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Abstract

The surface water in the Transpolar Drift in the Arctic Ocean has a strong signature of 228Ra. In an earlier study of
228Ra in the open Arctic we showed that the major 228Ra source had to be in the Siberian shelf seas, but only a single

shelf station was published so far. Here we investigate the sources of this signal on the Siberian shelves by measurements

of 228Ra and 226Ra in surface waters of the Kara and Laptev Sea, including the Ob, Yenisey and Lena estuaries.

In the Ob and Lena rivers we found an indication for a very strong and unexpected removal of both isotopes in the

early stage of estuarine mixing, presumably related to flocculation of organic-rich material. Whereas 226Ra behaves

conservatively on the shelf, the distribution of 228Ra is governed by large inputs on the shelves, although sources are

highly variable. In the Kara Sea the maximum activity was found in the Baydaratskaya Bay, where tidal resonance and

low freshwater supply favour 228Ra accumulation. The Laptev Sea is a stronger source for 228Ra than the Kara Sea.

Since a large part of Kara Sea water flows through the Laptev Sea, the 228Ra signal in the Transpolar Drift can be

described as originating on the Laptev shelf.

The combined freshwater inputs from the Eurasian shelves thus produce a common radium signature with a
228Ra/226Ra activity ratio of 4.0 at 20% river water. The radium signals of the individual Siberian rivers and shelves

cannot be separated, but their signal is significantly different from the signal produced on the Canadian shelf (Smith et al.,

in press). In this respect, the radium tracers add to the information given by Barium. Moreover, with the 5.8 year half-life

of 228Ra, they have the potential to serve as a tracer for the age of a water mass since its contact with the shelves.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

226Ra and 228Ra are produced in sediments by
their particle-reactive parents 230Th and 232Th,
respectively. The primordial isotope 232Th is a
constituent of the Earth’s crust. 232Th in marine
sediments is primarily of detrital continental origin
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with concentrations varying within the range of
6–24mg kg�1 in clays (1.5–6 dpmg�1, Huh and
Kadko, 1992). 230Th, on the contrary, is not as
equally distributed. It is produced by 234U in
seawater and reaches its highest activities in deep-
sea sediments. As a consequence of parent
distribution and of half life, the oceanographic
distribution of 226Ra (1600 years half-life) is
primarily controlled by release from deep-sea
sediments (Broecker et al., 1967), whereas the
distribution of 228Ra (5.8 years half-life) is
characterized by the high activities that can be
reached in the shallow water column over wide
continental shelf areas (Moore, 1981; Key et al.,
1985). 228Ra is therefore used as a tracer for
continental shelf influence in the open ocean
(Moore et al., 1986, 1995; Moore, 1987; Li et al.,
1980; Rutgers van der Loeff, 1994; Rutgers van
der Loeff et al., 1995; Ku et al., 1995).
Freshwater discharges constitute additional

radium inputs into coastal seas. Radium is
strongly adsorbed on riverine sediment and
released to the dissolved state at increasing ionic
strength at mid-salinities (Li et al., 1977; Elsinger
and Moore, 1980; Moore, 1981; Key et al., 1985).
The riverine contribution to 226Ra in the surface
ocean may be as high as 30% (Li et al., 1977). This
contribution is much lower for 228Ra, for which
isotope the relative contribution of fluxes from the
estuarine and shelf sediments is much more
important than for 226Ra (Moore, 1981, 1992).
226Ra sources from groundwater discharge as
reported by Moore (1996) have, to our knowledge,
not been quantified for Siberian rivers. We expect
them to be limited by permafrost as has been
argued in case of the budget of the related element
Barium (Guay and Falkner, 1998).
The release rate of 228Ra from continental shelf

sediments depends on the deep mixing of these
sediments. By molecular diffusion alone, only
228Ra produced in the upper about 8 cm is released
(Huh et al., 1987). The high 228Ra release rate of
Amazon estuarine sediments is attributed to the
deep intensive mixing down to approximately 1m
(Kuehl et al., 1982). As a consequence, the 228Ra
enrichment or the 228Ra/226Ra ratio at intermedi-
ate salinities may have values specific for different
estuaries or shelf regions. Although these values

may be quite variable on a time scale of weeks
(Moore et al., 1995), they may, averaged over a
longer time scale, enable a discrimination between
various sources of shelf water in the open ocean
(Moore, 1992).
In a previous study in the open Arctic Ocean, we

observed that Arctic surface water carries a very
strong 228Ra signal. A single radium data point
from the Laptev shelf was strong support for the
explanation that 228Ra accumulates on the wide
Siberian shelves, to be subsequently advected in
the Transpolar Drift towards Fram Strait. The
228Ra decay has the potential to yield the transit
time of shelf waters in the central Arctic ocean
(Rutgers van der Loeff et al., 1995). On the other
hand, if the various shelf regions produce a
different 228Ra enrichment, the radium signal
might be used to distinguish the source regions
of fresh water in the open Arctic. In any case,
228Ra is a powerful tracer for shelfwaters in the
Arctic Ocean.
This study is meant to identify the sources of

228Ra in the Kara and Laptev shelves. In 1993,
Radium samples from surface waters were col-
lected during expeditions with R.V. Dmitriy

Mendeleev to the Kara Sea, and with R.V.
Polarstern to the Laptev Sea. In order to explain
the unexpected signals at low salinities in the Ob
estuary, additional samples were collected in the
Lena estuary in 1999. We present the distributions
of 228Ra and 226Ra in both shelf seas, discuss the
relative influence of inputs from the shelf itself and
from the Ob, Yenisey and Lena rivers, and investi-
gate whether 228Ra can be used as a tracer to
distinguish sources from the Laptev and Kara seas.

2. Material and methods

Surface water samples were collected on two
simultaneous expeditions in August/September
1993: The Kara Sea was sampled during cruise
49 of R.V. Dmitriy Mendeleev, which also included
stations in the estuaries of Ob and Yenisey. The
Laptev Sea was sampled on board R.V. Polarstern

(expedition ARK IX/4). Three more samples were
collected in the Lena River and estuary in
September 1999. Station positions are given in
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Fig. 1, and further details on the expedition can be
found in the cruise report of ARK IX/4 (F .utterer,
1994) and in the special issue of Oceanology
(English translation, 34(5), 1995) for the expedi-
tion with Dmitriy Mendeleev.
Dissolved radium was isolated by pumping

several hundred liters of surface water over
MnO2-coated 1-mm pore size polypropylene car-
tridges, after passing an uncoated cartridge as
prefilter, and leaching according to Rutgers van
der Loeff and Berger (1993). Radium was isolated
from the MnO2-cartridge leaches as BaSO4 pre-
cipitate, and after ingrowth of 226Ra daughters,
the 228Ra /226Ra activity ratio was determined by
gamma spectroscopy. The 186, 295, 351 and
609 keV lines were used for 226Ra, assumed to be
in secular equilibrium with its daughters 214Pb and
214Bi (Moore, 1984; Moore et al., 1985), and the
911 keV line for 228Ra. In order to obtain the
absolute collecting efficiency of Ra, 226Ra was

measured on separate 20-l samples of filtered
seawater after coprecipitation with BaSO4 and
gamma spectroscopy (Rutgers van der Loeff and
Moore, 1999). The efficiency of the well-type
detector for the various radium decay lines was
determined with radium isotopes in standard
sediments (DL1A).

d18O data presented here for the Polarstern

ARK IX/4 and Dmitriy Mendeelev expeditions
have been published by Frank (1996) and Ekwur-
zel (1998), respectively. The percentage river water
was calculated from salinity and d18O according to
the 3-component model of .Ostlund and Hut (1984)
using the end-member compositions as given by
Bauch (1994). However, as the various Siberian
rivers have different d18O concentrations (L!etolle
et al., 1993), we have adjusted the d18O values of
the freshwater end-members: For the Kara Sea we
use the value of �16.7% obtained for the fresh-
water part of the rivers Ob and Yenisey (Ekwurzel,

Fig. 1. Sampling stations of expeditions with R.V. Dmitriy Mendeleev (squares, M), R.V. Polarstern (P) and in the Lena estuary (L).

SZ: Severnaya Zemlya, BB: Baydaratskaya Bay.
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1998; Ekwurzel et al., 2001). For the Lena estuary
and open ocean we use after L!etolle et al. (1993) a
d18O value of �21%. Due to variability in d18O,
the 3-component model gives unrealistic river
water percentages at very low salinities. Below a
salinity of 10%, river water percentage was there-
fore calculated from salinity alone.

3. Results

3.1. 228Ra/226Ra ratios

The 228Ra/226Ra activity ratios (AR) in samples
with salinity >23% in the Barents Sea, western
Kara Sea and Laptev Sea are correlated with
salinity (Table 1, Fig. 2), in agreement with the
relationship found earlier for surface waters in the
central Arctic (Rutgers van der Loeff et al., 1995).
This relationship represents a conservative mixing
of an open-ocean end-member with low AR
(around 0.2 in Atlantic inflow, Rutgers van der
Loeff et al., 1995) and a low-salinity end-member
with a source of 228Ra and correspondingly high
AR. In the southern and eastern Kara Sea and in
the Vilkitsky Strait, the sea strait between Kara
Sea and Laptev Sea, the AR values are also
correlated with salinity, but at an approximately
50% reduced level. Two samples were taken in
bottom waters of the Kara Sea. The bottom water
sample at station M84 has clearly higher AR than
expected from its salinity. The highest AR of 3.9 is
measured at station P31 in the Laptev Sea at a
salinity of 27.1. Below a salinity of 20%, or at a
percentage of river water over about 30%, the AR
levels off (Figs. 2 and 3).

3.2. 226Ra activity

Absolute 226Ra activities show a clear decrease
with decreasing salinity down to a salinity of 0.1%
or with increasing river water percentage (Fig. 4a).
This trend can be described as a conservative
mixing of an Atlantic/Arctic end-member with
70 dpmm�3 (Broecker et al., 1976; cf. Rutgers van
der Loeff et al., 1995) and a freshwater end-
member of 28 dpmm�3. Only the purest river
water displays a sudden increase up to

131 dpmm�3 in the Lena and 273 dpmm�3 in
the Ob (S ¼ 0:01). We have no explanation for
the anomalously low value observed at station
P39.

3.3. 228Ra activity

As 228Ra activities are calculated from the 228Ra
/226Ra activity ratio and 226Ra activities, the
scatter in the 228Ra data (Fig. 4b) is relatively
large. 228Ra has a strong source on the shelf with a
maximum activity of 240 dpmm�3 at a salinity of
27–29% (around 20% river water), reached both
in the Lena estuary (station P31) and in the
Baydaratskaya Bay in the SW Kara Sea (station
M92). Below this salinity, 228Ra decreases gradu-
ally to a freshwater value of 42 dpmm�3 at a
salinity of 0.1%. As with 226Ra, high activities
are observed in the freshest water with values
up to 249 dpmm�3 in the Lena and 409 dpmm�3

in the Ob.

4. Discussion

4.1. The estuarine behaviour of 226Ra

Dissolved 226Ra in world rivers varies between
20 and 300 dpmm�3 (Cochran, 1992). The value
observed in the Ob (273 dpmm�3) is at the high
end of this range. The best studied river concern-
ing radium isotopes, the Amazon, has a concen-
tration of 65 dpmm�3. 226Ra is released from
particles to the dissolved phase during early
estuarine mixing of the Amazon, yielding a
maximum dissolved 226Ra concentration ap-
proaching 250 dpmm�3 at a salinity of about
20% (Key et al., 1985). Part of this release may
originate in shelf sediments, but the authors
estimate that most is due to desorption of riverine
particulate material.
The estuarine behaviour of radium in the Ob

and Lena rivers is very different from the
observations in the Amazon. In Ob and Lena,
226Ra disappears suddenly at the very first
estuarine mixing. The analogy with the Lena and
Ob rivers suggests that the salinity of our freshest
sample from the Yenisey River (M05: 0.97%) was
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sufficient to remove radium from solution (Fig. 4)
but we have no data from lower salinity to prove
this. We observed removal by flocculation even in

our acidified filtered samples from Ob stations
M17 and M18 (Table 2). These lowest salinity
samples developed a precipitate, which we

Table 1

Sampling locations. water depth. salinity. analytical results with 1-sigma counting error. d18O and percentage river water (fr) for

Polarstern (P). Dmitriy Mendeleev (M) and Lena (L) stations. All samples are surface water except B: bottom water

Station Name Longitude

1E

Latitude

1N

Water

depth (m)

Salinity

(%)

228Ra/226Ra

AR

226Ra

(dpmm�3)

228Ra

(dpmm�3)

d18O fr

R.V. Polarstern ARK IX-4

PS27/006 P06 30.60 81.25 186 33.57 0.7870.02 68.973.9 56.073.7 0.05 1.5

PS27/014 P14 30.29 81.81 2750 32.80 0.5670.03 90.574.5 53.173.6 �0.05 2.1

PS27/019 P19 40.23 82.91 2995 33.50 0.4970.02 63.874.6 32.772.7 �0.03 1.8

PS27/024 P24 42.04 82.19 1005 33.30 0.5970.02 70.774.1 43.973.1 �0.02 1.9

PS27/027 P27 43.57 82.03 287 33.50 0.5370.02 85.574.2 47.973.0 0.06 1.5

P27a 53.00 78.30 230 31.70 0.8670.05 74.374.3 66.475.6 �0.25 3.3

P27b 96.83 77.50 100 26.00 1.9470.08 44.473.9 89.678.6 �6.44 41.8

PS27/028 P28 102.58 78.00 165 27.99 1.6870.12 61.074.0 106.4710.2 �3.24 16.5

PS27/031 P31 133.33 76.60 38 27.10 3.8670.25 59.873.9 239.1721.7 �4.39 22.0

PS27/033 P33 130.55 79.78 3420 32.38 1.4270.04 77.373.8 113.576.5 �1.36 7.8

PS27/035 P35 133.08 78.46 2104 32.59 1.4170.05 81.474.1 121.477.7 �1.10 6.6

PS27/039 P39 133.52 78.12 533 32.17 1.8270.07 33.973.0 65.276.3 �1.29 7.5

PS27/046 P46 125.90 77.56 1740 32.53 1.5370.06 79.673.9 128.778.0

PS27/048 P48 126.37 77.16 536 31.63 1.8770.13 69.173.8 133.4712.0 �1.46 8.3

PS27/049 P49 126.17 77.15 952 31.39 2.0370.10 72.373.6 151.6710.7 �1.33 7.8

PS27/053 P53 122.88 79.28 3239 33.74 0.5670.03 73.074.7 43.673.6 �0.41 3.3

PS27/058 P58 118.57 78.00 1930 33.48 0.9470.05 62.473.6 61.874.8 �0.58 4.1

PS27/062 P62 118.18 77.48 542 32.95 1.4170.04 72.774.0 105.876.6 �1.15 6.7

PS27/065 P65 118.70 77.22 102 32.76 1.5170.12 79.274.3 126.9711.8

PS27/069 P69 112.52 78.84 581 32.68 1.2770.05 62.473.5 83.975.6 �1.13 6.7

R.V. Dmitriy Mendeleev 49

4377 M77 58.01 71.20 239 24.78 1.9170.12 78.874.3 156.8713.2 �1.2470.06 10.8

4380 M80 60.00 72.77 92 31.26 1.8870.18 70.373.2 138.0714.3 �1.4370.00 10.5

4384 M84B 64.58 74.13 94 34.13 1.6470.08 90.474.3 154.4710.5

4384 M84 64.58 74.13 94 10.60 2.4170.13 28.173.2 70.678.8

4387 M87 64.58 72.00 150 30.94 2.5170.17 85.574.5 224.6719.0

4392 M92 65.95 69.66 27 28.86 3.3170.20 68.273.0 237.3717.7 �2.2070.03 15.2

4395 M95 73.00 74.27 31 23.81 2.1570.16 61.473.6 138.0713.2 �5.8570.01 35.3

4397 M97 73.01 76.19 140 14.87 1.1170.22 48.873.5 56.3711.9 �9.1970.04 50.4

4398 M98 79.97 76.00 55 23.59 2.7070.23 57.074.0 161.7717.8 �5.0870.01 29.8

4400 M00B 80.00 74.30 35 32.75 1.3370.10 87.473.8 121.9710.4 �1.9570.06 12.4

4400 M00 80.00 74.30 35 24.46 2.2470.23 56.174.0 132.0716.7 �5.0970.03 30.3

4402 M02 79.99 73.61 38 9.45 2.6970.26 45.874.1 128.9717.1 �13.4370.03 72.9

4405 M05 83.45 71.77 17 0.97 2.3670.15 32.773.4 81.379.9 �16.7470.01 97.2

4414 M14 73.50 74.00 26 16.88 2.2670.16 46.173.8 108.6711.8 �9.1870.05 62.0

4415 M15 73.42 72.91 25 8.19 2.3270.32 40.174.1 96.8716.6 �12.6070.07 76.5

4416 M16 73.16 71.90 20 1.29 1.6870.24 23.973.7 45.879.7 �15.7770.03 96.3

4417 M17 73.57 71.14 25 0.03 1.3970.18 26.374.8 41.879.5 �16.1370.02 99.9

4418 M18 73.68 68.99 14 0.01 1.4470.13 273.176.1 409.4737.0 100.0

Lena 1999

Lena 1 L1 72.21 126.32 1 0.08 1.3370.04 85.273.9 118.876.5 99.8

Lena 2 L2 72.16 127.52 1 0.07 1.7470.09 60.973.1 110.978.0 99.8

Lena 3 L3 72.01 129.08 1 0.21 1.8170.03 131.174.1 248.979.0 99.4
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collected before making the BaSO4 precipitate for
226Ra co-precipitation, and the two precipitates
were counted separately. Twenty-eight percent of
226Ra in the freshwater sample (M18, S ¼ 0:01)
was in the first precipitate, showing the effective-
ness of this scavenging process. Apparently, a
flocculation in the early stages of estuarine mixing
in the Ob and Lena rivers causes an effective
removal of radium from solution.

A similar non-conservative behaviour at very
low salinities has also been observed for barium, a
chemical analog of radium. A parallel sample from
station M18 collected for barium analysis was the
only sample filtered, 3 years after collection,
because it ‘‘contained a visibly high amount of
suspended sediment’’ (Guay and Falkner, 1998).
Flocculation may have removed barium from
solution in this sample, which would explain why
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the distribution of barium in the Ob estuary during
this same expedition (Fig. 9 in Guay and Falkner,
1998) does not display the early removal we
observed for its chemical analog radium (Fig. 4).
A second sampling program 1 year later did show
a large decrease in barium as salinity increased
from near-zero to 1 (Guay and Falkner, 1998),
explained by the authors by biological uptake,
although they do not rule out the possibility of
removal on oxyhydroxides (Coffey et al., 1997).
Flocculation of Fe, Mn and humic substances is

well known in many estuaries (Sholkovitz, 1976;
Boyle et al., 1977; review in Salomons and
F .orstner, 1984). It is due to the destabilization of
organic colloids by seawater (Boyle et al., 1977) or
can be directly linked to the redox cycle of Mn
(Sundby et al., 1981). Estuarine removal of many

particle-reactive elements has been explained by
their association with this flocculating material,
but Santschi et al. (1983) did not observe such a
removal of radium in their microcosm experi-
ments.
We do not know whether the flocculation in the

Ob and Lena estuary is primarily organic or of an
Fe- or Mn-oxyhydroxide type. The suspended load
is low compared to most other world rivers
including the Amazon (Lisitzin, 1972; Milliman
and Meade, 1983, Rachold et al., 1996). The
estuarine behaviour of trace metals has been
studied in both estuaries. Removal of iron is
observed during estuarine mixing in the Lena
(Guieu et al., 1996) and in the Ob and Yenisey
rivers (Dai and Martin, 1995). The latter study
showed how flocculation of colloids removes
colloidal Fe and carbon in the estuary. But this
removal takes place in the salinity range until
about 20%, very different from the dramatic early
removal of radium. We interpret this as an
argument against iron oxides as the major phase
of radium removal. In this respect Ra behaves
similar to Osmium, which has also been shown to
be removed at lower salinities than Fe (Levasseur
et al., 2000). The flocculation observed in our
acidified filtered samples (Table 2) is another
argument against the role of iron oxides. More-
over, a removal on iron oxides would be expected
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Table 2
228Ra in flocculated material collected from acidified filtered

freshwater samples compared with remaining dissolved 228Ra

collected as BaSO4 precipitate

Station Salinity (%) 226Ra (dpmm�3)

Flocculated Dissolveda Total

M17 0.03 3.6 22.7 26.3

M18 0.01 73.4 199.6 273.1

aCollected by coprecipitation with BaSO4.
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to cause an efficient scavenging of thorium as well.
But Kuptsov et al. (1995), measuring thorium
scavenging in the Kara Sea during the same
Mendeleev expedition, observed little scavenging
in the estuarine zone of the Ob. Appreciable
scavenging did not start before sinking out of
riverine particles allowed primary production to
develop. Estuarine removal of thorium was also
studied by Andersson et al. (1995) in Kalix.alven, a
Swedish river with important peatland contribu-
tion. These authors observed a removal of 232Th at
low salinities, which they ascribed to settling of
detrital 232Th and which may be related to the
removal of Mn oxides (Pont!er et al. 1992).
Surprisingly, 230Th, produced in the peatlands,
was removed much more slowly in the estuary,
which these authors explained by stabilization as a
colloidal phase.
Realizing that the evidence regarding early

estuarine removal is ambiguous, we suggest that
organic flocculation is the most likely removal
mechanism of radium. The Lena (Lara, 1998) and
Ob are rich in dissolved organic matter (Table 3)
especially through the load of humic substances
obtained by drainage of vast tundra and taiga
areas (cf. compilation by Ludwig et al., 1996).
There is additional evidence for the influence of
DOC on nuclide behaviour in the Ob estuary. The
adsorption efficiency of Ra to our MnO2-coated

cartridges, as derived from comparison with
discrete 20-L samples, was only about 3% in the
freshwater samples, exceptionally low compared to
the 18–30% further downstream. A similar ob-
servation was made by Cochran (pers. comm.),
who measured low absorption of Pu on MnO2-
coated cartridges in the freshwater zone of the Ob
River. The adsorption efficiency of the three Lena
samples on MnO2-coated cartridges was better at
50–68%, probably as a result of a lower flow rate
and smaller filtered volume (only 115–277 L).
It is interesting to consider what might happen

to the radium removed from solution. It should be
on particles or flocs large enough to be caught by
our 1 mm cartridge filters. These particles will be
transported and eventually settle out. We may
have an indication of the distribution of these
particles from the fate of freshwater algae. In
sediments of the Laptev Sea, the present distribu-
tion of Chlorococcalalgae reaches until the 20%
isohaline in summer (Kunz-Pirrung, 1998). These
algae cannot survive salinities in excess of 8%, and
must be advected seaward through the existing
gullies. The radium-enriched organic flocs could
have a similar fate. However, an excess of radium
in sediments has not been observed by Strobl
(pers. comm.). In core PM9463-8 (74.501N,
126.581E) he observes a depletion of 214Bi and
consequently of 226Ra with respect to 230Th,
inferring a release of 226Ra to the bottom water.

4.2. The estuarine behaviour of 228Ra

In contrast to 226Ra, the source of 228Ra is
clearly in the mid-salinity range (Fig. 4b), in
agreement with the results of Key et al. (1985)
for the Amazon. Apart from the two high values
of the Ob River and the Lena River, the highest
values are reached at a river water percentage of
around 20%. Whatever the fate of the river input
of radium, we know from the 226Ra results
(Fig. 4a) that riverine Ra is not released at this
intermediate salinity. The source of the 228Ra
inputs at mid-salinity is thus from the shelf itself,
not a release from riverine particles.
On the seaward side of the shelf, 228Ra displays

a linear relationship with the river water content
(Fig. 4b) pointing at conservative behaviour.

Table 3

Organic carbon load of Arctic rivers in comparison with data

for St. Lawrence and Amazon

River Discharge DOC POC TOC

(km3/yr) (mg/l) (mg/l) (mg/l)

Organic carbon transport in riversa

Yenisey 555 7.4

Lena 505 6.8b 2.4c 9.5d

Ob 433 9.09 0.88 10

Pechora 106

St. Lawrence 413 4.9 0.48 5.4

Mackenzie 249 4.5 3.2 7.7

Amazon 5520 4.46 2.83 7.3

aBased on compilations by Telang et al., 1991 and Ludwig

et al., 1996.
bMean: Lara et al., 1998.
cRachold and Hubberten, 1999.
dTelang et al., 1991.
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Radiodecay can be neglected on this time scale of
mixing within the limited area studied here. The
maximum 228Ra activity on the shelf is not related
to a specific salinity. As 228Ra is released by the
shelf, we expect that the 228Ra activity, or the
228Ra/226Ra ratio, changes with the residence time
of water over a shallow shelf, not with salinity. In
the Kara Sea, the 228Ra/226Ra ratio varies within
the limits of 1.6–2.7 (228Ra in the range 97–225)
outside the Ob River (>2%) with two exceptions
(Figs 2 and 3). The maximum value (AR=3.31,
228Ra=237 dpmm�3) is found at station M92 in
the Baydaratskaya Bay in the SW Kara Sea. This
Bay has little river input, but tidal resonance
results here in the strongest tidal currents of the
Kara Sea (Harms and Karcher, 1999). This
situation favours a long residence time and strong
resuspension over a shallow bay, an ideal situation
for the accumulation of 228Ra. The lowest value
(AR=1.11; 228Ra=56 dpmm�3) is from the
northern most station M97, closest to the con-
tinental shelf boundary. This sample has a river
water percentage of 50% and appears to consist of
a mixture of river and ocean water with very little
shelf input. The neighbouring station M98 has
more than twice this activity ratio. Thus, the data
do not yield a single 228Ra/226Ra ratio that might
be typical for the Kara Sea. Water may thus reach
the shelf edge with widely different shelf signa-
tures.
In spring and summer there is much northward

transport of river water to the central Kara Sea
(Johnson et al., 1997; Harms and Karcher, 1999),
and part of the river water will find its way to the
shelf edge and the central Arctic through this route
north of Severnaya Zemlya. But model studies of
Harms and Karcher (1999) and Harms et al.
(2000) show that the annual transport is governed
by the eastward circulation prevailing in autumn
and winter. The conclusion of an eastward
circulation of Arctic river water, the traditional
view of the circulation pattern, is shared by studies
of river water distributions by Ekwurzel et al.
(2001) and Mensch et al. (Unpublished manu-
script). We conclude that a large part of the river
inputs leaves the Kara Sea through the Vilkitsky
Strait. The AR at the Vilkitsky Strait (1.68 at a
river water percentage of 16.5%) marks the

radium isotope composition of this major water
input into the Laptev Sea.
In the Laptev Sea, and besides three freshwater

samples, our data set is limited to salinities over 27
%. Here all 228Ra data can be rather well described
by a single conservative mixing line between an
ocean component with an AR around 0.15 in the
Atlantic Inflow (Rutgers van der Loeff et al., 1995)
and a low-salinity (shelf edge) component char-
acterised by station P31 with a AR of 3.9 at a river
water percentage of 20% (Figs. 2 and 3). The
conservative behaviour implies that sources are
negligible in the salinity range investigated, and
that the major source of 228Ra is on the freshwater
side of our sampling area. Indeed, except for
station P31 (38m depth), all samples are from
water depths of 100m or more where the 228Ra
inputs from the sediment are dispersed in water
layers in or below the halocline. Density stratifica-
tion prevents such inputs to reach the surface
layer. Although the sources of 228Ra and river
water are far apart, they are both on the continent
side of the shelf edge. On the sea side, 228Ra in
surface waters closely follows the distribution of
river water. In deeper water layers, sources on the
slope may also contribute to the 228Ra signal
(Rutgers van der Loeff et al., 1995).
As in the Kara Sea, the source of 228Ra must

clearly be on the shelf. The 226Ra data for the Lena
River suggest that the behaviour of radium during
early estuarine mixing is similar to that in the Ob
River, i.e. a removal of dissolved Ra rather than a
release from riverine particles. The strong source
of 228Ra apparent from the samples in the high
salinity range (>27%) must thus be produced on
the shelf at intermediate salinities where shelf
water residence times are sufficient to accumulate
228Ra from the shelf sediments (0.2–27%; Fig. 4b).

5. The possible applications of 228Ra as tracer in the

Arctic ocean

228Ra closely follows a conservative mixing line
off the shelf edge of the Laptev Sea. The
distribution can be described as originating from
a mixed Siberian continental shelf and river
signal entering the Transpolar Drift, in complete
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agreement with the Radium data from the central
Arctic basin (Rutgers van der Loeff et al., 1995).
As 226Ra is practically constant at high salinities,
the 228Ra/226Ra activity ratio can be used instead
of 228Ra, reducing the analytical error.
Harms et al. (2000) expected from their model of

Arctic river flow that the Siberian branch of the
Transpolar Drift is dominated by inputs from the
Kara sea (especially from the Ob, whose waters
have the largest chance to exit the Kara Sea to the
north), whereas the Canadian branch is dominated
by the Lena. The two sources cannot be distin-
guished based on their barium content (Guay and
Falkner, 1998), but it would be interesting if 228Ra
or the AR would be sufficiently different between
the Kara and Laptev Sea to verify this expectation.
Indeed, there is a tendency in our data (Fig. 2) that
the Laptev Sea is more enriched in 228Ra than the
Kara Sea. However, 228Ra can be highly variable
in the source area on the continental shelf,
depending on the vicinity to sources like isolated
shallow areas of higher residence time. Water
masses with a range of radium signatures can
reach the shelf edge depending on the route taken
by fresh water parcels towards the open ocean.
The longer residence time of Kara Sea water that
transits through the Laptev Sea will accumulate
more 228Ra as it crosses those shelf waters and
mixes with the Laptev Sea shelf waters before
moving off the continental shelf. At present we do
not know whether the Kara Sea produces at its
shelf edge a radium signal with lower AR values
on the Eurasian side of the Transpolar Drift. The
sparse 228Ra data available for the central
Eurasian basin do not support that hypothesis.
Three stations on a transect across the Transpolar
Drift from the Gakkel Ridge to the Makarov
Basin (stations 165, 173 and 176 in Rutgers van
der Loeff et al., 1995) were on the same mixing line
suggesting a homogenous source. We must con-
clude that it is unlikely that, offshore, water
masses from the Kara and Laptev Seas can be
distinguished on the basis of their radium signal.
The 228Ra source derived from the Laptev Sea
section can be considered to be representative for
the joint inputs of Kara and Laptev Sea. Using the
concept that water with a constant radium signal is
introduced into the Transpolar Drift, Smith et al.

(in press) explained their extended data set for
radium in the Canadian basin to illustrate the shift
of the axis of the Transpolar Drift from the
Lomonosov ridge to the Mendeleyev ridge during
the early 1990s (Ekwurzel et al., 2001).
Whereas the various Siberian sources cannot be

distinguished from each other, there is a clear
difference between the Siberian sources and the
sources from the Canadian shelf where Smith et al.
(in press) found 228Ra /226Ra activity ratios of just
1.0. There exists a similar difference in the source
function of Barium with higher concentrations in
the Mackenzie River than in any of the Siberian
rivers (Guay and Falkner, 1998). Together, these
tracers can thus be used to distinguish fresh- and
shelfwater sources from the two continents.
In our previous paper (Rutgers van der Loeff

et al., 1995) we tentatively used the radioactive
decay of 228Ra to estimate transit times of surface
water masses after they detached from the shelf.
This method requires first, that the source has a
unique concentration. The evidence for a differ-
ence between Canadian and Eurasian sources
means that the method should be applied only in
areas affected by one source alone, like on the
Chukchi shelf (Smith et al., in press). Second, the
method requires the source to be constant in time.
The release of 228Ra from sediments is mediated by
resuspension. Storms or anchor ice formation may
cause abrupt and seasonal changes in this release.
Moreover, the large change in ice cover and the
strong summer fresh water surges influence the
residence time of water over parts of the shelf and
consequently the local accumulation of 228Ra. It
remains to be investigated whether, averaged over
the several-year residence time on the shelf
( .Ostlund, 1993; Ekwurzel, 1988; Harms et al.,
2000), the shelf signatures are sufficiently constant
in time to allow their use as a clock for shelf waters
on the time scale of its decay.
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