, although available data did not allow to identify and
implement any SAC in the German EEZ, the methods employed here can be regarded as a
promising management tool in biological conservation issues.

Key Words: Alosa fallax, indicator kriging, nature conservation, spatial analysis
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1 Introduction

Within the European Union, the national Exclusive Economical Zones (EEZ) are of
increasing importance for environmental studies due to continuing anthropogenic impacts,
such as the planning and building of offshore wind farms, and the demand to implement
conservation areas. Any such study requires sound scientific knowledge and the use of the
best available tools like explicit spatial analyses, e.g. application of geostatistical methods, to
account for spatial autocorrelations in environmental data (GOOVAERTS, 1997; LEGENDRE,
1993; Rosst et al., 1992; WEBSTER and OLIVER, 2001). Further the application of spatial
statistical techniques in conservation and ecological research has the potential to provide
new insights and ideas that might otherwise remain undiscovered (CARROLL and PEARSON,
2000). In particular, the European Union is in the process of developing a European network
of protection areas, called NATURA 2000, according to the Directive 92/43/EC on the
Conservation of Natural Habitats and of Wild Flora and Fauna (“Habitat Directive™). The
Natura 2000 network consists of Special Areas of Conservation (SACs) and Special
Protection Areas (SPAs) designated under the Birds Directive.

Thus, the focus of this study is to evaluate a methodology of spatial analysis which could
serve to search for and eventually identify potential protected areas within the German
Exclusive Economical Zone (EEZ) of the North Sea for the Annex II fish species twaite
shad, Alosa fallax (LACEPEDE, 1803). The spatial distribution of twaite shad within the EEZ
and the adjacent coastal areas was investigated for the time interval between 1996 and 2001.

Twaite shad is an anadromous species, which normally lives in the sea but enters the rivers
for spawning. Spawning takes place in spring, usually between April and June. The eggs are
released into the water column and sink into the interstices between coarse gravel substrates.
After hatching, the fry develops and slowly drifts downstream. In the third and fourth
quarters of the year the fish move back to the coastal waters (see http://www.fishbase.org/
for details). Population declines in many parts of Europe have been attributed to pollution,
overfishing and migratory route obstructions (WHITEHEAD, 1985). The twaite shad is found
along the western coastline of Europe, from southern Norway to Morocco and along the
eastern Mediterranean, but has declined substantially throughout Europe (RESHETNIKOV et
al., 1997).

The present analysis is based on catch data for twaite shad provided by the Institute of Sea
Fisheries in Hamburg. We employ a geostatistical analysis of the catch data, which takes
into account the natural aggregation of the fish and results in an unbiased spatial estimation
of distribution patterns (CONAN et al., 1992; MAaynNouU, 1998).

In fisheries geostatistics is used to optimise sampling strategies (PETITGAS, 1996), to
estimate catch data and corresponding variances, taking into account the existence of spatial
structures (CONAN et al., 1992; FERNANDES and RIVOIRARD, 1999; MAynNou, 1998;
RIVOIRARD et al., 2000; WARREN, 1997), as well as to map the estimated distributions and
spatial patterns of organisms (LEMBO et al., 1999; MARAVELIAS et al., 1996). Due to the
skewed distribution of our data, caused by the rarity of catches of this species and a great
proportion of “O-catches”, a non-linear geostatistics approach, namely indicator kriging
(JOURNEL, 1983), was applied to evaluate the spatial distribution of twaite shad within the
German Exclusive Economical Zone (EEZ) of the North Sea. This is an example to illustrate
that indicator kriging is a potentially useful tool in nature conservation issues as well as in
environmental impact assessment.

Vanessa Stelzenmiiller: Analyse rdumlicher und zeitlicher Variabilitit von Fischpopulationen



KAPITEL 6: Spatial analysis of twaite shad in the Southern North Sea - 107 -

2 Materials and Methods
2.1 Data

Catch data for twaite shad (4losa fallax) from 1996 to 2001, sampled in the third and fourth
quarters of each year within the German Exclusive Economic Zone (EEZ) and the adjacent
coastal zones, were taken from the database of the Institute of Sea Fisheries, Hamburg (Fig.
1). The database includes data from several standard monitoring surveys of the Institute of
Sea Fisheries, thus data used were derived from surveys not designed to assess the
abundance of twaite shad. This time period was selected because it also includes the end of
the spawning season of this anadromous fish species. Available data did not allow to
consider further biological categories (groups) in order to explore biological factors
eventually influencing the spatial structure of fish populations. Only standardised catch data,
expressed as catch per unit effort (biomass index , c.p.u.e, kg x 30 min"), were taken into
account. Data were obtained under standard IBTS (International Bottom Trawl Survey)
protocol conditions aboard the German research vessels “Walther Herwig” and“Walther
Herwig III”, involving the standard net GOV (Chalut a Grande OQuverture Verticale) or
aboard the German research cutter “Solea”, using the standard codnet. No significant
differences in catch efficiency were found between the two kinds of equipment (S.
Adlerstein and S. Ehrich, unpublished data). The trawl positions were obtained as midpoints
of the hauls, converted into an absolute distance in km (easting and northing) relative to
53°20'N and 3.0°E (outside the EEZ).
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Fig.1: The Exclusive Economical Zone (EEZ) and adjacent coastal areas with the spatial distribution
(post plot) of sampling stations for twaite shad, Alosa fallax . (+) sampling stations with a minimum

of one caught twaite shad, (O) O-catches. Data (1996 - 2001) provided by the Institute of Sea
Fisheries, Hamburg.
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2.2 Preparatory data analysis

The c.p.ue. data for twaite shad at the spatial positions of the sampling stations were
summarised as a post plot to assess the overall distribution of the positive catches. Further to
assess the annual allocation of hauls with spatial distribution of the positive catches as well
as to test the assumption of a time-invariant process (see below) post plots were computed
(RIVOIRARD et al., 2000). Furthermore, a frequency distribution of c.p.u.e. classes was
computed as well as the average wet weight (kg) of any twaite shad caught. The average
weight of a caught twaite shad was calculated by considering all the standardised data
(described above) available for 1986-2001 in the data base of the Institute of Sea Fisheries,
Hamburg. Finally, to assess the distance between sampling locations, the “nearest neighbour
distribution” was computed (CLARK and HARPER, 2001).

2.3 Geostatistical data analysis using indicator kriging
General considerations

Highly skewed data and the prevailing O-catches of twaite shad gave reason to apply a non-
parametric geostatistical method, namely indicator kriging (IK). JOURNEL (1983) proposed
this new methodology based on a prior transformation of the continuous variable z(x) to an
indicator variable i(x, z.), thus opening an interesting means of non-linear estimation of
spatial distributions. The method of IK has been widely accepted for application to natural
resources and also for analysis of categorical data (BIERKENS and BURROUGH, 1993). From
catch data z(x) (biomass index, c.p.u.e., kg x 30 min™) indicator variables i(x, z.) were
created by scoring them 1 if z(x) is more than or equal to a specified threshold or cut-off, z,
and 0 otherwise:

1 if z(x)>z,
0 otherwise

i(x;2,)= { M

If z(x) is a realisation of a random process, Z(x), then i(x, z;) may be regarded as the
realisation of the indicator random function, Q[Z(x) > z.] (WEBSTER and OLIVER, 2001).
Ordinary kriging of i(x;;z,) gives the estimated probability that the value is above the cut-

off value at point x,. However, GOOVAERTS (1997) recommended selection of threshold

values (z.) for the structural analysis according to ecologically relevant information — for
example, critical values in ecology or environmental standards in ecotoxicology (ISAAKS and
SRIVASTAVA, 1989). It is furthermore advisable to select a series of thresholds within the
range of values of ecological importance, instead of just one single cut-off.

The most frequently used method of IK is median IK, based on a single structure of spatial
variability or semivariogram. This structure is derived from the median cut-off value and is
used to estimate the indicator set obtained from the cut-off values (CHICA-OLMO and LUQUE-
ESPINAR, 2002). It is assumed that the different indicator semivariograms are equal in their
shapes and underlying proportional covariances, and consequently the weights of the kriging
systems are the same for all cut-offs (DEUTSCH and JOURNAL, 1993). In this analysis several
indicator semivariograms were computed before to determine whether they can all be
described by a common model. However varying nugget effects and differences in the
development of spatial continuity at different thresholds, as occurred in this study, require a
structural analysis for each indicator semivariogram considered (ISAAKS and SRIVASTAVA,
1989).
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Structural analysis

For each cut-off (z)) a variographic analysis was performed to obtain the indicator
semivariograms. An indicator random function has a semivariogram which is analogous to
the semivariogram of a continuous variable (MATHERON, 1971; PANNATIER, 1996). The
expected semivariances were estimated from the indicator data (WEBSTER and OLIVER,
2001):

m(h)

- 1 . .
7’2 (h) = m 2. {z(xi;zc)— i(x, +h; zc)}2 (2)

where m(h) is the number of pairs at the distance (h) and i(x;z.) is the realisation of the
indicator random function. Annual experimental indicator semivariograms for the c.p.u.e.
cut-offs of 0, 0.07, 0.21, 0.35, 0.49 and 0.7 kg x 30 min"' were investigated separately. These
cut-off values were determined by considering the average weight of caught twaite shad and
the c.p.u.e. frequency distribution. Considering that cut-off values represent multiples of the
mean weight of caught twaite shad, estimated probabilities could be interpreted as the
probabilities to catch minimum 1, more than 1, 3, 5, 7 and 10 ,,mean” twaite shads.

Omnidirectional and directional indicator semivariograms were computed because
anisotropy was detected, suggesting that indicator variables were more continuous in the
castern direction. Since theoretical semivariograms used for kriging are based on isotropic
models (ISAAKS and SRIVASTAVA, 1989), directional indicator semivariograms were
corrected, due to the presence of a geometrical anisotropy (CRESSIE, 1991), by the ratio of
the major axis (East/West) to the minor axis (South/North) of the search ellipse (PANNATIER,
1996), yielding a value of 2.2. Assuming that the spatial distributions of the species studied
at any time can be described by the same time-invariant process (RIVOIRARD et al., 2000),
the annual directional experimental indicator variograms (1996-2001) were subsequently
averaged for each cut off value.

From available theoretical semivariogram functions, Gaussian models were fitted to the
indicator semivariograms. This model type represents phenomena which are continuous or
similar at short distances (PETITGAS, 1996) and, most importantly, gives a fair description of
the data. The following equation was employed (PANNATIER, 1996):

y(0)=0

” 3
y(h)=C,+C l—e("} when h>0 ©)

where ¥ is the semivariogram, / the distance between two points of interest, a the range of
influence of the semivariogram, C the sill of the Gaussian component and Cj the nugget
effect. The modelled range can be related to the diameter of the patch size in an aggregated
species (SOKAL and ODEN, 1978). The practical range in the Gaussian model (viz. the actual

patch size) is given as J3-a.The parameters of the Gaussian models were estimated by non-
linear least squares methods (CRESSIE, 1991; ZIMMERMAN and ZIMMERMAN, 1991).

A goodness-of-fit statistic was used to assess the estimated models and to select those
showing the lowest values for the modified Cressie statistics, MCS (CLARK and HARPER,
2001), adapted to IK:
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P2 -y
y(h)

MCS=-L-—ZM,,

Zth h

. . 5 Q . .. S
where Mj are the number of pairs at distance i, 7, (h) is the indicator semivariance at

4)

distance 4 and k) is the model value at distance h. Subsequently, a cross-validation
procedure was employed to evaluate the appropriateness of the indicator semivariograms
(CLARK and HARPER, 2001). A good representation of the data by the model estimates
derived from IK can be assumed if the cross-validation procedure yields a mean of the
standardised error around 0 and its standard deviation around 1 (ISAAKS and SRIVASTAVA,
1989).

Estimation of the spatial pattern by indicator kriging

To apply IK, a grid was drawn on the investigated area with a mesh size of 2 km. To avoid
border effects due to the shape of the polygon and due to the locations of the sampling
stations, this grid differs from the the EEZ in shape, since the northernmost parts of the
German EEZ were omitted. On the other hand, the coastal areas, not belonging to the EEZ,
were considered in this study due to the ecology of the twaite shad. At each grid point the
annual probability of catching more than the selected c.p.u.e. cut-off was estimated using the
corresponding mean Gaussian semivariogram models (viz. the averaged annual
semivariograms), yielding values between 0 and 1. For each target point the ordinary kriged
estimate was computed (GOOVAERTS, 1997):

n(x)
Tok(x32,) = Z/'LQOK (xz,)1(x,32.) (5)
a=1

where 1K are the weights of the indicator random variable I(x;z.). The IK weights were
obtained by the following equation (GOOVAERTS 1997):

n(x)
ZlﬂOK (x;2.)C(x, —-x/,;zc)—,uOK(x;zC) =C,/(x,—x;2.) ,a=l..,n(x)
B=1

n(x)

> A (ez) =1
B=1

(6)

where ZBOK are the weights assigned to the covariance function Ci(x:zc) and pox is the
Lagrange parameter (JOURNEL and HUIIBREGTS, 1978). At the same grid points the indicator
kriging standard errors were calculated to assess the uncertainty of the predicted catch
probabilities (see above) (KALUZNY et al., 1998). Finally, for each cut-off the median
probability for the years 1996-2001and median IK standard errors were estimated at each
grid knot, yielding maps of the median probabilities and median IK standard errors for each
cut-off, respectively. All calculations were done using the software S-plus (version 6.1.2.,

Insightful Corp.) and the module S+SpatialStats (KALUZNY et al., 1998; VENABLES and
RIPLEY, 2002).
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3 Results
3.1  Preparatory data analysis

The post plot of all the sampled stations within the time period of interest (1996-2001)
shows the lowest sampling effort in the northernmost parts of the German EEZ and spots of
high spatial density of stations in the centre (Fig. 1). This area coincides with a meso-scale
survey area called ,box A“ of the German Small-scale Bottom Trawl Survey, GSBTS
(EHRICH et al., 1998). We can further discern a decrease of ,,positive” catches from South to
North and likewise from East to West. This directional trend had to be considered in the
subsequent structural analysis.

Fig. 2: Annual sampling effort in the EEZ and adjacent coastal areas with spatial distribution of

positive catches of twaite shad. (+) sampling stations with a minimum of one caught twaite shad,
(O) O-catches.
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The annual post plots from 1996-2001 (Fig. 2) show that the allocation of hauls is similar
throughout the years, with the only exception of 1999, when sampling effort in the EEZ has
been lowest compared to all other years. Generally, highest numbers of positive catches of
twaite shad occur in coastal areas but not within the EEZ. The c.p.u.e. frequency distribution
shows that 80 % of all hauls are 0-catches (Fig. 3, top). Taking into account only non-zero
catches, highest frequencies occur for the c.p.u.e. classes 0.07 - 0.21 (4.19 %) and > 0.7
(4.86 %) kg x 30 min™ (Fig. 3, bottom). The lowest frequency is calculated for the class 0.63
- 0.7 (0.67 %) kg x 30 min"'. The average weight of twaite shad for 1986 and 2001 is 0.07
kg, giving the smallest non-zero cut-off value for the IK procedure. The average distance to
the nearest neighbour is 1.7 km.
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Fig. 3: Frequency distribution of biomass index (c.p.u.e.) classes of twaite shad, taking into account
also zero-catches (top) and excluding zero-catches (bottom).

3.2 Structural Analysis

All averaged indicator semivariograms were computed to a maximum distance of 100 km,
with 10 distance classes and a class width of 15 km (Fig. 4). An increase of the values of the
indicator semivariance with increasing distances between stations is detected for each cut-
off, though differences in spatial continuity at different cut-offs occur. The calculated
indicator semivariograms at the c.p.u.e. cut-offs 0, 0.07, 0.21, 0.35, 0.49 and 0.7 kg x 30
min! fitted with the Gaussian models are presented in Fig. 4. The indicator semivariogram
for z. = 0.21 only indicate a poor spatial continuity, regarding a relative nugget of 61.5 %,
while the indicator semivariogram for z. = 0.7 indicates a well developed spatial continuity
with a relative nugget of 18.8 % (Table 1). The estimated range varies from 36.9 km to 63.5
km. Thus, the practical range (actual distance of influence around each point) is 64 km for
the cut-offs 0; 80 km for cut-off 0.07; 87 km for cut-offs 0.21; 95 km and 96 km for the cut-
offs 0.35 and 0.49 and 110 km for cut-off 0.7 kg x 30 min". The appropriate model
parameters are listed in Table 1. The fitted models give a fair description of the data,
indicated by values of the modified Cressie statistic around 0 and by results of the cross-
validation procedure which yield means of the standardised errors around zero and standard
deviations around 1.
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Table 1: Estimated parameters (nugget, sill and range) of Gaussian models fitted to the averaged
experminental indicator semivariograms with information on the relative nugget (Co/C+Co [%]), on
the goodness-of-fit statistic and on the statistics of the standardised error, derived from cross
validation (mean Iscore, SD Iscore). See Materials and Methods section for details.

cut-off (z.) (c.p-u.e.) 0 0.07 0.21 0.35 0.49 0.7
nugget (Co) 0.09 0.10 0.09 0.06 0.03 0.02
sill (O) 0.09 0.07 0.06 0.06 0.08 0.07
range (a) (km) 36.86 46.12 50 55 55.92 63.48
practical range (km) 63.84 79.88 86.60 95.26 96.85 109.95
relative nugget 51.36 57.24 61.53 52.45 24.76 18.82
MCS 0.0004 0.0009 0.0027 0.0074 0.0058 0.0095
mean Iscore -0.0042 0.0004 0.0007 0.0015 0.0068 0.0073
sd Iscore 1.13 1.08 1.02 1.04 1.38 1.46
8
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Fig. 4. Averaged (1996-2001) directional experimental indicator semivariograms (direction:
East/West, corrected for geometrical anisotropy by the factor of 2.2) for the c.p.u.e. cut-off values, z,
of 0, 0.07, 0.21, 0.35, 0.49 and 0.7 kg x 30 min™' , fitted by Gaussian models (model parameters in
Table 1).

3.3 Estimating spatial patterns

The annual probabilities for cut-off 0 kg x 30 min of the years 1996-2001 are presented in
Fig. 5 as an example. Estimations rely on ordinary indicator kriging based on the estimated
mean models. Decreasing probabilities from East to West and from South to North are
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evident for each year and highest probabilities are found in the Elbe- and Weser-estuary; in
1996 and 1999 increased probabilities are also visible in the Ems-estuary; all these cases
being outside the EEZ (Fig. 5). Similar annual probabilities (not shown here) have been
obtained for the other cut-off values considered. Corresponding annual indicator kriging
standard errors are shown in Fig. 6, generally showing increasing annual uncertainty for all
cut-offs at the borders of the investigation area.

The calculated median probabilities for all cut-offs and median IK standard errors are
presented in Figs. 7 and 8, again showing highest median probabilities in the Elbe- and
Weser-estuary. Moreover, decreasing median probabilities are visible from East to West and
from South to North. Comparing the different cut-off values, median probabilities are
highest (80 % and 70 %) in the Elbe- and Weser-estuary for cut-offs 0 and 0.07 kg x 30 min’
! On the other hand, median IK standard errors (Fig. 8) decrease from cut-off 0 to 0.7 kg x
30 min”, but are generally higher for all cut-offs at the borders of the grid used for the
kriging procedure.
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Fig. 5 Annual estimated probabilities (1996-2001) of exceeding the c.p.u.e. cut-off value (z,) of 0 kg
x 30 min™'. Results of indicator kriging based on the mean estimated Gaussian variogram model (Fig.
4, Table 1).
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Fig. 6: Corresponding indicator kriging standard errors of the annual (1996-2001) estimated
probabilities for the cut-off 0 kg x 30 min™' (see also Fig. 5.)
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Fig. 7: Median estimated probabilities (1996-2001) of exceeding the c.p.u.¢. cut-off values (z;) of 0,
0.07, 0.21, 0.35, 0.49 and 0.7 kg x 30 min".
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Fig. 8: Median indicator kriging standard errors of the estimated probabilities (1996-2001) for cut-off
values (z;) of 0, 0.07, 0.21, 0.35, 0.49 and 0.7 kg x 30 min” (see also Fig. 7).

4 Discussion

The annual post plots (1996-2001) show that sampling efforts remain almost stable with
years with the only exception of 1999, when sampling effort within the EEZ was lowest.
Most importantly, the spatial distributions of stations with positive catches appear to be
similar throughout the years (Fig. 2). Hence, the annual post plots support the assumption of
a time-invariant process leading to the spatial distribution of twaite shad in this area. This
assumption is important for the subsequent spatial analysis of the catch data (RIVOIRARD et
al., 2000).

The c.p.u.e. frequency distribution (Fig. 3, top) is highly skewed, perhaps more than can be
expected from a lognormal distribution, probably due to the high percentage of 0-catches. As
a result, deviations from a Gaussian distribution are obvious. MOYEED and PAPRITZ (2002)
have shown that linear kriging performs worse as the data become more skewed. Thus,
evaluating our catch data with non-linear geostatistics gives reason to expect more precise
results, since non-linear kriging methods have the advantage that their predictions are more
precise when a Gaussian random process is inappropriate to model the observation (MOYEED
and PAPRITZ, 2002).

Vanessa Stelzenmiiller: Analyse raumlicher und zeitlicher Variabilitat von Fischpopulationen



KAPITEL 6: Spatial analysis of twaite shad in the Southern North Sea -118 -

Decreasing frequency of caught fish from class 0.01 - 0.07 kg x 30 min”, eventually
representing 1 to 1.5-year-old twaite shad according to growth parameters taken from
www.fishbase.org, to class 0.63 - 0.77 kg x 30 min’, representing 4 to 5-year-old fish (Fig. 3
below), might be due to an increased fishing mortality. However, conclusions about fishing
mortality require a specific analysis (for example cohort analysis), which is out of scope in
this study. Nevertheless, when regarding the observed frequency classes as multiples of a
twaite shad having a mean weight, then the decrease described above might be explained by
the small chance to catch more than seven fishes with the mean weight at one station.
Consequently, the relatively high frequency of 4.86 % for class > 0.77 kg x 30 min” might
be due to that fact that the higher tail of the distribution is accumulated within this class.

According to geostatistical theory (CRESSIE, 1991, p.31), the overall underlying stochastic
process is regarded to be a Gaussian process, thus implying continuos variables to be used in
any geostatistical analysis. This fact is not always explicitly stated in standard reference
books, but conversely, utilisation of discrete random variables is also not directly suggested
(e.g. CHILES and DELFINER, 1999). Although it is possible to approximate a probability
function of a discrete random variable by a Gaussian distribution, the estimated kriging
results of such an asymptotic approach must be treated with care, also regarding indicator
transformations (WEBSTER and OLIVER, 2001, p. 12). Thus, to achieve most reliable results
we decided to use a continuous biomass index (catch per unit effort) in this study instead of
an abundance index (number of individuals). Therefore, our selected cut-offs reflect
multiples of the average weight of a twaite shad.

GOOVAERTS (1997) advised that cut-offs below the first or beyond the ninth percentile of the
cumulative frequency distribution should be used with caution, because they depend on a
few pairs of indicator data. In fact, our cut-off values of 0 and 0.07 kg 30 min” are in the
recommended range, whereas the other cut-offs (0.21, 0.35, 0.49 and 0.7 kg 30 min™) are
beyond. But these cut-off values represent the higher tail of the skewed distribution and are
therefore of particular interest for the assessment from a biological point of view (ISAAKS
and SRIVASTAVA, 1989). Furthermore, due to the selection of the cut-off values, estimated
catch probabilities can be interpreted as the probabilities to catch at minimum 1 or more than
1,3, 5,7 and 10 twaite shads of a mean weight, which is an essential information to search
for main distribution areas of this fish in the North Sea.

In theory, a number between ten and twenty cut-offs is recommended (JOURNEL, 1983),
although it is a good practice to choose only a few well-defined cut-offs, for which estimates
are promising regarding the goal of the study (ISAAKS and SRIVASTAVA, 1989). The indicator
semivariograms, corrected by the direction of the major axis (east-west), display spatial
structures at all cut-offs, but some differences in spatial continuity among the various cut-
offs are obvious (Fig. 4). In many cases the spatial continuity of high cut-off values is not the
same than of low ones as pointed out by ISAAKS and SRIVASTAVA (1989).

The value of the ,relative nugget* (Tab. 1) is a measure of the strength of spatial continuity
of the indicator variables. In this study, spatial continuity is highest for cut-off 0.7 kg x 30
min™ (18.8 %) and lowest for the cut-off 0.21 kg x 30 min™ (61.5 %). This is due to the fact
that positive catches for high cut-off values are grouped together, while those for low values
form clusters or are almost randomly distributed (like the indicator variables at the cut-off
0.21 kg x 30 min™'; but note that only post plots and not the spatial distributions of indicator
variables are shown). We infer that spatial patterns derived from low cut-off values represent
structural information of the distribution of the species of interest, while spatial patterns
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derived from high cut-off values represent the occurrence of high fish biomass, thus
indicating ,,hot spots®.

In general, indicator semivariogram curves are less erratic than normal variograms of the
random variable. They do not suffer from adverse effects of erratic outliers, since an
indicator variable is either 0 or 1. On the other hand, ISAAKS and SRivastava (1989) pointed
out that indicator semivariograms are very easily affected by clustering of the sample data
set. Some clustered samples remained in the centre of the EEZ, as sampling effort peaked
locally, but the number of 0-catches increased as well. Additionally, in order to derive
reliable estimates for the small distance classes of the experimental indicator
semivariograms, the locally dense sampling points should be considered in the data set for a
geostatistical analysis. Therefore, dense sampling stations from the centre of the EEZ, which
are identical with a distinct meso-scale survey area called ,,box A“ of the German Small-
scale Bottom Trawl Survey, GSBTS (EHRICH et al., 1998), were taken into account.

As a result, these partially very closely aggregated sampling stations might have caused the
indicator semivariograms to appear very continuous for small distance classes, leading to the
selection of a Gaussian model instead of a model type which has a more linear behaviour at
small distances, such as the spherical model. But even if the Gaussian component would be
replaced by a less continuos one, for example a straight line, this would have a slope almost
equal to zero and thus our data would be described similarly than using a Gaussian model.
This would also apply to other model types, since the value of the nugget effect largely
determines the degree of smoothness of the IK predictions. However, we selected the
Gaussian model because it gives the best description of the data.

Overall, the Gaussian model selected to provide an objective criterion for all indicator
semivariograms may differ due to the species-specific spatial pattern within small-scale
arrays. Nevertheless, the average patch diameters obtained from semivariograms increased
from 0 to 0.7 kg x 30 min! with 64 km for cut-off 0, 80 km for cut-off 0.07, 86 km for cut-
off 0.21, 95 and 96 km for the cut-offs 0.35 and 0.49 kg x 30 min" and 110 km for cut-off
0.7 kg x 30 min"'. These results are in good agreement with realistic ecological
characteristics of a migrating fish species. Moreover, the indicator semivariogram for cut-off
0 kg x 30 min™ also takes into account biomass indices less than 0.07 kg x 30 min™.

The goodness-of-fit statistics suggests that the estimated probabilities of exceeding certain
cut-offs, give a fair description of the reality. In consequence, the areas of increased
probabilities of catching twaite shad can be looked upon with some confidence (Figs. 7 and
8). Regardless of the cut-offs selected, probabilities are high in the Elbe- and Weser-estuary
and are lowest in the northernmost areas of the EEZ. This corresponds to the ecology of the
twaite shad, which migrate into the rivers for spawning and move back afterwards to coastal
waters. On the other hand, special areas of conservation for this endangered species farther
away than 12 nm from the coast, i.e. within the EEZ, cannot be discerned from this study.
Therefore, decision makers should take into account coastal areas and estuaries to protect
this anadromous fish species.

In conclusion, spatial analysis involving non-linear geostatistics and indicator kriging has
proven to be a promising tool to provide standardised criteria for the evaluation, assessment
and implementation of potential Special Areas of Conservation, taking into account the
ecology of the species of interest, by incorporating species-specific spatial patterns into the
decision process.
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ZUSAMMENFASSUNG

7unehmende Nutzungskonflikte in der Meeres- und Kiistenregion der Nordsee sowie der
Riickgang  der natiirlichen  Ressource . Fisch® erfordern neben  akkuraten
RBestandsabschitzungen vor allem auch eine prazise raumliche Analysen der artspezifischen
Verteilungsmuster der Fischpopulationen innerhalb diskreter Seegebiete.

Das Ziel dieser Arbeit bestand zum einen darin, mit modernen statistischen Methoden der
gumlichen Statistik (Geostatistik) ~ die rdumliche Verteilung von ausgewihlten
Fischpopulation auf kleiner und grofer Mafstabsebene und deren Verinderung mit der Zeit
in Abhsingigkeit verschiedener Finflussfaktoren zu analysieren. Informationen iber
ciumliche Muster der Fischpopulationen in Wechselwirkung mit physikalischen und
biologischen Variablen konnen zum Verstiandnis von 8kologischen Prozessen beitragen und
ermoglichen eine adiquate Bewertung von Folgen von Eingriffen in die Meeresumwelt.
7um anderen sollte in dieser Arbeit der Einfluss von artspezifischen Verteilungsmustern auf
kleiner MaBstabsebene auf die klassischen Bestandsabschiitzungen untersucht werden.

Anhand von kimstlich erzeugten Fangdaten mit definierten Eigenschaften wurde der Einfluss
von Stichprobenumfang, Verteilung der Daten und verschiedene Level an kleinskaliger
Variabilitit auf die Leistungsfahigkeit gingiger geostatistischer Methoden in den
Fischereiwissenschaften getestet (Kapitel 1). Dabei zeigte sich, dass je hoher die kleinskalige
Variabilitit in den Daten ist desto mehr Stichproben notwendig sind, um genaue und prézise
Abschitzungen der einzeinen Modellparameter eines géngigen Modelltyps zu erzielen.
Weiterhin fiihrte ein geringer Stichprobenumfang (20-40) zu teilweise fraglichen
Abschétzungen der Modellparameter. Insgesamt hatte der Stichprobenumfang einen
groBeren Effekt auf die Leistung der getesteten Schitzverfahren als die Verteilung der
Daten. Somit wurden fiir alle folgenden Analysen, fiir welche weniger als 50 Stichproben
zur Verfligung standen, nur diejenigen Verfahren verwendet, die nach dieser
Simulationsstudie als robust einzustufen sind.

Anhand von Kkleinskaligen Langzeit-Messdaten wurde die zeitliche Konsistenz der
rdumlichen Musterausbildung der Klieschen im Sommer 1996-200 in der Deutschen Bucht
untersucht (Kapitel 2). Die Ergebnisse zeigten, dass eine moderate raumliche Abh#ngigkeit
in den Fangdaten von zwei GroBenklassen von Klieschen in jedem Jahr prdsent war. Dabei
bildeten groBe Tiere eine fleckenhafte Verteilung mit einer durchschnittlichen Patchgrofie
von 3.2 km und kleine Tiere mit einer durchschnittlichen Patchgrofe von 1.1 km aus. Durch
die geostatistische Bestandsabschitzung konnte die Unsicherheit in der Berechnung des
mittleren Fangs reduziert werden. Die berechnete jahrliche flachige Abschiitzung der
Biomasse Kliesche in Box A zeigte keine ,,hot spots® in der Verteilung der Tiere. Durch
diese Ergebnisse wurde eine Methodik entwickelt, mit deren Hilfe mdgliche Effekte von
Offshore Windkraftanlagen auf das Schutzgut ,,Fisch™ quantifiziert werden konnten.

Die Ergebnisse der Simulationsstudie zeigten, dass die Hohe der kleinskaligen Variabilitdt
und der Stichprobenumfang die Genauigkeit einer rdumlichen Analyse erheblich
beeintréchtigen kann. Daher wurde ein Probenahmekonzept entwickelt, dass die kleinskalige
Variabilitit in den Fangdaten besser erfassen und somit zu einer Reduktion der solchen
fihren sollte (Kapitel 3). Fir die Halfte der analysierten Fangdaten von verschiedenen
GroBenklassen von Kliesche und Wittling konnte eine deutliche Reduktion der Unsicherheit
in der Abschitzung des mittleren Fangs durch das getestete Probenahmedesign erzielt
werden. Somit stellt dieses, fiir die in der Deutschen Bucht untersuchten Arten, eine
kostengiinstige und effektive Methode dar, um kleinskalige Variabilitit besser erfassen und
somit genauere Bestandsabschétzungen erzielen zu konnen.
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Weitere Bestandteile dieser Arbeit waren die Untersuchung des Einflusses der rdumlichen
Dimension des Untersuchungsgebietes auf eine rdumliche Analyse sowie die
Zusammenhinge zwischen Musterausbildung von Fischpopulationen und Umweltvariablen
(Kapitel 4). Die Ergebnisse zeigten, dass obwohl die Unterschiede in den
UntersuchungsmaBstiben eher klein waren, deutliche Abweichungen in der Modellierung
der Fangdaten auftraten. Dabei wurden die groBten Differenzen fiir den Schellfisch und den
Wittling ermittelt, die ein hohes Maf} an Habitatassoziation im Hinblick auf die Wassertiefe
zeigten. Weiterhin scheint in der nérdlichen Nordsee die kleinere Untersuchungseinheit (Box
D) die Grenze darzustellen, fiir die artspezifische Verteilungsmuster erheblichen Einfluss auf
die klassische Berechnung der Variabilitdt des mittleren Fangs haben konnen. Mit groBer
werdendem UntersuchungsmaBstab ist mit einem ansteigenden Einfluss der riumlichen
Strukturierung auf die Berechnung von Abundanzindizes zu rechnen. So ist eine adidquate
Analyse der Zusammenhinge zwischen der rdumlichen Strukturierung der Populationen der
Zielart und den Habitatbedingungen notwendig, um genauere Abundanzabschitzungen zu
erzielen.

Der Einfluss des Fanggerits auf die rdumliche Analyse von kleinrdumigen Fangdaten von
drei GroBenklassen von Klieschen wurde in Kapitel 5 untersucht. Die Ergebnisse zeigten,
dass die Verwendung eines fiir die Zielart effizienten Fanggerites zur besseren Erfassung der
rdumlichen Struktur fiihrt. Jedoch ist dies nicht gleichbedeutend mit einer automatischen
Reduzierung der kleinskaligen Variabilitit in den Fangdaten. Die im Rahmen dieser
Untersuchung entwickelten qualitativen Anforderungen an eine adédquate Strukturanalyse
fordern im Falle von geringerer Effizienz des Fanggerites eine hohe Abundanz der Zielart
und umgekehrt. So kann im Rahmen eines Gebietsmonitorings nicht erwartet werden, dass
der Einsatz eines Fanggerétes zu genauen geostatistischen Analysen von Fangdaten mehrere
Zielarten fiihrt.

Abschlielend wurde mit Hilfe von nicht-linearen geostatistischen Methoden
Fangwahrscheinlichkeiten fiir die gefihrdete Wanderfischart Finte (dlosa fallax) in der
AWZ der Nordsee und den angrenzenden Kiistengewissern berechnet, um fiir diese Art
okologisch wertvolle Flachen identifizieren zu kdnnen (Kapitel 6). Im Allgemeinen wurden
die hochsten Fangwahrscheinlichkeiten fiir Finten im Sommer zwischen 1996 und 2001 in
den Flussmiindungsbereichen von Weser und FElbe berechnet. Diese hohen
Fangwahrscheinlichkeiten sind vermutlich durch die Laichwanderungen in bzw. aus den
Flussmiindungsbereichen begriindet. Somit miissten Schutzmafnahmen fiir diese Gebiete
veranlasst werden, da sie die Hauptverbreitungsgebicte darstellen. Innerhalb der AWZ
wurden hingegen keine erhohten Fangwahrscheinlichkeiten gefunden, so dass keine
potentiellen Schutzgebiete fiir die Finte in der AWZ vorgeschlagen werden konnen.

Als Synthese der durchgefiihrten Analysen am Beispiel der Plattfischart Kliesche lisst sich
feststellen, dass auch auf kleiner Mafstabsebene eine rdumliche Abhingigkeit in den
Fangdaten herausgearbeitet werden kann. Daher ist fiir derartige Untersuchungen eine
geostatistische Analyse zwingend notwendig, um die durch die rdumliche Struktur erzeugte
Variabilitit in den Fangdaten zu beriicksichtigen. In allen Fillen konnte fiir die Kliesche eine
Verringerung der Variabilitdt bei der Schitzung des mittleren Fangs mit Hilfe
geostatistischer gegeniiber der klassischen Berechnung der Variabilitit erzielt werden.
Weiterhin  konnte deutlich gezeigt werden, dass unterschiedliche GrofBenklassen
(Altersklassen) von Klieschen unterschiedliche Aggregationsmuster ausbilden, wobei diese
im Sommer und Winter variieren. Im Winter konnten keine signifikanten Unterschiede in
der durchschnittlichen Patchgrofie zwischen den GrdBenklassen sowie ménnlichen und
weiblichen Klieschen festgestellt werden. Insgesamt zeigte sich jedoch, dass groBere
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Klieschen dazu tendieren, grofere Aggregationen zu bilden. Weiterhin wurden gute
Ubereinstimmungen in der rdumlichen Verteilung von ménnlichen und weiblichen Klieschen
gefunden. Dies weist darauf hin, dass eine mogliche Ursache fiir die Patchbildung im Winter
im Laichverhalten zu suchen ist. Die zeitliche Analyse der rdumlichen Musterbildung zeigte,
dass diese im Sommer und Winter konsistent ist, jedoch keine dauerhaften ,hot spots*
vorzufinden waren. Weiterhin konnte gezeigt werden, dass die Unterschiede in der
Fangeffizienz unterschiedlicher Gerite (der 7m-Baumkurre und dem Kabeljauhopser) mit
zunehmender Grofle der Tiere kleiner wurden. Somit sind rdumliche Analysen und die
daraus abgeleiteten Abschitzungen des mittleren Fanges groBer Klieschen auf Basis dieser
Fanggerite vergleichbar.

Zusammengefasst konnen die vorliegenden intensiven Untersuchungen iiber die
Verteilungsmuster verschiedener biologischer Gruppen der Kliesche und deren natiirliche
Variabilitit auf kleiner MaBstabsebene als wichtige Referenz fiir die Bewertung von
Effekten von Eingriffen in die Meeresumwelt herangezogen werden. Durch die erarbeitete
Methodik kénnten Fangdaten der Kliesche im Rahmen eines ,,Windparkmonitorings® in der
Deutschen Bucht addquat evaluiert und die dabei gefundenen rdumlichen Populationsmuster
mit den vorliegenden Referenzuntersuchungen verglichen werden. Die untersuchten
Faktoren, welche erheblichen Einfluss auf die Richtigkeit und Prézision kleinskaliger
rdumlicher Analysen haben konnen, sollten bei der Konzeptentwicklung von
Langzeituntersuchungsreihen, deren Ziel es ist rdumliche Fragestellungen auf Basis von
Fischereidaten zu bearbeiten, Beachtung finden.

Im Rahmen des bestehenden Nutzungskonfliktes in der Meeres- und Kiistenregion stehen
neben der Ressource ,Fisch“ weitere Untersuchungsobjekte im Fokus rdumlicher
Fragestellungen. Beispielsweise liefen sich durch weitere geostatistische Analysen von
Umweltvariablen, Schliisselarten des Benthos und/oder der Fischfauna, zusammengefasst in
einem Geographischen Informationssystem (GIS), einheitliche 6kologisch wertvolle Flichen
definieren. So erweisen sich die in dieser Arbeit verwendeten Methoden als ein sehr viel
versprechendes Instrumentarium und die erzielten Ergebnisse als wichtige Basisinformation
fiir ein erfolgreiches Gebietsmanagement in der Nordsee.
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