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Preface 

The present PhD thesis was prepared at the Department of Geosciences at the University 
of Tübingen and the MARUM – Center for Marine Environmental Sciences at the University 
of Bremen, Germany. The work was financed by the “Landesgraduiertenförderung Baden-
Württemberg” and by grant KU 2259/19 from the Deutsche Forschungsgemeinschaft 
(DFG) as part of the OPOCA project.  

Planktonic foraminifera samples for genetic analysis were collected and processed during 
five research expeditions to the Mediterranean Sea, Atlantic, South China Sea and the 
Southern Pacific on the research vessels R/V MARIA S. MERIAN (cruise MSM15/5), R/V 
POSEIDON (cruises P411 and P413) and R/V SONNE (cruises SO221 and SO226/3). In addi-
tion, four research stays were carried out at the marine laboratories at Villefranche sur Mer, 
France, the Interuniversity Institute in Eilat, Israel, the Estación Costera de Investigaciones 
Marinas in Las Cruces, Chile and the Isla Magueyes Laboratories in La Parguera, Puerto 
Rico. The visits to the marine stations in Chile and Israel were financed by the EU FP7 
research infrastructure initiative ASSEMBLE and the field trip to Puerto Rico was part of the 
OPOCA DFG project. The obtained planktonic foraminifera dataset was enlarged with 
samples from the collections of the working group and from various coauthors, as 
indicated for each study separately.  

The eight chapters of this thesis comprise four research papers dealing with the genetic 
diversity, biogeography and a potential correlation of morphology and genetics in living 
planktonic foraminifera. Chapter 1 introduces the model organisms from a biological as 
well as paleontological perspective. It describes the marker gene that is used in the genetic 
analysis of planktonic foraminifera and elaborates the problem of cryptic diversity within 
the traditional morphospecies. The following section presents different modes of speci-
ation and biogeographical distribution patterns that can be found in plankton organisms. 
Chapter 2 outlines the motivation and major research questions of this thesis and Chapter 
3 describes the methods applied in the molecular analysis of planktonic foraminifera. 
Chapters 4–7 include the actual case studies that were carried out in the framework of this 
thesis, in the form of published or submitted research papers and Chapter 8 presents a 
general conclusion on the results of the studies and an outlook for future work. 
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Abstract 

The fossil record of planktonic foraminifera grants this group an exceptional position among 
marine microplankton. Foraminifera have a long tradition as proxies for the reconstruction of 
past ocean and climate conditions and therefore, the fossilized shells are very well studied, 
including evolutionary processes and phylogenetic relationships since their origin in the 
Jurassic. For their classification, the morphological species concept has been applied, which 
distinguishes about 50 different species among the modern representatives, based on the 
ultrastructure of their calcite shells. With the application of molecular genetic approaches on 
living planktonic foraminifera, the classical species concept has been challenged by the 
discovery of a large number of cryptic species “hidden” within the morphospecies. The total 
amount of cryptic diversity and its distribution between the different morphospecies, 
however, are still not completely resolved. In contrast to the mainly cosmopolitan occur-
rences of the morphospecies, many of the cryptic species exhibit differentiated distribution 
patterns in the ocean, marked by local adaptations to environmental factors. A 
morphological separation of the sibling species, however, proved very difficult and was so 
far only possible after detailed morphometric studies.  
The present thesis aims at contributing to the ongoing research on living planktonic 
foraminifera, by studying the genetic diversity within three selected morphospecies, the 
biogeographical distribution patterns of their cryptic species and the relationship between 
genetic and morphological variability.  
The study on Hastigerina pelagica examined its genetic diversity and biogeographical dis-
tribution in the Mediterranean Sea, Atlantic, Caribbean Sea and the Western Pacific. Only 
three already known cryptic species were discovered and they were shown to exhibit a 
global distribution in the ocean, but vertical segregation in the water column. For the 
analysis of Globigerinoides sacculifer, a high number of samples from around the world was 
amassed, including all different morphotypes of this highly variable plexus, that were, 
however, revealed to be genetically completely homogenous. The third species that was 
chosen for analysis was Globigerinella siphonifera that is marked by a high genetic as well as 
morphological variability. The examination of a large number of samples allowed the com-
plete resolution of its cryptic diversity and a separation of the plexus into three species. 
Despite an extensive sampling effort, the number of newly detected cryptic species from 
these studies was unexpectedly low. This indicates that for the well-studied morpho-
species most cryptic species might by now be detected and that genetic variability is not 
even prevalent in all morphospecies. The results presented in this thesis further imply that 
the amount of genetic diversity cannot be predicted from the characteristics of a morpho-
species. The correlation of morphological traits with genetic variability appeared to be 
possible to some extent in the studied morphospecies, however, generally speaking, mor-
phology and genetics of planktonic foraminifera appear to evolve rather independently of 
each other. The biogeographical distribution patterns of the cryptic species of the studied 
morphospecies speak for a prevalence of large scale dispersal and gene flow in planktonic 
foraminifera, while at the same time possibilities are given for the establishment of 
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reproductive isolation, such as in the vertical dimension in the water column or by local 
adaptations to different ecological parameters.  
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Zusammenfassung 

Der fossile Befund planktonischer Foraminiferen verleiht dieser Organismengruppe eine 
außergewöhnliche Position innerhalb des marinen Mikroplanktons. Ihre Nutzung als 
Proxies für die Rekonstruktion vergangener Ozean- und Klimabedingungen hat eine lange 
Tradition, was zur Folge hat, dass ihre fossilisierten Schalen sehr gut untersucht und ihre 
Evolution und phylogenetischen Verhältnisse seit ihres ersten Auftretens im Jura genau 
bekannt sind. Für die Klassifikation der Arten wurde das morphologische Artkonzept zu 
Grunde gelegt, das die modernen Vertreter basierend auf der Struktur ihrer kalzitischen 
Schale in ca. 50 Arten unterteilt. Die Anwendung molekulargenetischer Methoden an 
planktonischen Foraminiferen stellte das klassische Artkonzept allerdings in Frage, da eine 
große Zahl kryptischer Arten innerhalb der morphologischen Arten entdeckt wurde. Das 
komplette Ausmaß dieser kryptischen Diversität sowie seine Verteilung zwischen den 
morphologischen Arten konnten bisher nicht im Detail geklärt werden. Im Gegensatz zu 
den morphologischen Arten, die sich größtenteils durch eine globale Verbreitung aus-
zeichnen, weisen die kryptischen Arten eher differenzierte Verbreitungsmuster mit lokalen 
Anpassungen an Umweltfaktoren im Ozean auf. Eine morphologische Unterscheidung 
dieser nahverwandten Arten stellte sich jedoch als äußerst schwierig heraus und war 
bisher nur nach detaillierten morphometrischen Studien möglich.  
Die vorliegende Arbeit hat das Ziel, durch Studien zur genetischen Diversität von drei 
ausgewählten morphologischen Arten, zu den biogeographischen Verbreitungsmustern 
ihrer kryptischen Arten und zum Zusammenhang zwischen genetischer und morpho-
logischer Variabilität, einen Beitrag zur aktuellen Forschung an lebenden planktonischen 
Foraminiferen zu leisten.  
Die Studie an Hastigerina pelagica untersuchte deren genetische Diversität und biogeo-
graphische Verbreitungsmuster im Mittelmeer, Atlantik, der Karibik und dem westlichen 
Pazifik. Dabei wurden nur drei bereits bekannte kryptische Arten entdeckt, für die eine 
globale Verbreitung im Ozean, aber eine vertikale Trennung in der Wassersäule nach-
gewiesen werden konnte. Für die Analyse von Globigerinoides sacculifer wurde eine große 
Zahl an Proben aus aller Welt zusammengetragen, die alle morphologischen Typen, die 
innerhalb dieser Gruppe beschrieben wurden, beinhalteten. Auf genetischer Ebene 
konnten allerdings keinerlei Unterschiede zwischen diesen Morphotypen festgestellt 
werden. Globigerinella siphonifera, deren hohe genetische und morphologische Variabilität 
bereits bekannt ist, wurde als dritte Art für die Studien dieser Arbeit ausgewählt. Die 
Untersuchung einer großen Zahl an Proben erlaubte eine Aufgliederung der kompletten 
kryptischen Diversität und eine Spaltung der Gruppe in insgesamt drei Arten.  
Generell betrachtet war, trotz einer außergewöhnlich hohen Zahl an Foraminiferen-
Proben, die Anzahl neuentdeckter kryptischer Arten in den Studien dieser Arbeit über-
raschend gering. Dies impliziert, dass für die meisten gut untersuchten morphologischen 
Arten bereits alle kryptischen Arten identifiziert zu sein scheinen, und dass genetische 
Variabilität nicht in allen morphologischen Arten vorherrschend ist. Des Weiteren zeigen 
die Ergebnisse dieser Arbeit, dass das Ausmaß an genetischer Diversität einer 
morphologischen Art nicht anhand deren Charakteristika vorhergesagt werden kann. Die 



EXTANT PLANKTONIC FORAMINIFERA  
 

10 
 

Verbindung morphologischer Merkmale mit genetischer Variabilität war zumindest 
teilweise erfolgreich für die analysierten Arten, generell jedoch scheinen Morphologie und 
Genetik planktonischer Foraminiferen unabhängig voneinander zu evolvieren. Die bio-
geographischen Verbreitungsmuster der hier untersuchten kryptischen Arten im Ozean 
deuten darauf hin, dass großflächige Ausbreitung und Genfluss in planktonischen Fora-
miniferen überwiegen. Gleichzeitig jedoch sind Möglichkeiten für die Entstehung repro-
duktiver Isolation gegeben, zum Beispiel in vertikaler Richtung in der Wassersäule oder 
durch lokale Anpassungen an unterschiedliche Umweltparameter.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 INTRODUCTION 
 

11 
 

1. Introduction  

1.1. The biology of extant planktonic foraminifera  

Planktonic foraminifera are exclusively marine eukaryotic microbes with a global occur-
rence in the world’s ocean (e.g. Hemleben et al. 1989). Despite their wide distribution 
throughout all climatic zones, these single celled holoplanktonic organisms exhibit relati-
vely low abundances with on average about 10 individuals per m3 of the water column. 
The most prominent feature of the group is the construction of calcite shells around their 
cell, granting them an extraordinary position in the plankton as important carbonate pro-
ducers with an average of 3 Gt CaCO3 in the global ocean per year (Schiebel 2002). These 
shells sink to the seafloor once the organism dies, where they accumulate in great 
numbers in the sediment and form the so called Globigerina ooze (e.g. Vincent & Berger 
1981). Consequently, planktonic foraminifera are marked by an excellent fossil record, 
which can be traced back to their origin in the Jurassic about 180 Ma (e.g. Cifelli 1969), and 
they experience wide applications in micropaleontological and oceanographic studies as 
tools for the reconstruction of past ocean surface properties (e.g. Kucera & Schönfeld 2007).  

The exact position of foraminifera in the tree of life was for a long time ambiguous, due to 
the lack of common morphological features with other groups of protists (Pawlowski 
2000). Traditionally, they were grouped in the phylum Granuloreticulosea, because of their 
granular anastomosing pseudopodia (Lee et al. 1985). Later they were shifted to the 
phylum Rhizopoda (Corliss 1994). In the first studies based on molecular data of the 
ribosomal RNA gene (rDNA), which were published in the early 1990s, they were placed 
close to Dictyostelium and Entamoeba in the eukaryotic tree (Pawlowski et al. 1994; Darling 
et al. 1996a). Today, based on multi-gene evidence of benthic foraminifera, the phylum 
Foraminifera is considered to be part of the eukaryotic supergroup Rhizaria, which 
comprises amoeboid and skeleton-building protists (Figure 1.1; Caron et al. 2012; Sierra et 
al. 2013). More specifically, they form the monophyletic group Retaria together with 
Radiozoa (Polycystinea and Acantharea), but branch within the Radiozoa, which con-
sequently are left as a paraphyletic group (Figure 1.1; Sierra et al. 2013). This fact clearly 
reveals the still high level of uncertainty in the systematics of protists. Planktonic 
foraminifera, in particular, belong to the foraminifera class Globothalamea, the order 
Rotaliida and the suborder Globigerinina (Hayward 2013; Pawlowski et al. 2013). 

Owing to their relatively low abundances in the ocean, living planktonic foraminifera, in 
contrast to their fossilized counterparts, have not been in the focus of intense studies for a 
long time. As a consequence, knowledge on the biology and physiology of these 
organisms accumulated rather slowly. The best-studied feature of the group, though, is the 
calcite shell including the processes of its construction (Bé et al. 1979; Hemleben et al. 
1986). The multi-chambered tests consist of a mono- or bilamellar calcite wall, which is 
secreted from an organic membrane (e.g. Hemleben et al. 1989). The wall contains integra- 
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Figure 1.1: Maximum likelihood phylogenetic tree of the eukaryotic supergroup Rhizaria based on 36 genes, showing the position of 

the foraminifera within the Retaria. Numbers at branches indicate the topological support by bootstrap replicates, circles indicate 

maximum support (redrawn after: Sierra et al. 2013). 

ted pores and ornaments like spines or pustules. Throughout their ontogeny, planktonic 
foraminifera grow chamber by chamber and experience severe morphological changes 
(Brummer et al. 1987) until they reach their adult size, which can measure up to ~1000 μm 
in the largest species. The shell is constructed as a protection for the cell, however, for the 
function of cellular processes, exchange with the environment is indispensable. This is 
realized via the aperture or the pores (e.g. Bé et al. 1980), where the rhizopodia extrude to 
the outside of the shell and uptake of oxygen as well as food takes place (Schiebel & 
Hemleben 2005). Planktonic foraminifera were observed to either exhibit a herbivorous, 
carnivorous or omnivorous feeding strategy, feeding on different types of algae (e.g. 
diatoms, dinoflagellates and thecate algae) or copepods (Figure 1.2A; Anderson et al. 1979; 
Spindler et al. 1984). For the ingestion of food, the rhizopodia wrap the prey, secrete 
adhesive substances and transport tissue particles via rhizopodial streaming into the shell, 
where digestion takes place in vacuoles (Hemleben et al. 1989). This process allows 
planktonic foraminifera to consume organisms larger than themselves (Caron et al. 2012).  

Although planktonic foraminifera generally follow a heterotrophic living strategy, some 
species possess algal symbionts, which enable them to use energy from photosynthesis in 
exchange for metabolites and a stable microenvironment in the calcite shell (e.g. Faber et 
al. 1988). The predominant symbionts in spinose foraminifera are certain species of 
dinoflagellates or chrysophycophytes (e.g. Anderson & Be 1976; Faber et al. 1988; Gast & 
Caron 1996), which are taken up from the open water during the early living stages of the 
foraminifera with a high species specificity (Hemleben et al. 1989). The symbionts are 
usually enclosed within host vacuoles and are transported to the peripheral cytoplasm on 
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a diel cycle (Figure 1.2B; Anderson & Be 1976). Laboratory experiments by Bé et al. (1982) 
revealed a strong link between host and symbionts, with the observation of premature 
gametogenesis or suppression of calcification when the symbionts were artificially re-
pressed. In contrast to these close associations, commensals (mostly dinoflagellates) can 
frequently be observed on the surface of the host, seemingly taking advantage of the 
favorable microcosm, acquiring nutrients around the foraminifera shell without providing 
carbon products to the host in return (Alldredge & Jones 1973). In addition, parasites are 
known to be present on or in the shells feeding on the cytoplasm of the foraminifera. 
Mostly, these are small free-swimming dinoflagellates, sporozoans or bacteria (Figure 1.2C; 
Spindler & Hemleben 1980; Hemleben et al. 1989).  

 

Figure 1.2: Images of living planktonic foraminifera kept in laboratory cultures. A) Globigerinoides sacculifer feeding on an Artemia 

salina nauplius via rhizopodial streaming. Scale bar 150 μm. B) Orbulina universa with algal symbionts on the surface of the shell and 

in the peripheral cytoplasm. Scale bar 100 μm. C) Globigerinoides ruber with parasites on and in the shell feeding on the cytoplasm of 

the foraminifera. Scale bar 50 μm. (Photos: A. Weiner)  

If a species is associated with symbionts, its distribution in the water column is restricted to 
the euphotic zone, since it is dependent on light. The abundance of symbiont-free species 
varies largely with depth, with the deepest observations of living individuals at about 
1500-2000 m water depth (e.g. Hull et al. 2011). Although the number of individuals is 
usually expected to be higher in the depth layers of the chlorophyll maximum (Schiebel & 
Hemleben 2005), a correlation between primary productivity and foraminifera abundance 
cannot always be confirmed (Kucera et al. 2013). Regardless of the facts that these single 
celled organisms are not capable of active movement and that until now no cellular 
mechanisms for the control of dwelling-depth have been observed, some species were 
reported to be restricted to certain depth layers (Kuroyanagi & Kawahata 2004; Schiebel & 
Hemleben 2005) or to even migrate in the water column throughout their life cycle (Figure 
1.3; e.g. Emiliani 1971).  

The life cycle of planktonic foraminifera seems to be marked by sexual reproduction as sole 
reproductive strategy, as far as known today (e.g. Hemleben et al. 1989). Although gamete 
fusion has never been observed in laboratory cultures, it is assumed that planktonic 
foraminifera are dioceous and only gametes of two different parents can fuse to form a 
zygote (e.g. Schiebel & Hemleben 2005). In contrast to benthic foraminifera that often 
exhibit an asexual reproducing stage, planktonic foraminifera appear to only possess a 
gamontic generation. However, the stages occurring after zygote formation are not yet 
known, preventing conclusions on the timing of meiosis as well as on the existence of 
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resting stages (Hemleben et al. 1989). In order to increase the likelihood of gamete fusion, 
which can be problematic in non-motile widely dispersed organisms, planktonic fora-
minifera produce high numbers of free-swimming biflagellated gametes and eventually as 
gametogenic adults sink down and accumulate near the thermocline to assure spatial 
proximity (Hemleben et al. 1989). The empty parent shells sink to the seafloor after 
gametogenesis, whereas the juveniles grow by adding chambers to their shells and rise 
again to surface waters (Erez et al. 1991). A further process to enhance chances for 
successful fertilization was reported for a couple of surface dwelling species, which seem 
to synchronize their gamete release with the moon phases, exhibiting either a lunar- or 
semilunar reproduction cycle (Figure 1.3; Spindler et al. 1979; Almogi-Labin 1984; Loncaric 
et al. 2005). Whereas e.g. in Hastigerina pelagica this reproduction cycle seems to be 
intrinsically triggered by an endogenous factor (Spindler et al. 1979), the cycle of other 
species might rather be influenced by external environmental stimuli (Bijma et al. 1990; 
Erez et al. 1991), which makes it more susceptible to natural disturbing factors (Jentzen et 
al. 2014).  

 

Figure 1.3: Potential distribution of planktonic foraminifera morphospecies in the water column, separated according to their 

preferred water temperature and dwelling depth. Some species were reported to migrate in the water column throughout their 

ontogeny, accumulating as gametogenic adults at the thermocline. Especially the surface dwelling species were described to 

reproduce according to the lunar cycle (from: Schiebel & Hemleben 2005).  
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1.2. The fossil record of planktonic foraminifera  

The high numbers of shells in the sediments of the global ocean, their outstanding pre-
servation as well as the exceptional continuity of the fossil record allow tracking of evo-
lutionary and speciation events since the first appearance of planktonic foraminifera in the 
Jurassic. The fossil record provides insights into species origination and duration as well as 
ancestor-descendant relationships on high temporal and spatial scales (e.g. Benton & 
Pearson 2001). The origin of the entire group of planktonic foraminifera, however, is still 
uncertain, yet it is assumed that they descended from a benthic ancestor, which changed 
to a meroplanktonic and subsequently to a holoplanktonic living form (Simmons et al. 
1997). Hart et al. (2003) argue that the first representatives of planktonic foraminifera 
evolved in the early Jurassic, during a time of severe environmental disruption, which may 
have been the trigger for aragonitic foraminifera of the genus Oberhauserella to adopt a 
meroplanktonic mode of life. Thereafter, radiations in the plankton are thought to have 
occurred following extinction events in the Jurassic and Cretaceous, by evolution from 
surviving planktonic species, without a second benthos-plankton transition (e.g. Tappan & 
Loeblich 1988; Norris 1991). This monophyletic status of planktonic foraminifera, however, 
was questioned by molecular data based on the rDNA of planktonic as well as benthic 
foraminifera, which discovered a polyphyletic origin from the benthos, from at least two 
ancestral benthic lineages (Darling et al. 1997; Ujiié et al. 2008). Furthermore, Darling et al. 
(2009) reported the existence of species with a tychopelagic lifestyle that are able to live in 
both benthos and plankton, and therefore have an ecological advantage, which might 
allow them rapid recolonization of the plankton after major extinction events, such as the 
K/T-Event. This discovery further complicates the elucidation of early planktonic fora-
minifera evolution, which still is not entirely resolved. The origin of the modern planktonic 
foraminifera fauna, though, can be traced back to an adaptive radiation in the Miocene 
among survivors of a severe reduction in diversity at the Eocene/Oligocene boundary, 
during which all forms except for the globigerines became extinct (Cifelli 1969; Kucera & 
Schönfeld 2007; Aze et al. 2011).  

Besides tracking the evolutionary history of planktonic foraminifera, the fossil record also 
provides excellent opportunities for paleo-ecological investigations, such as the dating of 
marine sediments using planktonic foraminifera as stratigraphic markers (e.g. Bolli et al. 
1989). Since the chemical and isotopic composition of the shells records the properties of 
the ambient seawater from the time when they were constructed, planktonic foraminifera 
are also widely used in paleoclimatology for the reconstruction of chemical and physical 
properties of surface ocean water in the past (e.g. Kucera & Schönfeld 2007). In addition, 
the assemblages of planktonic foraminifera shells in the sediment can be used to 
reconstruct past sea-surface temperatures (Kucera et al. 2005), upwelling intensities (Conan 
et al. 2002), and primary productivity (Ivanova et al. 2003). The application of foraminifera 
as proxies in micropaleontological studies requires an exact species identification as well 
as knowledge of their ecological preferences, given that physiology and habitat vary 
among species. Since such studies are based solely on fossilized shells, the only way to 
classify species is by means of the morphological species concept. Consequently, species 
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classification has traditionally been conducted on easily recognizable and stable morpho-
logical characteristics of the calcite shells (e.g. Kennett 1976) and morphologic similarities 
between fossil and living forms have been used as indicators of similar ecological 
preferences (Kucera & Schönfeld 2007). Parker (1962) considered the surface ultrastructure 
of the shell, like the existence of spines and pores, as conservative morphological features 
for the differentiation of taxa. Srinivasan and Kennett (1976) realized that the ultrastructure 
can be subject to phenotypic variations, which they, however, considered as ecopheno-
types that should be combined in one taxon. In addition to this high phenotypic plasticity, 
some shell features have evolved in parallel in only distantly related lineages (Norris 1991; 
Coxall et al. 2007), what poses a further challenge for the correct taxonomy and 
systematics of extant planktonic foraminifera on the basis of morphology alone (Aze et al. 
2011). Due to these problems, the history of foraminifera classification is marked by 
countless species emendations as well as the discrepancy between those authors who 
conceptualized narrowly following the slightest morphological variation (e.g. Saito et al. 
1981), and those who rather hold on to the concept of phenotypic plasticity and lump 
morphological variants into one morphospecies (e.g. Parker 1962).  

Table 1.1: The 46 planktonic foraminifera species currently considered as valid, plus the two species with serially arranged chambers, 

which occupy an uncertain position, separated into five different morphogroups. Species classification follows the species list of 

Hemleben et al. (1989), which is based mainly on morphologic characteristics of the calcite shell. In addition, the present list is updated 

by taxonomic revisions that were possible following the morpho-genetic analysis of three species. Globigerinoides elongatus (marked 

by *) and Globigerinoides sp. (ruber white) are based on a taxonomic revision of Globigerinoides ruber by Aurahs et al. (2011), 

Neogloboquadrina incompta (marked by **) was separated from Neogloboquadrina pachyderma by Darling et al. (2006), and the 

former species Streptochilus globigerus (Hemleben et al. 1989) was considered identical to Bolivina variabilis (marked by ***) by 

Darling et al. (2009) based on genetic evidence.  

Macroperforate spinose  Macroperforate nonspinose  Microperforate nonspinose 

Globigerina bulloides Globorotalia anfracta Candeina nitida 
Globigerina falconensis Globorotalia cavernula Globigerinita glutinata 
Globigerinoides conglobatus Globorotalia crassaformis Globigerinita uvula 
Globigerinoides elongatus* Globorotalia hirsuta Globigerinita minuta 
Globigerinoides ruber Globorotalia menardii Tenuitella iota 
Globigerinoides sp. (ruber white)* Globorotalia scitula Tenuitella fleisheri 
Globigerinoides sacculifer Globorotalia truncatulinoides Tenuitella parkerae 
Orbulina universa Globorotalia tumida 
Beella digitata Globorotalia ungulata Monolamellar 

Globigerinella siphonifera Globorotalia theyeri 
Globigerinella calida Globorotalia inflata Hastigerina pelagica 
Globigerinella adamsi Neogloboquadrina dutertrei Hastigerinella digitata 
Orcadia riedeli Neogloboquadrina incompta** 
Turborotalita quinqueloba Neogloboquadrina pachyderma Serially arranged chambers 

Turborotalita clarkei Pulleniatina obliquiloculata 
Turborotalita humilis Globoquadrina conglomerata Bolivina variabilis***  
Globoturborotalita rubescens Globorotaloides hexagonus Gallitellia vivans 
Globoturborotalita tenella Berggrenia pumilio 
Sphaeroidinella dehiscens  
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Still relying on shell ultrastructure as the sole basis for taxonomic classification, in the 
1980s authors came to a consensus about the number of modern planktonic foraminifera 
species, which they limited to about 50 morphospecies (Kennett & Srinivasan 1983; 
Hemleben et al. 1989). The combination of morphological and genetic data in the last years 
led to a taxonomic revision of three morphospecies (Darling et al. 2006, 2009; Aurahs et al. 
2011), resulting in 46 valid species of foraminifera with a purely planktonic lifestyle and 
two species found in both plankton and benthos (Table 1.1).  

  

The strictly planktonic morphospecies can be separated into four general morphogroups 
based on characteristic shell features (Figure 1.4; Hemleben et al. 1989). The macro-
perforate spinose, the macroperforate nonspinose and the microperforate nonspinose 
species possess bilamellar calcite shells, separating from them the family Hastigerinidae 
(with the species Hastigerina pelagica and Hastigerinella digitata). The latter can be con-
sidered an own morphogroup due to the monolamellar shell wall in addition to several 
further unique characteristics, like the possession of a cytoplasmatic bubble capsule 
(Alldredge & Jones 1973; Hemleben et al. 1989). The monolamellar fragile shells of the 
Hastigerinidae are hardly preserved in the sediments and consequently the first appear-
ance date and the origin of the group are not entirely clear (Aurahs et al. 2009a). A further 
separation criterion between the main morphogroups is the formation of spines, which are 
an integrated part of the shell wall of spinose species (e.g. Lipps 1966). According to the 
fossil record, the lineages leading to the modern macroperforate spinose and nonspinose 
species split up about 70 million years ago in the Late Cretaceous with both groups 
evolving from a common ancestor of the genus Hedbergella (Liu & Olsson 1994). The spines 
appeared in the Early Cenozoic, most likely as an adaptation to the newly acquired 
carnivorous feeding habit and the first associations with symbionts (Olsson et al. 1999). The 
pore size further is used as a characteristic to separate off the microperforate group with 

Figure 1.4: Separation of the four 

morphogroups of strictly plank-

tonic foraminifera morphospecies: 

the microperforate nonspinose, 

macroperforate nonspinose, ma-

croperforate spinose and the 

monolamellar Hastigerinidae. The 

separation of the groups is based 

on the shell features pore size, 

spines and shell thickness. For each 

group a typical representative is 

shown (modified from: Kucera 

(2007) and Schiebel and Hemleben 

(2005)). 
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pore sizes smaller than 1 μm (Steineck & Fleisher 1978). The origin of this group can also be 
dated back to the Late Cretaceous, however, it is reported to have evolved from the genus 
Guembelitria (Liu & Olsson 1992). In addition to these four groups with spiral shells, two 
species with a serial chamber arrangement are often found in plankton nets and therefore 
they were for a long time considered to be planktonic species (e.g. Smart & Thomas 2006). 
However, Darling et al. (2009) could show that one of these species found in the plankton 
is genetically identical to the benthic species Bolivina variabilis and that the planktonic 
form is just one stage of its tychopelagic life cycle. Therefore, although they are by some 
authors still considered as planktonic species (Ujiié et al. 2008; Kimoto et al. 2009), their real 
status remains unresolved. 

 

1.3. Genetic diversity of planktonic foraminifera  

The ribosomal RNA gene as molecular marker  

The genetic analysis of foraminifera, both planktonic and benthic, had a fairly late start 
compared to other groups of organisms mainly due to the problem that pure foraminifera 
DNA is difficult to obtain (Pawlowski 2000). As mentioned before, foraminifera are asso-
ciated with symbionts living on or in the shell, parasites and also food particles. Therefore, 
it is nearly impossible to keep them under axenic conditions and consequently, DNA 
extracts of foraminifera very often contain contaminant DNA, which outnumbers and 
therefore masks the foraminifera signal (Langer et al. 1993; Wray et al. 1993). A further 
problem of initial molecular analysis on foraminifera was the fact that universal PCR 
primers did not align to foraminifera DNA (Pawlowski 2000). The contamination problem 
was overcome by working on total foraminifera RNA extracts, which contain a large 
number of gene transcripts (Pawlowski et al. 1994) or by using foraminifera gametes as a 
DNA source, which are known to be largely free of symbionts and food particles (Darling et 
al. 1996b). Both techniques delivered sequences that grouped together in the phylogenetic 
tree, but were substantially different from any other known sequences (Pawlowski 2000).  

Once the first rDNA sequences of both benthic and planktonic foraminifera had been 
obtained (e.g. Merle et al. 1994; Pawlowski et al. 1994; Darling et al. 1996a), foraminifera 
specific primers could be designed, allowing a more rapid and specific amplification of 
foraminifera DNA. The focus thereby lay on the ribosomal DNA, since this gene complex is 
found in all domains of life and it occurs in several copies in the genome, making it a useful 
marker for phylogenetic studies (Pawlowski et al. 2012). Although the general structure of 
the foraminifera rRNA gene is the same as in all other eukaryotes, comprising the large 
subunit (LSU) and the small subunit (SSU) separated by an internal transcribed spacer (ITS) 
region (Figure 1.5; Pawlowski 2000), its high length is peculiar within eukaryotes and 
explains the trouble at the beginning of foraminifera molecular analysis. The complete SSU 
fragment of some planktonic foraminifera species already measures more than 4 kb in 
sequence length, which is about twice as much as in other eukaryotes (de Vargas et al. 
1997). The extraordinary length can be attributed to highly variable expansion segments 
integrated as loops in the helices of the SSU rDNA. This part of the rDNA typically consists 
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of a mosaic of conserved and variable regions in all eukaryotic organisms. The variable 
regions lie at the periphery of the assembled ribosome after their transcription into rRNA, 
without being involved in the translation machinery and therefore they can be subject to 
expansions and modifications, which are, however, especially severe in foraminifera 
(Habura et al. 2004). The planktonic foraminifera SSU rDNA contains three unique variable 
regions (37/e1, 41/e1 and 46/e1) with high genetic variability that differs strongly between 
the different groups of foraminifera, complicating automated sequence alignments (de 
Vargas et al. 1997). Since these variable regions are not involved in the translation process 
of the assembled ribosome, it was assumed that the insertions in the SSU rDNA are 
functionally and phylogenetically insignificant (Wuyts et al. 2001). Yet, this mosaic of 
alternating variable and conserved regions with different diversification rates allows 
combined phylogenetic reconstruction at various taxonomic levels (Pawlowski et al. 2012).  

 

Figure 1.5: Schematic representation of the structure of the ribosomal DNA. Black areas indicate more conservative regions and white 

areas variable regions. The enlarged 1000 basepair (bp) fragment of the 3’ end of the SSU rDNA represents the fragment that is 

commonly used in foraminifera molecular analysis with its mosaic of conservative regions and integrated variable expansion segments 

(Redrawn and modified from: Grimm et al. 2007). 

A further peculiarity of the foraminifera rDNA is the high number of gene copies in the 
genome. Since high amounts of rRNA are required in each cell, its gene occurs in the 
genome in tandem repeats, which in eukaryotic cells usually add up to several hundred 
copies (Long & Dawid 1980). A study conducted on three benthic species though showed 
that in foraminifera between 10,000-30,000 copies of the gene can be found (Weber & 
Pawlowski 2013), marked by intraindividual sequence divergence (Pawlowski 2000). 
Although only few groups with intraindividual variability have been found so far in plank-
tonic foraminifera, it is very likely that they also possess a high number of gene copies. The 
peculiar structure found in the rDNA of planktonic foraminifera, marked by high numbers 
of gene copies and large expansion segments, might also be reflected in the rest of the 
genome, which could be a reason that so far only a small number of genes (SSU and LSU 
rDNA, actin, tubulin and polyubiquitin genes) could be amplified for some species.  

By using sequence information of the SSU rDNA to examine phylogenies reconstructed on 
the basis of the fossil record, the major conclusions drawn from morphological similarities 
were supported by the genetic evaluation (Darling et al. 1997; de Vargas et al. 1997). 
Planktonic foraminifera were confirmed as a sister group to benthic foraminifera (e.g. 
Wade et al. 1996), although the rate of rDNA evolution in planktonic species was calculated 
to be about 50-100 times faster than in their benthic relatives (Pawlowski et al. 1997).            
- 
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This fact was explained to be due to high reproduction rates in the plankton and potential 
changes in DNA repair and replication mechanisms and is reflected in the unusually long 
branches in molecular phylogenetic trees, which are especially pronounced in the spinose 
group (Ujiié et al. 2008). Another observation from the fossil record that was supported by 
the molecular analysis is the general separation of species into four morphogroups (Figure 
1.6; e.g. Aurahs et al. 2009a). Nevertheless, although a high congruence between 
morphology and genetics was found on first sight, the discovery of high levels of “hidden” 
genetic diversity within the morphospecies finally changed this perception.  

 

Figure 1.6: Maximum likelihood tree for planktonic foraminifera on the basis of a MAFFT alignment of a 600 bp fragment of the SSU 

rDNA, reflecting the separation of the four morphogroups (macroperforate spinose, Hastigerinidae, macroperforate nonspinose and 

microperforate nonspinose). Numbers at nodes indicate bootstrapped confidence values for the nodes. Tree inference and calculation 

of bootstrap values was conducted in RAxML in the CIPRES gateway and the tree was arbitrarily rooted for better visibility. Intra-

morphospecies genetic variability is collapsed.  

Cryptic diversity in planktonic foraminifera 

The focus on the fossil record, which for a long time was predominant in foraminifera 
research, had the obvious consequence that the morphological species concept (e.g. 
Simpson 1951) was the sole basis for species classification. As a result, the status of 
biological species was largely neglected, as was the question about a potential agreement 
between the two concepts. The biological species concept regards a group of organisms as 
a species that interbreed, but are reproductively isolated from other such groups (Mayr 
1963). This species concept is limited to sexually reproducing organisms and is considered 
“non-dimensional” since it does not include the time and space of occurrence of a species 
in its definition (Mayr 1992).  

When the first rDNA sequences had become available, the biological perspective could be 
added to the classification of planktonic foraminifera. An unexpectedly high sequence 
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diversity was encountered within single morphospecies, suggesting that the biodiversity 
of planktonic foraminifera had been severely underestimated (e.g. Huber et al. 1997; 
Darling et al. 1999; de Vargas et al. 1999). The existence of a high “hidden” genetic diversity 
was in fact already known for many groups of organisms (e.g. Knowlton 1993) and seemed 
to be especially dominant in open ocean organisms, such as dinoflagellates, copepods or 
fishes (Scholin et al. 1995; Bucklin et al. 1996; Miya & Nishida 1997), a fact that was 
attributed to strong environmental pressures that shape the pelagic biosphere (de Vargas 
et al. 2004). Nevertheless, due to the existence of the character-rich calcite shells of 
planktonic foraminifera that were used for species classification, the encountered high 
sequence diversity came unexpected.  

As long as no conclusive evidence for a morphological separation of these “genetic types” 
exists, they are considered cryptic species. Their rDNA sequences usually show no sign of 
hybridization and some were observed to possess different ecological preferences. 
Consequently, they very likely represent the level of biological species (e.g. de Vargas et al. 
2001). One reason for the existence of a “hidden” genetic diversity might be a potentially 
too low resolution of the morphospecies concept, which does not sufficiently resolve the 
level of biological species. Although intraspecies morphological variability has always been 
an obvious problem in planktonic foraminifera research, due to the lack of genetic 
information it was mostly dealt with as variation from the general scheme or attributed to 
ecophenotypic differences, but not considered as having species level significance (e.g. 
Malmgren & Kennett 1972; de Vargas et al. 2004). A second reason for the appearance of 
cryptic diversity could be a high rate of molecular evolution (as it was found in planktonic 
foraminifera; e.g. Pawlowski et al. 1997), which is not followed by morphological evolution 
at the same pace; or that morphology is subject to stabilizing selection whereas molecular 
variation accumulates (Bickford et al. 2007). The discovery of cryptic species, though, 
implies that a morphospecies describes a higher taxonomic level, which integrates several 
sibling species. De Vargas et al. (2004) suggested the concept of “super-species” to 
describe these morphological entities.  

Following up on those new perceptions, search for a potential correlation between the 
morphological or ecophenotypic variability and the genetic background of the morpho-
species was initiated. Huber et al. (1997) discovered that the two physiological types of 
Globigerinella siphonifera that were distinguished by the possession of two different types 
of symbionts (Faber et al. 1988, 1989), can also be separated on the genetic level as well as 
by different shell ultrastructures, and they proposed the acknowledgement of two bio-
logical species. De Vargas et al. (1999) and Morard et al. (2009) could show that the three 
sibling species of Orbulina universa are marked by differences in shell porosity. A combined 
morpho-genetic analysis on Globorotalia truncatulinoides revealed not only the existence 
of five cryptic species in the morphospecies, but also related variances in shell-conicalness 
to the genetic background instead to ecological influences (Quillévéré et al. 2013). 
Although the latter studies were able to present slight morphological differences between 
the now called pseudo-cryptic species, the differences were not sufficiently precise to have 
an impact on the taxonomy of the group. Only few studies so far detected a correlation 
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between morphology and genetics that was strong enough to allow for a taxonomic 
revision of the studied morphospecies: Neogloboquadrina incompta could be separated 
from Neogloboquadrina pachyderma based on the observation that the genetic separation 
corresponds to the different coiling directions of the shells (Darling et al. 2006) and Aurahs 
et al. (2011) could show that Globigerinoides elongates, which was synonymized with 
Globigerinoides ruber, is genetically as well as morphologically distinct, allowing for the 
status of a separate acknowledged species (Table 1.1).  

Due to an intense screening of planktonic foraminifera morphospecies for genetic diversity 
so far 26 morphospecies have been analyzed genetically, and overall 66 cryptic species 
were discovered in 16 of these sequenced species (for review see: Darling & Wade 2008; 
and Chapter 8). This suggests that cryptic diversity is a prevalent pattern in planktonic 
foraminifera morphospecies and its discovery just requires the analysis of an adequate 
number of individuals from different geographic locations. However, already now it is 
obvious that the amount of genetic diversity is not distributed homogeneously between 
the different morphospecies. Whereas in Neogloboquadrina pachyderma seven cryptic 
species were discovered (Darling et al. 2004; Darling et al. 2007), sequences of both Neo-
globoquadrina dutertrei and Globorotalia inflata revealed the existence of only two (Darling 
et al. 2003; Morard et al. 2011). This uneven distribution of diversity might be due to the 
fact that the rate of molecular evolution varies between morphospecies, within 
morphospecies and even between different regions of the SSU rDNA (Pawlowski & Lecroq 
2010). As a consequence, the genetic distances between cryptic species differ substantially 
in the different morphospecies (Table 1.2) and the establishment of a universal threshold 
of genetic divergence for planktonic foraminifera to objectively separate the taxonomic 
levels of genus, species and populations is prevented (Göker et al. 2010), leaving the 
classification of biological species to be a subjective procedure.  

Table 1.2: Differences in the amount of cryptic diversity “hidden” within selected morphospecies and the wide range and high values 

of sequence divergence within each morphospecies that inhibit the establishment of a universal threshold for species delineation. 

Sequence divergence was calculated as pairwise distances between 600 bp fragments of the 3’ end of the SSU rDNA of the cryptic 

species within each morphospecies using MEGA (Tamura et al. 2011). Sequences for the distance calculations were taken from GenBank.  

Morphospecies Cryptic species Sequence divergence [%] 

Hastigerina pelagica 3 4 – 42 
Neogloboquadrina pachyderma 7 0.7 – 7.5  
Globigerina bulloides 12 0.4 – 27 
Globorotalia inflata 2 1.7 

The discovery of “hidden” genetic diversity in planktonic foraminifera morphospecies has 
severe implications on their application as paleo-proxies, since these rely on the assump-
tion of genetic continuity and ecological homogeneity of each morphospecies (Kucera & 
Darling 2002). The fact that ecological differences were found between the cryptic species 
thus implies that paleoceanographic reconstructions contain significant noise due to the 
lumping of physiologically and ecologically distinct biological species (Darling et al. 2000), 
that naturally also exhibit different geochemical signatures in their shells. Nevertheless, the 
knowledge on the existence of genetic diversity within planktonic foraminifera morpho-
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species can be used to improve the accuracy and reliability of such studies (Kucera & 
Darling 2002), by attributing so far unexplained geochemical variability in morphospecies to 
the presence of different genetic types. Therefore, it is not only important to further screen 
morphospecies for genetic variability, but to also consider the biogeographical distribution 
patterns of the cryptic species and their adaptations to different ecological parameters. 

A striking advantage in foraminifera research compared to other plankton groups is the 
possibility for a combination of the fossil record and molecular data in order to date evo-
lutionary events. Molecular clock analysis can be used to impose time on the molecular 
phylogeny if gradual evolutionary change of the SSU rDNA is assumed (Rutschmann 2006). 
However, since the evolutionary rates vary extensively between the different foraminifera 
lineages, calculating a global molecular clock for the whole group is not possible. On the 
other hand, evolutionary rates within individual groups (e.g. the spinose planktonic fora-
minifera) can be considered fairly constant and therefore, molecular divergence and speci-
ation events can at least be dated within such a limited group by calibrating against first 
appearance dates known from the fossil record (Darling et al. 1999). By estimating the ages  

 

Figure 1.7: Molecular clock estimates for the divergence of cryptic species of various morphospecies, separated by their different 

distribution ranges. In many cases, the cryptic species already diverged several million years ago, whereas others show high 

diversification rates in the Quaternary. Indicated are the maximum ages of the genetic types as they are estimated on the phylogenetic 

tree, associated with their level of uncertainty. (from: Kucera & Schönfeld 2007) 
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of the cryptic species, it was demonstrated that in many cases they already diverged 
several million years ago, although these calculations are associated with a high un-
certainty (Figure 1.7; e.g. de Vargas et al. 2002; Kucera & Schönfeld 2007). Nevertheless, 
they can be used as a further support for the status of cryptic species as separate biological 
species that have been constant throughout a long time range.  

 

1.4. Speciation and biogeographic distribution patterns in plankton 

The discovery of high genetic diversity in planktonic foraminifera inevitably raises 
questions on the possible modes of speciation in plankton that can cause such a high 
diversification. Traditionally, it has been assumed that microplankton species exhibit a 
cosmopolitan distribution throughout the world ocean (e.g. Miya & Nishida 1997; Finlay & 
Esteban 2001). The ocean on first sight appears as a homogenous continuum without any 
obvious barriers for the dispersal of small plankton organisms. The fact that they lack any 
means of active propulsion makes them subject to passive transport by ocean currents and 
the only potential limit to their global distribution would therefore be restricted connec-
tivity between ocean basins. Furthermore, microbial species tend to have large absolute 
population sizes, allowing for rapid passive dispersal, large scale distribution and global 
gene flow (e.g. Norris 2000). Consequently, it seemed impossible for non-motile microbes 
to establish differentiated distribution patterns and it was postulated that theoretically, 
every species occurs everywhere, and the species assemblage at a certain habitat is the 
result of solely the ecological properties of the habitat (e.g. Finlay 2002; Fenchel & Finlay 
2004). Furthermore, Finlay (1998) concluded from this ubiquitous occurrence and the 
resulting low endemism that the global species richness of protists might be relatively low 
and is well presented by the local species richness. In general, this suggests that 
reproductive isolation and speciation in plankton must be reduced. Yet, this is contrasted 
by the observation of a high species diversity in many groups of plankton either on the 
morphological or genetic level (e.g. Sáez et al. 2003; Irigoien et al. 2004; Amato et al. 2007; 
Goetze 2011) and also by evidence from the fossil record for high rates of species origin 
and extinction (e.g. Lazarus 1983).  

The origin of new species in the pelagic environment is described by various theoretical 
speciation concepts (Figure 1.8; e.g. Norris 2000), which include spatial isolation or distinct 
adaptations as answer to divergent natural selection (Pierrot-Bults & van der Spoel 1979). 
The most apparent ones of these speciation models are the allopatric and vicariance 
models (Figure 1.8A and C), which describe the scenario of a separation of populations of 
one species by an impenetrable barrier that can either be of hydrographic or geographical 
origin, respectively (Butlin et al. 2008). The populations on either side of the barrier are 
reproductively isolated from each other and consequently over time diverge into separate 
species through accumulation of different genetic mutations. The continents can be con-
sidered to represent such geographic barriers, inhibiting circumglobal distribution of 
tropical species (e.g. Arnold & Parker 2002; Goetze 2003). Many temperature tolerant 
plankton organisms, however, were shown to be transported around the southern tip of 
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Africa, maintaining gene flow between the Indopacific and the Atlantic (e.g. Peeters et al. 
2004). For species with a cosmopolitan distribution that co-occur in the same geographical 
region, the sympatric speciation model appears more likely, since it describes the 
possibility for reproductive isolation without the need for spatial isolation (Norris 2000). 

 

 

A detailed understanding of speciation processes in plankton requires, after all, the down-
scaling of observations from a global to a more local scale to disclose the inhomogeneous 
nature of the pelagic habitat with strong environmental gradients not only on a horizontal 
but also on a vertical perspective. As a consequence the high potential for speciation in 
plankton becomes apparent. A study focusing on the biogeography of protists revealed 
that the area and temporal dimension covered by active cells (described as their “home 
range”) are much smaller than the area and time period that could potentially be covered 
by passive dispersal of resting stages (Weisse 2008). Further, a high dispersal rate does not 
necessarily provoke a large scale distribution, since this still requires successful establish-
ment of the immigrants (Weisse 2008). The actual distribution of a species thus largely 
depends on physico-chemical variables, as temperature, salinity and pH, and biological 
factors such as food availability, predation pressure and competition (e.g. Arnold & Parker 
2002; Weisse 2008). Such a dependence on abiotic factors can also be observed in the 
occurrence of planktonic foraminifera morphospecies in the ocean, that are distributed 
according to large scale biogeographies, following surface temperature gradients. The 
result is a distinction of five major planktonic foraminifera provinces in the ocean (Tropics, 
Subtropics, Transitional, Subpolar and Polar Regions), which exhibit a latitudinal diversity 
gradient with a high species diversity in the Tropics and Subtropics and only few species 
that can survive in the Polar Regions (e.g. Berger 1969; Bé & Hutchinson 1977). This large 

Figure 1.8: Theoretical models for 

speciation processes in the pelagic 

environment. A) Allopatric speci-

ation by divergence on both sides 

of a hydrographical barrier, B) 

parapatric speciation in the same 

geographical range along a hydro-

graphic gradient due to different 

selection pressures, C) vicariance 

describes speciation due to separa-

tion by a geographical barrier, D) 

depth parapatric speciation, which 

relies on a change in reproduction 

depth of two populations and E) 

seasonal sympatry, which is the 

consequence of a shift in the 

timing of reproduction (from: 

Norris 2000). 
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scale distribution could be the consequence of the existence of a sharp thermocline in the 
Tropics and Subtropics, which creates a large number of niches in the water column 
compared to the homogenous water mass of the Polar Regions (Al-Sabouni et al. 2007). 
Although each morphospecies seems to have a cosmopolitan distribution within its 
preferred temperature range, the abundance of individuals is fairly low, provoking a 
patchy distribution of populations (e.g. Tolderlund & Bé 1971). This patchiness depends on 
the environmental preferences of the species, whereby the populations are separated by 
areas of unfavorable habitat (Pierrot-Bults & van der Spoel 1979). If the geographical 
distance between the populations is high enough to prevent gene flow, the potential for 
allopatric speciation is severely elevated. Yet, a spatial separation of populations not only 
occurs on a horizontal perspective, but also in a vertical dimension in the water column 
(Sommer 1982), where large environmental gradients (like temperature and salinity) can 
exist over small distances. If two species diverge along such a gradient, due to differences 
in selective pressure, they adapt to different water depths and shift their reproduction 
range apart. This mode of speciation is described as parapatry or depth parapatric 
speciation (Figure 1.8B and D; e.g. Pierrot-Bults & van der Spoel 1979; Briggs 1999; Schluter 
2001). Since planktonic foraminifera morphospecies were observed to occupy different 
depth levels in the water column (Figure 1.3; Schiebel & Hemleben 2005), the vertical 
dimension clearly has to be considered when trying to explain the origin of the high 
genetic diversity within planktonic foraminifera morphospecies. 

A biological mode of speciation, common between entirely sympatric populations, is a 
shift in the timing of reproduction (e.g. Palumbi 1994). Since for some planktonic fora-
minifera species, a dependence of reproduction on the lunar or semilunar cycle was 
suggested (Bijma et al. 1990), population divergence might happen through a temporal 
shift of the reproduction peak around this lunar periodicity (Figure 1.8E; Norris 2000). This 
would reduce the probability for gene flow, leading to reproductive isolation. On an even 
smaller scale, reproductive isolation can be enforced by changes in mate recognition or 
gamete incompatibility (Palumbi 1994). 

Considering the high genetic diversity within planktonic foraminifera morphospecies, 
which is assumed to represent the level of biological species, the prevalence of speciation 
in plankton becomes obvious. The differentiated biogeographic distribution patterns of 
these cryptic species can be used to draw conclusions on the mode of speciation and the 
historical processes that shaped the now observable patterns (Arnold & Parker 2002; 
Kocher 2005).  

Observations of differentiated distribution patterns were reported for the three sibling 
species of Orbulina universa (de Vargas et al. 1999; Morard et al. 2009). They clearly show a 
non-random distribution, occurring at different hydrographic conditions, depending on 
the primary productivity of the surface water. Whereas one of them was present in areas of 
high chlorophyll concentration, the second was restricted to oligotrophic and the third to 
extremely oligotrophic conditions. This distribution pattern very likely is the result of a 
sympatric or parapatric speciation event between the populations of a highly abundant 
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species that adapted to different environmental pressures. Conversely, a horizontal 
segregation was found between the cryptic species of Globigerinoides ruber. Aurahs et al. 
(2009b) could show that the two most closely related cryptic species occur in different 
basins of the homogenous Mediterranean Sea, whereas they co-occur in the more mixed 
region of the eastern Atlantic. This present day distribution pattern was explained to be 
the result of vicariant separation of Atlantic and Mediterranean populations during a 
glacial maximum. After reproductive isolation on either side of the Strait of Gibraltar, 
reinvasion of the Atlantic species into the entire Mediterranean Sea was unsuccessful due 
to competitive exclusion, whereas the mixed waters of the Atlantic allow a co-existence of 
both types. The two sibling species constituent in the morphospecies Globorotalia inflata 
were shown to exhibit a strictly allopatric distribution pattern (Morard et al. 2011). They are 
separated along the Antarctic Subpolar Front, which restricts one of them to transitional 
and subtropical and the second one to Antarctic water masses, clearly indicating a 
previous allopatric speciation event. Notwithstanding the fact that highly differentiated 
distribution patterns have been shown to be maintained, the possibility for global gene 
flow in planktonic foraminifera cannot be entirely excluded, since many cryptic species or 
genetic types exhibit complete genetic homogeneity independent of their geographic 
location (Norris 2000). The genetic homogeneity within the bipolar genetic types of the 
subpolar/polar morphospecies Turborotalita quinqueloba, Neogloboquadrina incompta and 
Globigerina bulloides is a striking example and suggest the existence of continuous trans-
tropical gene flow (Darling et al. 2000; Darling & Wade 2008). Furthermore, each of the 
sibling species of O. universa presents genetic identity throughout its global range (de 
Vargas et al. 1999) and the same holds for several other species (Darling & Wade 2008). This 
pattern suggests that the distribution of plankton organisms is influenced by a mixture of 
high dispersal and gene flow and local restrictions and adaptations.  

Although the divergence of two populations into separate species can occur rapidly, it 
usually is a continuous process extending over many generations and it can take even 
millions of years for species to form (Coyne & Orr 2004). The application of molecular clocks 
allows dating of the speciation events of planktonic foraminifera and eventually a relation 
to geologic events in the past (Knowlton 2000; Darling et al. 2004). Since speciation takes 
place over such enormous time scales, it is possible that geographic and biological 
elements of speciation alternate over time until complete genetic isolation is achieved 
(Norris & Hull 2011), a pattern that cannot be revealed by the distribution of living 
organisms.  
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2. Motivation and Objectives 

Owing to their excellent fossil record, planktonic foraminifera play an important role as 
proxies for the reconstruction of past oceanic conditions (e.g. Kucera et al. 2005). The 
chemical signature of their shells records the properties of the ambient seawater, to which 
a specimen was exposed during the time of biomineralisation of its shell (e.g. Kucera & 
Schönfeld 2007). Given that every species possesses its distinct ecological adaptations and 
physiological characteristics, the geochemical composition of the shell consequently varies 
between separate species (e.g. Hemleben et al. 1989). In order to receive high resolution 
paleoceanographic reconstructions, a precise taxonomy and an exact knowledge of the 
level of biological species and their ecological requirements is thus of essential impor-
tance. As a consequence, the biological perspective of this enigmatic group of microplank-
ton still requires close attention. Especially the number of extant morphospecies that are 
analyzed in regard to their extent of hidden genetic diversity has to be further increased, 
to be able to estimate the biological diversity of planktonic foraminifera. So far, cryptic 
diversity seemed to be prevalent in all morphospecies studied, partly reaching surprisingly 
high numbers of cryptic species per morphospecies (for a review see: Darling & Wade 
2008). However, a morphological differentiation of the cryptic species was so far rarely 
achieved (Darling et al. 2006; Aurahs et al. 2011), but is indispensable in order to recognize 
biological species in the sediment assemblages. In addition, the biogeographical 
distribution patterns of cryptic species require further examination, in order to discover 
small scale adaptations that would have consequences for the application of foraminifera 
in micropaleontological studies. Regional endemism of cryptic species has been disco-
vered before (e.g. Aurahs et al. 2009b), however, it is not yet known if restricted distribution 
patterns are an exception or the rule in planktonic foraminifera. The biogeographic 
distribution patterns of cryptic species in the present day ocean further are of great 
interest, because they represent an indicator of the modes of speciation prevalent in 
plankton that are responsible for the origin of the unexpectedly high biodiversity encoun-
tered in many groups of marine protists. Large scale sampling of planktonic foraminifera 
throughout the world ocean is therefore now required, covering as much of the distribu-
tion range of a morphospecies as possible to enhance chances to detect its entire consti-
tuent cryptic diversity and to characterize the distribution patterns of the cryptic species. 

With the aim to contribute to the ongoing research on the genetic diversity of planktonic 
foraminifera, the relationship between their morphology and genetics as well as their 
biogeographic distribution patterns in the world ocean, the following three research 
questions were tested in the present PhD thesis:  

I) Is cryptic diversity a pervasive phenomenon in planktonic foraminifera morphospecies 
and can its extent be predicted from the characteristics of a morphospecies, such as its 
morphological variability, abundance and distribution in the ocean?  

II) Does a potential morphological distinction of cryptic species depend on the 
phylogenetic distance between them? 
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III) Is the biogeographical distribution of cryptic species of planktonic foraminifera marked 
by high endemism or rather global dispersal and gene flow? 

In order to address these research questions, three different planktonic foraminifera 
morphospecies, Hastigerina pelagica, Globigerinoides sacculifer and Globigerinella siphoni-
fera, were selected as ideal candidates for the studies. They all occur globally throughout 
the low latitude regions of the ocean (e.g. Hemleben et al. 1989) and can, therefore, be 
compared in regard to the prevalence of either circumglobal dispersal and gene flow 
across the colder waters of the Temperate Regions or local adaptations and high potential 
for the establishment of genetic isolation. Extensive sampling in the Tropics, Subtropics 
and Temperate regions allowed a detailed analysis of the genetic diversity, morphometry 
and biogeography of these species throughout their distribution ranges.  

Hastigerina pelagica exhibits rather low abundances in the ocean, what generally grants a 
species high potential for genetic isolation, because of large geographical distances 
between the populations (e.g. Pierrot-Bults & van der Spoel 1979). Only three cryptic 
species had been discovered before within the morphospecies, but this number was based 
only on few samples (Aurahs et al. 2009a). The now available collection of samples per-
mitted further screening of the morphospecies for cryptic diversity. Extended sampling in 
the Mediterranean Sea and Atlantic and as new locations in the Caribbean Sea and 
Western Pacific was carried out to check for restricted distribution patterns of the cryptic 
species. The genetic divergence between the known cryptic species had been observed to 
be unusually high (compare Table 1.2) and therefore, they seemed promising for the 
detection of morphological variability. Chapter 4 of the present thesis comprises the 
studies carried out on this morphospecies. 

Globigerinoides sacculifer constitutes a highly abundant and cosmopolitan plexus of four 
different morphotypes. Because of the high morphological variability it seemed likely that 
a comparable amount of genetic diversity might be detected, now that a large enough 
dataset was available, covering wide areas of the morphospecies’ distribution range. 
Furthermore, with knowledge on the genetic background of the morphospecies, the 
taxonomic validation of the morphotypes could be examined. Chapter 5 describes the 
findings on the genetic diversity and biogeography of G. sacculifer.  

The Globigerinella siphonifera plexus had long been in the focus of genetic and morpho-
metric analyses. The morphospecies is known to contain an unusually high genetic diver-
sity (de Vargas et al. 2002; Darling & Wade 2008), which due to its partly only slight genetic 
divergence had not been entirely resolved. Furthermore, the status of its sister species G. 
calida as a separate species still remained questionable. The accumulation of a large 
dataset allowed further examination of the extent of cryptic diversity within this morpho-
species plexus and the biogeographical distribution patterns of the cryptic species. The 
cryptic species are marked by highly different genetic distances between each other, and 
are therefore a promising example to study the relationship between genetic and morpho-
logical evolutionary rates. The genetic, biogeographic and morphometric studies carried 
out on the G. siphonifera plexus are represented in Chapters 6 and 7 of this thesis. 
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3. Methods applied in single-cell foraminifera genetics 

3.1. Sampling of planktonic foraminifera 

Sampling of planktonic foraminifera for genetic analysis was either conducted during sea-
going expeditions or during visits to marine research stations. In both cases, sampling took 
place at locations with a water depth greater than 100 m and preferably even off the shelf, 
since planktonic foraminifera occur in open ocean habitats and are consequently not 
found in great numbers close to the coast (Hemleben et al. 1989). The exact locations 
sampled by the working group and by coauthors are indicated in Figure 3.1. Depending on 
the equipment of the vessel, sampling was carried out either with a multi-closing net 
(MCN, 1 m2 opening, 100 μm mesh size) or with a small handheld plankton net (0.5 m 
diameter opening, 100 μm mesh size). The use of a MCN allows stratified sampling of the 
water column in five different depth intervals. We routinely towed vertically from a water 
depth of 700 m, below which hardly any living individuals are found (e.g. Arnold & Parker 
2002), and divided the water column in the intervals 700-500 m, 500-300 m, 300-200 m, 
200-100 m and 100-0 m in order to retain consistency between all sampling stations. In 
most cases a second net was taken at the same station separating the upper 100 m in five 
equal intervals. Stratified sampling of the water column allows a detailed analysis of the 
vertical distribution of different foraminifera species. When sampling from small boats the 
plankton net was used that can be towed by hand. This net was applied in two different 
ways, by sampling vertically from a water depth of 100 m to the surface or by sampling 
horizontally by pulling the net behind the boat at a water depth of ~5 m for 5 minutes.  
 

 

Figure 3.1: World map showing all sampling sites from which planktonic foraminifera specimens were collected for studies included 

in the present thesis, combining expeditions from the working group (triangles) and from coauthors (circles; exact descriptions of the 

cruises are found in the publications). Grey shading in the background of the map indicates sea surface temperature on an annual 

average (Ocean Data View).  
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In order to obtain untouched, undisturbed individuals, in Puerto Rico planktonic foramini-
fera were also sampled by diving in water depth up to 5 m. Using this approach, specimens 
are taken right out of their natural environment by capturing them in plastic jars, avoiding 
the damage of the organisms caused by entangling in plankton nets. At most open ocean 
stations sampled onboard the research vessels, CTD (conductivity, temperature, depth) 
data were collected and chlorophyll concentrations were measured using a fluorescence 
probe in order to be able to characterize the environmental conditions of the water 
column.  

Immediately after resurfacing the net, plankton samples were washed out of the collection 
cups of the nets with filtered sea water (filtered over 63 μm gauze). Picking of planktonic 
foraminifera started as soon as possible, however, depending on the number of samples 
obtained, they sometimes had to be stowed in the fridge until the next day to finish 
picking. All foraminifera present in the plankton sample, including empty shells, were 
isolated and cleaned under stereomicroscopes using a fine brush and immediately 
transferred to cardboard slides for preservation (Figure 3.2A-C). After cleaning the 
specimens again to prevent attachment of contaminants and arranging them individually 
on the slide, the slides were air dried and frozen at -80 °C until they were transported to 
Germany on dry ice.  

 

Figure 3.2: A) Picking of planktonic foraminifera specimens out of the plankton sample under a stereomicroscope (Photo: M. Kucera). 

B) Accumulation of planktonic foraminifera specimens in a plankton sample (Photo: A. Weiner). C) Cleaned individuals arranged and 

air dried on a cardboard slide for preservation (Photo: WG Kucera).  

 

3.2. Culturing of planktonic foraminifera 

All specimens collected by diving as well as healthy looking individuals from plankton tows 
were kept in culture until they were observed to undergo gametogenesis. These culturing 
experiments were carried out onshore during visits to the marine stations in Eilat, Las 
Cruces and Isla Magueyes with the aim to increase the DNA yield in molecular analysis by 
working with gametogenic foraminifera, which comprise multiple genomes with only little 
contamination by symbionts and food particles (compare Darling et al. 1996b). Therefore, 
individual spinose foraminifera were cleaned of obvious contaminants and transferred to 
50 ml cell culture jars with an air permeable lid (Figure 3.3A). These jars contained ~30 ml 
filtered sea water, filtered over 0.25 μm pore size Millipore filter to prevent further con-
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tamination. All culturing jars were kept at a constant temperature corresponding to the 
water temperature at the sampling stations and under daylight lamps in a day-night cycle. 
Each foraminifera was fed an Artemia salina nauplius every other day by sticking the brine-
shrimp into its spines and pseudopodia network. Usually, within one day after sampling 
the foraminifera had recovered from sampling stress and rebuild their spines (Figure 3.3B). 
As soon as the specimens were observed to shed their spines again and sink to the bottom 
of the jar, which are indicators for approaching gametogenesis (Bé et al. 1983), they were 
transferred to smaller vials containing 5 ml of freshly filtered sea water and from now on 
were observed even more frequently. At the time of formation of granular cytoplasm close 
to the aperture followed by the appearance of a mass of fast moving flagellated gametes 
(Figure 3.3C), the shell containing the gametes was placed into a 1.5 ml Eppendorf tube 
containing 50 μl of ethanol and frozen at -20 °C.  

 

Figure 3.3: A) Culturing jars containing individual foraminifera specimens kept at constant temperature in a water bath under a 

daylight lamp in day-night cycle until gametogenesis can be observed (Photo: A. Weiner). B) Hastigerina pelagica in culture with 

regrown spines and an extended cytoplasmatic bubble capsule, scale bar 200 μm (Photo: WG Kucera). C) Globigerinella siphonifera in 

culture producing thousands of highly motile gametes that escape from the aperture, scale bar 100 μm (Photo: A. Weiner).  

 

3.3. DNA extraction and molecular analysis  

Back home in the laboratory, frozen specimens were individually picked off the cardboard 
slide, photographed under a stereomicroscope, taxonomically identified and catalogued. 
DNA extraction of the preserved individuals was then carried out by applying either the 
DOC (Holzmann & Pawlowski 1996) or GITC protocol (e.g. Morard et al. 2009), the latter 
allowing preservation of the calcite shell, which subsequently can be used for morpho-
metric analysis. 

1) DOC buffer: Each individual was transferred with a brush to a 1.5 ml Eppendorf tube 
containing 25 μl DOC buffer. 100 ml DOC buffer consist of 10 ml 1 M Tris- HCl pH 8.5, 
0.8 ml 0.5 M EDTA, 10 ml 10% DOC (Sodium deoxycholate), 2 ml 10% Triton-X-100 and 
77.2 ml H2Obidest, stored at room temperature. The tubes were then incubated under 
gentle shaking at 60 °C for one hour, during which the calcite shell is dissolved. 
Afterwards the extractions were stored in the fridge at 4 °C until further analysis.  

2) GITC buffer: Each foraminifera was placed into a 1.5 ml Eppendorf tube containing 50 
μl GITC buffer. 100 ml GITC buffer contain 50 g GITC, 10.6 ml 1 M Tris- HCl pH 8.5, 10.6 
ml 20% Sarcosyl, 1.05 ml Mercaptoethanol, filled up to 100 ml with H2Obidest. The tubes 
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were then heated for one hour at 70 °C under shaking. After separating the empty 
shell from the DNA extract, 50 μl Isopropanol were added to the extract and the tubes 
were kept at -20 °C over night. The next day they were centrifuged at 18,000 rpm for 
15 minutes and the Isopropanol was removed. The resulting pellet was washed with 
50 μl Ethanol (96 %), which was taken off again after another centrifugation step 
(18,000 rpm, 15 minutes). The pellet was then resuspended in 20 μl H2Obidest and stored 
at -20 °C.  

The 3’ fragment of the SSU rDNA (see Figure 1.5) was amplified by Polymerase Chain 
Reaction (PCR), which was conducted under the following settings. The reaction mix was 
prepared with 8.26 μl H2O, 3 μl reaction buffer, 1.5 μl MgCl2 (25 mM), 0.6 μl dNTPs (10 μM 
each), 0.15 μl Primer 1 and 2 (10 μM) and 0.15 μl Taq polymerase, adding 1 μl sample DNA. 
The PCR reaction was carried out at 95 °C for 2 min, followed by 35 repetitions of 95 °C for 
30 sec, 55 °C for 30 sec, 72 °C for 30 sec and the terminating step at 72 °C for 10 min. In 
cases where no PCR product was obtained after the first PCR run, nested PCR was 
conducted as a second step. Therefore, after the first run with foraminifera group specific 
primers, the second run was conducted with species specific primers that anneal within 
the already covered fragment. A further optimization strategy that was applied for some 
samples was the dilution of the DNA extract with 20 μl of H2Obidest prior to the PCR reaction. 
This leads to a simultaneous dilution of PCR inhibiting substances resulting in enhanced 
DNA yield. In order to screen specimens for intra-individual genetic variability due to the 
possession of different copies of the rDNA, it was mandatory to clone the gene of a couple 
of individuals of each morphospecies. Therefore a ~500 bp fragment of the SSU rDNA was 
inserted into a plasmid vector of the Zero Blunt® Topo® PCR Cloning Kit (Invitrogen) and 
multiplied in chemically competent E. coli cells. All steps were carried out according to the 
manufacturer’s protocol and the plasmids were afterwards purified using the PureLink® HQ 
Mini Plasmid Purification Kit (Invitrogen). Sequencing of all PCR products and clones was 
done by Sanger sequencing by an external service provider (LGC Genomics, Berlin, 
Germany), and followed by a bioinformatic evaluation of the sequences in order to screen 
for genetic variability.  
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Abstract

A large portion of the surface-ocean biomass is represented by microscopic unicellular

plankton. These organisms are functionally and morphologically diverse, but it remains

unclear how their diversity is generated. Species of marine microplankton are widely

distributed because of passive transport and lack of barriers in the ocean. How does

speciation occur in a system with a seemingly unlimited dispersal potential? Recent

studies using planktonic foraminifera as a model showed that even among the cryptic

genetic diversity within morphological species, many genetic types are cosmopolitan,

lending limited support for speciation by geographical isolation. Here we show that the

current two-dimensional view on the biogeography and potential speciation mechanisms

in the microplankton may be misleading. By depth-stratified sampling, we present

evidence that sibling genetic types in a cosmopolitan species of marine microplankton,

the planktonic foraminifer Hastigerina pelagica, are consistently separated by depth

throughout their global range. Such strong separation between genetically closely related

and morphologically inseparable genetic types indicates that niche partitioning in

marine heterotrophic microplankton can be maintained in the vertical dimension on a

global scale. These observations indicate that speciation along depth (depth-parapatric

speciation) can occur in vertically structured microplankton populations, facilitating

diversification without the need for spatial isolation.

Keywords: biogeography, depth segregation, foraminifera, niche partitioning, plankton, specia-

tion
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Introduction

The surface of the world oceans is inhabited by enor-

mous populations of microscopic free-floating phyto-

and zooplankton. The small size of these organisms lim-

its their ability for active dispersal on a global or even

regional scale. Instead, marine plankton is passively car-

ried by currents throughout the world oceans. In such

groups where individuals or propagules can endure

exposure to suboptimal environmental conditions dur-

ing transport, the potential for dispersal is thus only

limited by the degree of connectivity between oceanic

basins. The dominance of such passive dispersal and

the inability to counteract it by active movement has

led to the idea that the pelagic environment is condu-

cive for a cosmopolitan species distribution (e.g. Finlay

& Esteban 2001) and initiated hypotheses questioning

the potential for geographic isolation in marine micro-

plankton (e.g. Finlay 2002; Fenchel & Finlay 2004). Con-

sidering the high potential for dispersal and the huge

population sizes of the plankton, one might expect that

the probability of speciation in these organisms should

be reduced. Yet, speciation must be a common phenom-

enon in marine plankton because of abundant evidence

for rapid species turnover in the fossil record (e.g. Laza-

rus 1983; Norris 2000; Benton & Pearson 2001) and the

high global diversity in many groups of modern marine
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plankton, which is manifested morphologically (Irigoien

et al. 2004), or genetically (e.g. Sáez et al. 2003; Amato

et al. 2007).

Studies attempting to unravel speciation processes in

the plankton are confronted with two challenges: the

missing temporal dimension on an evolutionary scale

(Norris & Hull 2011) and the difficulty to delineate evo-

lutionarily significant units (Crandall et al. 2000). The

latter issue boils down to the need to understand the

spatial and temporal dimension of gene flow in plank-

tonic organisms. Until now, this phenomenon has been

mainly considered from a two-dimensional perspective

of geographical isolation in a homogenous surface layer.

However, next to the horizontal (geographical) dimen-

sion, the pelagic environment can also be structured

vertically. In this dimension, large environmental gradi-

ents occur over short distances, and the scaling between

active movement (buoyancy) and passive dispersal is

reversed. This is particularly relevant for species whose

habitat stretches across vertical structures in the water

column such as the thermocline. In such species, gene

flow in the vertical dimension could be significantly

reduced, or a gradient could develop such that gene

flow between adjacent populations is substantially more

likely than between more distant populations, provid-

ing an opportunity for population divergence (e.g. Pier-

rot-Bults & van der Spoel 1979; Briggs 1999; Schluter

2001).

Planktonic foraminifera have been frequently used as

model system to investigate speciation patterns in the

plankton (e.g. Levinton & Ginzburg 1984; Norris et al.

1996; Norris 2000; Allen et al. 2006). Today, there are

about 50 morphospecies inhabiting the world ocean, the

majority of which show a cosmopolitan distribution

within their preferred temperature range (e.g. Hemle-

ben et al. 1989). Molecular genetic analyses of the last

decade have revealed a high genetic variability within

almost every morphospecies of planktonic foraminifera

(e.g. Darling & Wade 2008). This is significant because

planktonic foraminifera are obligate sexual outbreeders

(Hemleben et al. 1989), and the absence of evidence for

hybridization in these SSU rDNA genotypes implies

reproductive isolation, that is, biological species (e.g. de

Vargas et al. 2004; Aurahs et al. 2009a). This indicates

that the species richness and biological diversity within

the group is much higher than previously thought. Fur-

ther, these cryptic species often show different habitat

requirements and biogeography (e.g. Aurahs et al.

2009a; Morard et al. 2009), indicating that the cosmopol-

itan distribution observed for a morphospecies may be

a combination of several more complex distribution pat-

terns at the level of cryptic species.

Explanations for the emergence of this high number

of genotypes so far mainly focused on horizontal distri-

bution patterns (e.g. de Vargas et al. 2001; Darling et al.

2006). A horizontal separation between closely related

genotypes was found for example in the morphospecies

Globigerinoides ruber (Kuroyanagi et al. 2008; Aurahs

et al. 2009a). The most closely related genotypes seemed

to avoid each other, which resulted in strict habitat seg-

regation in the Mediterranean Sea (Aurahs et al. 2009a).

In contrast to the habitat separation found in the Medi-

terranean G. ruber, extensive gene flow was observed in

genotypes of the bipolar foraminifera species Globigerina

bulloides, Turborotalita quinqueloba and Neogloboquadrina

incompta (Darling et al. 2000; Stewart et al. 2001). Geno-

types with identical SSU rDNA sequences were found

in Arctic and Antarctic subpolar provinces, suggesting

recent trans-tropical genetic exchange (Darling et al.

2000). The same pattern has been observed for a num-

ber of genotypes within tropical and subtropical spe-

cies, which yield identical DNA sequences in the

Atlantic and Pacific oceans (e.g. Darling & Wade 2008).

Thus, the biogeography of the genetic types in plank-

tonic foraminifera does not provide strong evidence for

the prevalence of allopatric speciation in the pelagic

realm.

Considering the high potential for gene flow in the

marine habitat and the cosmopolitan occurrence of

many planktonic foraminiferal species, the question

rises on how the observed genetic diversity could have

evolved. In foraminifera as well as in other planktonic

organisms, alternative mechanisms for the origin of

reproductive isolation have been suggested (e.g. Briggs

1999; Norris 2000). Specifically, authors have often

referred to the possibility of speciation by depth parap-

atry (Lazarus 1983; Norris 2000). This model assumes

that planktonic organisms are able to maintain a pre-

ferred vertical position in the water column. As separa-

tion takes place in the vertical direction, parapatric

populations appear to occur sympatrically in the hori-

zontal direction. Many groups of heterotrophic micro-

plankton occur across a wide depth range, but their

species are typically limited to a much narrower vertical

interval (e.g. Ishitani & Takahashi 2007). Most morpho-

species of planktonic foraminifera also occupy a

restricted habitat in the water column, defined by their

temperature tolerance or the possession of symbionts,

limiting them to the mixed layer above the thermocline

(e.g. Hemleben et al. 1989). In planktonic foraminifera,

it has been hypothesized that partitioning of niches in

the vertical dimension could explain changes in mor-

phological and size disparity in the group through time

(Schmidt et al. 2004) and in space (Al-Sabouni et al.

2007). The existence of a relationship between diversity

and disparity and the strength of the vertical water

structure is consistent with the model of depth-parapat-

ric speciation, which could be an important mechanism
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that generates diversity in response to past changes in

the water column structure.

Vertical depth segregation among sister species is

known from other groups of plankton, such as cope-

pods (Mackas et al. 1993; Fragopoulu et al. 2001) and

chaetognaths (Kehayias et al. 1994). Even though

researches have shown evidence for habitat heterogene-

ity within the foraminiferal morphospecies Globigerinella

siphonifera (Bijma et al. 1998), its correlation with genetic

divergence has not been established (Huber et al. 1997).

So far, there has been no evidence for vertical habitat

separation among sibling genetic types in planktonic

foraminifera. This reflects the fact that almost all studies

of the distribution of these genetic types in planktonic

foraminifera have been based on depth-integrated sam-

pling (e.g. Darling et al. 2000; de Vargas et al. 2001,

2002).

Here we present the results of a global survey based

on depth-stratified sampling of genetic diversity within

the eurybathyal planktonic foraminifer morphospecies

Hastigerina pelagica (d’Orbigny 1839). This species occurs

in temperate to tropical waters throughout the global

oceans (e.g. Parker 1960; Tolderlund & Bé 1971; Lonca-

ric et al. 2005). Its vertical habitat ranges from subther-

mocline depths (Tolderlund & Bé 1971; Schiebel &

Hemleben 2005) to the ocean surface (e.g. Hemleben

et al. 1989). The Hastigerinidae are characterized by a

number of unique morphological features. Their mono-

lamellar wall ultrastructure, triradiate spines with lat-

eral hooks, cytoplasmic bubble capsule (Alldredge &

Jones 1973; Hemleben et al. 1989; Hull et al. 2011) and

maximum shell size in excess of 1 mm separate H. pel-

agica and its sister species Hastigerinella digitata from all

other living planktonic foraminifera. Both species lack

symbionts (Hemleben et al. 1989). They are exclusively

carnivorous and found to feed predominately on cope-

pods (Anderson & Bé 1976; Hull et al. 2011).

Despite their conspicuous appearance and abundance

in the plankton, limited data exist so far on the genetic

variability and phylogeography of the cosmopolitan and

broadly vertically occurring H. pelagica. Existing SSU

rDNA sequences from this species form three distinct

clusters (Fig. 1), with two more closely related to each

other (Göker et al. 2010). To characterize the degree of
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Globigerinoides sacculifer
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Hastigerina pelagica Type I
Hastigerina pelagica Type IIa

Globorotalia menardii

Globorotalia truncatulinoides

Globorotalia hirsuta

Undetermined globorotaliid

Neogloboquadrina incompta

Pulleniatina obliquiloculata

Neogloboquadrina dutertrei

Globorotalia inflata

Neogloboquadrina pachyderma

Globigerinita uvula

Globigerinita glutinata

0.2 substitutions/site

Globigerinoides elongatus

70/10/30/72/82/54

92/44/100/100/77/37

51/5/64/51/24/20

100/99/99/97/59/82

5/0/16/52/0/8

92/44/100/100/77/37

Hastigerina pelagica Type IIb

Microperforate non-spinose

Macroperforate non-spinose

Macroperforate spinose

Hastigerinidae

Fig. 1 Phylogenetic relationships of the four major groups of planktonic foraminifera based on a maximum likelihood reconstruction

of the 3¢ fragment of the SSU rDNA, modified after Aurahs et al. (2009b). Node supports show bootstrap values (bs) from clu-

stalw ⁄ kalign ⁄mafft ⁄ nralign ⁄poa ⁄poaglo-automated alignments (Aurahs et al. 2009b). Only bs values for the basal nodes of the

groups of the macroperforate spinose (orange), the macroperforate nonspinose (blue) and microperforate nonspinose (purple) are

shown. Sequence diversity within morphospecies has been collapsed. All node supports for the analysed Hastigerina sequences are

shown; black circle indicates bs values of 100 for all automated alignments. As discussed in Aurahs et al. (2009b), the use of an auto-

mated alignment with multiple approaches allows a large coverage of the alignment space whilst avoiding the ambiguity of a man-

ual approach. Light microscopic images of H. pelagica taken on board the research vessel before DNA extraction are shown to

illustrate the gross morphology. Pictures show (top down) individuals of Type I, Type IIa and Type IIb. All individuals are �0.5 mm

across.
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genetic and vertical differentiation within these genetic

types of H. pelagica, we sampled this species in four oce-

anic regions throughout the top 700 m of the water col-

umn. Our survey reveals a vertical structuring in the

occurrence and abundance of three globally distributed

genotypes within H. pelagica, providing support for

theories of depth-parapatric speciation in planktonic

organisms.

Materials and methods

Sampling

Planktonic foraminifera were collected in the Mediterra-

nean Sea and the north-eastern Atlantic Ocean during

RV Poseidon cruises P321, P334, P349, P411 and P413

and during RV Meteor cruises M69 ⁄ 1, M71 ⁄ 2 and M71 ⁄ 3
(Table S1, Supporting information). These cruises took

place throughout the years 2005–2011 and covered all

seasons. Samples from the Caribbean Sea were taken

onboard the RV Meteor (M78 ⁄ 1, Table S1, Supporting

information). A multiclosing net with a mesh size of

100 lm was used for stratified sampling of the water col-

umn. Depth intervals of sampling were mainly 700–

500 m, 500–300 m, 300–200 m, 200–100 m and 100–0 m.

Short intervals in the upper 100 m were 100–80 m, 80–

60 m, 60–40 m, 40–20 m and 20–0 m. The western Pacific

was sampled during cruises MR10-06 and KT07-14

(Table S1, Supporting information) using NORPAC

closing net (100 lm mesh size) with intervals of 0–25 m,

25–50 m, 50–100 m and 100–200 m and IONESS (330 lm
mesh size) with intervals of 0–50 m, 50–100 m, 100–

150 m, 150–200 m and 200–300 m. Planktonic foramini-

fera were isolated and taxonomically identified on board

using a stereomicroscope. Live individuals containing

cytoplasm were carefully cleaned with a brush, digitally

photographed and transferred into 1.5 ml tubes for DNA

isolation. Samples collected during P411 and P413, as

well as during MR10-06 and KT07-14 were cleaned, then

air-dried at room temperature in cardboard slides and

stored at )20 �C and )80 �C until further processing.

For the biogeographic analysis, we also used data on

10 genotyped individuals of Hastigerina pelagica that

have been previously published in Aurahs et al.

(2009b). The specimens comprised one individual of

Type I, six of Type IIa and three of Type IIb (Table S1,

Supporting information). In addition to these data,

sequences of only five more individuals of Type I are

available in GenBank (de Vargas et al. 1997; Ujiie &

Lipps 2009). These Type I sequences have been used in

the phylogenetic analyses by Aurahs et al. (2009b) as

shown in Fig. 1, but are not included in this study in

Fig. 2, because the data on their collection depth are

not available.

DNA extraction, amplification and sequencing

DNA extraction from the Atlantic specimens followed

the DOC protocol of Holzmann & Pawlowski (1996).

For the samples from the Pacific, the guanidine method

for DNA extraction was applied (e.g. Morard et al.

2009). For the differentiation of genotypes of H. pelagica

a �450 bp large fragment of the 3¢ end of the small sub-

unit ribosomal RNA (SSU rRNA) gene was amplified

by polymerase chain reaction (PCR) using the proof-

reading Vent� polymerase (New England Biolabs) and

Ex Taq polymerase (TaKaRa Bio, Inc.). The new primers

pelv3F (5¢ GTGCATGGCCGTTCTTAGTTCGTG 3¢) and

pelv3R (5¢ TATTGCCGCATCCTTCCTCTGGTT 3¢) were

used for amplification. PCR products were purified

using the QIAquick gel extraction kit (Qiagen) and

afterwards sequenced directly by an external service

provider (Agowa, Berlin). The PCR products from the

Pacific were purified using the Monofas DNA Purifica-

tion Kit (GL Science) and directly sequenced using the

Big Dye V3.1 Terminator Cycle Sequencing Kit and an

ABI 3130xl Genetic Analyzer (Applied Biosystems, Inc.).

Sequence chromatograms were manually scanned for

ambiguous reads and corrected where possible.

Sequences were then aligned manually for the recogni-

tion of the genotypes in H. pelagica. Sequences of 93

individuals were submitted to NCBI GenBank (http://

www.ncbi.nlm.nih.gov/; accession nos JQ624776–

JQ624868). Four sequences of low quality and three

sequences shorter 200 bp allowed assignment to one of

the H. pelagica genotypes but were not thought suitable

for publication in GenBank. All Type II sequences used

in this study are made available as supplement.

Phylogenetic reconstruction

The phylogenetic reconstruction of H. pelagica Types IIa

and IIb is based on a manual alignment of 114

sequences. The alignment contains all already published

sequences (direct sequences and clones) for these two

genotypes (http://www.ncbi.nlm.nih.gov/) and the

new sequences from this study. Based on results from

Aurahs et al. (2009b) and Göker et al. (2010), all

sequences were cut to the same length of 316 bp,

aligned manually and then further analysed in a maxi-

mum likelihood reconstruction, using the web-based

RAxML version (Stamatakis et al. 2008) (http://phylo

bench.vital-it.ch/raxml-bb/index.php) with gamma

model of rate heterogeneity and maximum likelihood

search. In accordance with the results from Aurahs et al.

(2009b), we used the alignment untruncated, that is, did

not check for position homology. Phylograms were con-

structed using the ML best tree with bootstrap values in

Dendroscope 2.7.4 (Huson et al. 2007). In-group Kim-

4 A. WEINER ET AL.

� 2012 Blackwell Publishing Ltd



ura-2 distances and nucleotide differences were calcu-

lated using the genetic distance calculation models

implemented in MEGA5 (Tamura et al. 2011) under

default setting.

Results

Sequences of a �450 bp fragment of the 3¢ end of the

SSU rRNA gene were obtained from a total of 100 spec-

imens, morphologically identified as Hastigerina pelagica,

from 43 stations in the Caribbean Sea, eastern Atlantic

Ocean, Mediterranean Sea and western Pacific Ocean.

All sequences could be assigned to one of the three

published genetic motives of H. pelagica (Aurahs et al.

2009b). Individuals of Type I were found at one location

in the western Pacific (n = 2) and at one location in the

eastern Mediterranean (n = 10; Fig. 2). The large num-

ber of specimens belonging to Type II allowed us to

confirm the validity of two closely related subtypes

within Type II, here named Type IIa and IIb (Fig. 3).

The divergence between these two subtypes is the dom-

inant and most strongly supported (100%) pattern in a

phylogenetic analysis of all Type II sequences (Fig. 3).

The two subtypes differ by a distinct nucleotide substi-

tution pattern and short insertions ⁄deletions in two of

the variable regions of the sequenced SSU rDNA frag-

ment. One part of the distinctive pattern is located in

the middle of the expansion segment 41 ⁄ e1, the other in

the variable region V7 (e.g. Grimm et al. 2007). Individ-

uals carrying Type IIa and IIb were found in all regions

sampled in this survey, 46 individuals carried the Type

IIa and 42 individuals carried the Type IIb. Types IIa

and IIb co-occurred at almost all stations. In contrast to

the global distribution of the genotypes, our stratified

sampling revealed a remarkably consistent pattern of

vertical separation of the habitat of these genetic types.

For further biogeographical analyses, we supplemented

our data with 10 sequences of H. pelagica genotypes

from GenBank, where information about sampling

depth was available (see Materials and Methods). An

analysis of this extended data set reveals that all 13

individuals of Type I were found in the top 100 m

(Fig. 2), the majority of individuals of Type IIa (65%)

occurred below 200 m water depth, and no specimen

was found in samples above 100 m (Fig. 2). The highest

abundance of Type IIa specimens was found between
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Fig. 2 Geographic and vertical distribution of the three genetic types found in Hastigerina pelagica in the global ocean. Colours indi-

cate the annual mean sea surface temperature (data from the world ocean atlas, http://odv.awi.de/en/data/ocean/world_ocean_a-

tlas_2009/), plotted using Ocean Data View 4.3.2. Symbols in the map indicate sampling locations, numbers indicate very closely

located stations. The bottom panel shows the vertical distribution of individual H. pelagica genotypes at the respective regions along

an idealized west–east transect. Bars represent depth intervals in which the respective genetic type was found. Type IIa (green bars)

is only found below 100 m water depth, Type IIb (red bars) almost exclusively above 200 m. This is also the case for the few individ-

uals of Type I (blue bars) found in our sampling. Right panel shows the number of sequenced individuals within standardized depth

intervals of 20 m above and of 100 m below 100 m water depth.
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300 and 400 m water depth (Fig. 2; 1.2 individu-

als ⁄ interval ⁄ station; significantly (P < 0.05) higher than

in the shallower depth intervals where the type was

found). The majority of Type IIb individuals (76%)

were found in the upper 100 m of the water column

and only in the eastern Mediterranean Sea few Type IIb

specimens (11%) occurred down to 700 m water depth

(Fig. 2). Individuals of Type IIb were most abundant

between 40 and 80 m (Fig. 2; 1.2 individuals ⁄ inter-
val ⁄ station, significantly (P < 0.05) higher than in inter-

vals shallower than 40 m and deeper than 100 m). Such

vertical segregation of the habitats of Types IIa and IIb

was consistently found in all the regions we have sam-

pled (Fig. 2). Following a formula used in Aurahs et al.

(2009a), with 95% level of confidence, the average

abundance of Type IIa would have to have been below

0.13% in the top 100 m of the water column at all the

stations sampled by us, to have remained undetected.

As our sampling took place during eleven different

cruises during different years, seasons and different

times of the day, we were able to discard all explana-

tions for this pattern other than representing a genuine

habitat signal. We were unable to detect any lunar peri-

odicity-related signal (Bijma et al. 1990), neither in the

vertical distribution of the genotypes nor in the overall

abundance of H. pelagica (Fig. S1, Supporting informa-

tion), suggesting that the observed vertical separation

could not reflect a temporal offset in the reproductive

cycle between the two types. Similarly, we did not find

any difference in abundance or distribution among the

types between seasons or daytime (Fig. S1, Supporting

information), indicating that the vertical separation sig-

nal reflects neither diurnal migration nor seasonal suc-

cession. The pattern was found in samples spanning

almost a decade (Fig. S1, Supporting information), sug-

gesting that it does not represent an anomalous signal

for one unusual year.

Most sequences of genotype IIb are globally identical

with only a very few individuals showing nucleotide

substitutions. One of the previously published

sequences (GenBank accession no. FJ643397) shows two

substitutions in the variable region 41 ⁄ e1, which very

likely represent sequencing errors. In addition, two

clones from a single individual (FJ643357 and FJ643355)

show a single-site mutation in the variable region V7.

The only substantial and replicable deviation from the

dominant global Type IIb motive can be found in three

individuals from the Caribbean Sea (JQ624829–31).

These sequences show four nucleotide substitutions at

the beginning of variable region 41 ⁄ e1 and also three

substitutions and one deletion in the variable region V7.

One more individual from the Caribbean Sea
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(JQ624832) has two substitutions in common with these

‘Caribbean sequences’, but does not carry the complete

pattern and could therefore indicate a hybrid sequence

between the global and the Caribbean signal. The

genetic variability among individual sequences of Type

IIa is larger than among individual sequences of Type

IIb. First, we observe a large number of seemingly ran-

dom substitutions, which we interpret as intraindividu-

al variability. This is supported by the observed level of

variability among GenBank sequences that were

reported to have been cloned from the same individual.

These substitutions are mainly located in the variable

regions 41 ⁄ e1 and V7 and mostly occur in form of two

basepair insertions or deletions. In addition, there are

sequences that show one of two different substitution

patterns that deviate significantly from the ‘global’ Type

IIa signal and that are geographically constrained. The

first variation exists in 16 individuals from multiple sta-

tions in the Atlantic as well as from the Mediterranean

and Caribbean Sea (FJ643367–9, FJ643402, FJ643403,

FJ643406, FJ643411–3, JQ624815, JQ624817 and

JQ624819–23). This ‘Atlantic’ substitution pattern is

characterized by a four basepair insertion and six sub-

stitutions in the variable region V7. The other substitu-

tion pattern is even more geographically restricted and

was found only in five individuals (JQ624824–8) from

the Caribbean Sea. These sequences show nucleotide

substitutions at 20 positions and seven base insertions

in the variable regions 41 ⁄ e1 and V7. Among these five

individuals, there is some degree of variation that is

most likely an indication for intraindividual variability.

The manual alignment of all Type II sequences is avail-

able as supplement (Data S1, Supporting information).

Discussion

Vertical segregation of cryptic sibling species

The consistent segregation of the vertical habitat of the

genotypes IIa and IIb of Hastigerina pelagica is in con-

trast to their cosmopolitan geographical distribution

(Fig. 2). As the vertical segregation is maintained

throughout the sampled regions, irrespective of time

(Fig. S1, Supporting information), it must reflect a gen-

uine affinity of specimens of each type to a habitat in a

different part of the water column. The complete

absence of Type IIa in the surface waters is most

remarkable; the chances of this pattern being due to an

extremely low abundance of this genetic type in the

surface waters are negligible. The occurrence of speci-

mens of Type IIb in the eastern Mediterranean below

its dominant habitat in the top 200 m of the water col-

umn is difficult to interpret. It is impossible to tell

whether these specimens represent a genuine expansion

of the habitat or whether they reflect natural mortality,

passively falling through the water column whilst still

carrying out nondegraded DNA. As the vertical separa-

tion is found among the two most closely related

genetic types in H. pelagica, it is reminiscent of niche

partitioning (e.g. Aurahs et al. 2009a), which is typically

explained as the result of competition (Leibold 2008).

On the other hand, the habitats in the photic zone and

below the thermocline are fundamentally different for

planktonic foraminifera and suggest that the two types

may possess different adaptations (Coxall et al. 2007).

The exact mechanism for buoyancy control in plank-

tonic foraminifera is not known; typical explanations

involve regulations via metabolites with positive buoy-

ancy (Hemleben et al. 1989). Whilst this mechanism

provides a reasonable explanation for the ability to

change their buoyancy, it still remains to be investi-

gated, how (if at all) the foraminifera can detect their

position in the water column and use this information

to regulate the buoyancy. Despite the uncertainty in the

exact mechanism, it is beyond question that species of

planktonic foraminifera can be found in specific vertical

intervals in the water column (Fairbanks et al. 1980).

Interestingly, the best example for a restricted vertical

position in these protists comes from the sister species

of H. pelagica. Hastigerinella digitata is a rare deep-dwell-

ing form with conspicuous digitate chambers. In situ

video surveys in the Monterrey Canyon over 12 years

revealed that the species occupies a narrow depth hori-

zon of <100 m around a median depth of 300 m, imme-

diately above the core of the regional oxygen minimum

zone (Hull et al. 2011). Considering the morphological

differentiation of its deep-dwelling sister species, it is

conceivable that the observed depth segregation

between the two genetic types of H. pelagica II will also

result in morphological distinction. It is in fact possible

that such morphological differentiation has already

taken place but the traits are too recondite to have been

identified by taxonomers. Notwithstanding the degree

of morphological separation, it would appear interest-

ing to now search for physiological or behavioural traits

that are associated with the adaptation to a vertically

limited habitat in this species.

The discovery of two genetic types with distinct verti-

cal habitats has significant consequences for the inter-

pretation of population dynamics and ecology of

H. pelagica. The shell flux of this species is dominated

by a synodic moon cycle (Spindler et al. 1979; Loncaric

et al. 2005), which is thought to reflect the reproductive

cycle of the species. Laboratory and in situ observations

suggest a strongly synchronized reproduction peaking

within a few days after full moon (Spindler et al. 1979).

As lunar periodicity of reproduction also continued in

the laboratory without the influence of the moonlight it
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appears to indicate an endogenous mechanism (Bijma

et al. 1990). Our observations did not reveal any time

lag between the occurrence of mature (collected in the

nets) individuals of either type (Fig. S1, Supporting

information). Thus, it is likely that all three genetic

types of this species follow the same endogenous

‘clock’. This explanation would be consistent with the

strong lunar cycle of H. pelagica flux observed in Atlan-

tic sediment traps from a region (Loncaric et al. 2005),

where all three types are expected to co-occur (Fig. 2).

Next, our discovery of distinct habitats associated

with the genetic types provides an explanation for the

contradictory reports on the habitat of H. pelagica.

Whereas some authors consider the species a surface-

dweller (Bé & Tolderlund 1971; Hemleben et al. 1989),

other studies indicate its habitat as sub-thermocline

(Schiebel & Hemleben 2005). Hull et al. (2011) reported

the occurrence of Hastigerina sp. in the Monterrey can-

yon at mesopelagic depths, which seemed at odds with

the lack of H. pelagica in plankton samples from the

surface waters in the region. The observation from the

Monterrey Canyon could be explained by the presence

of exclusively H. pelagica Type IIa in that region.

Parapatric speciation in marine plankton

The genetic Types IIa and IIb of H. pelagica are geneti-

cally as close as many other genetic sibling types within

morphospecies of planktonic foraminifera (Göker et al.

2010), suggesting that their divergence may represent

the lowest level of relatedness associated with repro-

ductive isolation in these pelagic protists. Therefore, it

is tempting to interpret their pattern of depth segrega-

tion as a ‘ghost of speciation past’ (Kocher 2005). If this

interpretation is correct, our observations would repre-

sent the first evidence for speciation by depth parapatry

among modern planktonic foraminifera. In this model,

a deep-dwelling form would have evolved from an

ancestrally surface-dwelling population in H. pelagica,

considering that the closely related relative, Type I, is

also a surface-dweller (Fig. 2). Initially, in the same

geographical region, one part of the surface-dwelling

ancestral population would have become better adapted

to greater depth. Reduced gene flow along the thus

developed gradient within the population would have

resulted in the emergence of two species with a depth-

parapatric distribution.

Alternatively, speciation could have proceeded in

allopatry and the depth-parapatric pattern would have

developed upon secondary contact. Although plausible,

we consider this explanation less likely, because it

requires the evolution of adaptation to a deep-dwelling

habitat in response to competition between two allopat-

ric siblings, ancestrally inhabiting the same surface-

ocean habitat. On the other hand, a ‘retreat’ from the

surface habitat could have occurred in response to the

tracking of a particular food resource or oceanic regime

in high latitudes, which are manifested at greater

depths in the lower latitudes. Such pattern of tropical

submergence is known from assemblages of pelagic ra-

diolaria, where surface-dwelling subpolar species occur

at mesopelagic depth in the tropics (Ishitani & Takah-

ashi 2007). However, we find no trace of such hypothet-

ical high-latitude surface-dwelling ancestor of the deep-

dwelling type, which would consequently have to

become extinct or replaced in its habitat by the surface-

dwelling type after their divergence. Similarly, there is

no evidence for a residual geographic structure in the

genetic diversity of the deep-dwelling type indicative

for spreading away from a centre of origin.

The cosmopolitan distribution of the three genetic

types has to be seen in the context of the genetic vari-

ability within each type. Indeed, sequences within each

of the three genetic types show differences, which are

unlikely to represent random sequencing errors. The

genetic variability within the genotypes has a rudimen-

tary geographical structure and most likely represents a

population-level variability. However, unlike the segre-

gation of Types IIa and IIb, on this level no vertical

structuring in the water column could be detected

within those genetic types. The sample size for Type I

is arguably small, but it does not reveal a geographic

signal—sequences from the eastern Mediterranean and

western Pacific are all virtually identical. In fact, identi-

cal or virtually identical sequence motives have been

found in the most distant sampled regions (eastern

Mediterranean and western Pacific) in all three types of

H. pelagica, suggesting the possibility of a recent or

ongoing global gene flow within each type.

For the surface-dwelling Types I and IIb, this pattern

is consistent with the observation of global distribution

of identical SSU rDNA sequences in a large number of

planktonic foraminifera (Darling & Wade 2008). H. pe-

lagica has been reported from the surface waters with

temperatures above 9 �C (Parker 1960), which does not

exclude the possibility of passive transport between the

Indian Ocean and South Atlantic via the Agulhas cur-

rent. Indeed, plankton tow data from Agulhas Rings in

the region SW of the Cape show that such rings carry a

significant population of this species (Peeters et al.

2004). The presence of a weak geographical signal in

Type IIb may indicate episodic isolation during Quater-

nary climatic cycles, although we note that the age of

the signal cannot be determined owing to extreme sub-

stitution rate heterogeneity within the planktonic fora-

minifera (de Vargas et al. 1997) and the lack of a

reliable fossil record of the genus. Nevertheless, the

geographical structure indicates that the overall genetic
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homogeneity in both types is a primary signal, not an

artefact of recent anthropogenic dispersal. The existence

of a global gene flow in the deep-dwelling Type IIa is

more difficult to explain. At depth below 100 m, passive

dispersal by currents is likely to be slower and less

effective between semi-isolated basins, such as the Med-

iterranean and the Atlantic. On the other hand, the dee-

per-water habitat is more homogenous worldwide.

Although Type IIa does show the highest genetic vari-

ability, suggesting the largest potential for isolation, the

global distribution of sequence motives indicates that

global gene flow can occur even at subthermocline

depths.

The genetic variation found within the two depth-seg-

regated genetic types allows us to address hypotheses

explaining the origin of the segregation pattern. First,

we note that genetic diversity is significantly higher

among populations of the deep-dwelling Type IIa

(Fig. 4). We attribute this observation to the fact that

Type IIa inhabits a globally less connected habitat

below the mixed layer. This habitat is more voluminous

and more structured than the mixed-layer habitat, pro-

viding more opportunities for adaptation and isolation.

The observed apparent increase in genetic diversity

with depth (Fig. 4) indicates that when population

range deepens, there is more potential for the evolution

and maintenance of genetic structure within the species.

In other words, as soon as the habitat of a species is

expanded below the mixed zone and the home range

remains smaller than the total habitat, vertical structur-

ing follows with gene flow being progressively reduced

vertically and horizontally with depth (Fig. 4). Our data

indicate that this model applies to nonmotile micro-

plankton, suggesting that speciation by depth parapatry

does not require active means of propulsion or sensory

control and could be a universal process generating

diversity in the microbial plankton.
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Anderson OR, Bé AWH (1976) A cytochemical fine structure

study of phagotrophy in a planktonic foraminifer, Hastigerina

pelagica (d’Orbigny). The Biological Bulletin, 151, 437–449.

Aurahs R, Grimm GW, Hemleben V, Hemleben C, Kucera M

(2009a) Geographical distribution of cryptic genetic types in

the planktonic foraminifer Globigerinoides ruber. Molecular

Ecology, 18, 1692–1706.
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The cryptic and the apparent reversed: lack of genetic differentiation within
the morphologically diverse plexus of the planktonic foraminifer
Globigerinoides sacculifer
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Thibault de Garidel-Thoron, Gilles Escarguel, Colomban de Vargas, and Michal Kucera

Abstract.—Previous genetic studies of extant planktonic foraminifera have provided evidence that the
traditional, strictly morphological definition of species in these organisms underestimates their
biodiversity. Here, we report the first case where this pattern is reversed. The modern (sub)tropical
species plexus Globigerinoides sacculifer is characterized by large morphological variability, which has
led to the proliferation of taxonomic names attributed to morphological end-members within the
plexus. In order to clarify the taxonomic status of its morphotypes and to investigate the genetic
connectivity among its currently partly disjunct (sub)tropical populations, we carried out a global
survey of two ribosomal RNA regions (SSU and ITS-1) in all recent morphotypes of the plexus collected
throughout (sub)tropical surface waters of the global ocean. Unexpectedly, we find an extremely
reduced genetic variation within the plexus and no correlation between genetic and morphological
divergence, suggesting taxonomical overinterpretation. The genetic homogeneity within the
morphospecies is unexpected, considering its partly disjunct range in the (sub)tropical Atlantic and
Indo-Pacific and its old age (early Miocene). A sequence variant in the rapidly evolving ITS-1 region
indicates the existence of an exclusively Atlantic haplotype, which suggests an episode of relatively
recent (last glacial) isolation, followed by subsequent resumption of unidirectional gene flow from the
Indo-Pacific into the Atlantic. This is the first example in planktonic foraminifera where the
morphological variability in a morphospecies exceeds its rDNA genetic variability. Such evidence for
inconsistent scaling of morphological and genetic diversity in planktonic foraminifera could complicate
the interpretation of evolutionary patterns in their fossil record.
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Introduction

The interpretation of biogeographical and

evolutionary patterns of morphologically de-

fined species in the plankton has been chal-

lenged by the discovery of cryptic genetic

diversity often linked with distinct biogeogra-

phy and ecological adaptation (e.g., Saez et al.

2003; Logares et al. 2007; Kooistra et al. 2008).

The interpretation of modern and fossil species

distribution patterns in these groups thus

hinges on the degree of congruence between

theirmorphological and genetic divergence. As

long as the morphological taxonomy consis-
tently underestimates biodiversity, analysis of
the fossil record and modern assemblages may
be expected to reflect processes scaled with
those at the level of biological species. This
issue is particularly important for the interpre-
tation of diversity patterns in the fossil record,
because the species concept in palaeontology
(and in many cases in biology as well) is based
solely on phenotypic traits manifested in the
shape of the classified organisms.

Planktonic foraminifera provide an excellent
opportunity to test the explanatory power of
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biogeographical and evolutionary patterns
derived from morphologically defined species
and to assess the degree of congruence
betweenmorphological distinction and genetic
divergence. Their character-rich calcite shells
are abundantly preserved in marine sediments
and allow direct tracking of morphospecies
occurrences in time and space (e.g., Aze et al.
2011). From these occurrences, paleoceanogra-
phers derive reconstructions that are of im-
mense importance to our understanding of
past climate changes. In recent years, molecu-
lar analyses have revealed that the classical,
morphological definition of species in plank-
tonic foraminifera hides cryptic genetic and
ecological differentiation (for a review, see
Darling and Wade 2008). Global surveys of
the Small Subunit (SSU) or Internal Tran-
scribed Spacers (ITS) regions of ribosomal
DNA (rDNA) in extant species allowed the
recognition of distinct genotypes (e.g., de
Vargas et al. 1999, 2001; Darling et al. 1999,
2006; Morard et al. 2009, 2011; Ujiié et al. 2010;
Aurahs et al. 2011; Quillévéré et al. 2013).
Considering the lack of evidence for introgres-
sion and the obligate sexual outbreeding
reproductive modus in planktonic foraminif-
era, these genetic types have to be considered
reproductively isolated and thus correspond-
ing at least to the level of biological species.
Many of these genetic types show more
restricted biogeographical ranges than the
morphospecies to which they have been
assigned, implying that the distribution of
these morphospecies does not reflect the true
potential for dispersal of these organisms.
Nonetheless, some of these genetic types occur
throughout the range of their respective
morphospecies, suggesting ongoing global
gene flow. At present, the degree to which
morphological divergence reflects genetic dis-
tinction in planktonic foraminifera (and poten-
tially other plankton) remains unclear,
complicating the interpretation of biogeo-
graphical and evolutionary patterns in the
fossil record of this group.

Here we report on a global survey of two of
the ribosomal rDNA regions (SSU and ITS-1)
in the abundant and paleoceanographically
important (sub)tropical species Globigerinoides
sacculifer (Brady 1877). The survey was carried

out with the aim to determine the degree of
congruence between morphology and genetic
divergence within this morphologically di-
verse species plexus, and to investigate the
genetic connectivity among its partly disjunct
(sub)tropical populations. Globigerinoides sac-
culifer is one of the most commonly encoun-
tered planktonic foraminifera in the
(sub)tropical waters of the world oceans
(e.g., Tolderlund and Bé 1971). This cosmo-
politan spinose species is limited by its
photosymbiotic ecology to the euphotic zone
of the oceans, where it reproduces on a
synodic lunar cycle (Bijma et al. 1990).

The morphology associated with the species
concept of Globigerinoides sacculifer initially
occurred during the early Miocene ~20 Myr
ago, having diverged from the morphospecies
Globigerinoides trilobus (e.g., Kennett and Sri-
nivasan 1983; Berggren et al. 1995). The exact
dating of this divergence is potentially com-
plicated by usage of the species names G.
sacculifer and G. trilobus in a way not
consistent with their original species descrip-
tion. Similarly, the taxonomic status of G.
sacculifer in the modern ocean is ambiguous,
because of a high morphological variability
among specimens of this plexus. Globigeri-
noides sacculifer sensu stricto has been taxo-
nomical ly dis t inguished from other
Globigerinoides morphospecies with a honey-
comb shell wall texture (Kennett and Sriniva-
san 1983) by the presence of a sac-like final
chamber (Brady 1877). Whereas the other
taxonomic concepts in the plexus (Fig. 1),
Globigerinoides quadrilobatus (d’Orbigny 1846),
G. trilobus (Reuss 1850) and Globigerinoides
immaturus Leroy (1939), are based on fossil
material, G. sacculifer was originally described
from subfossil sediments and the original
species description clearly refers to the occur-
rence and habitat of this species in the
plankton (Brady 1877; see also Williams et al.
2006). Numerous studies have noticed that the
shells of G. trilobus, G. quadrilobatus, and G.
immaturus are virtually identical to those of G.
sacculifer except for the lack of the final sac-like
chamber (Hofker 1959; Banner and Blow 1960;
Hecht 1974; Saito et al. 1981). As a conse-
quence, these taxa were often considered
phenotypic variants of the morphospecies G.
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sacculifer s.l. Culture experiments have pro-
vided support for this broader taxonomic
concept, suggesting that the sac-like chamber
is probably a terminal event of shell growth,
manifested in some but not all of the cultured
specimens (Bé 1980; Bé et al. 1983; Hemleben
et al. 1987; Bijma et al. 1992). Despite these
culturing experiments, specimens with and
without the sac-like last chamber have been
continually recorded as separate taxa for
paleoecological studies and transfer functions.

Today, the most extensively used species
names for members of the plexus are G.
trilobus and G. sacculifer, but G. quadrilobatus
and G. immaturus are still commonly reported,
even in late Quaternary sediments (e.g.,
Spooner et al. 2005; Lim et al. 2006; Budillon
et al. 2009; Siani et al. 2010; Wilson 2012).

Until now, only 16 SSU sequences of the
Globigerinoides sacculifer plexus have been
published, 11 originating from a single loca-
tion in the NW Pacific and the five remaining

FIGURE 1. Taxonomy of the Globigerinoides sacculifer plexus. Row (a) shows reproductions of line drawings of (1) the
holotype of Globigerinoides trilobus (Reuss 1850), 603; (2), the holotype of Globigerinoides immaturus Leroy (1939), 603,
mirror image; (3) the lectotype selected by Banner and Blow (1960) for Globigerinoides quadrilobatus (d’Orbigny 1846),
1003; (4), the lectotype selected by Banner and Blow (1960) for Globigerinoides sacculifer (Brady 1877), 1003. Row (b)
shows light microscope images and row (c) SEM pictures of genetically analyzed specimens corresponding to the four
taxonomic concepts shown in (a). Globigerinoides sacculifer is distinguished from the other members of the plexus by its
elongate sac-like final chamber. Within the members of the plexus that lack the sac-like chamber, G. quadrilobatus differs
in having a high aperture and a tendency to possess four chambers in the last whorl, and G. immaturus and G. trilobus
both exhibit lower-arched primary and supplementary apertures, but, according to the original description, in G. trilobus
the final chamber is larger than all the earlier chambers combined. The SSU and ITS-1 sequences corresponding to the
specimens in the images are labeled in Supplementary Table 1. Scale bars in (b), 0.1 mm, and in (c), 0.05 mm.
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TABLE 1. Location of the sampling stations for Globigerinoides sacculifer with hydrographic data, collection and DNA
extraction methods, numbers of sequenced individuals and, in the case of stations with cloned specimens or replicates,
numbers of sequences (in italics). Data from the literature are also included. Numbers in brackets correspond to Orbulina
universa ITS-1 sequences.

Cruise Ocean Station Longitude Latitude Date

AMT-8 Atlantic 10 21 W 22.55 N June 1999
Atlantic 13 21.34 W 30.28 N June 1999

C-Marz Atlantic 1 69.2 W 33.33 N April 2006
Atlantic 3 60.3 W 24.5 N April 2007
Atlantic 4 54.3 W 19.5 N April 2008
Atlantic 5 54.7 W 14 N April 2009

Eilat Red Sea N/A 34.6 E 29.3 N May 1999
Gyrafor A Pacific B 162.5 E 23.02 S June 2008

Pacific E 162.6 E 14.83 S June 2008
Pacific G 162.51 E 9 S June 2008
Pacific H 162.5 E 6.04 S June 2008
Pacific K 162.5 E 0 June 2008
Pacific N 161.11 E 4.5 S June 2008
Pacific P 160.4 E 7.4 S June 2008
Pacific S 161.88 E 16.25 S June 2008
Pacific T 162.66 E 17.93 S June 2008

Gyrafor B Indian F 80.216 E 14.213 S June 2007
Indian I 73.16 E 15.57 S June 2007
Indian L 67.38 E 17.21 S June 2007

KT06 Pacific N/A N/A N/A May 2006
Melville Indian 1 23.7 E 35.1 S June 2003

Indian 2 24.5 E 35 S June 2003
Indian 10 52.6 E 31.8 S June 2003
Indian 11 59.8 E 29.8 S June 2003
Indian 12 59.8 E 29.8 S June 2003
Indian 16 78 E 19.7 S June 2003
Indian 17 78 E 19.7 S June 2003
Indian 18 83.7 E 17.2 S June 2003
Indian 20 89.9 E 14 S June 2003

OISO-4 Indian 2 53.3 E 30 S Febr 2000
Indian 4 53.23 E 40 S Febr 2000
Indian 17 66.24 E 29.59 S Febr 2000

Revelle Pacific 6 130.98 W 32.04 S Febr 2000
Meteor 69/1 Atlantic N/A 5.46 W 35.58 N August 2006

Atlantic 323 5.51 W 35.58 N August 2006
Atlantic 324 5.39 W 35.57 N August 2006
Atlantic 366 0.31 W 35.55 N August 2006
Atlantic N/A 2.45 E 39.6 N August 2006
Atlantic N/A 2.44 E 39.14 N August 2006
Atlantic 395 2.31 E 38.57 N August 2006
Atlantic N/A 2.43 E 39.16 N August 2006

Meteor74/1 Indian 955 67.6 E 19.6 N Sept 2007
Indian 957 64.4 E 20.33 N Sept 2007

Meteor78/1 Atlantic 164 83.38 W 18.30 N March 2009
Atlantic 222 64.28 W 12.1 N March 2009
Atlantic 238 60.14 W 10.56 N March 2009

Merian15/5 Atlantic N/A 4.13 E 37.11 N July 2010
Poseidon321 Atlantic 175 21.27 W 30.36 N May 2005

Atlantic 179 22.29 W 31.59 N May 2005
Atlantic 181 22 W 33 N May 2005
Atlantic 185 20.14 W 35.50 N May 2005

Poseidon334 Atlantic N/A 19.30 W 31.36 N March 2006
Atlantic 67 20 W 33 N March 2006
Atlantic N/A 20 W 34.20 N March 2006

Curacao Atlantic N/A 68.56 W 12.7 N 1996
Great Barrier Reef Pacific N/A N/A N/A 1996
Puerto Rico Atlantic N/A 67 W 17.49 N March 1995
Villefranche Atlantic N/A 7.18 E 43.42 N Dec 1995
KT02-15 Pacific Okinawa 145 E 39 N May 2002
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TABLE 1. Extended.

Gear Mesh size CTD DNA buffer
No. of

SSU sequences
No. of

ITS-1 sequences Published in

net 100 lm yes GUAN 3 0 this study
net 100 lm yes GUAN 1, 3 0 this study

MOC net 64 lm yes GITC* 1 2 (1) this study
ring net 64 lm yes GITC* 0 2 this study
ring net 64 lm yes GITC* 1 1 this study
MOC net 64 lm yes GITC* 2 3 this study

net 63-200 lm no GUAN 8 0 this study
multinet 100 lm yes GITC* 1 1 this study
multinet 100 lm yes GITC* 2 2 this study
multinet 100 lm yes GITC* 2, 8 1, 5 this study
multinet 100 lm yes GITC* 1 1, 5 this study
multinet 100 lm yes GITC* 2 2 this study
multinet 100 lm yes GITC* 1, 3 1 this study
multinet 100 lm yes GITC* 1 1 this study
multinet 100 lm yes GITC* 0 1 this study
multinet 100 lm yes GITC* 0 0 (1) this study
multinet 100 lm yes GITC* 3 4, 6 this study
multinet 100 lm yes GITC* 2 3 this study
multinet 100 lm yes GITC* 8, 14 10, 18 this study
ORI net 330 lm yes GITC* 2 4, 8 this study

plankton nets 65 - 200 lm yes GITC* 2 0 this study
plankton nets 65 - 200 lm yes GITC* 1 0 this study
plankton nets 65 - 200 lm yes GITC* 2 0 this study
plankton nets 65 - 200 lm yes GITC* 3 0 this study
plankton nets 65 - 200 lm yes GITC* 4 0 this study
plankton nets 65 - 200 lm yes GITC* 3 0 this study
plankton nets 65 - 200 lm yes GITC* 1 0 this study
plankton nets 65 - 200 lm yes GITC* 2 0 this study
plankton nets 65 - 200 lm yes GITC* 2 0 this study

net 100 lm yes magic GUAN 4 0 this study
net 100 lm yes magic GUAN 2 0 this study
net 100 lm yes magic GUAN 3 0 this study
net 100 lm yes GITC* 1, 3 1, 5 this study

surface pump 63 lm no DOC 2 1, 3 this study
multinet 100 lm no DOC 1 1, 5 this study
multinet 100 lm no DOC 1 0 this study
multinet 100 lm no DOC 1 1, 3 this study

surface pump 63 lm no DOC 1 1, 3 this study
surface pump 63 lm no DOC 2 2, 6 this study

multinet 100 lm no DOC 3 1, 2 this study
surface pump 63 lm no DOC 2 0 this study

multinet 100 lm no DOC 1 0 this study
multinet 100 lm no DOC 1 0 this study
multinet 100 lm no DOC 1 0 this study
multinet 100 lm no DOC 3 0 this study
multinet 100 lm no DOC 3 3, 5 this study
multinet 100 lm no DOC 4 5, 11 this study
multinet 100 lm no DOC 4 0 this study
multinet 100 lm no DOC 2 0 this study
multinet 100 lm no DOC 1 0 this study
multinet 100 lm no DOC 4 0 this study

surface pump 63 lm no DOC 3 0 this study
multinet 100 lm no DOC 8 0 this study

surface pump 63 lm no DOC 3 0 this study
net 63-200 lm no tris-EDTA 1 0 Darling et al. (1996)

scuba diver - no tris-EDTA 1 0 Darling et al. (1997)
net 64-500 lm no tris-EDTA 2 0 de Vargas et al. (1997)
net 64-500 lm no tris-EDTA 1 0 de Vargas et al. (1997)

NORPAC net 63 lm no GITC* 11 0 Ujiie and Lipps (2009)
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originating from the South Pacific (Coral Sea),
Atlantic (Caribbean Sea) and Mediterranean
(Wade et al. 1996; Darling et al. 1997; de
Vargas et al. 1997; Pawlowski et al. 1997; Ujiié
and Lipps 2009). All these sequences were
attributed to G. sacculifer. These sequences are
virtually identical, but the available data are
not sufficient to address the global diversifi-
cation or to resolve the correlation between
morphological and genetic divergence in the
plexus. Here, we assess the rDNA genetic
diversity of the SSU and ITS regions from the
G. sacculifer plexus throughout the world
oceans. Single-cell DNA analyses are per-
formed on 148 individuals representative of
all major morphotypes, i.e., Globigerinoides
trilobus, G. immaturus, G. quadrilobatus, and
G. sacculifer s.s. (Fig. 1). Such analyses allow us
to determine whether or not there is cryptic
diversity in G. sacculifer s.l. and to investigate
the congruence between genetic and morpho-
logical diversity within the plexus.

Material and Methods

Sampling.—Specimens of Globigerinoides sac-
culifer, G. immaturus, G. trilobus, and G.
quadrilobatus were collected from ring and
stratified plankton tows (64-lm to 200-lm
mesh sizes) and by pumping surface water
through a sieve with 64-lm mesh size (see
Table 1 for details). The sampling cruises took
place from 1995 to 2010 and covered almost

the entire geographic range reported for G.
sacculifer (Fig. 2). Right after sampling, live
specimens were taxonomically identified, in
most cases photographed and carefully picked
from the plankton, cleaned with a fine brush,
and transferred individually into a DNA
extraction buffer. Specimens were then stored
at �208C until further processing in the
laboratory. Hydrographic vertical profiles of
the water column were obtained at most
stations of collection by using temperature
and fluorescence sensors (Table 1).

DNA Extraction, Amplification, and Sequenc-
ing.—DNA extractions were performed using
DOC (Pawlowski 2000) and guanidinium
isothiocyanate (GITC*) DNA extraction buff-
ers (e.g., Morard et al. 2009). The GITC*
method kept the calcareous shell intact after
DNA extraction for further morpho-genetic
comparisons. Polymerase Chain Reaction
(PCR) for both SSU and ITS-1 was performed
using proofreading VENTt polymerase (New
England Biolabs) and Thermus aquaticus YT-1
polymerase with 50 flap endonuclease activity
(New England Biolabs). A combination of
universal and foraminifera-specific primers
was used for the amplification of a fragment
of the 30 end of the SSU rDNA and for the
complete ITS-1 region (Table 2, Fig. 3). The use
of multiple primer pairs that were developed
in the course of the project helped us to
improve the amplification success rates (e.g.,

FIGURE 2. Location of ship tracks, names of the various cruises, and sampling stations for individuals of the
Globigerinoides sacculifer plexus. Black circles represent stations where both SSU and ITS-1 sequences have been obtained;
white circles represent stations where only the SSU has been sequenced; open circles mark stations were only the ITS-1
has been sequenced. Details of all localities are given in Table 1. Colors indicate the relative abundance of the G. sacculifer
plexus in planktonic foraminiferal assemblages from surface sediments, interpolated from data in the MARGO database
(Kucera et al. 2005; MARGO Project Members 2009) and Siccha et al. (2009).
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from 44% to 70% for the SSU). The reason for
obtaining sequences of the ITS-1 region was
the observation from species of non-spinose
planktonic foraminifera in which this region
showed higher rate of substitution and thus
allowed finer differentiation (de Vargas et al.
2001; Morard et al. 2011). The ITS-1 sequences
obtained here are the first from a species of
spinose planktonic foraminifera. Therefore, in
order to verify their attribution to the ana-
lyzed species, we have also generated ITS-1
sequences from two mature specimens of
Orbulina universa (Table 1; NCBI accession
numbers JQ004254 and JQ004255), which is
consistently placed in SSU rDNA phylogenies

as the sister species to Globigerinoides sacculifer
(Aurahs et al. 2009b). These two specimens
from the NE Atlantic and SE Pacific Oceans
were identified as the Mediterranean geno-
type (de Vargas et al. 1999) on the basis of
RFLP analyses. Their ITS-1 sequences were
obtained using two new specific primer pairs
shown in Table 2. For G. sacculifer, after
preliminary analysis of the first ITS sequences,
we created a primer set for a short fragment
within the ITS, covering the region where we
had located the positions with the highest
variability (Table 2). These shorter fragments
were cloned using the blunt end TOPOt PCR
cloning kit (Invitrogen) and sequenced with

TABLE 2. PCR primers used in this study for the amplification of the SSU and ITS-1 regions. The primers S19F_Orb and
5.8S_R1_For were used for the amplification of the ITS-1 of Orbulina universa (see Methods).

Primer name Pair
Target
region

Amplicon
length (bp) Published by Sequence 50–30

S19f S15rf SSU ~ 700 New CCCGTACTAGGCATTCCTAG
S15rf S19f SSU ~ 700 New GTGCATGGCCGTTCTTAGTTC
S14p SBf SSU ~ 700 Ujiié and Lipps 2009 AAGGGCACCACAAGAGCG
SBf S14p SSU ~ 700 Ujiié and Lipps 2009 TGATCCATCAGCAGGTTCACCTAC
saccv2F saccv2R SSU ~ 540 New ACCACAAGCGCGTGGAGCAT
saccv2R saccv2F SSU ~ 540 New GCACGTGTGCAGCCCAGGAC
S98f 5.8S7fp ITS-1 ~ 1200 New CCTCCGGAAAAAGGCTTATGCAGGCA
S96f 5.8S7fp ITS-1 ~ 1200 New TGCAGGCATTTCACGTATGCTCCTATA
5.8S7fp S96f/ S98f ITS-1 ~ 1200 New GTIAGTAAGGTGTTCCRCAGCC
saccITSF saccITSR ITS-1 ~ 530 New CGCCCGTCGCTCTTACCAAT
saccITSR saccITSF ITS-1 ~ 530 New ACCCGCCCATGGACCAATGT
S19F_Orb 5.8S_R1_For ITS-1 ~ 770 New CTAACTAGGAATGCCTYGTACGG
5.8S_R1_For S19F_Orb ITS-1 ~ 770 New GGTAAGTAAGGTGTTCCRCAGCC

FIGURE 3. Scheme of the SSU, ITS-1, and 5.8S regions of the planktonic foraminiferal rRNA genes showing the positions
of the amplified regions with appropriate primer pairs (gray lines) for Globigerinoides sacculifer. Variable and conserved
regions are shown in white and black, respectively. The gray region shows the position of the insert found in specimens
of G. sacculifer s.l. from the Atlantic Ocean. Neogloboquadrina dutertrei (NCBI EU199449) is taken as reference for SSU 50

end length (in pair base). SSU 30 end, ITS-1, and 5.8S lengths are based on sequences of G. sacculifer.

LACK OF GENETIC DIFFERENTIATION IN G. SACCULIFER 27



the M13F/M13R standard primers. In addi-
tion to the SSU and ITS-1 PCR products that
were sequenced directly with the primers used
for amplification, we cloned the whole ITS-1
from seven individuals and the partial SSU
from two individuals from the Indian and
Pacific Ocean. All original sequence chromato-
grams were checked by eye for ambiguous
reads and sections of low quality of resolution.
Our detailed information about the sequence
coverage and length for each specimen can be
drawn from the online supplement (Supple-
mentary Table 1). Additionally, sequences of
16 specimens were compiled from the litera-
ture for comparison (Table 1).

Phylogenetic and Phylogeographic Analyses.—
In a first manual alignment of the SSU and ITS
sequences, we noticed that direct sequences of
both regions contained a few ambiguous reads
or unique base changes, which were not
present in sequences obtained by cloning.
The overall incidence of the ambiguous reads
and unique base changes is extremely low and
close to the level that is expected from the
proofreading efficiency of the polymerases.
We have nevertheless kept this variability for
all subsequent phylogenetic analyses (Supple-
mentary Table 1).

Both SSU and ITS-1 sequences were aligned
using MUSCLE v. 3.7 (Edgar 2004) and
ClustalW v. 2 (Larkin et al. 2007). The
Modeltest 0.1.1 software (Posada and Crandall
1998) was used to select the best-fit nucleotide
substitution model for each alignment accord-
ing to the Akaike Information Criterion (AIC)
(Akaike 1974). Phylogenetic trees were com-
puted using PhyML, version 3.0 (Guindon and
Gascuel 2003) and a Median-Joining network
(Bandelt et al. 1999) was obtained using
Splitstree v. 4.11.3 (Huson and Bryant 2006).
Matrices of patristic distances for the ITS-1
region (sum of tree-branch lengths on a path
between a pair of sequences) were then
generated with R, version 2.12.2 (R Develop-
ment Core Team 2008) using the APE package
(Paradis et al. 2004) and expressed as percent
of nucleotide differences.

CHRONOS Database.—We searched the
NEPTUNE Database (www.Chronos.org,
search generated by R.A. using Chronos
XML on 18 October 2011) for reports of fossil

individuals of Globigerinoides sacculifer, G.
trilobus, G. immaturus, and G. quadrilobatus
from global marine sediments. The resulting
table listed all original taxonomic assign-
ments, which comprise a combination of
various binomial and trinomial species names
(e.g., G. quadrilobatus immaturus, G. quadriloba-
tus s.l., G. trilobus sacculifera). Therefore, as far
as possible, we filtered the names according to
the taxonomic concept followed in this study.

Results

Altogether, we obtained DNA sequences
from 148 specimens of the Globigerinoides
sacculifer plexus from 54 stations (Supplemen-
tary Table 1). Of the specimens that were
taxonomically unambiguously assigned upon
collection, we obtained SSU rDNA and ITS-1
sequences corresponding to all four common
morphospecies of the plexus: G. sacculifer (n¼
37), G. trilobus (n ¼ 29), G. immaturus (n ¼ 9),
and G. quadrilobatus (n ¼ 11) (Fig. 1; Supple-
mentary Table 1). These new sequences are
deposited in Genbank with accession numbers
JQ004100 to JQ004175 and JQ995373 to
JQ995390 for the SSU region, and JQ004176
to JQ004253 and JQ973709 to JQ973734 for the
ITS-1 region.

Within the plexus, the new and previously
published SSU rDNA sequences (Supplemen-
tary Table 1) were virtually identical. Given
that multiple primer pairs were used for PCR
amplifications and sequencing (Table 2), three
partly overlapping subsets of sequences were
considered within our alignment (Fig. 3). The
longest subset covers the whole fragment (Fig.
3) and consists of 107 sequences, 49 of which
being completely identical. The second subset
covers the front part of the fragment and is
made of 138 sequences, 70 of which are
identical to the base. Finally, the third subset
covers the rear end of the fragment and is
made of 129 sequences, 105 of which are
identical to the base. In total, 65 sequences
differed by up to 19 nucleotide changes from
the consensus. In all cases except one, the
observed small differences showed no repro-
ducible patterns. For five randomly selected
individuals that exhibited such differences,
three independent PCR and sequencing repli-
cates were carried out. These confirmed the
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absence of reproducible nucleotide changes
within the replicated sequences (NCBI
JQ995381 to JQ995390) and indicated that
these changes, all located close to the 50 or 30

end of the sequences, represent amplification
or direct sequencing artifacts. The only repeat-
able pattern was found in one specimen from
the Caribbean Sea (NCBI JQ004126), which
showed a substitution pattern (4 bp) in the
SSU region identical to a sequence from the
same region published by de Vargas et al.
(1997). However, this individual carried an
ITS-1 sequence identical to those found
throughout the world oceans, and the signif-
icance of the substitution pattern in the SSU
region thus remains unclear.

The 107 ITS-1 sequences obtained from 71
different individuals showed a higher degree
of differentiation than the virtually identical
SSU sequences. In contrast to the genetic
homogeneity of the SSU rDNA, the ITS
sequences revealed an interesting geographi-
cal signal and confirmed the presence of intra-
individual variability in the analyzed gene
complex. The clones of eight individuals
assigned upon collection to G. sacculifer and
G. trilobus from the Atlantic Ocean showed a
unique substitution pattern in the ITS-1 (Fig.
4). This exclusively Atlantic haplotype was
associated with clones from the same speci-
mens that yielded the dominant globally
distributed ITS haplotype, suggesting intra-
individual variability in these specimens. In
the direct sequences and clones of the ‘‘global’’

ITS-1 haplotype, only small variation at nine
positions has been found (Fig. 5). In these
sequences, the variable sites are located at the
same positions, but show various permuta-
tions of character states. These permutations,
also found among clones of the same individ-
uals, are consequently consistent with the
existence of intra-individual variability.

None of the observed small differences in
the SSU and in the ITS-1 are linked with
morphological differentiation between indi-
viduals that were attributed to one of the
Globigerinoides trilobus, G. quadrilobatus, G.
immaturus or G. sacculifer s.s. morphotypes
(Fig. 6). An ANOSIM nonparametric test
(Clarke 1993) indicates that there is no
correlation between genetic distance and
morphology (R ¼ �0.010; p(R ¼ 0) ¼ 0.565
[10,000 permutations]).

Discussion

Genetic Diversity in Globigerinoides sacculi-
fer.—The results of our survey of the G.
sacculifer plexus are in stark contrast with the
expectation based on other species of plank-
tonic foraminifera. All extensively genetically
studied morphospecies of modern planktonic
foraminifera have so far revealed the presence
of more than one distinct genetic type (see
review in Darling and Wade 2008). The
absence of genetic variability in the SSU rDNA
region within the global population of the
plexus contrasts with the large differences
among genetic types in all other intensively

FIGURE 4. Comparison of the degree of divergence in the SSU, 5.8S, and ITS-1 sequences between the two sister species
Globigerinoides sacculifer (NCBI JQ004220) and Orbulina universa (NCBI JQ004254). Dots mark identical bases in aligned
regions; also shown are the lengths of the ITS-1 in base pairs (bp). The ITS-1 of O. universa and G. sacculifer are so
divergent from one another that they cannot be aligned. The inset below shows the difference in the sequence motive of
the ITS-1 between the dominant global haplotype and the Atlantic haplotype; dashes mark nucleotides that are missing
in the other sequence.
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studied spinose planktonic foraminiferal spe-
cies (Göker et al. 2010). However, this alone
cannot be taken as unambiguous evidence for
the absence of genetic types. In the non-
spinose planktonic foraminiferal species Trun-
corotalia truncatulinoides (de Vargas et al. 2001)
and Globoconella inflata (Morard et al. 2011),
inter-genotype variability consistently appears
at the level of the faster-evolving ITS-1 region.

To exclude the possibility that genetic
differentiation in the Globigerinoides sacculifer
plexus is also first manifested in this region,
we have supplemented the SSU rDNA survey
with a large data set of partial and complete
ITS-1 sequences. These ITS-1 sequences show
a higher degree of variability than the SSU
data, which appears in two different ways.
First, one consistent sequence pattern (haplo-
type) was found only in the Atlantic, and
second, a number of minor variations (SNPs)
were found throughout the world ocean (Fig.
5). This degree of variation is consistent with a
population-level signal, and the number of
substitutions separating individuals is more
than 15 times lower than among ITS-1
genotypes of both Truncorotalia truncatulinoides
and Globoconella inflata (Table 3, Fig. 6), which

constitute the only reference points for this
rDNA array. The available ITS-1 data on the G.
sacculifer plexus thus do not indicate the
presence of distinct genetic types and the
observed variability is not correlated with
morphological taxonomy within the plexus.

Morphological Taxonomy versus Genetic Diver-
gence.—Similar lack of rDNA diversity has
been documented in several deep-sea benthic
foraminifera (e.g., Tsuchiya et al. 2009; Ma-
jewski and Pawlowski 2010), but until now, all
detailed morphogenetic comparisons in
planktonic foraminifera indicated a higher
degree of genetic differentiation than that
suggested by morphological taxonomy (Hu-
ber et al. 1997; Darling et al. 2006; Morard et
al. 2009, 2011; Aurahs et al. 2011; Quillévéré et
al. 2013). This would suggest that morpholog-
ical taxonomy consistently underestimates the
biological diversity in planktonic foraminifera,
a pattern reported from many other groups of
organisms (e.g., Bickford et al. 2007). If this
pattern could be extrapolated into the fossil
record and if the relationship between mor-
phological taxonomy and genetic divergence
remained similar, then the fossil record of
planktonic foraminifera could indeed be used

FIGURE 5. A, SSU-based phylogenetic tree for all available sequences (Supplementary Table 1) of the Globigerinoides
sacculifer plexus using the three genotypes of Orbulina universa as outgroup. For details see Material and Methods. B,
Median-joining network based on a manual alignment of 594 bp in the ITS-1 region of 78 sequences of the G. sacculifer
plexus. Calculation of this haplotype network excludes all parsimony-uninformative sites. The original output was
manually modified for legibility. Lines represent substitutions between haplotypes; gray lines connect haplotypes that
may be encountered in the same individual; dotted lines, not to scale, indicate more than three substitutions (number
given close to the lines). Size of the circles is proportionate to the number of sequences per haplotype. The largest
haplotype difference (34 substitutions) is a result of two inserts and one deletion, as shown in Figure 4.
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to infer processes at the level of biological
species. Our results challenge this assumption
by showing that at least in one case in the
modern planktonic foraminifera, the degree of

genetic differentiation is lower than that
suggested by morphological taxonomy. The
existence of at least four morphological
species (Fig. 1), of which at least two have
been extensively used for modern members of
the Globigerinoides sacculifer plexus (i.e., G.
sacculifer [s.s] and G. trilobus), contrasts with
the lack of genetic differentiation in the
studied gene regions. This implies that the
morphological variability within the plexus
has been, so far uniquely among planktonic
foraminifera, taxonomically over-interpreted.

To underline the anomalous lack of genetic
differentiation within the Globigerinoides saccu-
lifer plexus, we have compiled data on the
number of genetic types, number of syno-
nyms, ages, and abundances of seven mor-
phospecies of modern spinose planktonic
foraminifera for which extensive genetic data
are available (Fig. 7). Whereas there does not
appear to be any relationship between the
number of genetic types and abundance
(expressed as mean number of CHRONOS
reports of the species per million years), we
observe positive correlation between the num-
ber of genetic types and age of the morpho-
species and the number of synonyms that exist
for the morphospecies. In both cases, G.
sacculifer deviates from the general relation-
ship. Interestingly, next to G. sacculifer, the
largest deviation from the relationship is
shown by Orbulina universa, the sister species
to G. sacculifer. When both species are
removed, the coefficients of determination
increase from 0.09 to 0.73 for species age and
from 0.27 to 0.87 for the number of synonyms
(Fig. 7). We note that the estimate of the

FIGURE 6. MUSCLE alignments-based ITS genetic diver-
sity within the Globigerinoides sacculifer plexus and within
the morphospecies Truncorotalia truncatulinoides and Glo-
boconella inflata (data from de Vargas et al. 2001 and
Morard et al. 2011, respectively). Box plots give the mean
(black circles), 1st through 3rd quartiles (open rectangles),
and 95% confidence interval (lines) patristic distance
values expressed as percent of nucleotide changes within
the entire plexus (G. sacculifer s.l.) and within each of the
four morphotypes of the plexus. For T. truncatulinoides and
G. inflata, the patristic genetic distances within genotypes
(Types I to IV of T. truncatulinoides, Types I and II of G.
inflata) are also given. Note the changes in the left-hand
scale of patristic distances.

TABLE 3. Patristic genetic distances (in percent) among morphospecies (and among cryptic species for Truncorotalia
truncatulinoides and Globoconella inflata) derived from Muscle and Clustal W automatic alignments. ClustalwþG-block
represents Clustal alignments cured using the G-block software. Regular and bold characters for mean and maximum
distances, respectively. Distances above 100% are underlined.

ITS MUSCLE Clustal W Clustal W þ G-block

Globigerinoides sacculifer 0.77 / 4.93 0.77 / 4.34 1.10 / 3.49
Truncorotalia truncatulinoides 34.1 / 63.6 61.5 / 126 41.8 / 82.7
Type I 1.53 / 2.20 1.54 / 2.10 1.20 / 1.92
Type II 2.58 / 6.36 2.32 / 5.40 1.82 / 4.35
Type III 2.86 / 5.96 2.77 / 6.85 1.85 / 4.35
Type IV 1.65 / 2.35 1.46 / 2.10 0.92 / 1. 65
Globoconella inflata 11.8 / 37.3 44.3 / 167 18.8 / 87.2
Type I 6.62 / 25.3 8.53 / 36.8 4.20 / 16.7
Type II 7.6 / 23.4 43.1 / 149 16.90 / 81.5
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number of synonyms for each of the analyzed
species is fraught with a considerable level of
subjectivity. For example, when only syno-
nyms that appear in the CHRONOS database
are used, the deviation of O. universa and G.
sacculifer from the rest of the test group
remains, but the correlation within the rest of
the test group is much weaker.

Although observations are not phylogenet-
ically independent, and although the sample
size is small for a robust statistical analysis,
these results suggest that the number of
genetic types in planktonic foraminiferal
morphospecies is generally proportionate to
the age of the morphospecies (thus opportu-
nity for speciation) and the number of
synonyms (thus indication for morphological
divergence), but that this relationship does not
apply (or is offset) for the members of the
Orbulina universa–Globigerinoides sacculifer
clade. Either some types of morphological
variability in planktonic foraminifera are more
prone to taxonomic treatment or there exists
an objective difference in the rate of biological
speciation among clades of planktonic fora-
minifera. Either way, the fact that the relation-
ship between morphological and genetic
diversity in planktonic foraminifera is not
consistently scaled implies that the fossil
record of this group does not necessarily
reflect species-level processes, contrary to the
assumption of many paleobiological studies.

Significance of Morphological Variation in the
Globigerinoides sacculifer Plexus.—The lack of
correlation between morphological features of
the shell used in taxonomic concepts within
the G. sacculifer plexus and actual genetic
differentiation requires an alternative expla-
nation for the observed morphological vari-
ability. One clue to the meaning of the
morphological variation within the plexus
could potentially come from the fossil record.
To this end, we have compiled data on the
occurrence of the four main members of the
plexus (Fig. 1) from the CHRONOS database
of species occurrence records in deep-sea
sediments (Fig. 8). We realize that these data
reflect a combination of objective morpholog-
ical observations and subjective usage of the
four taxonomic concepts. Seen from this
perspective, the data indicate that the four
taxonomic concepts have been applied to
fossil specimens throughout the stratigraphic
range of the plexus, beginning almost imme-
diately after the oldest records of the plexus.
The most commonly used labels for members
of the plexus have been G. trilobus and G.
sacculifer, with G. immaturus consistently being
rarely used and G. quadrilobatus being used
preferentially in the Miocene. The latter two
names have apparently never been used in the
Atlantic Ocean (Fig. 8). If the taxonomic
concepts of the four members of the plexus
were used consistently by the workers whose
biostratigraphic data are compiled in the

FIGURE 7. Relationships between the number of reported SSU rDNA genotypes in the seven extensively studied spinose
planktonic foraminiferal morphospecies and the average number of the morphospecies reports per million years from
the CHRONOS database (A), the age of the morphospecies (after Kucera and Schönfeld 2007; Aurahs et al. 2011) (B), and
the number of junior synonyms for the morphospecies collated from the literature (open symbols: Saito et al. 1981;
Kennett and Srinivasan 1983) and from the CHRONOS database (black symbols) (C). Dotted lines in B and C indicate
linear regressions for all species (in C for literature synonyms); solid lines indicate linear regressions without G. sacculifer
and O. universa (see text). Coefficients of determination for regression without those two species are significant at the 5%
level (t-test for r¼ 0), but we note that the sample size in this case is too small for a robust statistical assessment.
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CHRONOS database, then one could conclude
that the morphological variability encom-
passed in these four taxonomic concepts (Fig.
1) has been a persistent feature of the plexus
throughout its existence. Combined with the
observed lack of correlation between mor-
phology and genetic distinction, the fossil data
thus appear to support the conclusion that the
morphological traits used to define the four
main taxonomic concepts within the plexus
are not evolutionarily relevant.

Instead, the morphological variability could
reflect marked differences in morphology
during the individual growth, which becomes
differentially expressed in individuals of dif-
ferent sizes. This argument is supported by
the apparent differences in shell size among
the species holotypes, where the honeycomb
wall structure in relation to shell size is
considerably less prominent in Globigerinoides
sacculifer and G. quadrilobatus than in the other
two species. This difference is also reflected in
the individuals from our collection displayed

in Figure 1. The specimens in our collection
that we identified as G. trilobus and G.
immaturus were significantly smaller in size
than the G. quadrilobatus and G. sacculifer
specimens. Indeed, culturing experiments
and observations in the plankton from the
Red Sea have been interpreted by Hemleben et
al. (1987) as evidence that the sac-like terminal
chamber that characterizes the morphotype G.
sacculifer s.s. is an ontogenetic feature, not
developed on all individuals that reach repro-
ductive maturity.

Alternatively, the morphological variability
within the plexus could represent an ecophe-
notypic signal, with different morphologies
being expressed under different environmen-
tal conditions. The ecophenotypic plasticity is
a typical feature of species of planktonic
foraminifera (e.g., Kennett 1976). For the
Globigerinoides sacculifer plexus, Hecht (1974)
studied the distribution of specimens with the
sac-like final chamber as well as the morphol-
ogy of specimens without the sac-like cham-

FIGURE 8. Analysis of stratigraphic occurrences of the four main members of the Globigerinoides sacculifer plexus as
recorded in the CHRONOS database (seeMaterial and Methods). The left-hand diagram shows total occurrences averaged
per 1-Myr intervals on a logarithmic scale. The right-hand diagram plots the actual dated record separately for the three
main ocean basins.
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ber. He concluded that the abundance of the
sac-like chambers within the plexus increased
toward the tropics. This observation is clearly
supported by an analysis of the MARGO
North Atlantic data set of coretop abundances
(Fig. 9). Specimens with and without the final
sac-like chamber occur within the same range
of temperatures, but the abundance of the G.
sacculifer s.s. morphotype increases with tem-
perature. It is therefore likely that the mani-
festation of some or all of the morphological
types within the plexus reflects a combination
of the existence of different ontogenetic
growth stages, which are differentially
reached under different environmental condi-
tions. As a consequence, our results imply that
all modern representatives of the plexus
should be treated as members of a single
biological species. Of the four main members
of the plexus, G. sacculifer is the only one
whose original description (Brady 1877) refers
to it as occurring in the modern plankton, all
other names referring exclusively to fossil
material. By the principle of priority, the name
G. quadrilobatus (d’Orbigny 1846) should be
considered the senior synonym for the plexus.
However, because we cannot entirely exclude
the possibility that the fossil representatives of
the plexus with different morphologies could
represent different species, we propose that
the name G. sacculifer be used for all modern
specimens of the plexus. The use of ‘‘with sac’’
or ‘‘without sac’’ (i.e., presence or absence of a
sac-like final chamber) should be used solely

as the description of morphotypes within this
species.

Global Dispersal and Gene Flow in Globigeri-
noides sacculifer.—The fact that same haplo-
types on the SSU and ITS-1 sequences in G.
sacculifer are found globally, throughout the
subtropical and tropical habitat of the species,
implies either ongoing and effective gene
flows or an extremely reduced substitution
rate (see also Darling et al. 1999). The latter
hypothesis is not consistent with the observed
existence of insertion and deletion and poly-
morphic sites in the ITS-1 region in the species
(Fig. 5), which indicates ongoing intra-popu-
lation differentiation. In addition, G. sacculifer
and Orbulina universa consistently cluster as
sister species in SSU rDNA phylogenies
(Darling et al. 1997; de Vargas and Pawlowski
1998; Aurahs et al. 2009b), but their ITS-1
sequences are so derived that they cannot be
aligned (Fig. 5). As a consequence, we
conclude that the lack of geographic differen-
tiation in G. sacculifer probably does not result
from a slowdown in evolutionary rate. In-
stead, the data appear more consistent with
the existence of an ongoing (or very recent)
effective gene flow among the partly disjunct
warm-water populations of the species be-
tween the Indo-Pacific and the Atlantic.
Because planktonic foraminifera are passively
dispersed by surface currents, this conjecture
implies that the transport of specimens or
propagules of this species by the Agulhas
Current and Agulhas Rings from the Indian

FIGURE 9. The left-hand panel shows the abundance of Globigerinoides sacculifer with and without the sac-like terminal
chamber in surface sediments of the North Atlantic plotted against caloric summer SST at 10 m depth (abundance and
SST data from Kucera et al. 2005). The right-hand panel shows the proportion of specimens without the sac-like chamber
in all samples where the abundance of both forms together was higher than 5% in the assemblages; the line shows linear
regression; its statistical significance is shown in the figure.
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Ocean into the South Atlantic is effective
enough to saturate the Atlantic population
with specimens carrying Indo-Pacific haplo-
types.

Indeed, Peeters et al. (2004) report large
standing stocks of Globigerinoides sacculifer
from plankton nets samples retrieved in
isolated Agulhas Rings in the Southern Atlan-
tic. The passive transport of this species into
the Atlantic is clearly visible in the pattern of
its abundance in surface sediment samples
(Fig. 10). Considering the pattern of surface
current flow between the two oceans (Beal et
al. 2011), the advection of G. sacculifer between
the Indo-Pacific and the Atlantic is at present
mainly unidirectional. In fact, the transport is

likely to have remained unidirectional since
the closure of the Panama Isthmus in the
Pliocene (Groeneveld et al. 2006).

The unidirectionality of the gene flow in
Globigerinoides sacculifer from the Indo-Pacific
into the Atlantic is consistent with the
occurrence of an exclusively Atlantic ITS-1
haplotype (Fig. 5). We hypothesize that this
haplotype originated in allopatry, during an
intermittent isolation of the Atlantic Ocean,
but its evolution was not associated with the
development of intrinsic reproductive isola-
tion mechanisms, such that inbreeding was
not prevented upon secondary contact with
the Indo-Pacific population. This is evidenced
by the fact that the Atlantic haplotype occurs

FIGURE 10. Modern (A) and last glacial maximum (B) summer sea-surface temperatures (data from the MARGO Project
Members [2009]) in the Atlantic and Indian Oceans around southern Africa. The right-hand maps show relative
abundances of the Globigerinoides sacculifer plexus (i.e., including specimens with and without sac-like final chamber) in
planktonic foraminiferal assemblages from surface sediments (C) and last glacial maximum sediments (D). Each symbol
represents one locality. The abundance data are from Kucera et al. (2005) and Barrows and Juggins (2005).
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together with the dominant global haplotype
in the same specimens. Considering that it is
only found in the faster-evolving ITS-1 and
does not correspond to a differentiation signal
in the SSU, and that there is no evidence for
genetic recombination between the haplo-
types, we conclude that its occurrence reflects
a recent isolation event. The most recent
opportunity for isolation between the Indo-
Pacific and the Atlantic (sub)tropical water
masses occurred during the last glacial max-
imum, when the circum-Antarctic currents
were displaced toward the north and con-
stricted the Agulhas exchange (Flores et al.
1999; Peeters et al. 2004; Bard and Rickaby
2009; Beal et al. 2011). The chance for
westward advection of individuals of G.
sacculifer around the Cape was thus consider-
ably reduced, as the environment that had to
be crossed to reach the Atlantic became too
cold (Fig. 10), close to the temperature
tolerance of the taxon (14–328C [Bijma et al.
1990]). The resulting restriction of the passive
transport of G. sacculifer around the Cape is
reflected in the abundance of this species in
deep-sea sediments from the region that have
been dated to the last glacial maximum (Fig.
10).

In this model, the intermittent restriction of
the gene flow between Indo-Pacific and
Atlantic populations of Globigerinoides saccu-
lifer on glacial/interglacial time scales would
have been too short to result in the evolution
of distinct SSU genetic lineages. If the propen-
sity of G. sacculifer to maintain an effective
gene flow between the two basins during
interglacials has been a persistent attribute of
the species throughout its existence, then these
two mechanisms combined could explain why
only a single global SSU genetic type is found
today within the G. sacculifer plexus. The only
other plausible explanation for the lack of
genetic differentiation would be the existence
of a recent population bottleneck. Here, any
genetic variability that had developed over
time in the G. sacculifer plexus would have
been reset by an extinction event, sparing only
a small, genetically homogeneous population
from which all the modern representatives
would have descended. Low levels of genetic
diversity have been shown in planktonic

foraminifera thought to have undergone such
recent bottlenecks (e.g., Aurahs et al. 2009a).
However, the fossil distribution of the G.
sacculifer plexus does not indicate any evi-
dence for a population bottleneck (Figs. 8, 10).
To our knowledge, in the literature, such an
event has never been reported for G. sacculifer
at any time throughout the existence of the
species.

Conclusions

Our survey of the genetic variability in the
modern representatives of the Globigerinoides
sacculifer plexus reveals the existence of a
single genetic type. The lack of cryptic genetic
diversity is in stark contrast to the morpho-
logical variability and the usage of multiple
taxonomic concepts for members of this
plexus. Our results imply that at least in the
modern plankton, the morphospecies G. sac-
culifer, G. immaturus, G. trilobus, and G.
quadrilobatus all correspond to a single biolog-
ical species with a cosmopolitan distribution.
In paleoceanographic reconstructions based
on morphological and/or chemical signals in
the fossil shells of planktonic foraminifera, the
assumption is indirectly made that each
morphospecies corresponds to a biological
species adapted to a unique habitat and
possessing unique biomineralization physiol-
ogy. Over the last decade, this assumption has
been called into question by extensive genetic
surveys, which revealed the existence of
multiple distinct and differentially adapted
genetic types within individual morphospe-
cies (de Vargas et al. 1999, 2002; Darling and
Wade 2008; Morard et al. 2009; Quillévéré et
al. 2013). In the case of G. sacculifer, the
assumption of the congruence between mor-
phological and biological species is violated in
the opposite direction: multiple morphotypes
correspond to a single species. This observa-
tion is significant because it shows not only
that the morphological taxonomy does not
reflect genetic differentiation, but also that the
scaling between the two may be inconsistent.

The lack of geographic structuring among
the surveyed specimens is interpreted as
evidence for an effective gene flow from the
Indo-Pacific into the Atlantic tropical and
subtropical habitats of the species. The exis-
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tence of an exclusively Atlantic ITS-1 haplo-
type indicates that this gene flow can be
intermittently reduced, most likely during
glacial intervals, but the latest disruption
apparently has not been sufficient to result in
speciation. If the propensity for ‘‘genetic
homogenization’’ following short periods of
isolation was a persistent feature in the
evolutionary history of the species, then the
fossil record of the G. sacculifer plexus could be
interpreted as the occurrence of a long-ranging
single, ecologically successful, morphological-
ly variable lineage.
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networks for inferring intraspecific phylogenies. Molecular

Biology and Evolution 16:37–48

Banner, F. T., and W. H. Blow. 1960. Some primary types of species

belonging to the superfamily Globigerinaceae. Contributions

from the Cushman Foundation for Foraminiferal Research 11:1–

45.

Barrows, T. T., and S. Juggins. 2005. Sea-surface temperatures

around the Australian margin and Indian Ocean during the Last

Glacial Maximum. Quaternary Science Review 24:1017–1047.

Bard, E., and R. E. M. Rickaby. 2009. Migration of the subtropical

front as a modulator of glacial climate. Nature 560:380–384.
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Abstract

Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many
morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level
of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the
planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic
diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic
lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total
diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show
that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an
ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse
lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic
structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific
challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal
is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution
patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification
rates.
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Introduction

In many groups of marine microplankton, morphologically

defined species tend to underestimate diversity [1,2]. Cryptic

speciation is prevalent in these groups, manifested in genetic

differences that are not accompanied by the development of

morphologically divergent traits [3]. In consequence, diversity

patterns and species biogeography derived from observations of

morphospecies may not reflect processes at the level of biological

species.

This observation has consequences for the interpretation of

biogeographic patterns of marine microplankton. At the morpho-

logical level, species often appear globally distributed, but their

constituent cryptic lineages may show more differentiated patterns

[4]. In theory, such spatially structured distribution may reflect

either dispersal limitation, differential adaptation or niche

incumbency [5,6]. The fundamental difference among these

scenarios lies in the ubiquity of gene flow and in the importance

of species interactions. Under dispersal limitation, genetic drift

associated with the establishment of abiotic barriers may lead to

the differentiation of allopatric sister lineages. If dispersal is not the

primary restriction and species interaction is of subdued impor-

tance, then distribution of species should reflect the spatial

realization of suitable niches. If, however, species interactions

are important then the occupancy of the realized niches will be

influenced by competitive exclusion, leading to a pattern of niche

incumbency. Because of the manifest differences among the

predictions of these three scenarios, an observed species biogeog-

raphy could in theory be used to draw conclusions about the

importance of dispersal and species interactions for the distribution

and diversity of marine plankton.

Because of the prevalence of cryptic speciation and the often

cosmopolitan distribution of morphospecies in plankton, an

assessment of these three end-member scenarios for biogeographic

patterns requires an extensive global sampling of genetic diversity,

covering the entire range of the studied lineage. Here we use the

genetically most diverse morphospecies of planktonic foraminifera

as a model to assess global biogeography of DNA-delineated

cryptic species in view of these scenarios. Most morphospecies of
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planktonic foraminifera have a cosmopolitan distribution within

their preferred temperature range [7] and evidence exists that

gene flow in these obligate sexual outbreeders occurs on a global

scale [8,9]. On the other hand, there is abundant evidence that

morphospecies of planktonic foraminifera represent complexes of

reproductively isolated but morphologically indistinguishable

cryptic species [4]. In most cases such cryptic species reveal

restricted distribution patterns, indicating that biogeographies of

morphospecies in this group are not representative for processes at

the level of biological species [10–12].

Earlier studies of the phylogeography of planktonic foraminifera

attempted to identify the pattern of speciation that has led to the

observed distribution or the environmental factors influencing it,

but the importance of biological interactions has been largely

overlooked [4,13,14]. Aurahs et al. [10] first noted that the

distribution of genetic lineages of Globigerinoides ruber could be best

explained by competitive exclusion and the concept was then used

by Seears et al. [15] to explain the occurrence of genetic types of

planktonic foraminifera in the Arabian Sea.

In this study we present the results of a global survey on

the foraminifera lineage Globigerinella [16], which is abundant in the

surface waters in tropical and subtropical provinces throughout the

world ocean (Fig. 1). The dominant morphospecies in this lineage,

G. siphonifera tolerates a temperature range from 11uC to 30uC and a

salinity range from 27–45% [17] and it is limited vertically to the

euphotic zone due to its association with symbionts. In the modern

ocean, Globigerinella calida [18] has been described as its sister species,

but it is morphologically similar and its status as a separate species

remains unclear. This study includes specimens that have been

assigned to that species name as well. Within the typical G. siphonifera

morphology, two divergent types were distinguished by different

cellular morphology and symbionts [19,20], and potentially also by

morphological, physiological, chemical and genetic differences

[21,22]. The high degree of variability in the G. siphonifera lineage

is reflected in its genetic diversity. Analyses of the small ribosomal

subunit RNA gene (SSU rDNA), which is part of the only gene

complex known so far in planktonic foraminifera, identified a large

number of genetic lineages, which show no evidence for introgres-

sion and are typically considered as cryptic species [4,21–24]. Based

on these data, the G. siphonifera group appears to be the most

genetically diverse lineage of modern planktonic foraminifera [4].

Although the existing sampling has been far from exhaustive, it

seemed to indicate that individual cryptic genetic lineages within

G. siphonifera are cosmopolitan [4], but their proportions vary with

surface ocean properties [23]. Such distribution could be

explained by a combination of unlimited dispersal and differential

adaptation, but it remains uncertain whether it stands the test of

global sampling. Here we analyze SSU rDNA sequence data from

a global survey that covers the distribution range of G. siphonifera

both latitudinally, across the tropical and subtropical oceans and

their satellite semi-isolated marginal seas (Fig. 1) in order to study

its biogeography and draw conclusions on the emergence of the

observed high genetic diversity.

Materials and Methods

Ethics statement
The field collections carried out for the purpose of this paper did

not involve endangered or protected species. Locations of all

sampling stations are given in Table S1. The sampling was

carried out in open ocean and followed the regulations for the

exclusive economic zones (EEZ) of the coastal countries, provided

for each expedition by the respective authority. No specific

permission was required to collect the analyzed plankton.

Sampling
Specimens of Globigerinella siphonifera were collected during 26

expeditions between 1996 and 2012 covering all seasons and water

depths from the surface to 700 m (Table S1). The sampling

represents a combination of plankton hauls during ship cruises,

including stratified sampling, with nearshore collections by small

nets and scuba diving. Mesh size varied from 100 to 200 mm. In all

cases, individual foraminifera were separated from the rest of the

plankton and taxonomically identified using stereomicroscopes.

Living specimens still containing cytoplasm were cleaned using a

brush and either transferred to 1.5 ml tubes for direct DNA

extraction or air-dried on cardboard slides and stored at 220 or

280uC until further processing. In addition, the dataset was

enhanced by inclusion of 45 sequences of G. siphonifera available in

GenBank (Table S1). In order to resolve the phylogeny of the G.

siphonifera sequences, to root the tree, and to estimate divergence

times among the main lineages, we have attempted to obtain SSU

rDNA sequences of the sister species Beella digitata. Eight specimens

of that species have been collected from plankton nets in the

Western Mediterranean (Table S1).

DNA extraction, amplification and sequencing
DNA extraction followed either the DOC protocol of

Holzmann & Pawlowski [25], during which the shell is dissolved,

the guanidine method [26] or an urea method where the DNA is

extracted in a mixture of 100 mM Tris (pH 8), 100 mM NaCl,

1% Sarcosyl, 8 M Urea and 2 mM TCEP, kept at room

temperature. The latter two methods allow preservation of the

shell. Polymerase chain reaction (PCR) was used to amplify a

,350 to 1000 bp fragment of the 39 end of the SSU rDNA either

using the proofreading VentH polymerase (New England Biolabs)

or Taq DNA Polymerase (Qiagen). The amplified fragments

include all sequence sites necessary to differentiate between the

genetic lineages of G. siphonifera. Details on extraction, amplifica-

tion and primers for all individuals are given in Table S1. PCR
products were purified using the QIAquick gel extraction kit

(Qiagen), WizardH PCR clean up (Promega) or DNA Gel

Extraction Kit (Millipore). Products were sequenced directly by

external service providers (Agowa, Berlin and University of

Edinburgh Gene Pool). In order to constrain intra-individual

variability, eight individuals from different regions were cloned

using the Zero BluntH TOPOH PCR Cloning Kit (Invitrogen) with

TOP10 chemically competent cells. Sequence chromatograms

were checked manually for ambiguous reads and corrected where

possible. All new sequences longer than 200 bp were submitted to

GenBank (http://www.ncbi.nlm.nih.gov/; accession nos.:

KF769560-KF769948).

Delineation of genetic lineages
The primary sequence alignment was carried out in MAFFT v.

6.935b [27] using the option -auto, which allows the program to

decide on the optimal alignment algorithm (Alignment S2 in
File S1). Aurahs et al. [28] have shown that MAFFT handled best

the particular sequence structure of foraminiferal SSU rDNA out

of six alignment programs tested. The alignment was used to

define the main genetic lineages and to group identical sequences

(here referred to as ‘ribotypes’ (RT)), which present the same

combination of certain sequence motifs within the amplified

fragment of the SSU rDNA. This analysis identified the presence

of three main lineages, which further split into up to seven clades.

The initial automated alignment was split into three subalignments

corresponding to the three main genetic lineages (Alignments
S4–6 in File S1). For each subalignment sequence chromato-

grams were checked by eye for sequencing errors, sequence ends

Phylogeography of Planktonic Foraminifera

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92148



were trimmed and length-polymorphic regions were left-aligned

by default in MESQUITE v. 2.75 [29]. The SSU rDNA of

foraminifera is characterized by the occurrence of highly length-

polymorphic regions (LPR) in the core structure, which hinder the

computation of straightforward alignments with consistent homol-

ogy of individual base pairs [28]. The number of inferred

parsimonious changes in these regions would be highly depending

on the alignment, the hypothetical homology of individual sites.

Therefore, we opted for treating each LPR as a single, complex

character (an oligonucleotide motif) in the ribotype analysis

instead.

Due to the different length of the individual accessions, and the

particular nature of foraminifer expansions segments, the direct

application of median-joining networks [30] to establish relation-

ships between ribotypes of each major genetic lineage was not

feasible. Instead ribotypes were analyzed based on the variable

positions in each subalignment. Differing sequence patterns (point

mutations and LPR motifs) were coded as a binary matrix, in

which characters with more than two states were represented by a

corresponding number of half-weighted binary characters. A point

mutational pattern involving the nucleotides A, C, and G would be

coded as 1 0 0, 0 1 0, and 0 0 1 using three characters with a

weight of 5 instead of the standard weight of 10. LPR motifs were

coded accordingly at this step. Mutation patterns that were only

present in a single sequence were not considered separately, but

merged with the nearest ribotype for abundance analysis. The

resultant binary matrices comprising up to 19 ribotypes were then

analyzed using NETWORK v. 4.5 (Fluxus Technologies Inc.) to

compute median-joining (MJ) networks [30].

The recognition of ribotypes allowed us to structure the genetic

diversity within G. siphonifera between the level of the three main

lineages and the ribotypes into discrete and objectively defined

genetic types, using a threshold of three mutational events.

Ribotypes separated by three or fewer mutational events were

considered to belong to the same genetic type. Earlier studies

reported the existence of different ribotypes within the genome of

one single individual in some but not all species of foraminifera

[31]. Consistent with earlier investigations of intraindividual

variability within the spinose planktonic clade [8], in our study,

only one ribotype per individual was found, which was apparent

by the lack of ambiguous sequence reads and was verified by

cloning, which revealed identical sequences within single individ-

uals. The apparent lack of hybridization among the ribotypes

would suggest that they may represent genetically isolated units.

However, we cannot entirely exclude the existence of hybrids with

the present data because of insufficient cloning depth. Therefore,

to avoid an over-interpretation of the genetic diversity and arrive

at a number of distinguishable lineages, we reserve the (cryptic)

species rank for genetic types.

ML tree inference and bootstrapping
To resolve the phylogenetic relationships of the G. siphonifera

lineages and B. digitata to the rest of the planktonic foraminifera,

the MAFFT sequence alignment from Aurahs et al. [28], including

sequences of 23 planktonic foraminifera morphospecies, was used

as a basis to which the new sequences were aligned by the

sequence adding function in MAFFT v. 7 [32] (Alignment S1 in
File S1). Settings were left to default. This enlarged alignment was

then used for tree inference under the maximum likelihood (ML)

criterion with RAxML-HPC2 v. 7.6.3 [33] via the CIPRES

Gateway [34]. The alignment was used without further manip-

ulation or filtering. Branch support for the ML tree of the general

foraminifera MAFFT alignment was established with the fast

implementation (option –x) [35] of nonparametric bootstrapping

(BS) [36]. The number of necessary replicates was determined by

automatic bootstopping with the majority-rule tree based criterion

(option -#autoMRE). The per-site rate approximation model [33]

was used for the fast BS phase followed by a slow final model

optimization under the general time reversible model allowing for

between-site variation modeled via a gamma distribution (GTR +
G; option -m GTRCAT). Run parameters were set to infer in one

run the best-known ML tree and perform a full BS analysis (option

–f a).

To resolve further the relationships among the genetic types of

G. siphonifera, a set of analyses has been carried out including only

sequences of G. siphonifera and B. digitata. Following Aurahs et al.

Figure 1. World map indicating the distribution of the target species and sampling sites for this study. Gray shading indicates the
relative abundance of Globigerinella siphonifera as it is found in planktonic foraminiferal assemblages from surface sediments interpolated from data
in the MARGO database [64] by Ocean Data View [65] in default projection. Black lines show the borders of occurrence with a threshold of 1%. White
circles indicate the sampling stations of all samples included in this study. Diagonal lines indicate areas where no data are available.
doi:10.1371/journal.pone.0092148.g001
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[28], the stability of the topology has been evaluated by a multiple

alignment approach. To this end, automated alignments have

been used, based on the default settings of the online-available, up-

to-date versions of MAFFT v. 7, MUSCLE v. 3.7 [37] and

KALIGN v. 2 [38]. Tree inference was conducted under the same

settings as described above and without prior manual modification

of the alignments.

Molecular clock and speciation rates
In order to estimate the divergence time among the genetic

lineages within G. siphonifera, a molecular clock approach was

applied, using the G. siphonifera/B. digitata MAFFT alignment. B.

digitata was used as an outgroup to define the Globigerinella root.

Molecular clock analysis was performed using Bayesian methods

implemented in BEAST v. 1.7.5. [39] via the CIPRES Gateway.

The alignment was tested under various clock models (strict,

uncorrelated lognormal and uncorrelated exponential). The split

between G. siphonifera and B. digitata is marked in the fossil record

by the first appearance of the species Beella praedigitata [40,41]. This

event is dated to 10.2 Ma in Aze et al. [41]; the age of the oldest

reported occurrence of this species in deep-sea sediments is listed

in the CHRONOS database as 11.96 Ma (http://chronos.org)

[42]. Here we used the mean of the two ages (11.08 Ma) and

associate this date with an uncertainty of 0.88 Ma. Detailed

settings were the same for all three clock models tested. The

distribution of the fixed node age prior was considered normal.

The GTR+G+I (adding a parameter for the proportion of

invariant sites) was used as a substitution model, to allow for

different evolutionary rates between variable and conserved

regions of the SSU rDNA. Speciation rate was considered

constant under the Yule-Process and a UPGMA tree was

calculated as a starting tree. Markov-Chain-Monte Carlo

(MCMC) analyses were conducted for 10,000,000 generations,

with a burn-in of 1000 generations and saving each 1000th

generation. The maximum clade credibility tree with median node

heights was calculated in TREEAnnotator from the BEAST

package, with a burn-in of 100 trees and a posterior probability

limit of 0.0. The resulting tree was then analyzed in FigTree v.

1.3.1 [43].

To test for trait dependency of changes in birth-only speciation

rates among different clades, we applied a covariates generalized

linear model (GLM) approach [44] on the trees produced by the

lognormal and exponential uncorrelated clocks. This method

allows to test, whether or not the presence of a certain trait had a

significant effect on the speciation rate within given clades in a

phylogenetic tree, taking branch-lengths into account. If reliable

phylogenetic trees exist, it is considerably more powerful than

traditional tests for changes in speciation rate, that only compare

the number of lineages within adelphotaxa [45]. The test was

performed in R v. 3.0.1 [46], using the package ‘ape’ v. 3.0.8 [47].

Assessment of sampling intensity
For the global dataset and for the separate regions, first-order-

Jackknifing [48,49] was performed in R v. 3.0.1 to estimate the

number of genetic types expected to occur in each region, given

their occurrence in the sampling sites. Such test provides a first

assessment whether or not the sampling was sufficient to detect all

genetic lineages present in each region. For that, each station was

treated as a separate sample, independent of the other stations,

and it was assumed that the samples are sufficiently random and

well distributed to allow such an approach, and cover the world

ocean area to an extent that allows them to be assumed

homogenous. The jackknifing is insofar most useful for this

dataset, as it is fully independent of any possible interaction of

different genetic types within the same quadrat, and offers a very

good bias-correction for low densities per sample [49].

Results

In addition to the 45 sequences from GenBank, in this study we

obtained 370 partial sequences of the 39 end of the SSU rDNA

representing 338 individuals of Globigerinella siphonifera from 108

stations of 25 expeditions in seven regions of the world ocean

(Table S1). The 39 end of the SSU rDNA, routinely used in

foraminifera molecular studies, includes the helices 32 to 49 [50]

and additional foraminifera specific expansion segments of

variable length. Most sequence divergence was found in the

expansion segments 37/e1, 41/e1, 45/e1 and 46/e1, the variable

region V7 consisting of several helices and the terminal part of

helix 49 (Tp49) [51]. Furthermore, point mutations were also

found in the sequentially and structurally conserved regions

(helices 32–49) of foraminifera SSU rDNA (Table S2). All

sequences obtained either by direct sequencing or cloning showed

a clear signal and could be attributed without doubt to one of the

main genetic lineages. We did not observe any intraindividual

variability neither by seeing ambiguous reads at consistent

positions or by observing variability among sequences from cloned

specimens, which would be the case if individuals contained

different ribotypes in the multiple copies of the SSU rDNA.

Additionally, we obtained 25 sequences of eight individuals of

Beella digitata covering the entire fragment of the SSU rDNA used

for phylogenetic inference in planktonic foraminifera by Aurahs

et al. [28].

All sequences could be assigned to one of the three main

lineages, which, applying a distance threshold of 0.1028,

correspond to objectively definable taxonomic units [24]. These

lineages are robust to increased taxonomic coverage, especially to

the inclusion of B. digitata (Fig. 2a) and remain supported to

.89% in maximum-likelihood inference. The sister relationship of

B. digitata has been confirmed (Fig. 2a), supporting observations

from the fossil record [40].

Following the strict definition excluding singletons, the variabil-

ity of the analyzed gene fragment of G. siphonifera reveals the

existence of 30 SSU rDNA sequence variants (ribotypes; Table
S2). This confirms the exceptional level of diversity noted in earlier

studies [4]. Within lineage I, the six separated ribotypes can be

organized into two basic genetic lineages, namely Ia (RT 1+2) and
Ib (RT 3–6), that differ by up to eight characters (all of them point

mutations; Fig. 3a). Mutations occur to equal parts in the variable

regions (41/e1, 46/e1 and Tp49) and in the more conserved

regions (helices 33, 36, 37, 43). The five ribotypes within lineage

III are only little more divergent than those in lineage I, with two

(RT 4+5) being separated by up to 13 point mutations from the

remaining three (RT 1–3), which differ by 3–4 characters from

each other (Fig. 3b). Consequently, these ribotypes can be

classified into three different genetic lineages, IIIa, IIIb and IIIc.

Mutations separating these lineages are exclusively point muta-

tions and are mostly found in the variable regions (37/e1, 41/e1

and V7) and only in two conserved regions (helices 37 and 38).

Highest divergence is found in lineage II, where sequence

variation sums up to 19 ribotypes that can be grouped into seven

genetic lineages (IIa1–6 and IIb; Fig. 4). RT 18 and 19 are with

more than 40 mutational events most distinct and assigned to

lineage IIb. Mutations in lineage II are homogeneously distributed

between all variable and all conserved regions.

Subsequently, the phylogenetic relationships among the 30

ribotypes organized in 12 genetic lineages within G. siphonifera were

tested using three different alignments (Fig. 2b). This analysis
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Figure 2. Phylogenetic relationships within planktonic foraminifera. A) Phylogenetic relationships of planktonic foraminifera including
Globigerinella siphonifera and Beella digitata. The tree is based on the MAFFT alignment of Aurahs et al. [28] to which SSU rDNA sequences of G.
siphonifera and B. digitata were added. Tree inference and calculation of bootstrap values was conducted in RAxML in the CIPRES gateway. Sequence
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reveals that 10 out of the 12 genetic lineages, defined as differing

by more than three characters, are supported in the majority of the

alignments. A resolution down to the separate ribotypes as seen in

the networks, however, is not possible in the tree, and therefore the

terminal branches are collapsed. The topology of the phylogram,

including the inferred allocation of mutation events to branches,

indicates a nested, hierarchical pattern of divergence, suggesting

an ongoing process of sequential differentiation.

It is remarkable that despite the seven-fold increase in

sequencing effort compared to existing data, no new major

lineages within G. siphonifera were discovered. A similar picture

appears when individual genetic lineages are considered. Here,

our data complement earlier studies [4,23,24] by discovering two

new genetic lineages (lineages IIIb and c; Fig. 2b), which is again

highly disproportionate to sequencing effort. At the lowest level of

divergence considered, the proportion of newly discovered

sequence motifs is the highest: 16 out of 30 ribotypes are reported

here for the first time. Even here, the amount of ribotype discovery

is disproportionate to sequencing effort and the higher number of

new motifs simply reflects the hierarchical scaling within the clade.

The geographical distribution of specimens assigned to the

twelve genetic lineages reveals the existence of cosmopolitanism as

well as provincialism within cryptic genetic types of G. siphonifera

(Fig. 5a). Type IIIc shows the most restricted occurrence; it was

only found in the Gulf of Aquaba, where it has the highest

abundance of all occurring types. Type IIIa was only found in low

abundances and exclusively in the Eastern Atlantic. Type Ia seems

to have a cosmopolitan occurrence since it was found in the

majority of regions sampled. Types Ib, IIb and IIIb can also be

considered cosmopolitan, although they are less evenly distributed.

Type Ib has its highest abundances in the Western Indian Ocean

and the Red Sea and very low abundances in the Atlantic, where

only one individual was found. Type IIb was sampled in high

numbers in the Atlantic, but only few individuals in the Eastern

Pacific. Type IIIb was found in the marginal seas of the Atlantic

and in the Western Indian Ocean.

The group of genetic types IIa is highly abundant globally and

shows a truly cosmopolitan distribution. However, its constituent

types show highly differentiated distribution patterns, character-

ized by a surprising difference in diversity between the Atlantic

and the Pacific (Fig. 5b). The Indian Ocean contains the highest

diversity with five different types of this lineage. Type IIa1 was

found in very low abundances mainly in the Indian Ocean and

one individual in the Coral Sea. Type IIa4 seems to be restricted

to the Red Sea and the Western Indian Ocean. Type IIa5 is most

abundant in the Arabian Sea, but also present in low numbers in

the Northwestern Pacific. Type IIa6 was mainly found close to

Japan, but apparently also occurs in the Indian Ocean as indicated

by one individual sampled in the Arabian Sea. In contrast to the

high diversity of lineage IIa in the Pacific and Indian Ocean, the

diversity in the Atlantic is considerably more limited. There we

only encountered two different types: Type IIa2, which except for

two individuals off California seems to be restricted to the Atlantic

Ocean and Type IIa3, which has a cosmopolitan distribution and

occurs in every region sampled.

Discussion

A surprisingly high SSU rDNA sequence divergence is found in

most morphospecies of planktonic foraminifera [4]. This sequence

divergence is typically organized into a small number of lineages,

which show no evidence for hybridization, their divergences

appear ancient and their distribution follows a geographical

structure [10,12]. For these reasons, such lineages, also referred to

as ‘‘Types’’ or ‘‘Genetic types’’, are considered to represent

reproductively isolated taxonomic units akin to biological species.

Although this interpretation appears most likely, it is fair to state

that unambiguous evidence for the status of these lineages as

biological species is lacking. This is because planktonic foraminif-

era do not reproduce in culture, so that cross-mating experiments

such as those carried out for cryptic species of diatoms by Amato et

al. [2] are at present impossible. Because of large differences in

substitution rates, it is difficult to devise a universal threshold

distance for DNA-based species delineation in the group [24].

However, evidence from existing surveys suggests that most

divergences in the analyzed SSU rDNA fragment are not

associated with hybridization. The lack of hybridization could be

shown particularly well in cases where divergent multiple copies

are found in sequences of SSU rDNA, or where additionally also

the associated ITS region had been sequenced [12,52]. On the

other hand, an exhaustive survey of Globigerinoides sacculifer, a

closely related species to G. siphonifera, revealed the existence of one

diversity within morphospecies has been collapsed, except for G. siphonifera where only terminal branches were collapsed. B) Phylogenetic tree of G.
siphonifera with B. digitata as an outgroup. The tree is based on a MAFFT alignment and was calculated in RAxML on the CIPRES gateway. Bootstrap
values are shown based on MAFFT/MUSCLE/KALIGN alignments. Light microscopic images of G. siphonifera and B. digitata illustrate the gross
morphology. Both individuals measure ,250 mm across.
doi:10.1371/journal.pone.0092148.g002

Figure 3. Ribotype networks for delineation of genetic types.
A) Median-joining network of Globigerinella siphonifera lineage I
showing genetic distances and relationships between ribotypes (RT)
and their grouping into two basic genetic lineages, Ia (RT 1+2, bright
green) and Ib (RT 3–6, light green). Numbers on links indicate amount
of mutational events between two ribotypes if they are larger than one.
n indicates number of individuals representing one ribotype. B)
Ribotype network of lineage III distinguishing three basic lineages, IIIa
(RT 1), IIIb (RT 2+3) and IIIc (RT 4+5), addressed by different shades of
red.
doi:10.1371/journal.pone.0092148.g003
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rare divergent SSU sequence motif, which differed by three

characters, but was associated with the same ITS sequence as

specimens without the SSU motif [8]. Because of this observation

and the divergence structure observed in our data (Figs. 3, 4), we
assume that the lowest level of genetic variability in G. siphonifera,

manifested by the 30 SSU ribotypes, may not be associated with

reproductive isolation, but represents divergence and rDNA

variation within species. Because of the uncertainty in the

interpretation of the evolutionary status of the 30 ribotypes, when

analyzing the distribution of the 12 genetic lineages, which we

consider cryptic species, we cannot be entirely sure that we are not

underestimating the number of reproductively isolated lineages.

However, since the difference in the distribution and allocation of

cryptic diversity is manifested already at the level of the 12 genetic

lineages, the conclusions drawn from the lineage-level data must

also apply to any unit below these.

Notwithstanding the exact status of the 12 genetic lineages, the

first step before analyzing their distribution and allocation is to ask

how representative the sampling has been. To this end, the first-

order-Jackknifing approach (Table 1), which serves as an

objective estimate of lineage richness that is to be expected both

globally and regionally, shows that the number of lineages in our

collection appears to approach the expected total number of

lineages, given the assumptions of the test. Similarly, the number

of sampled lineages in almost every region falls within the 95%

confidence interval of the Jackknifing estimate, implying that

further lineages are unlikely to have been discovered in each

region by more intensive sampling. Only for the Red Sea does the

test indicate the existence of at least one lineage that has not been

sampled yet. This analysis confirms the empirical observation that

a seven-fold increase in sampling intensity led to a disproportion-

ately low rate of discovery of new variants and that the distribution

of the proportion of new variants is scaled with their hierarchical

position. Despite the higher lineage diversity than among other

planktonic foraminifera species (12 in G. siphonifera, compared to 7

in Neogloboquadrina pachyderma and Globigerina bulloides [4]), the global

survey in the ‘‘hyperdiverse’’ G. siphonifera confirms, that the total

number of cryptic genetic types within morphospecies of

planktonic foraminifera is limited and that the biological diversity

Figure 4. Ribotype network for delineation of genetic types. Ribotype network for Globigerinella siphonifera lineage II showing genetic
distances and relationships between the 19 ribotypes (RT) and their assignment to different genetic lineages: IIa1 (RT 1), IIa2 (RT 2+3), IIa3 (RT 4–9),
IIa4 (RT 10), IIa5 (RT 11–14), IIa6 (RT 15–17) and IIb (RT 18+19), addressed by different colors. Numbers at links indicate the number of mutational
events between two ribotypes. n indicates number of individuals representing one ribotype.
doi:10.1371/journal.pone.0092148.g004
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in the group may be underestimated by a factor of about 10, but

not significantly more.

Observed (So) and estimated (Se, first-order-Jackknifing) number

of genetic types of Globigerinella siphonifera for the global and

regional data sets. Only in the Red Sea the observed number of

types does not fall within the 95% confidence interval (CI95) of the

estimate, suggesting the existence of at least one more genetic type

in that region.

Having established that the sampling intensity, both globally

and regionally, can reasonably be considered sufficient to capture

the occurrence pattern of the G. siphonifera lineages, we first

consider the relationships of these lineages within the phylogenetic

tree. Here, a major finding is the uneven distribution of

diversification between the three main lineages; with seven types

in lineage II and only two and three types in lineage I and III

respectively. Since the Jackknifing analysis suggests that our

sampling approaches the real diversity in each region, the uneven

distribution of types between the lineages is unlikely to be due to

systematic undersampling.

The second obvious explanation for uneven allocation of

diversity to lineages is their age, with older lineages having more

time to accumulate species [53]. To test this hypothesis, we

calculated molecular clocks for the diversification of genetic

lineages within G. siphonifera based on the dating of the split from its

sister species B. digitata (Fig. 6) [40,41]. The ages resulting from

both relaxed clock models showed a more realistic distribution

than the results of a strict clock model and agree remarkably well

with earlier calculations based on entirely independent calibrations

Figure 5. Biogeographic distribution of the genetic types of Globigerinella siphonifera. A) Geographic distribution of the G. siphonifera
lineages plotted at their exact sampling locations on a map in Mercator projection. Numbers indicate the amount of individuals of one genetic type
found at one station. One year mean sea surface temperature is indicated by gray shading. Arrows indicate main ocean currents. B) Geographic
distribution of the genetic types of G. siphonifera lineage IIa.
doi:10.1371/journal.pone.0092148.g005
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[23]. The age for the split of the hyperdiverse lineage IIa from

lineage IIb is calculated to have taken place ,5 Ma in the early

Pliocene. The split between lineage II and III dates to ,7 Ma and

the split of lineage I from the rest of the lineages took place

,9 Ma. Thus, as the branching order of the phylogeny alone

indicates (Fig. 2), the highest number of genetic types is found in

the youngest lineage. Based on the molecular clock estimates

(Fig. 6), this lineage had a two to three times shorter duration than

the other lineages. In consequence, lineage longevity is not feasible

as an explanation for unbalanced distribution of diversity.

Thus, since the high diversity in lineage II is unlikely to be a

result of undersampling and is not correlated with lineage age, we

may consider the possibility of it resulting from uneven rates of

diversification among the lineages [54]. We test this hypothesis by

using a covariates GLM approach that analyzes trait dependency

of changes in birth-only speciation rates. The results reveal that

speciation rates in lineage IIa must have been significantly higher

than in all other lineages within G. siphonifera. This result is

consistent for the uncorrelated lognormal (x2 = 4.258, df = 1,

p= .039) as well as the exponential (x2 = 8.232, df = 1, p= .004)

molecular clock analysis. Thus, we conclude that increased

speciation rate seems most likely to be the cause for the

disproportionate accumulation of diversity that occurred in lineage

IIa.

The exact factor causing an increase in speciation rate in the

hyperdiverse lineage IIa is difficult to reconstruct from the

phylogeny alone. However the topology of the median joining

network of lineage II (Fig. 4) reveals a centripetal distribution of

ribotypes, with missing ancestral motifs. Such distribution implies

that lineage II diversified by sequential fragmentation of a

population of ancestral ribotypes, which was entirely transformed

during the fragmentation process. This is interesting because it

speaks against speciation by peripheral isolation.

The second clue to the unique status of the hyperdiverse lineage

IIa comes from its biogeography. The striking pattern of (Indo-

)Pacific isolation within this lineage (Types IIa1, 4–6; Fig. 5) has
not only consequences for the interpretation of its elevated

diversity, but it offers critical evidence to evaluate the biogeogra-

phy of the cryptic genetic diversity of the constituent morpholog-

ical species. To this end, we consider the three end-member

scenarios explaining restricted distribution in turn (dispersal

limitation, differential adaptation or niche incumbency).

First, we argue that the biogeographic distribution of the genetic

lineages of G. siphonifera (Fig. 5) shows that a dispersal limitation

does not seem to be the likely factor causing divergence in this

taxon. In every one of the three lineages we find at least one type

with a cosmopolitan distribution. Even the hyperdiverse lineage

IIa contains one type (IIa3) with a global occurrence. If dispersal

limitation would be the prevailing factor for speciation, we should

expect an accumulation of endemic types in the Atlantic. The

connection between the tropical-subtropical Atlantic and Indopa-

cific habitats of G. siphonifera (Fig. 1) is mediated by the Agulhas

current, which transports warm saline water from the Indopacific

to the Atlantic [55] and was shown to carry live populations of

planktonic foraminifera with it [56]. Therefore, in theory, lineages

originating in the Atlantic should be much less likely to be able to

escape from there, whereas lineages originating in the Indopacific

should be constantly passively transported to the Atlantic due to

the absence of a dispersal barrier. Indeed, for some species of

marine copepods genetic differentiation and isolation of Atlantic

populations due to limited dispersal between ocean basins were

shown [57], whereas other species revealed a cosmopolitan

distribution with a lack of barriers to gene flow and also showed

a connection between the Indian Ocean and the Southern Atlantic

[58]. These studies revealed no evidence for a population isolated

in the Pacific Ocean and the observed biogeography thus could be

considered consistent with passive dispersal.

The similarity of relative abundances of genetic lineages in

Globigerinella between the different ocean basins analyzed by non-

metric multidimensional scaling (Figure S1) reveals a close

relationship between the Atlantic Ocean with its marginal seas, the

Mediterranean and the Caribbean Sea. Also the Arabian Sea and

its neighboring region, the Western Indian Ocean, show a high

similarity in genetic type occurrence as well as the Red Sea which

is affected by inflowing water from the Arabian Sea. The analysis

shows the Pacific community to be related similarly to the Atlantic

as well as to the Indian Ocean, however there is no close similarity

between the Indian Ocean and the Atlantic. This observation is

completely contrary to what would be expected if the occurrence

of genetic lineages reflected passive dispersal by currents between

the Atlantic and the Indian Ocean. Our conclusion that dispersal

limitation is unlikely the cause of the observed pattern is in line

with widespread evidence for global mixing in tropical populations

of other species of planktonic foraminifera [8,11] as well as

evidence based on observations in the fossil record [59].

Second, we consider ubiquitous dispersal and differential

adaptation. The accumulation of genetic types in the Indopacific

could be indicative for differential adaptation of these genetic types

to ecological or hydrographical conditions which are only realized

in this region. We consider this explanation unlikely, because all of

the endemic genetic types co-occurred upon collection in the same

samples with genetic types that are cosmopolitan and there was no

systematic offset in living depth among any of the genetic types, as

evidenced by their occurrence in stratified plankton hauls. Further,

types IIa2 and IIa3, which show a wider distribution or even are

cosmopolitan, are nested within the clade comprising the endemic

types. If there was a specific adaptation associated within the

hyperdiverse lineage that limits its occurrence to the Indopacific

then two independent evolutionary events are required to have

occurred: the character had to evolve at the base of the IIa clade

and then be reversed at the base of the IIa2 + IIa3 clade.

Therefore the most likely scenario to explain the distribution of

the genetic types in the hyperdiverse lineage is the concept of niche

incumbency [5,60]. In this scenario, we assume that the

diversification of lineage IIa has taken place in the (Indo-)Pacific

by sequential fragmentation of the parent population. Until the

Table 1. Comparison between observed and estimated
number of genetic types.

Region So Se CI95 SoM Se 6 CI95

Global 12 12.99 1.95 true

Atlantic Ocean 6 6.97 1.90 true

Mediterranean Sea 3 3 0 true

Caribbean Sea 5 5.93 1.83 true

Red Sea 5 7.67 2.61 false

Arabian Sea 6 8.73 2.76 true

Western Indian Ocean 7 7 0 true

Pacific Ocean 8 8.96 1.89 true

Observed (So) and estimated (Se, first-order-Jackknifing) number of genetic
types of Globigerinella siphonifera for the global and regional data sets. Only in
the Red Sea the observed number of types does not fall within the 95%
confidence interval (CI95) of the estimate, suggesting the existence of at least
one more genetic type in that region.
doi:10.1371/journal.pone.0092148.t001
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divergence of the IIa2 + IIa3 clade, all lineages either remained

restricted to the Indopacific or their invasion efforts into the

Atlantic ended in extinction. The reason for the failure of most of

the genetic types in this lineage to spread into the Atlantic would

be incumbency – the niche that these genetic types possess is

strongly overlapping with that of an Atlantic incumbent (which-

ever it may be), preventing the Pacific invaders, carried with the

Agulhas current, to establish a viable population in the Atlantic.

On a smaller scale, an exclusion pattern may in fact be expressed

in the Atlantic between the invasive types IIa2 and IIa3 which

represent two closely related sister lineages. The majority of

individuals of Type IIa3 were found in the Eastern Atlantic and

the Mediterranean Sea, whereas type IIa2 is the dominant type in

the western part of the North Atlantic and the Caribbean.

Requiring only one evolutionary event (the ability of the IIa2 +
IIa3 lineage to invade the Atlantic), the niche incumbency or

competitive exclusion thus seems to be a more parsimonious

explanation of the distribution pattern of the genetic lineages of G.

siphonifera.

The unexpectedly high genetic diversity as well as the

differentiated distribution of the genetic types in the studied

planktonic foraminifera show that occurrence patterns based on

morphological species are too coarse to elucidate biogeographic

patterns. In agreement with previous studies [11,12], we show that

the differentiated pattern of lineage distribution is unlikely to

reflect dispersal limitation, but that it also does not simply reflect

passive dispersal by ocean currents. Instead, these results confirm

that even in marine microplankton high diversification is possible

[61] and that interactions and competition between lineages

together with historical contingency shape their present-day

occurrence and distribution in the world ocean.

Supporting Information

Figure S1 Rendition of similarity of relative abundances of all

genetic types of G. siphonifera in the sampling regions. In order to

statistically assess the geographical structure in the occurrence of

genetic lineages of G. siphonifera, the sampling sites were separated

into seven regions of the world ocean. The similarity of relative

abundances of genetic lineages among these regions was visualized

using non-metric multidimensional scaling based on the Morisita

similarity index [62], as implemented in the PAST software v. 2.

17c [63]. Arrows indicate the direction of surface ocean currents

connecting neighboring regions.

(TIF)

Table S1 Information on individual samples and handling

procedures. Detailed information on each G. siphonifera individual

Figure 6. Molecular clock estimates for the evolution of the Globigerinella siphonifera lineages. Molecular phylogeny of G. siphonifera and
Beella digitata based on a MAFFT alignment with time estimate ranges from the uncorrelated lognormal (blue) and exponential (red) molecular
clocks. Numbers at nodes indicate the divergence ages shown with their 95% confidence intervals. Number in brackets indicates fixed age for the
split of G. siphonifera and B. digitata. Green triangles and numbers show ages calculated in de Vargas et al. [23], except for one terminal node which
seems too young. Black arrow indicates the starting point from where the presence of a certain trait had a significant effect on the speciation rate,
based on a covariates generalized linear model approach.
doi:10.1371/journal.pone.0092148.g006
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used in the study (Sheet 1), GenBank samples added to the dataset

(Sheet 2) and primer table with all different primers used (Sheet 3).

(XLSX)

Table S2 Sequence differences between G. siphonifera ribotypes.

Table showing the sequence differences and their location in the

secondary structure of the SSU rDNA used for differentiation of

ribotypes within the three main lineages.

(XLSX)

File S1 Sequence alignments used for phylogenetic reconstruc-

tions and delineation of genetic types. MAFFT alignment of

sequences of 23 planktonic foraminifera morphospecies including

representative sequences of every ribotype of G. siphonifera and B.

digitata from this study (Alignment S1); MAFFT alignment of all G.

siphonifera sequences used in this study including GenBank

sequences (Alignment S2); MAFFT alignment of representative

sequences of every ribotype of G. siphonifera and B. digitata

(Alignment S3) and G. siphonifera subalignments for each of the

three major lineages (Alignment S4-S6).

(ZIP)
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Birgit Lübben is gratefully acknowledged. We thank Lina Podszun for help

on ArcGIS and Raphael Morard on ODV.

Author Contributions

Conceived and designed the experiments: AKMW MK. Performed the

experiments: AKMW AK KFD. Analyzed the data: AKMW MFGW

GWG. Contributed reagents/materials/analysis tools: AKMW AK KFD

MK. Wrote the paper: AKMW MFGW AK KFD MK GWG.

References
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(2007) Reproductive isolation among sympatric cryptic species in marine
diatoms. Protist 158: 193–207.

3. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, et al. (2007) Cryptic

species as a window on diversity and conservation. Trends Ecol Evol 22: 148–
155.

4. Darling KF, Wade CM (2008) The genetic diversity of planktic foraminifera and

the global distribution of ribosomal RNA genotypes. Mar Micropaleontol 67:
216–238.

5. Algar AC, Mahler DL, Glor RE, Losos JB (2013) Niche incumbency, dispersal

limitation and climate shape geographical distributions in a species-rich island
adaptive radiation. Global Ecol Biogeogr 22: 391–402.

6. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine

speciation. Ann Rev Ecol Syst 25: 547–572.

7. Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminif-
era. Heidelberg: Springer.
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Abstract

Molecular genetic investigations of the highly abundant extant planktonic forami
nifera plexus Globigerinella siphonifera/Globigerinella calida have recently shown
this group to be the genetically most diverse within planktonic foraminifera, sepa
rating it into 12 distinct genetic types. Independently, several morphological or
physiological variants have been described within the group, but the correlation
between the high genetic diversity and the phenotypic variability remains unclear.
In this study we combine genetic data with morphometric analyses of shell shape
and porosity of genotyped individuals belonging to the different genetic lineages.
Our morphometric measurements suggest a differentiation of three morphotypes
within the plexus, two of which possess the elongated chambers described as a
typical trait of G. calida. These two morphotypes with elongated chambers are as
sociated with two distinct genetic lineages. The G. calida morphology therefore
appears to have evolved twice in parallel. Unexpectedly, we show that the two
morphotypes with elongated chambers can be separated from each other by
characters seen in the lateral view of their shells. This implies that the taxonomy of
the extant members of the genus Globigerinella should be revised. A comparison
with the original descriptions of members of the genus shows that two genetic
types of one major lineage correspond to G. calida. The second group with elon
gated chambers is associated with one recently diverged genetic type and we pro
pose to reinstate the name Globigerinella radians for this distinct form. The re
maining nine of the 12 genetic types correspond to the G. siphoniferamorphology,
and in the absence of evidence for morphological differentiation, they form a pa
raphyletic morpho taxon. Our results highlight the prevalence of parallelism in the
evolution of shell morphology in planktonic foraminifera even at the lowest level
of relatedness represented by genetic types.

Keywords: planktonic foraminifera, Globigerinella, shell morphology, porosity,
taxonomy, evolution
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Introduction

Molecular genetic studies of extant plank
tonic foraminifera continue to challenge
our perception on the diversity within the
group (e.g. Darling et al., 1999; de Vargas
et al., 1999; de Vargas et al., 2002; Aurahs
et al., 2009; Seears et al., 2012; Quillévéré
et al., 2013). The relatively low number of
accepted morphospecies (e.g. Hemleben et
al., 1989) is significantly exceeded by the
number of their constituent genetic types
(e.g. Darling and Wade, 2008). Since most
of these genetic types cannot be differen
tiated morphologically, they are often re
ferred to as “cryptic species” and their dis
covery usually had no impact on the tax
onomy of the morphospecies. Exceptions
hereto are Neogloboquadrina incompta,
which could be separated from Neoglo
boquadrina pachyderma based on genetic
data confirming the observation that the
two species are associated with different
coiling directions (Darling et al., 2006) as
well as Globigerinoides elongatus that was
synonymized with Globigerinoides ruber,
but recently shown to be genetically as
well as morphologically distinct (Aurahs et
al., 2011). Morphometric studies on Or
bulina univera, Globoconella inflata and
Globorotalia truncatulinoides revealed only
slight morphological differences between
the genetic types that were statistically
significant, but did not allow sufficiently
precise discrimination of individuals to
warrant a taxonomic revision (Morard et
al., 2009; Morard et al., 2011; Quillévéré et
al., 2013). A study on the morphospecies
complex Globigerinoides sacculifer surpris
ingly revealed that also the opposite sce
nario can exist: a worldwide screening of
all morphotypes associated with this taxon
showed that this morphospecies is genet

ically homogenous despite high morpho
logical variability (André et al., 2013). In
this case an over interpretation of morpho
logical characteristics had taken place,
which lead to the usage of multiple mor
phospecies concepts that do not appear
justified in the light of the genetic evi
dence. These examples underline that the
connection between genetic and morpho
logic variability in planktonic foraminifera is
complex and the resolution of species de
lineation requires a detailed combined ge
netic and morphometric analysis.

The genus Globigerinella was first de
scribed by Cushman (1927) to include indi
viduals with near planispirally coiled shells,
globular to ovate chambers and fine round
spines (Kennett and Srinivasan, 1983).
Three extant species can be attributed to
this highly diverse and abundant genus.
The most abundant species is Globigerinel
la siphonifera, described as Globigerina
siphonifera by d’Orbigny (1839), with
spherical to ovate chambers and a rather
tight coiling. Globigerina aequilateralis as it
was described by Brady (1879) was later
declared a junior synonym for the exact
same morphology (Banner and Blow,
1960). The second most abundant mor
phospecies, Globigerinella calida, was de
scribed as Globigerina calida by Parker
(1962). It was characterized as having
trochospirally coiled evolute shells with
radially elongated chambers, the final
chamber separated from the previous ones
and being perforated by large circular
pores (Parker, 1962; Saito et al., 1981). The
third morphospecies is Globigerinella ad
amsi, which was originally described as
Hastigerina adamsi (Banner and Blow,
1959), and is characterized by its elongated
digitate chambers with pointed tips. This
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species is exceedingly rare. It inhabits mes
opelagic waters of the Indopacific low lati
tude realm (Bé and Tolderlund, 1971) and
was never collected for genetic analysis. All
three species show a considerable level of
intraspecific variability. Parker (1962) was
the first to describe a potential separation
of G. siphonifera into two or even more
groups based on shell size and the degree
of deviation from the planispiral coiling.
She assumed though that these forms rep
resent ecophenotypic plasticity and there
fore did not treat her morphotypes taxo
nomically. Interestingly, the existence of
two groups within G. siphonifera was later
indicated on the basis of biological differ
ences, especially the possession of differ
ent endosymbiotic Chrysophycophyte spe
cies (Faber et al., 1988; Faber et al., 1989).
Later studies suggested a correlation be
tween these groups and the then known
two genetic types (Huber et al., 1997), in
cluding a potential differentiation between
the two types based on shell porosity. In a
subsequent study, Bijma et al. (1998) fur
ther linked the two groups to differences in
cell physiology and shell chemistry Howev
er, none of these discoveries had an impact
on the taxonomy of the genus.

Genetic studies conducted on the small
subunit ribosomal RNA gene (SSU rDNA) of
G. siphonifera subsequently demonstrated
that the high diversity in this morphospe
cies is not limited to the morphology, but is
also represented at the genetic level
(Huber et al., 1997; de Vargas et al., 2002;
Darling and Wade, 2008; Göker et al.,
2010). Most recently, Weiner et al. (2014)
showed that the high sequence diversity in
the group could be assigned to three major
genetic lineages, which further split into 12
distinct genetic types (Figure 1). Since no

signs of hybridization are found between
these genetic types, they may be consid
ered to represent biological species. In
these genetic studies, the exact status of G.
calida remained unclear. The distinction of
this morphospecies from G. siphonifera is
difficult and in many cases the two species
were lumped together for studies on fossils
from the sediment (e.g. Siccha et al., 2009).
The distinction is especially difficult among
pre adult individuals that are often en
countered in the plankton. As a result, only
a preliminary identification has been pre
sented by genetic studies published to
date, in which G. calida was suggested to
represent one of the genotypes of the Glo
bigerinella plexus (Type IV of de Vargas et
al., 2002, and G. calida in Darling and
Wade, 2008).

In order to resolve the relationship be
tween genetic and morphologic variability
in the genus, we have taken advantage of
the recently developed methods for extrac
tion of DNA from planktonic foraminifera
that leave the shells intact for morphomet
ric analysis (Morard et al., 2009; Weiner et
al., 2014). Using these methods in combi
nation with the imaging of genotyped spec
imens prior to DNA extraction, we have
amassed a dataset of morphological meas
urements from 181 individual specimens
identified by several researchers as G. si
phonifera and G. calida, sampled within
various regions of the world ocean. All of
the specimens were genetically analyzed
and could be assigned to one of the deline
ated genetic types. We combined meas
urements of shell morphology based on
scanning electron microscopic as well as
light microscopic images with measure
ments of porosity and pore size. As a re
sult, we were able to resolve the identity of
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G. calida and revise the taxonomic concept
of the G. siphonifera/G. calida plexus.

Material and Methods

Sampling, imaging and genetic analysis
In this study, images of 181 Globigerinella
siphonifera and Globigerinella calida indi
viduals were analyzed for comparisons of
shell morphology with genetic identity. All
of the individuals included yielded DNA
sequences that could be used to assign
them to one of the 12 lineages described
by Weiner et al. (2014). The specimens
were collected by stratified plankton tows
during 13 expeditions between 2006 and
2013 (Figure 2, Table S1). The foraminifera
were separated from the rest of the plank
ton, taxonomically identified using stere
omicroscopes and in most cases digitally

photographed directly on board. Living
specimens still containing cytoplasm were
prepared for DNA extraction. Methods for
genetic analysis and the sequence data of
most individuals were presented in Weiner
et al. (2014). Specifically for this study we
genetically characterized 44 additional
specimens from a transit through the
South Pacific on board RV SONNE (SO226
3, Kucera and Cruise Participants, 2013).
These new samples represent topotypic
material for the species concept of G. cali
da as developed by Parker (1962). They
were obtained by stratified tows using a
multiple closing net with a mesh size of 100
μm. Foraminifera were isolated from the
plankton residues, cleaned, dried and fro
zen on cardboard slides until further pro
cessing in the lab. The guanidine method,

Figure 1: Maximum likelihood phylogenetic tree of the spinose planktonic foraminifera
Phylogenetic relationships among the spinose planktonic foraminifera showing the monophyletic status of
Globigerinella and its affinity with the sister taxon Beella digitata and highlighting its high genetic diversity.
The tree as well as the bootstrap values are based on a MAFFT alignment of SSU rDNA sequences and were
calculated using RAxML via the CIPRES gateway. Sequence diversity within morphospecies has been col
lapsed, except for G. siphonifera/G. calida where only terminal branches are collapsed.
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which allows preservation of the shell, was
used for DNA extraction (e.g. Morard et al.,
2009). Light microscopic images in the
standard taxonomic umbilical view were
taken in the lab prior to DNA extraction.
Polymerase chain reaction (PCR) was used
to amplify a ~600 bp large fragment of the
3´end of the small subunit ribosomal RNA
gene (SSU rDNA) using the GoTaq® G2 Hot
Start polymerase (Promega) and two dif
ferent primer pairs as indicated in Table S1.

PCR products were purified using the QI
Aquick® PCR Purification Kit (Qiagen) and
afterwards sequenced directly by an exter
nal service provider (Agowa, Berlin). Se
quence chromatograms were checked
manually for ambiguous reads and correct
ed where possible. Sequences of all 44 in
dividuals were submitted to GenBank
(http://www.ncbi.nlm.nih.gov/; accession
nos: KJ202213 – KJ202256). Shells that
could be recovered after DNA extraction

Figure 2: Geographic locations of sampled individuals
a) Sampling locations of all individuals used in the morpho genetic comparison in this study. Different sym
bols indicate where only light microscopic images, only SEM images or both were available. Numbers within
the symbols denote number of individuals from one sampling location. Gray shading indicates the relative
abundance of Globigerinella siphonifera as it is found in planktonic foraminiferal assemblages from surface
sediments interpolated from data in the MARGO database by Ocean Data View (Schlitzer, 2011). Diagonal
lines indicate areas where no data are available.
b) The genetic identity of the analysed individuals. Symbols indicate different genetic types, following the
classification by Weiner et al. (2014). Numbers within the symbols denote number of individuals from one
sampling location belonging to the same genetic type. Gray shading indicates the relative abundance of
Globigerinella calida as it is found in planktonic foraminiferal assemblages from surface sediments interpo
lated from data in the MARGO database by Ocean Data View. Diagonal lines indicate areas where no data
are available.
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were imaged by scanning electron micros
copy (SEM) from spiral/umbilical and lat
eral view and higher magnification close
ups of chamber wall surface were taken. In
total, 37 individuals from the South Pacific
yielded images that could be used for mor
phometric analysis.

ML tree inference and bootstrapping
In order to represent the phylogenetic po
sition of G. siphonifera/G. calida in relation
to the rest of the spinose planktonic foram
inifera, sequences of 11 morphospecies
were included in an automated alignment
using the online version of MAFFT v. 7 (File
S1, Katoh and Standley, 2013) as it is avail
able on the CIPRES gateway (Miller et al.,
2010), under default settings. This align
ment was then used without further ma
nipulation or filtering for tree inference
under the maximum likelihood (ML) crite
rion with RAxML HPC2 v. 7.6.3 (Stamatakis,
2006) via the CIPRES Gateway. Branch sup
port was established with the fast imple
mentation (Stamatakis et al., 2008, option
x) of nonparametric bootstrapping (BS;
Felsenstein, 1985). The number of
necessary replicates was determined by
automatic bootstopping with the majority
rule tree based criterion (option
#autoMRE). The per site rate approxima
tion model (Stamatakis, 2006) was used for
the fast BS phase followed by a slow final
model optimization under the general time
reversible model allowing for between site
variation modeled via a gamma distribu
tion (GTR + ; option m GTRCAT). Run pa
rameters were set to infer in one run the
best known ML tree and perform a full BS
analysis (option –f a).

Measurements of shell morphology and po
rosity
SEM images suitable for morphometric
analysis were obtained from a total of 63
specimens of the G. siphonifera/G. calida
plexus in lateral and umbilical/spiral view
to quantify the main morphological fea
tures of the shell which have been used to
differentiate species in the plexus. The
traits have been quantified as distances
and landmark positions (Figure 3) extract
ed from the images in R v. 3.0.1 (R
Development Core Team, 2011). In lateral
view those measurements include the
height htotal of the specimen, the elonga
tion of the last chamber (El), the deviation
of the last whorl from the planispiral plane
(expressed as angle ), and the extent to
which the first chamber of the last whorl
covers the aperture (PS). In umbilical/spiral
view values comprise the elongation of the
last chamber (EL), the mean elongation of
all chambers in the last whorl (E) and the
number of chambers in the last whorl ex
pressed as mean angle between succes
sive chamber axes. To avoid the effect of
unusual terminal morphologies, in
Kummerform specimens, the penultimate
chamber was treated as the last chamber.
Damaged specimens with fewer than three
consecutive chambers in the last whorl
preserved were excluded from the analysis.
The data acquisition and parameter calcu
lation was replicated, and the values used
in the following represent the mean of the
two replications to minimize subjectivity
during data extraction.
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To evaluate the degree of morphologi
cal separation obtained on the basis of the
exactly positioned clean SEM images, for
application in the field, we subsequently
tested the approach on imperfectly orient
ed 128 light microscopic images in the um
bilical/spiral view. In these images we
extracted 13 landmark points each (Fig
ure 3) to calculate the elongations EL and E
on the basis of the last three chambers, as
well as the mean angle .

Porosity measurements were obtained
using SEM images with a magnification of
4000 of the surfaces of the last chamber of
66 specimens. The images were treated for
contrast enhancement and where neces

sary, pores were manually blackened to
enable automatic measurements. The max
imum Feret diameter (d) and centroid co
ordinates of each pore were then extracted
from black and white threshold images in
FIJI v. 1.47q (Schindelin et al., 2012). These
values were then used to calculate the po
rosity of the specimen (Figure 3). This ap
proach yields reliable results as long as
pores can be expected not to be signifi
cantly oval in first approximation. The max
imum pore diameter, in contrast to the
directly measured pore area, is invariant to
the orientation of the pore, so that the
curvature of the shell does not influence
the results by distorting the pores in areas

Figure 3: Morphometric measurements conducted on images of Globigerinella siphonifera/G. calida indi
viduals
Schematic representation of the measurements of shell characteristics and pore size and porosity derived
from SEM images, including equations for the calculation of the derived, size invariant parameters. Blue
points represent landmarks, whose coordinates were extracted from the images. Black and green lines
show distances used for the calculation of morphological parameters, which were calculated on the basis of
the landmarks. Yellow dashed lines are auxiliary lines for the visualization of calculated angles. Distances Hi

and Bi, and angles i are only shown exemplarily on the last two chambers in umbilical view. Points 1–13 in
umbilical view were also extracted from light microscopic images.
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which are not perfectly perpendicular to
the plane of view. In this study, we decided
not to break the shells to measure the
pores from the inside, like Huber et al.
(1997). As a result, our values are likely to
overestimate pore size by a small amount,
especially in large and thick shells.

In order to determine shell porosity, we
calculated the distance of each pore to
every other pore based on the obtained
centroid coordinates in R v. 3.0.1 and then
identified the nearest neighbor to each
pore. The mean distance l of all nearest
neighbor pair distances of the specimen
was then assumed to be a good approxi
mation of the mean pore distances in that
specimen. Assuming a regular pore distri
bution with one pore at each corner of a
square with edge length l, we could then
approximate the mean porosity P of the
specimen (P = ( /4 × d2)/l2). Even if the real
pore distribution deviates from this expec
tation, the fact that we treat all specimens
alike, leads to mutually comparable results.
In 40 specimens we have taken two SEM
images from the same individual, which we
could use to test the reproducibility of our
results using a paired t test.

Statistical analysis of morphometric meas
urements
All statistical analyses were performed in
R v. 3.0.1. We used principal component
analysis (PCA, Hotelling, 1933) to evaluate
the continuity of the morphospace in the
G. siphonifera/G. calida plexus on the basis
of the morphological parameters (exclud
ing porosity) obtained from the SEM imag
es, without a priori assumption on their
attribution to genetic types. During that
step we excluded the parameter htotal from
the analysis, because shell height of speci
mens from the plankton is a function of

their age and does not represent the final
size at which reproduction would occur.
Next, we explored to what degree speci
mens of distinct genetic lineages can be
distinguished from the rest of the plexus by
performing linear discriminant anal
yses/canonical variate analyses (LDA/CVA,
Fisher, 1936) in the R package MASS v. 7.3
26 (Venables and Ripley, 2002). We then
repeated the same steps on the data ob
tained from light microscopic images.

The porosity data were tested for the
influence of genotype and sampling loca
tion and their interaction term on porosity
and pore size of specimens. To that end the
non parameteric Scheirer–Ray–Hare test
(Scheirer et al., 1976) was applied. For all
significant factors, pairwise comparisons

Figure 4: Percentages of individuals classified as
Globigerinella calida
Percentages of individuals in each genetic line
age/genetic type (following the classification by
Weiner et al. (2014)) of Globigerinella that were
classified upon collection as G. calida. The dataset
includes all 382 individuals that were genetically
analyzed, independent of the existence of mor
phometric measurements. Vertical bars represent
95% binomial confidence intervals after (Agresti
and Coull, 1998). Total number of trials n is given at
the bottom of the graph. Most individuals classified
upon collection as G. calida belong to either lineage
I or III.
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were performed using a Mann–Whitney U
test (Mann and Whitney, 1947), during
which the p values were corrected after
Benjamini and Hochberg (1995). To test for
a relationship between pore size/porosity
and shell size (approximated via shell
height, ht), we performed a Kendall–Theil
robust line fitting (Kendall, 1938; Theil,
1950; Sen, 1968) implemented in R, using
the equations from Helsel and Hirsch

(2002) and Conover (1980). For specimens
with two SEM images of the same individu
al, we used the one which provided a larg
er dataset (i.e. more pore measurements)
for the analysis.

Results

Of the 382 genetically analyzed Glo
bigerinella specimens (Weiner et al. (2014)
and new data from South Pacific com

Figure 5: Images of representative specimens of the genetic types of Globigerinella sp.
SEM images and light microscopic images of representative individuals belonging to the different genetic
types within the G. siphonifera/G. calida plexus. No SEM images are available for specimens representing
types IIa2, IIa6, IIb and IIIa. The exact sampling location of each specimen is shown in Table S1.
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bined), 62 were labeled upon collection as
G. calida. In this respect, the subset used
for morphometric analysis is representa
tive, containing 42 specimens out of 181 in
total originally labeled as G. calida. As the
first step, we asked, whether or not the
usage of the species name G. calida corre
lated with any of the genetic types. Here, a
comparison of the taxonomic labels and
genetic identification indeed reveals that
the frequency of usage of G. calida varies
significantly among the genetic lineages
and genetic types (Figure 4). Although
there is no single genetic type which is as
sociated exclusively with specimens la
beled as G. calida, this name has been used
more frequently for specimens in lineages I
and III (Figure 4).

Next, we ventured to resolve the corre
lation of genetic and morphological varia
bility in the G. siphonifera/G. calida plexus.
To this end, we first explored morphologi
cal differences among all analyzed speci
mens and determined how these relate to
the genetic types found within this group.
The high number of SEM and light
microscopic images allowed a morphomet
ric analysis of representatives of almost
every genetic type from various parts of
the world ocean (Figure 2, Figure 5, Table
S2). Most genotypes had sufficiently well
preserved shells following DNA extraction
to obtain representative SEM images, apart
from types IIa2, IIa6, IIb and IIIa. However,
it was possible to include types IIa2 and IIb
in the morphometric analyses using their
light microscopic images, but those of IIa6
and IIIa proved too poor to be useful.

A PCA of the morphometric measure
ments carried out on SEM images (Figure
3, Table S2) revealed a significant size
independent variation in morphology of

the individuals belonging to the G. si
phonifera/G. calida plexus. The mapping of
the genetic identity onto the morphospace
reveals that three of the analyzed genetic
types are associated with a morphology
that is distinct from the rest of the plexus.
The genetic types Ia and IIIb/c appear to be
separated from the rest of the genetic
types chiefly by higher chamber elongation
(El, EL, Figure 6). This separation is support
ed by the LDA, which confirms a statistical
ly significant difference in the multivariate
means between the groups (p > 0.001) and
reveals that based on the same set of mor
phological measurements, 97% of the spec
imens can be correctly classified (Figure
7a). Furthermore, these three types can
not only be separated from the rest, they
also show morphologic differences when
being compared with each other. Speci
mens of type Ia are characterized by the
highest values for chamber elongation in
spiral/umbilical view (E and EL), while
members of lineage III are marked by high
est values for angle , which describes the
deviation of growth from the planispiral
plane (Figure 6). This differentiation is also
supported by the LDA (p = 0.004), and al
lows a correct classification of 95% of the
specimens (Figure 7b).

A CVA with the remainder of genotypes
(Ib, IIa1, IIa3–5) shows low correct classifi
cation rates (73%) and a general distribu
tion of all genetic types over the whole
morphospace, indicating that no distinct
morphotypes can be separated within that
group (Figure S1).

Having established the existence of
three groups of genetic types that are
morphologically distinct from each other,
we attempted to determine whether or
not these groups correspond to any of the
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existing morphological species concepts.
To this end, we extracted images of type
specimens from the literature, including
original illustrations and designated types.
This included the original illustrations of
Globigerina radians (Egger, 1893), Globig
erina siphonifera (d’Orbigny, 1839), the
lectotype of Hastigerina siphonifera
(Banner and Blow, 1960) and the holotype
of Globigerina calida (Parker, 1962). The
same morphological parameters have been
extracted from these images as from the
genotyped individuals and based on these

data the specimens were projected onto
the plane of the first two principal compo
nent axes (Figure 6). This analysis reveals
that the holotype of G. calida shows the
highest similarity in morphology with geno
types IIIb/c. The original illustration of G.
radians shows a specimen with highly
elongated chambers and a small value of
as is characteristic for individuals of the
genetic type Ia. The rest of the genetic
types clusters around the lectotype speci
men of H. siphonifera.

Figure 6: PCA biplot of Globigerinella siphonifera/G. calida individuals from SEM images with projected
position of type specimens
Principal component analysis (PCA) of six size invariant morphological characters of the G. siphonif
era/G. calida plexus obtained from SEM images as described in Fig. 3. The plane of the first two principle
components explains 70.9 % of the total variance. The projected position of type specimens (measure
ments obtained from the drawings shown on the side of the graph) are indicated as black stars. The type
specimen of Globigerinella adamsi plots far outside the plot, because of the extreme elongation of the
chambers and is thus not shown. The position of the extant types I and type II as described in Huber et al.
(1997, fig. 7) are projected as black crosses. Their type I plots closer to G. radians, while their type II is akin
to G. siphonifera.
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Figure 7: LDA histograms for morphological distinction between selected genotypes of the Globigerinella
siphonifera/G. calida plexus
a) Histograms of linear discriminant analysis (LDA) between genotypes Ia+IIIb+IIIc and the other genotypes.
Genotypes Ia+IIIb+IIIc are characterized by a stronger elongation of the last chamber in both lateral and
umbilical/spiral view.
b) Histograms of LDA between genotypes Ia and IIIb+IIIc, showing that genotypes IIIb+IIIc are characterized
by the larger value of (inversely correlated with PS), i.e. by a more trochospiral coiling and a less equato
rial aperture.

In order to determine to what degree
the morphological separation is possible
without the time consuming SEM imaging,
we subsequently analyzed light microscop
ic images of 128 genotyped individuals
(Table S2). Since it is not possible to take
images of the lateral view without fixing
the specimens, only pictures from the um
bilical/spiral side were available. Conse
quently, the number of morphological vari
ables was limited and characters like the
angle , that proved important for the sep
aration into morphological groups, could
not be measured. Nevertheless, the PCA
analysis of the measurements on the light
microscopic images still revealed a sepa
ration, with specimens belonging to types
Ia, IIIb and IIIc occupying a much smaller
portion of the morphospace, albeit with
strong overlap to the rest of the genetic
types (Figure 8a). A further separation of
type Ia from IIIb/c, however, is not appar

ent in this analysis. The morphological trait
responsible for the slight separation into
two groups is the elongation of the cham
bers (mainly the last chamber), whereas
the number of chambers in the last whorl
proves to be variable, but not related to a
certain genetic type. This finding supports
the results from the SEM analyses and con
firms that chamber elongation is the most
important distinction factor. In comparison
to the analysis based on SEM images, a
differentiation into morphological groups
solely on the basis of light microscopic im
ages proves to be difficult and the LDA only
classifies 78% of individuals correctly, alt
hough the difference between the groups
remains highly significant at p < 0.001 (Fig
ure 8b). As implied by the results of the
PCA, a further separation between genetic
types Ia and IIIb/c by an LDA is not possible
(p = 0.738).
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The final characteristic of the calcite
shell that might be useful for genotype
differentiation is the porosity (Table S3).
Since differences in porosity had been de
tected before for individuals belonging to
two different morphological types of G.
siphonifera (Huber et al., 1997), we ana
lyzed high magnification SEM images of
shell wall surface at the last chamber of 66
specimens that had also been used for the
morphometric analysis (Figure 3). A medi
an of 104 pores were measured per indi
vidual. Comparing the mean pore diameter
and the mean porosity with the size of the
individuals we see a slight trend towards
increasing pore parameters with larger
shell sizes, when regarding the whole plex
us as one group (p < 0.001, Figure 9). When

the different genotypes are regarded as
separate entities, however, this trend is
only significant in genotypes IIa4 (p(pore
size) = p(porosity) = 0.028), and IIa5
(p(porosity) = 0.005, Table S3). In the majority
of size classes we detect the whole range
of pore size and porosity values. The use of
a mathematical approach to calculate the
pore parameters of specimens of the
G. siphonifera/G. calida plexus on the basis
of measurements that are widely invariant
in regard to viewing angle makes our re
sults reliable, even though we could in rare
cases only measure 10 pores/specimen.
This is supported by the high degree of
replicability of measurements on the same
specimen (n = 40, paired t test, p(pore
size) = 0.789, p(porosity) = 0.912).

Figure 8: PCA biplot and LDA histograms of morphometric data obtained from light microscopic images of
Globigerinella siphonifera/G. calida individuals
a) Principal component analysis (PCA) of three size invariant characters (see Fig. 3) extracted from light
microscopic images in umbilical/spiral view. Types Ia and III are situated in one sector of the plot and are
mainly distinguished from the other genotypes by a stronger elongation of the last chamber, albeit showing
large overlap in morphospace with the other types.
b) Linear discriminant analysis (LDA) histograms for the distinction of genetic types Ia+IIIb+IIIc from the
other types on the basis of the three characters extracted from light microscope images. The correct classi
fication rate in the LDA is larger than 78%, and the Hotelling’s T2 value indicates a significant morphological
difference between the groups. Nevertheless, the large overlap between the histograms confirms the PCA
results indicating that distinctions between the genotypes on the basis of umbilical/spiral light microscopic
images alone is less reliable than that based on exactly positioned SEM images including the lateral view.
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Testing for possible influences on the
pore parameters using a Scheirer–Ray–
Hare test, we detected a significant influ
ence of the genetic background of the indi
viduals as well as of the region in which
they were sampled, but not of the interac
tion term of the two factors (Table 1). We
observe large pore diameters and high po
rosity in individuals belonging to types Ia
and Ib and small pores and low porosity
values in the morphologically similar types

IIIb and IIIc (Figure 10, Table S3). The ge
netic type cluster IIa is marked by a high
variability in pore sizes and porosities with
in genetic types, with three types (IIa1,
IIa3, and IIa4) showing lower values than
type IIa5. Comparing the different sampling
localities, we detect smaller pore sizes and
porosity values in the Pacific and off Japan
compared to the Indian Ocean and the
Mediterranean Sea. This finding is con
sistent for all genetic types, which implies

Figure 9: The relationship between pore parameters and shell size in individuals of the Globigerinella
siphonifera/G. calida plexus
The relationship between pore size and porosity to shell size in the G. siphonifera/G. calida plexus. Though
there is likely a relationship between shell size and pore parameters (due to the small sample sizes this is
only significant in genotypes IIa4 (p(pore size) = p(porosity) = 0.028), and IIa5 (p(porosity) = 0.005), Kendall–Theil ro
bust line fitting), the graph shows that in the majority of the size range the whole observed range of pore
sizes and porosities is realized and the observed variation in these parameters is not merely reflecting shell
size.

Factor p value (pore size) p value (porosity)
Genotype <0.001 <0.001
Region 0.008 0.008
Genotype * Region 0.100 0.053

Table 1 Results of a Scheirer–Ray–Hare test for the influence of genotype, sam
pling region, and their interaction on the pore size and porosity of specimens of
the Globigerinella siphonifera/G. calida plexus. For a full cross wise comparison
of genotypes and sampling sites (Mann–Whitney U test with adjusted p values)
see Table S3.
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that they exhibit the same direction of re
action of the pore parameters to the envi
ronmental conditions at a certain sampling
locality.

Discussion

Representativeness of sampling
To date, the genus Globigerinella appears
to be the most genetically diverse within

the planktonic foraminifera (de Vargas et
al., 2002; Darling and Wade, 2008) (Figure
1, 5). However, the amount of genetic di
versity is not endless and a Jackknifing
analysis presented by Weiner et al. (2014)
indicated that the 12 genetic types record
ed at that time were likely a comprehen
sive representation of the genetic diversity
within the lineage. In this study, DNA se

Figure 10: Boxplots for the analysis of influence of genotype and sampling location on the pore parame
ters in Globigerinella siphonifera/G. calida individuals
Boxplots and original data points showing the variability of pore size and porosity within the G. siphonif
era/G. calida plexus by genotype and sampling location. Both genotype and sampling location have a signif
icant influence on both parameters (Table 1). In the porosity plots the porosity values determined by Huber
et al. (1997) as being typical for the last chamber of their types I and II are indicated by dotted lines.
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quences were obtained from additional 44
individuals at three stations in the south
ern Pacific, a region that was not sampled
before. Yet, all of these sequences could be
assigned to one of the genetic types of
Weiner et al. (2014). This fact supports the
claim by Weiner et al. (2014) that the
number of sampled genetic types is close
to saturation both with respect to the addi
tion of more individuals as well as to sam
pling of new regions. This is important,
because it allows us to assume that the
image dataset we analyze is representative
of the full diversity within the plexus.

Genetic identity of Globigerinella calida spec
imens
Due to the similarity between G. calida and
G. siphonifera, the genetic distinction be
tween the two species remained uncertain.
However, an analysis of the original attrib
utions given to each sampled individual
included in this study indicated that the G.
calidamorphology, mainly characterized by
more elongated chambers (Parker, 1962),
is found in several of the delineated genet i
c types (Figures 4 and 5). This analysis also
revealed that the specimens have been
labeled as G. calida conservatively, i.e., the
majority of the specimens belonging to the
genetic types associated with the G. calida
morphology were labeled as G. siphonifera.
This is interesting considering that the
SEM based morphometric analysis re
vealed a strong separation of specimens
with the general G. calida morphology
(Figure 7a). On the other hand, the analysis
based on light microscope images (Figure
8) showed a higher degree of overlap be
tween the two groups, indicating that the
distinction between the two species is less
obvious when working on material in the
plankton.

Both, the analysis of the genetic identi
ty of specimens labeled as G. calida in the
field (Figures 4) and the morphometric
analysis (Figure 7a) indicate that the gen
eral morphology of G. calida occurs inde
pendently in two unrelated lineages.
Moreover, specimens belonging to these
lineages can clearly be separated from
each other morphologically (Figure 7b).
Since this separation is based on a charac
ter that is only visible in the lateral view, a
validation on light microscopic images was
not possible. Nevertheless, specimens in
the field can be observed in lateral views
and the character is thus likely to be useful
in field studies.

The association of two distinct “G. cali
da” morphologies with two genetically dis
tinct lineages indicates the existence of a
taxonomic confusion. Before any attempt
to resolve this confusion, it has to be estab
lished that the morphological differences
do not represent ecophenotypic variants.
This possibility can be easily discarded on
the basis of our sampling. Specimens be
longing to all three morphologically recog
nizable groups co occur together at the
same stations and depth intervals (Figure
2, Table S1). If the characters associated
with the broad “G. calida” morphology
were due to ecophenotypic variability then
there should have been no distinction be
tween specimens of the G. siphonifera and
G. calida morphology from the same plank
ton haul.

Congruence of morphotypes with existing
species concepts
To clarify the relation of the three mor
photypes to the originally described mor
phospecies we projected the morphomet
ric values of the type specimens and illus
trations onto the PCA plot, revealing a sur
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prisingly high congruence with the three
morphologic groups (Figure 6). The G. si
phonifera morphology appears to be most
akin to the largest group of genetic types,
especially when the lectotype by Banner
and Blow (1960) is considered. The lecto
type has been selected to represent a more
typical specimen than the original drawing
by d’Orbigny (1839) and a better congru
ence of the latter one with our samples is
thus not surprising. Consequently, we con
clude that most of our genetic types cor
respond to the current species concept of
G. siphonifera.

The separation of the two “G. calida”
morphologies is possible based on charac
ters best seen in the lateral view. Individu
als of the genetic types IIIb and c are
marked by a higher deviation from planspi
rality than individuals belonging to type Ia

and are therefore closer to the original
description of the G. calida morphology,
which was described as having an umbilical
aperture (Parker, 1962). This is supported
by the fact that the G. calida holotype is
projected in the center of the IIIb/c group
in the PCA biplot. In order to further test
our assumption that the genetic lineage III
corresponds to G. calida, we used molecu
lar clock estimates to compare the ages of
the lineages derived from molecular data
to those observed for morphospecies in
the fossil record (Figure 11, Weiner et al.,
2014). The first appearance date (FAD) for
G. calida in the fossil record lies between
3–4 Ma according to data in the CHRONOS
database (http://chronos.org), the FAD for
G. praecalida dates to 9 Ma. These ages are
consistent with the G. praecalida morphol
ogy representing ancestral populations of

Genetic type Revised Taxonomy Classical Taxonomy
Ia G. radians G. calida or G. siphonifera
Ib G. siphonifera G. siphonifera
IIa1 G. siphonifera G. siphonifera
IIa2 G. siphonifera G. siphonifera
IIa3 G. siphonifera G. siphonifera
IIa4 G. siphonifera G. siphonifera
IIa5 G. siphonifera G. siphonifera
IIa6 ? G. siphonifera
IIb G. siphonifera G. siphonifera
IIIa ? G. calida
IIIb G. calida G. calida
IIIc G. calida G. calida

Table 2 The correspondence between genetic diversity and morphological vari
ability within the Globigerinella siphonifera/G. calida plexus, including classifi
cation following classical taxonomy (e.g., Parker, 1962) and the revised taxon
omy, based on the morphometric measurements from this study. Question
marks stand for genetic types whose morphology could not be confirmed by
quantitative analysis, because no suitable images were available.
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lineage III, their first appearance marking
the divergence between lineage III and
lineage II. In this scenario, interestingly, the
appearance of the G. calida morphology
around 3 Ma corresponds to the oldest
divergence among the genetic types of
lineage III. Importantly, the fossil record is
not compatible with the divergence age of
lineages Ia and Ib, which is too young. If
lineage Ia represented G. calida, then that
morphology would have to be associated
with lineage I until the divergence between
genetic types Ia and Ib, when type Ib would

have lost its chamber elongation. We con
sider this scenario less likely, because it
would imply that the morphology of genet
ic type Ib would have to revert back to the
ancestral morphology (the ancestral Mio
cene form of Globigerinella, G. obesa, does
not possess radially elongated chambers).
These observations thus further supports
the assumption that extant representatives
of the genetic lineage III are most affine to
the species concept of G. calida as it has
been applied in the fossil record.

Since the genetic type Ia can also be

Figure 11: Molecular clock estimates for Globigerinella siphonifera/G. calida and their sister species Beel
la digitata
Molecular clock for G. siphonifera/G. calida and B. digitata based on a MAFFT alignment with time estimate
ranges from the uncorrelated lognormal relaxed molecular clock, modified after Weiner et al. (2014). For
details on the procedures see this previous study. Numbers at nodes indicate divergence ages with 95%
confidence intervals. Number in brackets indicates fixed age for the split of Globigerinella and B. digitata.
The histogram shows the occurrence of G. calida (blue) and G. praecalida (red) as it is recorded in the
CHRONOS database (http://chronos.org).
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separated morphologically from all other
types we investigated whether it is related
to some already known morphologic con
cept. Globigerinella adamsi was described
as a sister to G. siphonifera and G. calida
(Banner and Blow, 1959) and could be a
potential candidate. However, G. adamsi is
described as having even more elongated
chambers (Banner and Blow, 1959; Parker,
1962) and so far it was exclusively found in
sediments from the Pacific or Indian Ocean
(Bé and Tolderlund, 1971; Hemleben et al.,
1989). Since we find our type Ia also in the
Caribbean Sea, G. adamsi is unlikely to cor
respond to it.

Searching the literature we discovered
with Globigerina radians (Egger, 1893) an
illustration of a specimen possessing a
morphology that closely resembles that of
G. calida but appears more planispiral.
Adding the morphometric parameters of
the type illustration to the PCA we see that
the illustration corresponds to our speci
mens of type Ia, characterized by highly
elongated chambers and a small value of .
We note that the original description of G.
radians by Egger (1893) appears indistin
guishable from the description of G. calida
by Parker (1962), but the distinctly plan
ispiral specimen illustrated by Egger (1893)
differs from the holotype of G. calida (Fig.
6). We therefore propose to reinstate G.
radians as a name for specimens of genetic
type Ia (Figure 12).

To compare our morphotypes with the
two types that were first described by Fa
ber et al. (1988) and morphometrically
analyzed by Huber et al. (1997), we pro
jected the morphological traits of one
specimen of type I as well as type II, figured
in Huber et al. (1997, fig. 7), into the PCA

morphospace of our analysis (Figure 6).
Thereby we could show that their type II
resembles our G. siphonifera, whereas
their type I is more closely related to our
G. radians.

The paraphyletic status of G. siphonifera
A taxonomic revision of the G. siphonif
era/G. calida plexus is confounded by the
fact that the identity of several genetic
types cannot be evaluated (Table 2). Thus,
genetic type IIIa did not yield images of a
high enough quality to be included in the
morphometric analyses. It can therefore
not be entirely excluded that this genetic
type is associated with the G. siphonifera
morphology and not like the rest of lineage
III with G. calida. Further difficulty arises
from the fact that the majority of the ge
netic types appear morphologically similar.
This is most troublesome for type Ib, which
cannot be included into the species con
cept of G. radians, because it resembles
the G. siphonifera morphology otherwise
found in specimens of lineage II. Conse
quently, our taxonomic revision based on
shell morphology (Figure 6) leads to a pa
raphyletic G. siphonifera including speci
mens of genetic type Ib and lineage II,
which are unrelated, but cannot be sepa
rated further from each other (see Figure
S1). It is entirely possible that traits other
than those based on shell morphology will
allow a separation of type Ib from G. si
phonifera and we note that biological or
physiological differences (including the
possession of symbionts), were shown be
fore to diverge between two different
types of G. siphonifera (Faber et al., 1988;
Faber et al., 1989; Huber et al., 1997).
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In this context, another feature of the
shell that was reported to differ between
the two different types that were originally
described by Faber et al. (1988) is the shell
porosity (Huber et al., 1997). Differences in

pore size were used to differentiate be
tween the two types for which also a rela
tionship to genetic divergence was sug
gested. In the present study we use porosi
ty measures as a further possibility to dif

Figure 12: SEM images of the three morphotypes
SEM images of the umbilical/spiral side, apertural side and close up view of the pores of one individual of
each morphotype with their revised taxonomy. Scale bars at pictures with the whole shell are 60 μm, close
ups have a scale bar of 20 μm. The Globigerinella siphonifera specimen was sampled in the Arabian Sea
(Station 945), G. radians and G. calida in the Mozambique Channel (stations MC 12 and MC 3 respectively).
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ferentiate genetic types on a morphologi
cal basis and to assess the correlation with
the types I and II as described by Faber et
al. (1988). Because pores appear to facili
tate gas exchange between the cytoplasm
and the environment (Hemleben et al.,
1989), shell porosity is primarily controlled
by body size (Brummer et al., 1987). This is
because cytoplasm volume increases with
the cube of chamber diameter, but pore
area only with the square of chamber di
ameter. This relationship explains the ob
served relationship between porosity and

shell size in our data (Figure 9). However,
within the range of shell sizes represented
in our dataset, we only detected a minor
influence of shell size on pore parameters,
explaining a maximum of 23% of the total
variation (Figure 9, Table S3). Therefore,
we conclude that among the studied spec

imens porosity is not predominantly con
trolled by the individual ontogeny, and the
observed differences require another ex
planation. Taking other parameters into
account, both the genotype and the sam
pling location have a significant influence
on the pore parameters (Table 1). The rela
tionship is particularly strong with geno
type, with five of the eight analyzed genet
ic types consistently showing low porosity
values (Figure 10).

The largest pores and higher porosity is
observed in specimens of lineage I. This is

consistent with the results by Huber et al.
(1997), suggesting that pore parameters
could be used to differentiate specimens of
genetic lineage I from specimens of lineage
II. The values of mean porosity reported for
the two genetic types in Huber et al. (1997)
are slightly lower than those observed

Figure 13: Comparison of environmental preferences of Globigerinella calida and G. radians
Distribution of the morphotype generally referred to as G. calida (Barrows and Juggins, 2005; Kucera et al.,
2005) along sea surface temperature (global SST as annual mean and mean of the upper 20 m of the water
column from the World Ocean Atlas, Locarnini et al., 2013) and productivity (10 year averaged annual
chlorophyll a concentration from Ocean Color Web, Feldman and McClain, 2013) in the Northern Atlantic
(including Caribbean) and the Mediterranean Sea. Corresponding SST and chlorophyll a values for the sam
pling sites of genotyped and morphologically analyzed individuals of G. calida and G. radians from this
study are added at the top of the graphs (filled symbols: genotype and morphotype known, open symbols:
only genotype known). Both species appear to show the same preferences for primary productivity as well
as water temperature.
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among the analyzed specimens (Fig. 10).
This offset likely reflects the fact that we
measured the pores from the outside in
stead of breaking the shell to measure
from the inside. Unfortunately, we observe
that large pores and high porosity also
marks specimens of genetic type IIa5 (Fig.
10). This means that the propensity for
building disproportionately large and more
concentrated pores evolved at least twice
in Globigerinella and cannot be universally
used to differentiate between specimens
of lineages I and II. On the other hand, the
observation that there is no statistically
significant interaction between genotype
and sampling region suggests that the ob
served differences in pore parameters are
an inherent property of the genotypes and
are at least partly genetically fixed. The
existence of a weaker but significant rela
tionship between pore parameters and
locality implies a secondary ecophenotypic
effect. This effect is consistent between
genotypes (has the same sign), meaning
that the pore parameters will remain offset
at the same locality and may be used as a
rough indicator to distinguish between
genotypes I+IIa5 and rest of II+III, even
though the threshold value will differ
among localities.

Ecological differentiation
In many cases, cryptic species were shown
to exhibit a more restricted biogeograph
ical distribution than the morphospecies
they belong to (e.g. Aurahs et al., 2009;
Weiner et al., 2012). De Vargas et al. (2002)
reported a non random distribution asso
ciated with the productivity in the water
column for four different genetic lineages
of G. siphonifera, corresponding to our
lineages I, IIa, IIb and III. Therefore, we also
tested for a potential correlation between

the distribution of the revised morphospe
cies and water mass characteristics. How
ever, the fact that in many regions all three
morphospecies co occur indicates that
there is no difference in their biogeograph
ic distribution. A comparison with data
from surface sediment samples as reported
in the MARGO database (Figure 2, Barrows
and Juggins, 2005; Kucera et al., 2005) also
shows that G. siphonifera and G. calida
share a common range of occurrence.

To test specifically for a possible affinity
to different environmental settings be
tween the two species with elongated
chambers, we plotted the localities of all
genotyped specimens (Weiner et al., 2014
and this study) of these morphospecies
against the annual average temperature
and productivity at those localities. By
comparing the occurrence of G. calida and
G. radians in the north Atlantic, Mediterra
nean Sea and Caribbean Sea with extracted
sea surface temperature and chlorophyll a
data we observe the exact same tempera
ture tolerance of both G. calida and G. ra
dians (Figure 13). Both morphotypes show
two abundance peaks, one at a higher
temperature and one in colder waters.
When comparing those results with the
distribution of “G. calida” in the sediment
according to the MARGO database it ap
pears that this pattern resonates with the
occurrence of two abundance maxima in
the morphospecies. Therefore, the
“G. calida” assemblages seem to be a mix
ture of G. calida and G. radians.

Parallel evolution of morphological traits
By comparing the morphology of the indi
viduals to their genetic background we
were able to support our first impression
that morphological divergence only maps
partly onto the genetic diversity. We find
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elongated chambers in individuals of line
ages I and III, leaving only lineage II to
completely represent the typical G. si
phoniferamorphology. Thus, unexpectedly,
we are confronted with the fact that a simi
lar chamber morphology evolved twice in
Globigerinella and can be found in individ
uals belonging to different genetic line
ages. The same seems to apply to the evo
lution of larger pores and higher porosity.
This character has likely evolved early (late
Miocene) in the evolutionary history of
lineage I, but it also must have evolved in
parallel in genetic type IIa5, most likely in
the Quaternary (Figure 11). We suggest
that the evolution of elongated chambers
in two different genetic lineages is the re
sult of parallel evolution, as it was shown
before to have been the case for digitate
chamber shapes in various morphospecies
of planktonic foraminifera (Coxall et al.,
2007). Surprisingly, in the genus Glo
bigerinella we show that parallel evolution
operates on the lowest taxonomic level,
and that it involves not only chamber
shape but also the properties of the shell
wall (pore parameters).

Conclusions

The morphometric analysis of shell shape
and porosity of genotyped individuals of
the Globigerinella siphonifera/G. calida
plexus provides evidence for the morpho
logical differentiation of several SSU rDNA
genetic types. A detailed morpho genetic
comparison allows us to use this infor
mation to revise the taxonomy of the ge
nus. Our analyses show that the genetic
types Ia, IIIb and IIIc can be separated from
the rest of the altogether 12 genetic types
due to their radially elongated chambers
and in case of types IIIb/c also because of

the deviation from planspirality. Although a
separation into three morphologic groups
proved to be difficult using light microscop
ic pictures, the differentiation conducted
on SEM images is highly significant. We
also discovered a difference in the porosity
and pore size values between the different
genetic lineages. Our data though show
that the pore parameters are influenced
not only by the genetic background of the
individual but also by environmental fac
tors and that like chamber shape this char
acter also underwent parallel evolution. A
comparison of the three morphologic
groups with the original descriptions for
members of the Globigerinella genus re
veals that most of our genetic types corre
spond to the morphology of G. siphonifera.
The genetic lineage III could be shown to
most resemble the true G. calida morphol
ogy (Parker, 1962), which is also supported
by molecular clock estimates, dating the
diversification in this lineage to the same
age as the FAD of G. calida known from the
fossil record. For the third morphologic
group found within the plexus, we propose
the name Globigerinella radians, which was
attributed to this morphology by Egger
(1893) but virtually ignored since. We are
aware of the fact that a revision of the tax
onomy in Globigerinella for now creates a
paraphyletic group with genetic types of
two different lineages manifesting the G.
siphonifera morphology, but our data do
not show sufficient evidence for a separa
tion of genetic type Ib from the rest of the
G. siphonifera group. The fact that we ob
serve elongated chambers as well as high
porosity in different genetic types shows
that in the genus Globigerinella, parallel
evolution is highly prevalent acting on the
lowest taxonomic level.
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Appendix: Systematic appendix

Genus Globigerinella Cushman 1927

The genus Globigerinella as described by
Cushman (1927) includes species of plank
tonic foraminifera with nearly planispiral
tests in the adult stage, globular to ovate
chambers, umbilical to equatorial aperture
and fine round spines (Kennett and
Srinivasan, 1983). Three extant morphos
pecies have been assigned to this genus
(e.g., Hemleben et al., 1989): Globigerinella
siphonifera (d’Orbigny, 1839), Globigerinel
la calida (Parker, 1962) and Globigerinella
adamsi (Banner and Blow, 1959). In the
present study based on genetic and mor
phometric data, we further include among

the extant species Globigerinella radians
(Egger, 1893).

Globigerinella radians (Egger, 1893)

Text figure 11

Globigerina radians Egger, 1893, p. 170,
plate XIII (figs 22 24)

non Globigerina radians – Rhumbler, 1909,
p. 148, plate XXIX (figs 2 4) – Parker, 1958,
p. 278, plate 5 (fig 10) – Drooger &
Kaasschieter, 1958, p. 84, plate 4 (fig 24)
plate 5 (fig 6)

Type specimen: none designated; the spec
imen figured by Egger (1893) on plate XIII,
figs 22 24; material of the Gazelle expedi
tion was stored at the “bayerische Staats
sammlung für Paläontologie und Geolo
gie”, but destroyed during world war 2;
type specimen considered to be lost

Type locality: The species is originally de
scribed from sediments from the southern
Indian and Pacific Ocean collected during
Gazelle expedition, localities cited in Egger
(1893) are west. Australia St. 87 (20°49 S,
113°46 E, depth 915 m), St. 90 (18°52 S,
116°18 E, depth 357 m); Fiji St. 130 (14°52
S, 175° 32 W, depth 1655 m)

Diagnosis: Individuals of Globigerinella ra
dians possess nearly planispirally coiled
highly evolute shells with typically five
chambers in the last whorl. Chambers in
the last whorl are radially elongated (

9.0lE , 1.1LE , 0.1E ) with rounded

tips. Aperture is equatorial, forming a high
symmetrical arch. The surface of the shell
is covered by round spines. The species
differs from Globigerinella calida by a more
planispiral coiling ( 9.7 , 9.0PS ), as
well as by possessing larger pores and
higher shell porosity. Unlike Globigerinella
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adamsi, G. radians never shows pointed
chamber tips and the degree of chamber
elongation is not as extreme as in that spe
cies.

Mean shell height in lateral view: 473–
771 m (mean = 633 m, n = 8)

Observed occurrences in this study (geno
typed individuals): Caribbean Sea, Mozam
bique Channel, southwestern Pacific Ocean

Remarks: The original description of Glo
bigerinella radians by Egger (1893) refers
to planispirally coiled shells with a loose
chamber arrangement and a significant size
increase from one chamber to the next as
well as a spinose surface. Subsequently,
Rhumbler (1909) used the name Globigeri
na radians for a non spinose foraminifera,
although he is referring to Egger’s work
(1893). Rhumbler’s concept was adopted
by (Parker, 1958) until it was renamed as
Globigerina atlantisae by Cifelli and Smith
(1970), and later synonymized with Tenui
tella iota (Hemleben et al., 1989). Drooger
and Kaasschieter (1958) used this name for
specimens from Caribbean surface sedi
ments corresponding to a morphology that
we consider to be Globigerinella calida.

Globigerinella calida (Parker, 1962)

Text figure 11

Globigerina subcretacea – Drooger & Kaas
schieter, 1958, p. 84, plate 4 (fig 23) plate 5
(fig 5)

Globigerina radians – Drooger & Kaas
schieter, 1958, p. 84, plate 4 (fig 24) plate 5
(fig 6)

Globigerina sp. – Bradshaw,1959, p. 38,
plate 6 (figs. 19, 26 28)

Globigerina calida Parker, 1962, p. 221,
plate 1 (figs. 9 13, 15)

Globigerinella calida – Saito, Thompson
and Breger, 1976, p. 282, plate 1 (fig. 2)
plate 6 (fig. 2) plate 8 (fig. 1) – Saito,
Thompson and Breger, 1981, p. 32, plate 4
(figs 2a d) – Kennett and Srinivasan, 1983,
p. 240, plate 60 (figs 7 9) – Hemleben et al,
1989, p. 18, figure 2.3 e, f

Type specimen: Holotype USNM no.
638685 (Parker, 1962)

Type locality: The species is originally de
scribed from surface sediments from the
central southern Pacific Ocean, (14°44 S,
112°06 W, depth 3120 m), Downwind BG
130 (0 4 cm.)

Diagnosis: Individuals of Globigerinella
calida possess slightly trochospirally coiled
evolute shells with typically five chambers
in the last whorl. The last whorl is marked

by radially elongated chambers ( 9.0lE ,

0.1LE , 0.1E ) with rounded tips. The
aperture is in an interiomarginal position
and cannot be seen from the spiral view.
The surface of the shell is marked by round
spines. The general appearance is similar to
Globigerinella radians, however, the
chambers are less elongated in side view,
the species has smaller pores and less shell
porosity and shows a clear deviation from
planispirality ( 1.22 , 5.0PS ).

Mean shell height in lateral view: 226–
675 m (mean = 417 m, n = 11)

Observed occurrences in this study (geno
typed individuals): Caribbean Sea, Eastern
Mediterranean Sea, Red Sea, Arabian Sea,
Mozambique Channel, middle western
Pacific Ocean
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Remarks: The original description of Glo
bigerinella calida by Parker (1962) refers to
trochospiral shells with rapidly enlarging
chambers and the last chambers being
elongated radially. Her specimens have ~5
chambers in the final whorl and the aper
tures are approaching an interiomarginal
position. She differentiates G. calida from
G. siphonifera by having less involute
chambers and less spines. Parker (1962)
synonymizes her description with Globiger
ina sp. described by Bradshaw (1959),
however she neither refers to the Globiger
ina radians described in Drooger &
Kaasschieter (1958) nor to the Globigerina
subcretacea from the same authors, which
both describe the same morphology as G.
calida. Parker’s description of the species
still remains valid until today, however in
Saito, Thompson and Breger (1976) the
species was assigned to the genus Glo
bigerinella.

Globigerinella siphonifera (d’Orbigny, 1839)

Text figure 11

Globigerina siphonifera d’Orbigny, 1839, p.
83, plate 4 (figs 15 18)

Cassidulina globulosa – Egger, 1857, p. 296,
plate 11 (fig 4)

Globigerina aequilateralis – Brady, 1879, p.
285 – Brady, 1884, p. 605, plate 80 (figs 18
21) – Egger, 1893, p. 172, plate XIII (figs 5
8)

Globigerinella aequilateralis – Cushman,
1927, p. 87 – Bradshaw, 1959, p. 38, plate
7 (figs 1, 2) – Cifelli and Smith, 1970, p. 35,
plate 4 (figs 2 4) – Walker and Vilks, 1973,
p. 196, plate 1 (figs 6, 7) – Saito, Thompson
and Breger, 1976, p. 281, plate 3 (figs 1, 2)
plate 6 (fig 7) plate 8 (figs 3, 8) – Saito,
Thompson and Breger, 1981, p. 26, plate 2

(figs 2a d) – Kennett and Srinivasan, 1983,
p. 238, plate 59 (fig 1) plate 60 (figs 4 6)

Hastigerina aequilateralis – Bolli, Loeblich
and Tappan, 1957, p. 29, plate 3 (fig 4)

Hastigerina siphonifera – Banner and Blow,
1960, p. 22, figures 2, 3

Globigerinella siphonifera – Parker, 1962,
p. 228, plate 2 (figs 22 28) – Hemleben et
al, 1989, p. 18, figure 2.3 i, k

Type specimen: Lectotype: Alcide d’Orbigny
collection at the Muséum Nationale de
l’Histoire Naturelle, Paris, designated by
Banner and Blow (1960)

Type locality: The species is originally de
scribed from recent beach sand on Cuba
(Banner and Blow, 1960)

Diagnosis: Individuals of Globigerinella si
phonifera possess in adult stages nearly
planispirally coiled involute shells with typ
ically five chambers in the last whorl.
Chambers in the last whorl are globular or

ovoid ( 7.0lE , 9.0LE , 9.0E ). Aper

ture is equatorial, forming a high symmet
rical arch. The surface of the shell is cov
ered with round spines. The species differs
from G. radians and G. calida by less elon
gated chambers especially in lateral view.
In contrast to G. calida, G. siphonifera does
not show a strong deviation of the growth
axis from the planispiral plane ( 0.8 ,

0.1PS ).

Mean shell height in lateral view: 200–
744 m (mean = 476 m, n = 44)

Observed occurrences in this study (geno
typed individuals): Caribbean Sea, middle
eastern Atlantic Ocean, Mediterranean
Sea, Red Sea, Arabian Sea, Mozambique
Channel, western Pacific Ocean
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Remarks: The original description of Glo
bigerinella siphonifera by d’Orbigny (1839)
refers to planispirally coiled shells with
globular chambers and many spines. His
specimens have ~5 chambers in the last
whorl and the aperture is elongate. The
species was later renamed in Globigerina
aequilateralis by Brady (1879), however,
this name was declared a junior synonym
by Banner and Blow (1960). These authors
though attributed the species to the genus
Hastigerina, which was changed again by
Parker (1962), who referred to the species
as Globigerinella siphonifera, the name
which is still valid today.
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8. Concluding remarks and Perspectives  

8.1. Implications of the results 

The case studies presented in this thesis support the hypothesis that cryptic diversity 
within planktonic foraminifera morphospecies is a prevalent pattern (e.g. Darling & Wade 
2008). However, they also show that it is not pervasive in the entire group of planktonic 
foraminifera and that it does not have unlimited dimensions. This overall assumption on 
the biodiversity of planktonic foraminifera is now possible, given that more morphospecies 
have been subject to detailed genetic analysis and by now, large collections of samples 
from around the world have been accumulated, which detect even geographically restric-
ted cryptic species. 

The study conducted on the enigmatic species Hastigerina pelagica (Chapter 4) is the first 
detailed investigation of a member of the Hastigerinidae. By screening the morphospecies 
for cryptic diversity though, the already known number of SSU rDNA genetic motifs was 
supported (Aurahs et al. 2009a). Although, sampling effort was largely enhanced (also to 
regions that have not been sampled before), no more than these three sibling species 
were discovered (Table 8.1). This result is in contrast to the high genetic diversity that 
might have been expected for the morphospecies from its global distribution, but low 
abundances in the ocean. The finding of complete genetic homogeneity of the SSU rDNA 
in the Globigerinoides sacculifer plexus was also rather unexpected (Chapter 5). Due to its 
high morphological variability that led to the differentiation of four morphospecies (e.g. 
Kennett & Srinivasan 1983), an at least equally high genetic divergence was expected. 
However, for the first time in planktonic foraminifera, and despite sampling a wide area of 
the distribution range of the morphospecies, only a unique SSU rDNA sequence motif was 
discovered (Table 8.1) that had already been described before (Darling et al. 1996a; Darling 
et al. 1997; de Vargas et al. 1997).  

The number of genetically analyzed morphospecies was further enhanced by sequencing 
individuals of the morphospecies Beella digitata (Chapter 6). However, due to the small 
dataset, so far no concluding assessment of its genetic diversity could be performed. The 
genetic diversity of the morphospecies plexus Globigerinella siphonifera/Globigerinella 
calida, in contrast, could be studied in detail due to the large dataset available (Chapter 6). 
This group has long been known to be genetically extremely diverse (e.g. de Vargas et al. 
2002; Darling & Wade 2008), however, due to the only slight sequence differences between 
some cryptic species the genetic diversity was never entirely resolved. A seven fold 
increase in sequencing effort and nearly global sampling now allowed elucidating the 
exact amount of genetic diversity existing in the group. Although the total number now 
sums up to 12 cryptic species in the genus Globigerinella (Table 8.1), most interestingly, this 
number was here only raised by two that had not been described before.  
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Table 8.1: Summary of all morphospecies of the five different morphogroups that have been analyzed genetically so far, including the 

number of contained cryptic species and the associated publications. Morphospecies for which too few sequences were obtained to 

screen for cryptic diversity are marked by “not yet determined”. Bold print indicates species that were studied as part of this thesis and 

the newly described sequences/cryptic species. The genus Globigerinella is separated into the three newly declared species according to 

Chapter 7 of this thesis. Except for two, all of the cryptic species of this genus were known before. Publications: (1) Darling et al. 1997, 

(2) de Vargas et al. 1997, (3) Darling et al. 1999, (4) Darling et al. 2000, (5) Darling et al. 2003, (6) Darling et al. 2007, (7) Morard et al. 
2013, (8) Atsushi Kurasawa, personal communication, April 2014, (9) Stewart et al. 2001, (10) Aurahs et al. 2009a, (11) Aurahs et al. 
2011, (12) Wade et al. 1996, (13) Aurahs et al. 2009b, (14) Kuroyanagi et al. 2008, (15) Seears et al. 2012, (16) Darling et al. 1996a, (17) 

de Vargas et al. 1999, (18) Morard et al. 2009, (19) de Vargas et al. 2002, (20) Darling & Wade 2008, (21) Schweizer et al. 2008, (22) de 

Vargas et al. 2001, (23) Quillévéré et al. 2013, (24) Morard et al. 2011, (25) Darling et al. 2004, (26) Ujiié et al. 2012, (27) Darling et al. 
2009, (28) Ujiié et al. 2008. 

Morphospecies Cryptic species Reference 

Globigerina bulloides 12 1-8 
Globigerina falconensis not yet determined 9, 10 
Globigerinoides conglobatus 1 1, 2, 11 
Globigerinoides elongatus 3 11 
Globigerinoides ruber 1 2, 11-13 
Globigerinoides sp. (ruber white) 4 13-15 
Globigerinoides sacculifer 1 1, 2, 16, this study (Chapter 5) 

Orbulina universa 3 1-3, 12, 17, 18 
Beella digitata not yet determined this study (Chapter 6) 

Globigerinella siphonifera 9 1-3, 10, 12, 15, 19, 20, 
this study (Chapters 6 + 7) 

Globigerinella calida 2 this study (Chapters 6 + 7) 
Globigerinella radians 1 2, 19, this study (Chapter 7) 

Turborotalita quinqueloba 6 4, 5, 9, 15 
Globoturborotalita rubescens not yet determined 15 

Globorotalia hirsuta not yet determined 2, 10, 21 
Globorotalia menardii not yet determined 1, 2, 15 
Globorotalia scitula not yet determined 15 
Globorotalia truncatulinoides 5 10, 22, 23 
Globorotalia ungulata not yet determined 15 
Globorotalia inflata 2 2, 10, 21, 24 
Neogloboquadrina dutertrei 3 2, 5, 12, 21 
Neogloboquadrina incompta 2 4, 5, 10 
Neogloboquadrina pachyderma 7 4, 6, 25 
Pulleniatina obliquiloculata 3 5, 15, 26 

Globigerinita glutinata not yet determined 2-4, 10, 15 
Globigerinita uvula not yet determined 9, 10 

Hastigerina pelagica 3 2, 10, this study (Chapter 4) 

Bolivina variabilis not yet determined 27 
Gallietellia vivans not yet determined 28 

The disproportion between the high sequencing effort (723 newly published sequences 
out of the overall 1516 sequences of planktonic foraminifera that are available in GenBank 
to date) and the low number (2) of newly discovered cryptic species as a total of all studies 
of this thesis suggests that the amount of genetic diversity in planktonic foraminifera 
morphospecies is not as extensive as might have been concluded from previous studies 
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(summarized in Table 8.1). Indeed, for many well studied morphospecies the maximum 
number of cryptic species might already be discovered, as could be shown for G. siphoni-
fera by the application of a Jackknifing approach (Chapter 6). Species of all five morpho-
groups by now have been subject to genetic analysis (Figure 8.1A), though due to their 
importance as paleo-proxies and their higher abundances in the ocean, attention has been 
biased towards the macroperforate spinose and nonspinose groups, of which respectively, 
70% and 56% of all morphospecies have now been examined. In both groups, the number 
of discovered cryptic species more than doubles the number of morphospecies analyzed. 
However, the summary in Table 8.1 on the cryptic diversity encountered so far in 
planktonic foraminifera indicates that the biological diversity of the group may not be 
underestimated by more than a factor of ten, which is about the maximum number of 
cryptic species encountered in the two most diverse morphospecies. 

By comparing the results of the presented as well as previous studies, it becomes obvious 
that the genetic diversity is distributed highly inhomogeneously between the morpho-
species (Figure 8.1B) and is not even pervasive in the entire group of planktonic foramini-
fera. The latter fact is supported by the discovery of morphospecies that contain only one 
single motif in their SSU rDNA. The morphospecies studied in this thesis cover the whole 
range of diversity with only one sequence type in G. sacculifer versus nine in G. siphonifera, 
a number that is only exceeded by Globigerina bulloides with 12 cryptic species (see Table 
8.1). The mean number consequently amounts to four cryptic species per morphospecies. 
This high difference in sequence diversity between morphospecies might be explained by 
the highly different evolutionary rates that have been described for planktonic foramini-
fera (Pawlowski & Lecroq 2010). Surprisingly, three of the four species with above-average 
cryptic diversity occur in polar to transitional regions. This is unexpected, since these 
regions are marked by high intermixing of the water column without providing stable 
niche space (Al-Sabouni et al. 2007), which would allow for high speciation rates. Interes-
tingly, also in the presented studies the detected cryptic diversity does not come up to the 
expectations based on the characteristics of the studied morphospecies, such as low 
abundance in the global ocean or high morphological variability. Generally speaking, it 
does not seem possible to predict the exact amount of biodiversity, existent in morpho-
species that have not been screened until now, based solely on the characteristics of these 
species. 

Considering the application of planktonic foraminifera in paleontological research and the 
consequential requirement of an exact taxonomy and species classification, the existence 
of a rather limited amount of cryptic diversity would be more advantageous. A correlation 
with existing morphological variability could thus be facilitated and the probability for a 
successful differentiation of biological species in the fossil record would be raised (Kucera 
& Darling 2002), reducing the scatter in paleo-reconstructions arising from the application 
of morphospecies.  
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Figure 8.1: A) Comparison of the number of morphospecies that have been analyzed of each of the five morphogroups and the 

number of cryptic species discovered. Due to their low abundances in the ocean and their minute shell sizes, the microperforate species 

are still under-represented. B) Representation of the highly inhomogeneous distribution of cryptic diversity between the 

morphospecies. The average number lies at four cryptic species per morphospecies. Only the morphospecies studied in this thesis (bold 

print) and all morphospecies with above-average cryptic diversity are assigned to their number of cryptic species.  

The objective of establishing a correlation between genetic diversity and morphological 
traits was thus also part of the studies presented in this thesis. Nevertheless, these studies 
come to the conclusion that genetics and morphology map only partly onto each other 
and that morphological distinction does not depend on the genetic distance between 
cryptic species. This statement is based on comparisons of the morphology of the cryptic 
species of the studied morphospecies, partly resting upon extensive morphometric ana-
lyses carried out on specimens that had been genotyped before.  

The three cryptic species of H. pelagica could not be differentiated by a superficial inspec-
tion of their morphological traits, despite of what could have been expected from their 
high genetic distances between each other (Chapter 4). Surprisingly, the here conducted 
analysis of the G. sacculifer plexus revealed that the morphological variability in the group 
had been over-interpreted and is not genetically justified. This case is the first in planktonic 
foraminifera, where the morphological diversity exceeds the genetic variability and the 
different morphotypes therefore have to be considered either as different ontogenetic 
stages or ecophenotypic appearances. As a consequence, the species names that had 
mostly been applied in studies on the fossil record for this taxon (G. trilobus, G. immaturus 
and G. quadrilobatus) have to be replaced by G. sacculifer as the valid species name. The 
picture revealed by morphometric analysis of the G. siphonifera/G. calida plexus is marked 
by a high genetic as well as morphological variability, which in some parts could be 
brought into agreement. Not only was it possible to verify the status of G. calida as a 
separate species and sister to G. siphonifera, but by detecting a third morphotype within 
the plexus, Globigerinella radians could be described as a new species within the plank-
tonic foraminifera. Surprisingly, G. calida and G. radians possess similar morphologies, 
characterized by elongated chambers, despite the fact that they are only distantly related 
to each other within the plexus. A further hint that morphological distinction of the cryptic 
species does not depend on their phylogenetic distances was found while analyzing their 
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shell porosity. Various cryptic species are marked by high porosity values, however, this 
morphological trait is not associated with a certain lineage, but appears in cryptic species 
that are only distantly related.  

The examples of the present thesis show that inconsistent scaling exists between genetic 
and morphological diversity and that these two features evolve rather independently of 
each other. The study on G. siphonifera further indicates the presence of high rates of 
parallel evolution in distantly related taxa, as it was already reported from the fossil record 
(Coxall et al. 2007). In general, these observations imply that the fossil record does not 
reflect biological species and neither one of the two species concepts by itself mirrors the 
entire diversity of planktonic foraminifera. Only few examples have been shown so far in 
which exactly one morphology corresponds to one genetic type: in Globigerinoides conglo-
batus, Globigerinoides ruber (pink) and G. radians the morphological and biological species 
concepts seem to be in agreement (Table 8.1; Aurahs et al. 2011; Chapter 7). These cases 
show that once the genetic diversity of a morphospecies has been resolved, a closer look 
at the morphology and maybe even physiology of the cryptic species is indispensable in 
order to detect slight differences that correspond to the genetic background. If a corre-
lation between these different aspects could be established, the conflict of non-matching 
species classifications between studies on fossil and living individuals could be minimized.  

In order to obtain a comprehensive picture of the biological species of planktonic foramini-
fera, a consideration of their biogeographic distribution patterns and environmental adapta-
tions are of utmost importance. The cases analyzed in the present thesis reveal a predomi-
nance of global dispersal and gene flow even for the cryptic species, but also detect geogra-
phical restrictions in the horizontal as well as vertical perspective. The dataset obtained pro-
fits from the wide spatial and temporal extension of the now available sample collections. 

Every morphospecies that was screened for genetic diversity was also examined in regard to 
its general occurrence and the distribution patterns of its cryptic species. From the complete 
genetic homogeneity in G. sacculifer throughout its global distribution range, the only 
conclusion to be drawn is that this species has always been marked by global gene flow 
without the establishment of reproductive isolation (Chapter 5). The three sibling species of 
H. pelagica also show a global distribution in the ocean. Genetic differentiation in this case 
most likely took place in the vertical dimension by differential adaptation along an environ-
mental gradient, depicting a depth parapatric speciation event, which is still reflected in 
today’s distribution of the cryptic species (Chapter 4). Although depth parapatry was 
described for other groups of plankton, like copepods and chaetognaths (Mackas et al. 1993; 
Kehayias et al. 1994; Fragopoulu et al. 2001), in extant planktonic foraminifera it was 
observed for the first time. Most of the genetic types found within G. siphonifera are also able 
to disperse on a global scale and obtain gene flow between their populations, indicating 
that speciation originally must have taken place in sympatry. The only factor inhibiting 
global dispersal of each cryptic species of G. siphonifera seems to be a strong influence of 
species interactions, which shapes the present day distribution patterns of the sibling 
species, with a striking separation of diversity between the Atlantic and Pacific Oceans.  
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The observed high potential for global dispersal and gene flow in all of the studied species 
is surprising, since all three are bound to the high temperature waters of the Tropics and 
Subtropics and have to cross colder water masses in order to establish a circumglobal 
distribution. However, cosmopolitan distribution has been observed for at least some 
cryptic species of several morphospecies (e.g. de Vargas et al. 1999; Aurahs et al. 2009b; 
Quillévéré et al. 2013) and consequently seems to be the norm within many planktonic 
foraminifera, not only on the level of morphospecies, but also for the cryptic species. 
Nevertheless, the potential for establishment of reproductive isolation is still given. By 
having a look at the distribution patterns of cryptic species, in many cases it is possible to 
draw conclusions on the prevailing modes of speciation in planktonic foraminifera or 
microplankton in general. Overall, almost all different speciation mechanisms have now 
been detected in planktonic foraminifera (Table 8.2), a fact that points out the high 
potential for diversification in plankton, despite the predominance of global dispersal, and 
that shows that the establishment of genetic isolation is not as rare in planktonic protists 
as is often assumed (Benton & Pearson 2001). Furthermore, from the existence of different 
modes of speciation it can be concluded that the traditional view on allopatric/vicariant 
speciation and horizontal separation as sole diversification possibility was too limited, 
underestimating the complexity of microplankton. Globorotalia inflata was described to 
differentiate on either side of an oceanic current (Morard et al. 2011), the two most closely 
related genetic types of G. ruber probably differentiated from each other while being 
separated into different ocean basins during a glacial maximum (Aurahs et al. 2009b), but 
the majority of speciation events seems to occur in sympatry (Table 8.2). This fact 
highlights the importance of a detailed analysis of the environmental adaptations of the 
cryptic species. Biological speciation in planktonic foraminifera might proceed without 
being obviously reflected in the morphology of the new species, however, if occurring in 
sympatry, the newly evolved cryptic species possess different ecological preferences, since 
they diverged by differential adaptation along an environmental gradient. This fact is 
important to consider, if a morphospecies is used in paleoceanographic studies, since the 
different adaptations will be reflected in the isotopic compositions of the shells.  

Table 8.2: Summary of the different modes of speciation that might have caused the high genetic diversity in planktonic foraminifera 

and might have led to the distribution patterns of the cryptic species in the present day ocean. For each speciation mode, the best 

described examples are shown. Bold print indicates studies from this thesis. Superscripts: (1) Morard et al. 2011, (2) Darling & Wade 

2008, (3) Aurahs et al. 2009b, (4) Morard et al. 2009, (5) Quillévéré et al. 2013, (6) Ujiié et al. 2012. 

Allopatry Vicariance

Globorotalia inflata1 Globigerinoides ruber3 
Neogloboquadrina pachyderma2 (divergence between types  
Neogloboquadrina incompta2 IIa1 and IIa2)

Depth Parapatry Sympatry

Hastigerina pelagica Orbulina universa4 

 Globigerinella siphonifera 
 Globorotalia truncatulinoides5 

 Globigerina bulloides2

Pulleniatina obliquiloculata6 
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8.2. Remaining limitations  

The genetic diversity within planktonic foraminifera morphospecies seems to be resolved 
to a wide extend, however, molecular analysis on the group still faces various limitations. 
The most significant surely is the low success rate in DNA amplification (e.g. 8% sequence 
yield from the Globigerinoides sacculifer samples of the working group) and additional high 
proportion of contamination. A low success rate might be attributed to the highly 
divergent and unusually long nucleotide sequences of planktonic foraminifera or to some 
further unknown molecular modification of the SSU rDNA. Even the application of 
foraminifera specific primers mostly does not enhance DNA yield and nested PCR often 
just intensifies the contaminant signal (own observations). The same problems very likely 
impede the amplification of the mitochondrial genes, which also are assumed to be highly 
modified (Pawlowski & Lecroq 2010). As a consequence, a high number of samples is 
required for the single cell approach in order to get a significant genetic signal. This might 
explain why so many rare and small species that are seldom sampled are still not 
genetically characterized.  

The contamination problem was tried to overcome during the research for this thesis by 
working with gametogenic individuals, in which the high amount of genome copies 
should easily outnumber the genetic signal of the contaminant. However, despite the fact 
that this approach has been successfully applied before (e.g. Hemleben et al. 1989; Darling 
et al. 1996b) and that the individuals in culture sometimes survived several weeks during 
the studies for this thesis, the number of specimens performing gametogenesis was 
vanishingly low and they still contained contaminant DNA. This unfeasibility to obtain 
axenic cultures and large amounts of DNA severely limits the potential for obtaining 
sequence information for protein coding genes (Flakowski et al. 2005), which would 
present a necessary addition to the single gene approach applied so far. Although the SSU 
rDNA serves well as a marker for phylogenetic reconstructions, its high level of 
heterogeneity in substitution rates between and sometimes even within a morphospecies 
prevents the establishment of universal thresholds separating the different taxonomic 
levels (Göker et al. 2010). This fact together with the inability to observe reproduction of 
planktonic foraminifera in culture leaves the biospecies classification to be highly 
subjective and being based solely on the lack of observable hybridization in the SSU rDNA.  

Regarding the biogeographical distribution of planktonic foraminifera, a constraint of 
patchy sampling exists due to the application of the single cell approach and the applied 
sampling methods. By sampling with 100 μm plankton nets, only adult specimens are 
obtained, but the presence of gametes or potentially resting stages cannot be detected, 
although these might even have wider distributions and dispersal rates compared to the 
sometimes restricted areas where the species finally thrives.  
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8.3. Future perspectives 

One of the next steps of molecular genetic research on planktonic foraminifera should 
focus on obtaining new marker genes in order to examine the reliability of the SSU rDNA 
delineated genetic types and their phylogenetic relationships. Combining the information 
of several marker genes (e.g. SSU and LSU rDNA, mitochondrial genes or polymerase 
genes) might better resolve genetic information, which evolutionary potential so far could 
not be identified. Mitochondrial genes evolve faster than the ribosomal DNA and could 
therefore be used to detect present day gene flow and more recent evolutionary events 
(Bik et al. 2012). The approach of amplifying genes by primer walking (e.g. Jones & 
Winistorfer 1993) might be useful for obtaining the LSU gene that lies in close vicinity of 
the SSU rDNA and is not yet known for a large number of species.  

A further exciting step in foraminifera genetics will be the elucidation of the whole 
genome. By now, the genome of a benthic foraminifera species has been published (Glöck-
ner et al. 2014). Although the selected species is a member of the naked foraminifera and 
possesses several large nuclei, advantages that are not found in planktonic foraminifera, 
the nucleotide information obtained might still provide a solid basis for sequence 
alignments during attempts on planktonic foraminifera. In order to enhance the DNA yield, 
several specimens of the same species could be merged. As an alternative to whole 
genome sequencing transcriptome analysis could be carried out, as it has been success-
fully applied in one benthic species (Pillet & Pawlowski 2013). Since nucleotide sequences 
usually are heavily processed during the transcription and translation processes (e.g. 
Wuyts et al. 2002), the transcriptome can be expected to be a lot smaller than the genome, 
facilitating the bioinformatics data processing. Furthermore, knowledge on gene expres-
sion rates might allow conclusions on the physiology of the organism and eventually even 
reveal adaptations to certain environmental parameters or responses to changing 
conditions (Caron et al. 2012).  

For the biogeographical analyses, the future probably lies in environmental sequencing 
approaches. Filtering large amounts of water and sequencing the whole filtrate (Karsenti et 
al. 2011 for methods) resolves the problem of patchy and size biased sampling. Since the 
number of cryptic species in planktonic foraminifera is now not expected to rise exten-
sively anymore, this approach can be applied as a screening method to detect the real 
dispersal rates of microplankton in the ocean.  

Investigating speciation events in plankton based on present day distribution patterns can 
just give a small hint about how speciation possibly can occur, since the range of a species 
can change throughout time, erasing the original pattern (Norris & Hull 2011). In order to 
obtain a more explicit picture about lineage evolution and speciation in planktonic 
foraminifera over large time scales, a close connection of biology and paleontology in the 
future will be indispensable (Benton & Pearson 2001) to combine present day observations 
with those from the fossil record. The present thesis aims at being one step into the 
direction of such a combination, by providing a comprehensive assessment of the extent 
of biodiversity in planktonic foraminifera and the biogeographical distribution of the 
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cryptic species. In addition to the general knowledge gained on diversification and 
distribution of microplankton in the global ocean, the present thesis eventually will 
enhance the applicability of planktonic foraminifera in paleontological studies, by 
resolving the relationship between genetic diversity and morphological variability in 
selected morphospecies.  
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