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[1] We numerically study the dynamics of coherent anticyclonic eddies in the ocean
interior. For the hydrostatic, rotating, stably stratified turbulence we use a high-resolution
primitive equation model forced by small-scale winds in an idealized configuration. Many
properties of the horizontal motions are found to be similar to those of two-dimensional
and quasi-geostrophic turbulence. Major differences are a strong cyclone-anticyclone
asymmetry linked to the straining field exerted by vortex Rossby waves, which is also
found in shallow water flows, and the complex structure of the vertical velocity field,
which we analyze in detail. Locally, the motion can become strongly ageostrophic, and
vertical velocities associated with vortices can reach magnitudes and levels of spatial
complexity akin to those reported for frontal regions. Transport and mixing properties of
the flow field are further investigated by analyzing Lagrangian trajectories. Particles
released in the pycnocline undergo large vertical excursions because of the vertical
velocities associated to the vortices, with potentially important consequences for marine
ecosystem dynamics.

Citation: Koszalka, I., A. Bracco, J. C. McWilliams, and A. Provenzale (2009), Dynamics of wind-forced coherent anticyclones

in the open ocean, J. Geophys. Res., 114, C08011, doi:10.1029/2009JC005388.

1. Introduction

[2] Turbulence in the ocean encompasses many dynam-
ical scales, from small three-dimensional swirls and eddies to
the basin-scale circulation of global current systems. At the
mesoscale, between about 10 and 500 km, ocean dynamics is
often that of a stably stratified, rapidly rotating flow in the
geostrophic, hydrostatic approximation. Mesoscale horizon-
tal velocities are typically much larger than vertical veloci-
ties, and the motion is quasi-two-dimensional [McWilliams et
al., 1994]. This type of rotating flow is characterized by the
presence of coherent vortices, long-lived concentrations of
energy and vorticity [McWilliams, 1984, 1990] that densely
populate many oceanic regions [Stammer, 1997].
[3] Vortex dynamics in a stably stratified rotating flow

has been investigated mainly in the frameworks of two-
dimensional (2-D) and quasi-geostrophic (QG) turbulence
[e.g., Babiano et al., 1987; McWilliams, 1990; Elhmaidi et
al., 1993; McWilliams et al., 1994; Provenzale, 1999; Smith
and Vallis, 2001; Bracco et al., 2004], neglecting the
potentially complex structure of the vertical velocity field.
Or it has been investigated in the framework of surface
quasi-geostrophic (sQG) dynamics [Held et al., 1995;
Constantin et al., 1999; Lapeyre and Klein, 2006] (where
the velocity field is concentrated close to the surface) and

in shallow water (SW) flows [Polvani et al., 1994; Graves
et al., 2006] (where the vertical velocity field is repre-
sented within a single vertical layer). Ocean dynamics and
vertical velocities at mesoscales (10–500 km) and sub-
mesoscales (0.1–10 km) have been studied numerically in
the context of primitive equation (PE) models, focusing on
jet instability processes [Levy et al., 2001; Levy and Klein,
2004] and large-scale simulations [Klein et al., 2008], and
in the context of nonhydrostatic models describing frontal
areas [Mahadevan and Tandon, 2006]. Other works explored
the use of the sQG equations to describe the vertical velocity
field at the ocean surface [LaCasce and Mahadevan, 2006;
Lapeyre and Klein, 2006] and of QG equations to analyze the
role of mesoscale eddies [Berloff et al., 2002; Hogg et al.,
2005; Berloff et al., 2007]. Those studies suggest that near-
mesoscale and submesoscale ocean dynamics can display
many different facets, ranging from weakly sheared, vortex-
dominated regions to intense frontal areas.
[4] One question that remains open is the limits and the

range of applicability of the results obtained with simpler
2-D and QG models of ocean mesoscale turbulence. To
help fill this gap, in this work we use a high-resolution PE
ocean model to study mesoscale turbulence in an idealized
configuration that is the close to forced dissipated 2-D or
SW turbulence. Here we do not include a mean flow or
surface density anomalies, thus limiting the possibility of
front formation. The configuration adopted is apt, even
if extremely idealized, for describing the interior ocean
dynamics of coherent vortices. In this configuration our
results indicate that many properties of the horizontal flows
in the PE setting are rather similar to those of 2-D, QG, and
SW turbulence [e.g., Polvani et al., 1994; McWilliams et
al., 1994; Cho and Polvani, 1996; Bracco et al., 2004].
However, even in this idealized case we observe that the
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vertical velocity distribution is spatially complex and not very
consistent with its diagnostic characterization in QG dynam-
ics. Indeed, vertical velocities cannot be easily parameterized,
and ageostrophic effects are fundamental in determining the
vertical transport properties of the vortices.

2. Numerical Model and Flow Description

[5] To integrate the system equations, we use the Regional
Ocean Modeling System (ROMS), an incompressible, free
surface, hydrostatic, primitive equation circulation model
[Shchepetkin andMcWilliams, 2005]. ROMSuses a generalized
vertical, terrain-following coordinate system (s coordinate),
where s = z�h

Hþh, z being the height coordinate with z =�H(x, y)
representing the bottom of the model domain, and h(x, y)
describing the free surface elevation. In this coordinate
system, even though the free surface can move, the compu-
tational domain is fixed (1 � s � 0).
[6] ROMS uses a third-order upstream-biased advection

scheme in the horizontal [Shchepetkin and McWilliams,
1998], and a fourth-order centered scheme in the vertical.
The nondimensional quadratic bottom drag parameter is 3 �
10�4. Biharmonic horizontal diffusion acts along s surfaces
with a coefficient AH = 106 m4 s�1 for all fields. Vertical
mixing is parameterized by a nonlocal K profile (KPP)
scheme [Large et al., 1994]. The KPP parameterization is
used to treat unresolved processes involved in ocean ver-
tical mixing and considers distinct mixing processes in the
interior and in the surface boundary layer. In particular, in
the interior mixing is modeled as function of the local
gradient Richardson number to represent shear instability
of internal wave activity and of double diffusion. In the
boundary layer mixing is enhanced because of the influ-
ence of surface forcing and is represented through a poly-
nomial profile. The boundary layer profile agrees with
similarity theory of turbulence and is matched, in the asymp-
totic sense, to the interior. The boundary layer depth is
determined at each grid point.
[7] For consistency with previous works on 2-D and QG

turbulence we adopt a doubly periodic configuration. We
assume a constant depth H = 1000 m and lateral size L =

256 km. We use a resolution Dx = 1 km in the horizontal
and 20 layers in the vertical, 7 of which are confined in the
upper 100 m of the water column. The Coriolis frequency is
f = 10�4 s�1. The flow is initially at rest, and it is forced by a
wind forcing that is used as an artifice to maintain mesoscale
turbulence in a homogeneous domain in lieu of the inclusion
of inhomogeneousmean flow instability processes, which are
the primary mesoscale source in the real ocean. Here the wind
forcing has a narrow-band continuous spectrum centered
on the wave number kx = ky = 6 (about 40 km), i.e., with

a radial wave number kf =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
� 8. Different realiza-

tions with identical power spectra are linearly interpolated
every 20 days. This forcing is a close approximation to that
adopted in simulations of forced 2-D or QG turbulence
[Elhmaidi et al., 1993; Babiano and Provenzale, 2007], and
it implies weak surface buoyancy gradients. As a result,
vorticity distribution in the flow resembles that of quasi-
geostrophic solutions and is less frontal than found in other
recent idealized studies focused on surface frontal ocean
dynamics [Mahadevan and Tandon, 2006; Capet et al.,
2008b, 2008c; Klein et al., 2008] where sQG provides a
better approximation [Capet et al., 2008a; M. J. Molemaker
et al., Balanced and unbalanced routes to dissipation in
an equilibrated Eady flow, submitted to Journal of Fluid
Mechanics, 2009].
[8] To forestall energy accumulation and flow barotrop-

ization [Smith and Vallis, 2001], we impose a relaxation,
with a time constant of 60 days, to fixed temperature and
salinity profiles obtained by fitting extratropical oceanic
samples [Conkright et al., 2002]. These profiles are uni-
form in the first 20 m of the water column (to simulate the
presence of a surface mixed layer) and decay exponen-
tially below the mixed layer (Figure 1). The relaxation to
fixed temperature and salinity profiles is another artifice in
lieu of the inhomogeneous eddy dispersal processes in the
real ocean.
[9] We also analyzed a series of runs with a more

idealized sinusoidal wind stress centered on the same wave
number, i.e., tx(x, y) = 0.1[sin(2pkxx/L)sin(2pkyy/L) +
0.3 dx] N m�2, where dx is a random white noise component

Figure 1. Twenty day averaged vertical profiles after stationarity has been reached. (a) Temperature,
(b) density, (c) Brunt-Väisäla frequency in units of f, and (d) RMS of horizontal velocities.
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added at each time step. In this further simplified configura-
tion we investigated the role of vertical resolution by
performing three simulations, one with 20 layers as in the
case above and two with 80 layers, of which 22 layers were
confined in the first 100 m; the simulations were run with and
without a mixed layer in the upper 20 m. We briefly discuss
the vertical resolution dependence and the impact of a mixed
layer in section 4.
[10] After an initial transient of about 200 days the system

reaches statistical stationarity. The characteristic root mean
square horizontal and vertical velocities of the flow are U �
0.1 m s�1 and W � 1.0 � 10�4 m s�1, respectively. Vertical
profiles of temperature, density, and Brunt-Väisäla frequency,
averaged over 20 days after the stationary state has been
reached are shown in Figure 1. The motion is mainly hor-
izontal; it is surface intensified in the upper 120–150 m and
captured by the first baroclinic mode. Most of the vortices
are indeed confined in this upper region approximately
between the surface and the 1026.7 kg m�3 isopycnal. The
first internal radius of deformation within this region can be
calculated as Ld =

ffiffi
ð

p
g0H/f) � 15 km, with H the depth of

this surface layer. The internal Rossby radius of deforma-
tion Ld is small compared to the domain size, and the aver-
age Rossby number is Ro = U

fLt
� 0.06, where Lt � Ld is the

typical size of a vortex. The local value of Ro, especially in
the cores of coherent vortices and in the upper 150 m of
the water column, can be much larger than the average,
as estimated by the value of z/f (seen in Figures 2a–2c)
leading to strongly ageostrophic motion. Divergence is
about 1 order of magnitude smaller than relative vorticity,
and its spatial distribution is determined by vortices and
filaments.
[11] The flow is dominated by intense anticyclones while

most cyclones are short-lived and are destroyed after a few
turnover times, usually leaving rings of positive vorticity
around the anticyclones (Figure 2a). The dominance of
anticyclonic vortices is evident also in the relative vorticity
probability density functions (pdf’s) shown in Figure 2d for
various vertical levels. Long, negative tails characterize the
vorticity pdf’s that have all kurtosis larger than 7 and skew-
ness between �1.75 and �6. The greatest values in both
kurtosis and skewness are attained at depths between 75 and
150 m. The preferential existence of anticyclonic vortices
in flows with small Ld and finite Ro has been found in
idealized SW studies [Cushman-Roisin and Tang, 1990;
Arai and Yamagata, 1994; Polvani et al., 1994; Cho and
Polvani, 1996] and in fully three-dimensional flows [Yavneh
et al., 1997]. Graves et al. [2006] demonstrated with a
weakly nonlinear shallow water model that the disparity in
the number of cyclones versus anticyclones results from a
stronger weakening of cyclones under strain-induced defor-
mation and a subsequent reaxisymmetrization of the vortex
by vortex Rossby waves (VRWs), whose presence is evident
in Figure 2e. Axisymmetry guarantees that a vortex is a
stationary and linearly stable solution of the momentum
equations in gradient wind and hydrostatic balance. If
perturbed by an external strain field, a vortex monopole
will relax back to an axisymmetric state on an advective
time scale. As shown by Montgomery and Kallenbach
[1997] and Graves et al. [2006], the relaxation process
toward the axisymmetric shape includes the development
of shielding rings of vorticity, or VRWs, that propagate

outward while being azimuthally sheared by the differen-
tial angular velocity of the vortex. Graves et al. [2006]
have shown that whenever Ld is small and Ro is finite, as in
our numerical simulations, strain-induced VRWs on the
periphery of the vortices weaken cyclones far more strongly
than anticyclones. Anticyclones can even strengthen system-
atically whenever the deformation radius is comparable to the
vortex radius, with the VRWs transferring their energy back
to the vortex.

3. Properties of the Horizontal Flow

[12] In this section we briefly discuss the horizontal
transport and mixing properties of the simulated flow field.
[13] Figure 3a shows the horizontal kinetic energy spectra

at depths of 5, 20, 78 and 204 m. In the upper 100 m, the
spectra for k > kf are slightly steeper than k

�3, consistent with
the behavior of two-dimensional turbulence in the direct
enstrophy cascade [e.g., Elhmaidi et al., 1993; Babiano
and Provenzale, 2007], with simulations of shallow water
turbulence [Cho and Polvani, 1996], and with forced dissi-
pated homogeneous stratified quasi-geostrophic turbulence
[Smith and Vallis, 2002]. Since Ld is comparable to the
forcing scale, an inverse energy cascade is not present. (We
verified that the spectra slopes do not change significantly but
remain steeper than k�3 doubling the horizontal resolution on
a smaller domain).
[14] Probability density functions (pdf’s) of horizontal

velocities are an important ingredient for modeling particle
dispersion processes [Pasquero et al., 2001]. In the vigor-
ous upper layers we observe velocity pdf’s that deviate from a
Gaussian distribution (Figure 3b). This behavior is analogous
to what is obtained from theoretical and numerical studies of
vortex-dominated 2-D turbulence and point vortex systems
[Bracco et al., 2000a], sQG flows [Schorghofer, 2000], as
well as oceanographic observations in regions of strong
mesoscale activity [Bracco et al., 2000b; LaCasce, 2005;
Isern-Fontanet et al., 2006]. Following those studies, we can
pinpoint the source of non-Gaussianity and look at the
velocity pdf’s inside and outside vortices. We identify
vortices as connected regions where the Okubo-Weiss pa-
rameter OW = S2 � z2 is such that OW < �sOW, where S2 is
squared strain, z is vorticity, and sOW is the standard
deviation of OW [Weiss, 1981]. As shown by Petersen et
al. [2006], OW in 2-D and QG flows is equal, apart from a
constant factor, to the middle eigenvalue of a tensor of
velocity gradients. The same eigenvalue is used to identify
coherent structures in 3-D turbulent flows. Here, given the
different set of equations considered (PE instead of QG or
2-D) OW represents an approximation of the middle eigen-
value of the velocity gradient tensor. However, it still pro-
vides a clear-cut separation between vorticity-dominated
regions whereOW	 0 and strain-dominated regions where
OW 
 0 whenever divergence is small, as in our case.
Inside vortices, pdf’s of horizontal velocity are nearly
Gaussian, while in the background flow between vortices
the pdf’s are almost identical to those calculated for the
whole domain, with long non-Gaussian tails. In vortex-
dominated flows, non-Gaussian distributions in the back-
ground are nonlocally generated by the far-field velocity
induced by the vortices [Bracco et al., 2000a]. At lower
layers, where the kinetic energy is much smaller and
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Figure 2. Vertical component of (nondimensional) relative vorticity z/f (a) at the surface (values
between �1.2 and 1.2), (b) at 78 m depth (values between �0.6 and 0.6), and (c) at 350 m depth (values
between �0.15 and 0.15). The nondimensional vorticity z/f provides an estimate of the local value of the
Rossby number. (d) Normalized pdf’s of relative vorticity at 8 (near the surface), at 78, and at 350 m.
Vertical velocity in m d�1 (e) at 78 and (f) at 350 m depth in and around the vortex centered (120 km,
180 km). All fields are averaged over 1 day, thus removing near-inertial motion.
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vortices are either absent or weak, the velocity pdf’s
become approximately Gaussian (not shown). In QG tur-
bulence, vortices and filaments determine the transport and
mixing properties [Provenzale, 1999; Bracco et al., 2004].
To investigate if this conclusion carries over to a more
realistic flow, we deploy three sets of 4096 pairs of neutral
Lagrangian particles uniformly distributed over the domain
at initial depths 0.5, 78, and 204 m once stationarity has
been reached. The particles are then passively carried by the
3-D Eulerian velocity field for 150 days. A first measure of
transport properties is provided by horizontal absolute
dispersion; it describes the time evolution of the mean
horizontal square distance traveled by each particle, and it
is defined as A2(t0; t) = hjXi(t) � Xi(t0)j2i, where angular

brackets indicate average over all the particles released at a
given vertical level at t0. Xi(t) is the (x, y) position of the
ith particle at time t (Figure 3c). Close to the surface, the
dispersion curve shows both ballistic (A2 � t2) and Brow-
nian (A2 � t) regimes, respectively, for short (t < 0.5 day)
and long (t > 30 days) times. An anomalous dispersion
regime A2� t5/4 appears at intermediate times, as observed in
vortex-dominated barotropic and QG turbulence [Elhmaidi et
al., 1993; Bracco et al., 2004]. The anomalous regime is
absent at greater depths, where the vortices do not extend
their influence. Mixing properties are quantified by relative
dispersion, D2(t0; t) = hjX � X0j2i, which describes the time
evolution of the average separation of particle pairs. Here X
and X0 are the positions of two initially nearby particles, and

Figure 3. (a) Power spectra of horizontal kinetic energy at 5, 20, 78, and 204 m depth. (b) The pdf’s of
normalized horizontal velocities at 5 m depth over the entire domain (VT), inside vortex cores (VV), and in
the background turbulence between the vortices (VB). A Gaussian distribution (thin solid line) is shown
for comparison. (c) Absolute dispersion of Lagrangian particles at 0.5 (black circles), 78 (gray dashed line),
and 204 m (gray solid line). (d) Relative dispersion of couples of Lagrangian particles, same release depths
as in Figure 3c.
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the brackets indicate average over all independent pairs. For
2-D turbulence, classical dispersion theories predictD2(t)� t3

when the separation is in the energy cascade range
[Richardson, 1926]. Figure 3d shows relative dispersion
computed at different depths: all three curves display an
intermediate Richardson regime and converge at late times
to a diffusive regime, as in numerical simulations of 2-D
barotropic and QG flows [Babiano et al., 1990; Bracco et
al., 2004]. Power laws with exponents between 2 and 3
have also been reported for relative dispersion of surface
ocean drifters [LaCasce and Ohlmann, 2003].
[15] Analogous results are obtained for simulations with-

out a surface mixed layer, for the runs forced with the
idealized sinusoidal wind stress independent of vertical
resolution, and for freely decaying simulations where the
wind and solar forcing are turned off. Overall, we can
conclude that many properties of horizontal motions in the
upper layer of a stably stratified, hydrostatic, rapidly rotat-
ing PE flow in the configuration considered here are
similar to those of 2-D and QG turbulence, with the major
difference of a strong cyclone-anticyclone asymmetry,
absent in the barotropic or quasi-geostrophic model, but
already found in SW systems. The similarity between the
flow considered and QG turbulence is further justified
by the horizontal balance diagnostic performed following
Capet et al. [2008c]. Adopting their relative measure of
unbalance (their equation (16)), we find that the mesoscale
flow is predominantly in gradient wind balance, with Coriolis
plus pressure and advective centrifugal forces dominating
the divergence of the horizontal momentum [McWilliams,
1985], as in the idealized eastern boundary upwelling
current investigated by Capet et al. [2008c]. In particular,
gradient wind balance is attained in vortex cores, with fila-
mentary regions of ageostrophy at their edges (not shown).
If the advective centrifugal forces are neglected, as when
the simpler geostrophic balance approximation is used,
coherent vortex cores are identified as ageostrophic regions
of the flow, because of the curvature effect.

4. Vertical Motion

[16] In this section we show that the geostrophic approx-
imation, while able to capture many of the horizontal trans-
port and mixing properties of the flow field, cannot describe
the complex structure of the vertical velocities within and
around the vortices.
[17] We first concentrate on the analysis of the daily

averaged vertical velocity field, in which the near-inertial
component is removed by the time averaging. In the vertical
sections across vortices (Figure 6a), upwelling and down-
welling regions alternate. High values of vertical velocities,
up to 50 m d�1, are found in the proximity of the vortices and
are related in a complex way to the vorticity field. Similar
patterns and values have been reported in simulations of
ocean fronts [Mahadevan, 2006], where subsurface intensi-
fication is attributed to submesoscale dynamics. In keeping
with the instability analysis of Molemaker and McWilliams
[2005], we infer that in our integrations coherent vortices are
regions where anticyclonic ageostrophic instability (AAI) and
centrifugal instability may occur. Indeed, strong geostrophic
flows (the vortices) and strong, appreciably ageostrophic,
vertical motions are colocated. The background turbulence

can be subject to only (geostrophic) baroclinic instability. The
submesoscale activity is therefore similar to the one at ocean
fronts for the presence of AAI. Here, however, local intensi-
fication of lateral buoyancy gradients due to frontogenesis is
not present, because of the lack of an imposed lateral velocity
shear. In our runs the spatial heterogeneities induced by the
wind forcing on the (initially uniform) density field are unable
to self-sustain the generation of submesoscale fronts.
[18] The vertical velocity field, w, does not display any

evident correlation with the vorticity field or its derivatives.
This can be understood by calculating w diagnostically from
the flow divergence (see Appendix A for derivation):

w x; y; zð Þ ¼ Dh
Dt
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Z h

z
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where z1 = @v/@x; z2 =�@u/@y; c1 = @u/@x; c2 = @v/@y; a1 =
(f + z1)

�1; and a2 = (f + z2)
�1.

[19] One day averaged vertical profiles of each of the
contributions above are shown in Figure 4a. The primary
balance is attained by the nonlinear ageostrophic and
stretching terms (of the order of 60 m d�1), which appear
in the form of azimuthal wave number kA = 4 disturbances
around the vortex cores (Figures 4b and 4c). Those con-
tributions are strongly anticorrelated and largely cancel each
other. The cancelation results from the tendency of the
vortices to be axisymmetric and to satisfy the gradient wind
balance equation (section 2 and Capet et al. [2008b]). As a
result of this cancelation, the tilting term in the shape of a
spiraling wave number kA = 2 band dominates the overall
pattern of the vertical velocity field (compares Figures 4d and
2e), reaching values of 20 m d�1 at the surface and declining
with depth. Vertical mixing contributes up to 10 m d�1 close
to the surface; free surface, wind stress curl and horizontal
mixing terms are smaller by three to 4 orders of magnitude,
depending on depth. All terms are modulated by (f + z)�1,
which can be large inside anticyclones where jzj � f and
ageostrophic effects arise, generating the fine-scale structure
in Figures 2e and 2f and explaining the absence of simple
correlations between w and z or its spatial gradients. The
complexity of the vertical velocity field in the first 100 m is

ð1Þ
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dominated by low-frequency processes (longer than 1 day) in
the form of bands described in previous works as outward
propagating vortex Rossby waves (VRWs) [Montgomery
and Kallenbach, 1997; McWilliams et al., 2003; Graves et
al., 2006]. In the paper by Montgomery and Kallenbach
[1997] VRWs have been identified estimating the local
dispersion relation

n ¼ kA@rz
k2A þ k2r

ð2Þ

for a spectrally localized wave packet with azimuthal wave
number kA = 2, which prevails in the vertical velocity field

of the vortices because of the tilting term. Here the radial
wave number is kr = 2p/l, where l � 10–15 km is the
typical wavelength of the velocity disturbances for the
simulated vortex field and @rz is the differentiation with
respect to the radius of the vortex. The frequency varies
between 0.15f � n � 0.2f, which corresponds to a period
of 3.6 � TVRW � 4.8 days. To our knowledge, this is the
first time that vortex Rossby waves have been identified
and analyzed in a fully nonlinear regime of oceanic interest
using a PE model. Because of the contributions of the
ageostrophic terms, VRWs in our solutions differ signif-
icantly from the ones occurring in QG flows. VRWs have
been extensively studied in the context of tropical cyclo-
genesis and hurricane intensification [Montgomery and

Figure 4. (a) Vertical profile for each of the terms contributing to the vertical velocity in equation (1).
All terms have been averaged over 1 day, thus removing near-inertial contributions. (b) Ageostrophic,
(c) stretching, and (d) tilting contributions to the vertical velocity field in m d�1 at 15 m depth and
averaged over 1 day. AG, ageostrophic; EK, Ekman; ST, stretching; HM, horizontal mixing; VM, vertical
mixing; TI, tilting.
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Kallenbach, 1997; Schubert et al., 1999; Wang, 2002;
Möller and Shapiro, 2002].
[20] As shown by Graves et al. [2006] for a shallow

water flow in a weakly nonlinear regime, VRWs are respon-
sible for the asymmetry of the vortex population. The
straining deformation that they induce systematically weak-
ens cyclones, while anticyclones with size comparable to the
Rossby deformation radius, as in our simulations, strengthen.
While the tilting term with its spiraling bands determines the
overall shape of the vertical velocity field within and around
the vortices, it should be stressed that velocity maxima are

attained in the regions where the ageostrophic and stretching
terms do not cancel each other.
[21] We now concentrate on the contribution of the near-

inertial component to the vertical velocity field. Figure 5a
shows the vertical profile of the standard deviation of
the instantaneous vertical velocity field averaged over the
horizontal domain together with the one obtained for the
daily averaged vertical velocity field. The maximum that
appears at middepth between 300 and 500 m, and that is
not pronounced in the 1 day averaged profile, reflects the
contribution of near-inertial internal waves to the vertical

Figure 5. (a) Domain averaged vertical profile of the RMS fluctuation (standard deviation) of the
instantaneous vertical velocity field (solid line with circles) and of daily averaged vertical velocity
(dashed line with squares). (b) Frequency spectra of vertical velocity at 10, 20, 80, 300, and 600 m,
calculated over 10 days at regularly distributed 64 � 64 points in the domain, using a time step of 2 h.
The signal has been linearly detrended. The inertial frequency (fp) is indicated by the black line.
Instantaneous snapshot of vertical velocity (in m d�1) (c) at 78 and (d) at 350 m depth in and around the
vortex centered at 120 km, 180 km. Snapshots and the instantaneous profile are taken at middle of the day
interval over which the daily averaged fields were calculated.
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velocity field, as evident in the frequency spectra shown in
Figure 5b. The shift of the inertial peak toward a frequency
higher than predicted for quasi-geostrophic flows [Kunze,
1985] is likely due to the near-inertial motions induced by
the ageostrophic instabilities in the vortex cores [Boccaletti
et al., 2007] and has been found also in observational data
[Pollard, 1980; Millot and Crepon, 1981; Kundu and
Thomson, 1985]. Internal gravity waves have negligible
amplitude close to the surface compared to the balanced
motions (compare Figures 5c and 2e); they have compara-
ble spectral amplitude between 100 and 250 m of depth;
and they dominate the dynamics below 300 m (compare
Figures 5d and 2f). Amplitudes as high as the ones reported
here have been found in high-resolution ocean general cir-
culation model runs in the presence of wind pulses and
have been linked to wind-induced energy in the presence of
high-frequency atmospheric forcing [Danioux et al., 2008].
Vertical resolution and the mixed layer do impact the
amplitude of the near-inertial component that becomes
more pronounced for increasing resolution (Figure 8), and
we briefly discuss such a dependance at the end of this
section.
[22] Further investigating vertical velocities, we examine

the accuracy of estimating them using the quasi-geostrophic
omega equation. We follow the classical formulation pro-
posed by Hoskins et al. [1978] and adopted by, for example,
Pollard and Regier [1992] and Pinot et al. [1996],

N2r2
h wð Þ þ f 2

@2w

@z2
¼ 2r � Qð Þ; ð3Þ

where N is the three-dimensional buoyancy frequency,rh
2 is

r2
h ¼

@

@x2
þ @

@y2
ð4Þ

and Q is defined as

Q ¼ g

ro

@ug
@x

@r
@x

þ @vg
@x

@r
@y

;
@ug
@y

@r
@x

þ @vg
@y

@r
@y

� 	
: ð5Þ

[23] We solve the QG omega equation using a Fourier
transform in horizontal, where periodic boundary conditions
are implemented, and a discrete Fourier transform in the
vertical, interpolating all the fields required on a 20 m
evenly spaced vertical grid. The geostrophic horizontal
velocities are calculated from the model pressure field by
assuming thermal wind balance. The level of no motion is
prescribed at 180 m, the depth at which the influence of
the surface-intensified vortices is strongly reduced. Dif-
ferent values, between 125 and 180 m, have been adopted
with qualitatively similar results. (We could not test values
deeper than 180 m because the stratification profile is expo-
nential and the matrices in the Louville problem become
singular). We approximate the free surface as z = 0, and we
further apply the rigid lid approximation with w = 0 at z = 0
[Allen and Smeed, 1996; Shearman et al., 1999; Belchi and
Tintore, 2001]. No significant differences are found if the
model values of w at z = 0 are used instead, as in the paper
by Pinot et al. [1996].

Figure 6. (a) Instantaneous vertical section of vertical velocity (in m d�1) across the line indicated in
Figure 2a over the first 200 m of the water column. (b) As in Figure 6a, but obtained from the QG omega
equation. The level of no motion is set to 180 m. Note the order of magnitude difference in the amplitude
of the signal.
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[24] Figure 6a shows the instantaneous vertical section
of the vertical velocity field along the white line in
Figures 2a–2c (i.e., across the vortex centered at 120 and
180 km) for the model solution and Figure 6b the corre-
sponding field obtained by solving the QG omega equa-
tion, together with the isolines of relative vorticity.While the
broader features of the vertical velocity field (as the vertical
extension and location of the downwelling maxima within
the vortex) are somehow captured by the omega equation,
the velocity calculated by using equation (3) is 1 order of
magnitude weaker in amplitude and smoother than the
modeled one. Pinot et al. [1996] and LaCasce and
Mahadevan [2006], among others, also noticed that the

QG omega equation produces patterns of vertical velocity
that are too smooth compared to observations.
[25] These results indicate that the vertical velocity esti-

mates provided by the traditional quasi-geostrophic formu-
lations are not a reliable approximation for the vertical
transport associated with wind-forced coherent vortices.
[26] Additionally, we find that the distribution of vertical

velocities is non-Gaussian in the upper 120 m, where the
dynamics is dominated by the presence of the vortices
(Figures 7a and 7b), and Gaussian at depth (not shown).
Close to the surface the pdf’s are slightly skewed toward
negative values, as also observed in frontal circulation
regions [Mahadevan, 2006; Capet et al., 2008c, 2008d].
Vertical velocities significantly impact the vertical trans-

Figure 7. (a) Normalized pdf’s of vertical velocities at 20, 78, and 150 m. The thin solid line represents
a Gaussian pdf. (b) Normalized pdf’s of vertical velocities at 78 m depth inside vortices (VV), in the
background (VB), and in the whole domain (VT). The thin solid line represents a Gaussian distribution.
The pdf’s have been averaged over 50 days during the statistically stationary phase. (c) Histograms of
vertical positions of tracers released at 78 m at different times after deployment. The vertical line marks
the depth of deployment.

C08011 KOSZALKA ET AL.: COHERENT VORTICES IN OPEN OCEAN

10 of 14

C08011



port of heat, salt, and any kind of material in the ocean,
including plankton. To further study this issue we analyzed
the set of homogeneously distributed Lagrangian particle
pairs deployed at an initial depth of 78 m. Figure 7c shows
the distributions of the vertical positions of the particles at
different instants, indicating that passive tracers undergo
large vertical excursions. This may have important impli-
cations for marine ecosystem dynamics: Assuming in the
open ocean the euphotic layer depth is about 70 m, over
50% of the particles released just below the euphotic
layer enter it and reach 40 m depth (where the subsurface
maximum of phytoplankton concentration is typically
located) at least once during any 100 day period, with an
average of three visits. The mean duration of each visit is
about 10 days, sufficient to make upwelled nutrients avail-
able to phytoplankton and potentially trigger a subsurface
bloom.
[27] Finally, we compared the simulation described so

far with three others where flow has been forced with the
idealized sinusoidal wind stress as discussed in section 2. Of
those, the first differs from the one considered only in the
wind forcing. The second has an increased vertical resolu-
tion with 80 layers. The third, also with 80 layers, does not
include a mixed layer in the first 20 m of the water column.
Horizontal and vertical motion, and transport properties are

qualitatively comparable in all runs. The idealized sinusoi-
dal wind stress induces a flow that is also quantitatively
similar to the one discussed here. Increasing the vertical
resolution from 20 to 80 layers causes the vertical velocities
to increase. This is verified in the whole water column, and
particularly at middepth, where, for an otherwise identical
configuration, the standard deviation is more than twice
as large as in the 20 layers case (Figure 8). The general
structure of the vertical velocity fields remain, however,
similar to what is discussed for the 20 layer case. In the
absence of a mixed layer, vertical velocities are further
amplified below the surface, because momentum can be
transferred more easily from the surface, where only a
shallow Ekman layer is formed by the action of the wind
forcing, to deeper waters.

5. Discussion and Conclusions

[28] In this work we used the high-resolution PE model
ROMS to study an idealized portion of a wind-forced,
turbulent open ocean. Differential rotation, topographic,
and nonhydrostatic effects have been neglected. As shown
by Mahadevan [2006], nonhydrostatic terms do not con-
tribute substantially to the average vertical flux on ocean
mesoscale.
[29] The results discussed here provide a novel view of

the dynamics of vortex-dominated, rotating turbulence in
stably stratified fluids. In our integration the internal Rossby
deformation radius is small compared to the domain size,
resulting in the generation of wind-forced, surface-intensified
coherent anticyclones. Cyclones are short living and are
destroyed by the straining deformation induced by vortex
Rossby waves. In the upper 100 m of the water column,
vortical motion dominates over the divergent component;
near-inertial waves are negligible; and most statistical
properties of horizontal flows, apart from the cyclone-
anticyclone asymmetry, are similar to those of 2-D turbu-
lence, with energy spectra slightly steeper than k�3. The
vertical velocity field, w, is very complex, and it does not
display simple correlations with vorticity or vorticity gra-
dients. Vertical velocities reach high instantaneous values
(up to 100 m d�1) and display a fine spatial structure linked
to the presence of vortices and filaments and to their inter-
actions with the Ekman circulation. Within and around
vortices and filaments, upwelling and downwelling regions
alternate and do not correlate with relative vorticity but
result from the interplay of advection, stretching, and
instantaneous vorticity changes. Maxima are attained
where ageostrophic and stretching terms do not cancel each
other, while the overall shape is dominated by the tilting
contribution in the shape of a spiraling band. The distribu-
tion of vertical velocity is non-Gaussian, and it is respon-
sible for large vertical excursions of Lagrangian tracers. At
depth internal gravity waves are responsible for a secondary
vertical velocity maximum located, in our runs, between 300
and 400 m.
[30] Shallower spectra than those detected in this work

have been observed in simulations of frontal dynamics
[Mahadevan, 2006; Capet et al., 2008d] and in some
basin-scale simulations without small-scale wind forcing
[Klein et al., 2008], where the vertical velocity field has
been shown to resemble that of sQG dynamics [Lapeyre

Figure 8. Vertical profile of the instantaneous RMS
fluctuation (standard deviation) of vertical velocity aver-
aged over the horizontal domain and 600 snapshots over
50 days in the statistically stationary phase for the 80 layer
run with idealized sinusoidal wind forcing in the absence of
a mixed layer (solid line), again for the 80 layer run with
mixed layer (dashed line), and in the simulation with a
narrow-band continuous wind forcing and 20 layer vertical
resolution (marked with circles).
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and Klein, 2006; Klein et al., 2008]. However, the spatial
structure of the vertical velocity field studied here is rather
different from that predicted by sQG models, possibly
for the more energetic dynamics generated by the wind
forcing and for the small value of Ld adopted. The flow
analyzed is surface-intensified, but not to the point of
being describable by an asymptotic approximation such as
sQG. A similar example comes from the analysis of vortex
merging reported by von Hardenberg et al. [2000]: while
flattened QG vortices with small aspect ratio do indeed
display some of the properties of sQG vortices, the dynam-
ical properties of the merging events and the process of
filament instability are rather different.
[31] Our results suggest that, depending on prevailing

conditions, mesoscale and submesoscale ocean flows can
display different dynamics, from strong frontal development
[Mahadevan, 2006] to sQG-like flows [Klein et al., 2008] to
almost 2-D coherent vortices with complex vertical veloc-
ities, as observed here. Further studies are clearly needed to
define a more complete regime diagram in parameter space.

Appendix A

[32] Equation (1) has been obtained cross differentiating
the horizontal momentum equations integrated by ROMS
according to
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where (u, v) are the horizontal velocity components, D/Dt =
@t + u@x + v@y + w@z, w is the vertical velocity, and ro is a
constant reference density. The formulation includes
biharmonic horizontal mixing, with AH being the constant
mixing coefficient, and KPP vertical mixing, with Kv(x, y, z)
being the vertical mixing coefficient computed by the KPP
scheme.
[33] With a little algebra we obtain
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which can be rewritten, by defining z1 = @v/@x, z2 = �@u/
@y, c1 = @u/@x, c2 = @v/@y, as
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[34] Equation (1) is then obtained integrating the ex-
pression for @w

@x = �@u
@x � @v

@y that is given by the sum of
equation (A5) divided by (f + z2), with equation (A6)
divided by (f + z1).
[35] Alternatively, by adding equations (A5) and (A6)

and subsequently moving the c terms on the left-hand side,
we obtain
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directly related to the vorticity equation in the Boussinesq
approximation [e.g., Vallis, 2006, chapter 4],
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[36] In this work, the chosen formulation allows for
highlighting the azimuthal wave number kA = 4 Rossby
waves that largely balance in the interplay between the
ageostrophic and stretching terms of equation (1).
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Danioux, E., P. Klein, and P. Reviére (2008), Propagation of wind energy
into the deep ocean through a fully turbulent mesoscale eddy field, J. Phys.
Oceanogr., 38, 2224–2241.

Elhmaidi, D., A. Provenzale, and A. Babiano (1993), Elementary topology
of two-dimensional turbulence from a Lagrangian viewpoint and single-
particle dispersion, J. Fluid Mech., 257, 533–558.

Graves, L. P., J. C. McWilliams, and M. T. Montgomery (2006), Vortex
evolution due to straining: A mechanism for dominance of strong, interior
anticyclones, Geophys. Astrophys. Fluid Dyn., 100, 151–183.

Held, I., R. Pierrehumbert, S. Garner, and K. Swanson (1995), Surface
quasi-geostrophic dynamics, J. Fluid Mech., 282, 1–20.

Hogg, A., P. D. Killworth, J. R. Blundell, and W. K. Dewar (2005), On the
mechanisms of decadal variability of the wind-driven ocean circulation,
J. Phys. Oceanogr., 35, 512–531.

Hoskins, B. J., I. Draghici, and H. C. Davies (1978), A new look at the
w-equation, Q. J. R. Meteorol. Soc., 104, 31 –38.

Isern-Fontanet, J., E. Garcia-Ladona, J. Font, and A. Garcia-Olivares
(2006), Non-Gaussian velocity probability density functions: An alti-
metric perspective of the Mediterranean Sea, J. Phys. Oceanogr., 36,
2153–2164.

Klein, P., L. Hua, G. Lapeyre, X. Capet, S. L. Gentil, and H. Sasaki (2008),
Upper ocean turbulence from high-resolution 3D simulations, J. Phys.
Oceanogr., 38, 1748–1763.

Kundu, P. K., and R. E. Thomson (1985), Inertial oscillations due to a
moving front, J. Phys. Oceanogr., 15, 1076–1084.

Kunze, E. (1985), Near-inertial wave propagation in geostrophic shear,
J. Phys. Oceanogr., 15, 544 –565.

LaCasce, J. H. (2005), On the Eulerian and Lagrangian velocity distribu-
tions in the North Atlantic, J. Phys. Oceanogr., 35, 2327–2336.

LaCasce, J. H., and A. Mahadevan (2006), Estimating subsurface horizontal
and vertical velocities from sea-surface temperature, J. Mar. Res., 64,
695–721.

LaCasce, J. H., and C. Ohlmann (2003), Relative dispersion at the surface
of the Gulf of Mexico, J. Mar. Res., 61, 285–312.

Lapeyre, G., and P. Klein (2006), Dynamics of the upper oceanic layers
in terms of surface quasigeostrophic theory, J. Phys. Oceanogr., 36,
165–176.

Large, W. G., J. C. McWilliams, and S. Doney (1994), Oceanic vertical
mixing: A review and a model with a nonlocal K-profile boundary layer
parameterization, Rev. Geophys., 32, 363–403.

Levy, M., and P. Klein (2004), Does the low frequency variability of
mesoscale dynamics explain a part of the phytoplankton and zooplankton
spectral variability?, Proc. R. Soc. London, Ser. A, 460, 1673–1687.

Levy, M., P. Klein, and A.-M. Treguier (2001), Impact of sub-mesoscale
physics on production and subduction of phytoplankton in an oligo-
trophic regime, J. Mar. Res., 59, 535–565.

Mahadevan, A. (2006), Modelling vertical motion at ocean fronts: Are
nonhydrostatic effects relevant at mesoscales?,Ocean Dyn., 14, 222–240.

Mahadevan, A., and A. Tandon (2006), An analysis of mechanisms for
submesoscale vertical motion at ocean fronts, Ocean Dyn., 14, 241–256.

McWilliams, J. C. (1984), The emergence of isolated coherent vortices in
turbulent flow, J. Fluid Mech., 146, 21–43.

McWilliams, J. C. (1985), Submesoscale, coherent vortices in the ocean,
Rev. Geophys., 23, 165–182.

McWilliams, J. C. (1990), The vortices of two-dimensional turbulence,
J. Fluid Mech., 219, 361–385.

McWilliams, J. C., J. B. Weiss, and I. Yavneh (1994), Anisotropy and
coherent vortex structures in planetary turbulence, Science, 264, 410–413.

McWilliams, J. C., L. P. Graves, and M. T. Montgomery (2003), A formal
theory for vortex Rossby waves and vortex evolution,Geophys. Astrophys.
Fluid Dyn., 97, 275–309.

Millot, C., and M. Crepon (1981), Inertial oscillations on the continental
shelf of the Gulf of Lions — Observations and theory, J. Phys. Oceanogr.,
11, 639–657.

Molemaker, M. J., and J. C. McWilliams (2005), Baroclinic instability and
loss of balance, J. Phys. Oceanogr., 35, 1505–1517.
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