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Abstract 

Lamprophyres of different age showing distinctive mineralogy, geochemistry and isotopic 

ratios are exposed in northwestern Iran. They can be divided into Late Cretaceous sannaite, 

Late Oligocene-Early Miocene camptonite (amphibole-bearing) and Late Miocene minette 

(mica-bearing) and spessartite (amphibole-bearing) lamprophyres.  

Sannaites have high-Ti amphibole along with high-Ti and Al clinopyroxene, and they are 

characterised by homogeneous enrichment in incompatible trace elements with troughs at 

Pb. Spessartites have hornblende and low-Al and Ti clinopyroxene, and they are characterised 

by enriched incompatible trace element pattern with depletions of Nb, Ta, Pb, and Ti with 

respect to large ion lithophile elements. Minettes have high-Ti and Al brown mica and low-Al 

and Ti clinopyroxene, and similarly to spessartite, are characterised by fractionation of high 

field strength elements with respect to large ion lithophile elements, with troughs at Nb, Ta, 

and Ti and a peak at Pb. Minettes show high initial 87Sr/86Sr values up to 0.70760 and low 

initial 143Nd/144Nd down to 0.512463 with a negative correlation, consistent with the trace 

element distribution related with an enriched mantle source modified after sediment 

recycling during subduction and continental collision.  
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Cretaceous sannaites and Early Miocene spessartites show low initial 87Sr/86Sr 

approaching 0.70447 and high 143Nd/144Nd values up to 0.512667, which are consistent with a 

depleted within-plate mantle source. Minette and spessartite lamprophyres show high initial 

206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values, whereas sannaites have lower, but variable, 

initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values with respect to those of calc-alkaline 

lamprophyres. Minettes originated by partial melting of a metasomatised lithospheric mantle 

following siliciclastic sediment recycling by subduction. In contrast, sannaites were generated 

from the partial melting of a similar lithospheric mantle that was metasomatised by within-

plate agents.  

Key words: Alkaline and calc-alkaline lamprophyres, Geochemistry, Sr-Nd-Pb isotopes, 

Geochronology, Mantle heterogeneity, Iran     

1. Introduction 

During convergent tectonics fluids and/or melts released by partial melting of subducted 

sediments and/or dehydration of the oceanic slab may enrich the mantle wedge with a 

crustal-derived component. The delay between metasomatism and magmatism usually 

observed in many orogenic belts (e.g., Prelevid and Seghedi, 2013 and references therein) 

might be some hundred million years (e.g., Wilson, 1989; Gibson et al., 1995; Tommasini et 

al., 2011).  

The reaction between ambient peridotite of the mantle wedge with metasomatising 

fluids and/or melts is able to form a phlogopite- and/or amphibole-rich metasomatised vein 

network within the mantle wedge (e.g., Foley, 1992a, 1992b; Beccaluva et al., 2004; Conticelli 

et al., 2004, 2007; Bianchini et al., 2010). Partial melting of the metasomatic veins might be 

triggered after subduction cessation in a post-collisional geodynamic setting to produce K-rich 

magmas (e.g., Prelevid et al., 2005; Tommasini et al., 2011).  

Post collisional magmatism has been ascribed to (i) lithosphere delamination (e.g., 

Dewey, 1988; Turner et al., 1996, 1999); (ii) slab break-off (Davies and von Blanckenburg, 

1995) and/or tearing (Prelevid et al., 2012 and references therein); (iii) isotherm relaxation 

after subduction ending (e.g., Conticelli and Peccerillo, 1992; Conticelli et al., 2002, 2009a; 

Peccerillo and Martinotti, 2006; Owen, 2008) or a combination of these three scenarios.  
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The alkaline K-rich magmas produced in these settings are characterised by a typical arc 

geochemical trace element fingerprint (e.g., high large ion lithophile/high field strength 

element ratios; extreme enrichment in Th but with high Th/La values; e.g., Tommasini et al., 

2011). Therefore, post-collisional magmatism can provide important information about the 

geodynamic history of the orogenic stage from oceanic subduction to continental collision 

and trace the evolution of the lithospheric mantle source(s). 

Lamprophyres are a clan of alkaline rocks enriched in H2O and CO2 ranging in composition 

from sodic to potassic, with ultramafic to intermediate characters (Rock, 1991). Lamprophyres 

can be classified from alkaline and calc-alkaline, to ultramafic and lamproitic (Rock, 1991), 

each distinguished on the basis of their mineralogy and chemistry (Mitchell and Bergman 

1991; Tappe, et al., 2005). Lamprophyric rocks with different nature are reported from 

different orogenic and anorogenic settings. They are reported from continental active margins 

(e.g., Allan and Carmichael, 1984; Lange and Carmichael, 1990; Carmichael et al., 1996), post 

collisional (e.g., Muller et al., 1992), late orogenic (e.g., Abdelfadil et al., 2013), intraplate 

rifting (e.g., Tappe et al., 2006, 2008) and intraplate basin and graben structure (e.g., Dostal 

and Owen, 1998). Usually, calc-alkaline lamprophyres and high-Si lamproitic lavas are 

considered as orogenic members of the clan. They often occur at destructive plate margins 

generally emplaced during post-collisional phases, although orogenic lamprophyric magmas 

at active continental margins are found as well (e.g., Mexico; Allan and Carmichael, 1984; 

Wallace and Carmichael, 1989; Lange and Carmichael, 1990; Carmichael et al., 1996). Their 

mineralogy and chemistry provide important information about the nature and evolution of 

their mantle source and geodynamic processes that might have modified it. Several models 

are proposed for the petrogenesis of orogenic lamprophyric magmas: (1) partial melting of 

metasomatic and enriched mantle (e.g., Wallace et al., 1992; Conticelli et al., 1992, 2009a; 

Zhang et al., 2003; Prelevid et al., 2004; Owen, 2008; Avanzinelli et al., 2009); (2) 

contamination of mafic alkaline magmas with continental crustal material or melts (Rock, 

1991; Prelevid et al., 2004); (3) mixing of upwelling basaltic magma with varying amounts of 

ultrapotassic melts originating in the lithospheric mantle related to heating and/or thinning of 

sub-continental lithospheric-mantle (Thompson et al., 1990). Although lamprophyres were 

long thought to sample a metasomatised mantle source which has been enriched during an 

ancient event, it has become increasingly evident that the trace element and isotopic 
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signatures of already aged crust-derived material introduced during geologically young events 

may be an alternative explanation (e.g., Conticelli et al., 1992; Prelevid et al., 2005, 2012; 

Tommasini et al., 2011). Geochemical and isotopic characteristics of lamprophyres confirm 

that both mantle and/or crustal source components may play an important role in their 

genesis.  

Lamprophyric rocks of different nature are reported from northwestern Iran (e.g., 

Moayyed et al., 2008; Aghazadeh, 2009; Aghazadeh et al., 2010; Aghazadeh and Badrzadeh, 

2012). They crop out as dykes and sills cutting Cretaceous and Cenozoic terranes, and they are 

related to the evolution of the Zagros orogen and to the subduction of Neo-Tethys ocean 

crust in northwestern Iran.  

In this paper, we report original data on the geochronology (40Ar/39Ar dating), 

petrography and mineral chemistry, whole rock geochemistry and Sr-Nd-Pb isotope 

composition of alkaline and calc-alkaline lamprophyres from northwestern Iran. Our aim is to 

shed more light on their nature and genesis and to put more constraints on the composition 

of the mantle wedge involved in Neo-Tethys subduction.  

2. Geological background of the study area 

Northwestern Iran is part of the hinterland of the Arabia–Eurasia collision zone in the 

broad Alpine–Himalayan orogenic belt. Mean surface elevation of the area is about 1.5–2 km 

above sea level with scattered Plio-Quaternary volcanoes over 3,500 meters high (e.g., 

Sabalan and Sahand volcanoes). The study area is located in the northwestern sector of the 

Zagros orogen (Fig. 1a) and it is characterised by a complex geological history, which is similar 

to that of the central Iranian block. The area is bounded in the east and northeast by Caspian 

Sea basement and lesser Caucasus ophiolite and in the west and southwest area limited by 

the Khoy ophiolite and Zagros suture (Fig. 1a). Two main Cenozoic magmatic arcs are found, 

namely the Urumieh-Dokhtar magmatic arc and the Alborz magmatic belt, which overlap 

partially in northwestern Iran. Magmatism started during Cretaceous times but voluminous 

magmatic bodies formed from late Tertiary until Quaternary (e.g., Dilek et al., 2009; 

Aghazadeh et al., 2011). 

North-westernmost Iran, Arasbaran and southern Armenia and Nakhichevan (Azerbaijan 

republic) are commonly regarded as a continental terrain of Gondwanan origin (e.g., 
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Berberian and King, 1981; Sosson et al., 2010 and references therein). The area includes a 

metamorphic basement overlain by incomplete Paleozoic terrigenous clastic and shallow 

marine sedimentary successions (e.g., Berberian and King, 1981; Adamia et al., 2011). 

Paleozoic sedimentary successions are followed by shelf marine and detrital series of Triassic 

to Jurassic age, with minor basic to felsic volcanic interlayers. Palaeomagnetic data from 

Middle Jurassic alkaline basalts and from sediments in the Nakhichevan area as well as 

Aalenian to Bajocian sedimentary rocks indicate a paleo-latitude of 21.5°N ± 3.7 (2000 km 

south of its present position) during this period of time (Bazhenov et al. 1996). Thick 

Cretaceous to Paleocene flysch type sediments and arc-related volcanic rocks developed in 

the area, especially in the Arasbaran zone, and are interpreted as being deposited in a shallow 

marine environment (Babakhani et al., 1990). Between the Eocene and Quaternary, syn- to 

post-collision magmatism (Sosson et al., 2010; Mederer et al., 2013) with typical arc 

geochemical characteristics was active (e.g., Dilek et al., 2009; Aghazadeh et al., 2011), 

representing an outstanding feature of the Arasbaran and northwestern Iran geology.  

The studied lamprophyres outcrop in three areas in northwestern Iran: the Arasbaran 

region, the Mishu ranges, and the Eslamy (Saray) peninsula (Fig. 1b); On the basis of their 

mineralogy and field relationships they can be divided in two distinct groups: alkaline 

lamprophyres (Arasbaran range) and calc-alkaline lamprophyres (Mishu range and Eslamy 

Peninsula).  

The Arasbaran region is mainly composed of Cretaceous to Cenozoic volcano-

sedimentary successions. Amphibole-bearing (alkaline) lamprophyre outcrops as hypabyssal 

intrusions into the Cretaceous and Oligocene - Miocene terrains of the Arasbaran region, and 

they are found in the Horand and Khankandi areas (Fig. 1b). In the Horand area lamprophyres 

crop out in the form of sills and dykes with a NW-SE trend. They intrude flysch type 

sedimentary rocks and represent the oldest lamprophyric magmatic event considered (see 

below). The sedimentary succession is composed of sandstone, marl, and limestone of 

Cretaceous-Paleocene ages. A lamprophyre sill exceeds 50 m in width and 700 m in length 

and dykes are less than 1 m wide and 50 m length (see Appendix). In the Khankandi area 

several lamprophyric dykes and apophyses with NW-SE and NE-SW trends intruded in a 

monzonitic pluton emplaced at 28.9 Ma (Aghazadeh et al., 2010). Fragments of country 

monzonitic rocks are also observed in the dykes. Monzonitic pluton and lamprophyric dykes 
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are covered by Miocene siliciclastic sedimentary rocks. Lamprophyre outcrops are 50-200 m 

long and 0.5-5 m wide.  

The Mishu range is delimited at both north and south edges by the northern and 

southern Mishu Faults (Fig. 1b). The two delimiting faults represent two branches of the 

Tabriz great fault (Fig. 1). Lamprophyric dykes intrude metamorphic rocks of Precambrian to 

Palaeozoic ages and Miocene siliciclastic sedimentary rocks. Calc-alkaline lamprophyres from 

Mishu range are both hornblende- and phlogopite-bearing. Hornblende-bearing 

lamprophyres have been found in the Sorkheh and Tasuj areas, whereas phlogopite-bearing 

lamprophyres are observed near the city of Marand in the Sorkheh area. Hornblende-bearing 

dykes cut Upper Red Formation in Sorkheh area and Precambrian metamorphic terranes in 

the Tasuj area. They crop out as dykes, 1-2 m wide and 300 m long. Phlogopite-bearing 

lamprophyres (Marand) are also found in the form of dykes with N-S to NW-SE trends, with 

grey colour and ranging from 0.5 to 3 m in width, and up to 500 m in length (see Appendix), 

and they also cut the Upper Red Formation. No temporal relationships between phlogopite-

bearing and hornblende-bearing calc-alkaline lamprophyric dykes have been observed. 

The Eslamy (Saray) peninsula is located in the eastern shoreline of the Urumieh Lake (Fig. 

1b). The Peninsula itself formed after emergence from the lake of Eslamy stratovolcano, 

which is Miocene in age (from 15.7 to 6.5 Ma; Moradian Shahrbabaki, 1997; Pang et al., 

2013), and was built by the piling up of alkaline lavas and pyroclastic rocks ranging in 

composition from basanite and leucitite to trachyte and phonolite (Moeinvaziri, 1985). 

Northwest-southeast trending calc-alkaline lamprophyric dykes cut the volcanic pile of the 

Eslamy stratovolcano, outcropping mainly in its central sector, ranging from 0.5 to 3 m in 

width, and from 50 to 200 m in length (see Appendix).  

3. Analytical techniques 

About 75 fresh samples of different lamprophyres were collected from dikes and sills 

from northwestern Iran. Polished thin sections of each sample were studied in detail prior to 

microprobe analyses. Representative minerals (amphibole, pyroxene, and mica) of different 

lamprophyres from selected samples were analyzed using an electron microprobe (JEOL JXA 

8900RL) at the University of Mainz (Table 1 and Table E1 in the Electronic Supplementary 

Materials). Operating conditions include an accelerating voltage of 15 kV, a beam current of 
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12 nA, a beam diameter of 1-5 m, and a peak counting time of 15-30 s. Synthetic and natural 

minerals were used for standardization.  

Whole-rock geochemical analysis and Sr, Nd and Pb isotope determinations were 

performed on 27 selected samples (Table 2, Table 3 and Table E2 Electronic Supplementary 

Material). Major and trace elements were analysed at the ALS Analytical Laboratories Ltd. in 

Canada using inductively coupled plasma-emission spectrometry (ICP-ES) for major elements 

and inductively coupled plasma-mass spectrometry (ICP-MS) for trace elements. Major oxides 

were reported on a 0.2 g sample analyzed by ICP-emission spectrometry following a lithium 

metaborate/tetraborate fusion and dilute nitric digestion. Loss on ignition (LOI) was 

determined by weight difference after ignition at 1000 °C. The precision and accuracy, as 

indicated by duplicates and the USGS standards, are within 1% for major elements and 10% 

for minor and trace elements. 

Sr, Nd, and Pb isotopes were analysed at the Radiogenic Isotopes Laboratory of the 

University of Florence. All samples were processed by sequential HF-HNO3-HCl dissolution and 

the Sr, Nd and Pb fractions were purified and collected as described in Avanzinelli et al. 

(2005). Sr-Nd-Pb isotope ratios were measured with a Thermal Ionisation Mass Spectrometer 

(TIMS) ThermoFinnigan Triton-Ti®. During the period of measurement the mean value for 

87Sr/86Sr of the NIST SRM 987 standard was 0.710249±15 (2σ, n=17), and the mean values for 

143Nd/144Nd of the NdFi and La Jolla standards were 0.511471±6 (2σ, n=12) and 0.511846±7 

(2σ, n=67) respectively (further details are reported in Electronic Supplementary Material). 

Mass fractionation of Sr and Nd isotopes has been exponentially corrected to 86Sr/88Sr 

=0.1194 and 146Nd/144Nd = 0.7219, respectively. Pb isotope ratios were corrected for 

instrumental mass bias using replicate analyses of NIST SRM 981 standard. The long term and 

within run averages for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are also reported as Electronic 

Supplementary Material. Mass bias during Pb isotope analysis was monitored with repeated 

measurements of SRM 981 reference sample with an average fractionation factor of 0.149 % 

per mass unit relative to the reference values (Thirlwall, 2000) that was applied to all Pb 

isotope ratios. The accuracy of Pb isotope data was further tested by replicate measurements 

of AGV-1 yielding averages of 206Pb/204Pb 18.940±0.014 (2σ, n=11), 207Pb/204Pb 15.653±0.017 

(2σ, n=11), 208Pb/204Pb 38.566±0.061 (2σ, n=11), which are within the error of the values 

reported by Weis et al. (2006); analytical details are provided in Avanzinelli et al. (2005).  
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40Ar/39Ar incremental heating experiments were conducted on 4 samples of phlogopite 

and amphibole crystals, separates by hand-picking method, from MA-01, SA-03, MA-08 and 

HO-03 samples (Table E3 Electronic Supplementary Material) After crushing and sieving, the 

crystals were hand-picked from the 100-300 μm size fraction. Resulting mineral separates and 

chips were cleaned using an ultrasonic disintegrator. Minerals were then etched in 15 vol.% 

hydrofluoric acid for 10 min. Samples were neutron irradiated at the 5 MW reactor of the 

GKSS Reactor Center (Geesthacht, Federal Republic of Germany), with crystals and matrix 

chips in aluminium trays and irradiation cans wrapped in 0·7 mm cadmium foil. Samples were 

step-heated by laser. Purified gas samples were analyzed using a MAP 216 noble gas mass 

spectrometer. Raw mass spectrometer peaks were corrected for mass discrimination, 

background and blank values determined every analysis. The neutron flux was monitored 

using TCR sanidine (Taylor Creek Rhyolite = 27·92 Ma; Dalrymple and Duffield (1988)) and 

internal standard SAN6165 (0·470 Ma; Van den Bogaard, 1995). Vertical variations in J values 

were quantified by a cosine function fit. Lateral variations in J were not detected. Corrections 

for interfering neutron reactions on Ca and K are based on analyses of optical grade CaF2 and 

high-purity K2SO4 salt crystals that were irradiated together with the samples. Ages derived 

from step-heating analyses are based on plateau portions of the age spectra. Plateau regions 

generally comprise > 50% of the 39Ar released and more than three consecutive heating steps 

that yield the same ages (within 2 S.D.).  

4. Petrography, classification, and mineral chemistry  

The studied rocks show all major petrographic characteristics generally accepted by 

earlier definitions of lamprophyres (e.g., Wimmenauer, 1973; Rock, 1977, 1991; Streckeisen, 

1978; Le Maitre et al., 2000). According to them, lamprophyres are melanocratic hypabyssal 

igneous rocks with microporphyritic textures carrying hydrous mafic phenocrysts. Feldspars 

and other felsic minerals are always restricted to the groundmass. The high modal phenocryst 

contents comprised of hydrous mafic minerals (typically amphibole and phlogopite) indicates 

a primary hydrous nature of the parental, mantle-derived lamprophyric melts (Rock, 1991). 

4.1 Petrography and Classification 

4.1.1 Arasbaran alkaline lamprophyres 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9 

 

Horand lamprophyres are dark grey to green in colour with porphyritic textures. They are 

characterised by the occurrence of amphibole phenocrysts to megacrysts, which in some 

cases are longer than two cm, set in a groundmass made up dominantly by alkali-feldspar. 

Microscopically the amphibole-bearing lamprophyres show porphyritic and panidiomorphic 

texture (Fig. 2a). Amphibole also occurs in the groundmass along with clinopyroxene, K-

feldspar, plagioclase, mica, and opaque minerals. Apatite and zircon occur as accessory 

minerals.  

Khankandi alkaline lamprophyres are also amphibole-bearing with similar texture and 

mineralogy to the Horand ones. Amphibole-bearing lamprophyres have mafic minerals and 

feldspars (i.e., plagioclase and K-feldspar) in the groundmass that are replaced by chlorite, 

calcite and sometimes sericite, serpentine, clay minerals and zeolites (Fig. 2b). 

According to their mineralogy the Arasbaran alkaline lamprophyres from the Horand and 

Khankandi areas (Fig. 1b) are classified, respectively, as sannaite and camptonite alkaline 

lamprophyres (Le Maitre et al., 2002). These lamprophyres might have contained 

feldspathoids that are not observed in the studied samples due to the strong alteration of the 

groundmass. Normative nepheline, however, does occur in the CIPW norm of the amphibole-

bearing lamprophyres (Horand 5.6 mol.% < ne < 1.8 mol.%; Khankandi 6.5 mol.% < ne < 0.2 

mol.%; Table 2). 

4.1.2 Mishu and Eslamy calc-alkaline lamprophyres  

Mishu (Sorkheh and Tasuj) lamprophyres are hornblende-bearing with similar texture and 

mineralogy to the alkaline ones of Horand and Khankandi. Mishu lamprophyres display also 

the occurrence of olivine ghosts (Fig. 2c), with, in some cases, coronas made by 

clinopyroxene. They have a relatively high abundance of plagioclase with respect to K-feldspar 

in the groundmass and are classified as spessartite.  

Phlogopite-bearing lamprophyres from Eslamy and Marand areas are characterised by 30-

40 vol.% of large fresh phlogopite crystals, which may be up to 5 cm in diameter (Fig. 2d), set 

in a groundmass made of phlogopite, clinopyroxene, K-feldspar, plagioclase, and opaque 

minerals. They have porphyritic texture (Fig. 2d) with phenocrysts of phlogopite and 

clinopyroxene. Mica crystals show pale brown cores and dark brown margins. Clinopyroxene 

phenocrysts are euhedral, sometimes replaced by calcite, chlorite and opaque minerals. 
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Accessory minerals are dominantly apatite and opaque minerals. Chlorite, calcite and zeolite 

are abundant in the matrix. 

Phlogopite-bearing lamprophyres (Table 2) are classified as minette (Le Maitre, 2002), 

although chemical differences between minette from Eslamy and those from Marand do 

exists (Fig. 3a). Indeed, the minette at Eslamy shows the highest alkali contents, which are 

coupled with the highest K2O and the highest, and largely variable, K2O/Na2O ratios (i.e., 3.9-

13.4). The Eslamy minettes also show the occurrence of leucite in their CIPW norm (3.7 < lc < 

21.8), which is not observed in any other studied rocks (Table 2). Eslamy minettes are the only 

one that may be classified as ultrapotassic (Foley et al., 1987) (MgO > 3 wt.%, K2O/Na2O > 2 

and K2O > 3 wt.%; Table 2), with the highest K2O/Na2O values. In the CaO versus Al2O3 

diagram (Fig. 3b) presented for ultrapotassic rocks (Foley et al., 1987), the Eslamy minettes 

fall within the Roman province field, Italy, although they do not contain leucite. 

4.2 Mineral chemistry     

Clinopyroxene from sannaites and camptonites (e.g., Khankandi and Horand 

lamprophyres) is diopside to salite in composition (Wo45-50En28-44Fs7-21; Table 1). 

Clinopyroxene from minette and spessartite (e.g., Eslamy and Mishu lamprophyres) ranges 

from diopside-salite to augite (Wo40-49En35-49Fs3-19; Table 1). Clinopyroxene shows normal 

compositional zonation from core to rim, with cores enriched in diopside component with a 

rimward enrichment in hedenbergite component. When compared to each other 

clinopyroxene from alkaline lamprophyres and calc-alkaline lamprophyres show clear 

differences in terms of Mg#, Al2O3 and TiO2 (Table 1). Clinopyroxene from sannaite- 

camptonites show higher Al2O3 and TiO2 (Fig. 4a) and lower Mg-# [Mg/(Mg+Fe)] and SiO2 

contents, than clinopyroxene in minettes and spessartite (Table 1). The most distinctive 

difference between the two groups is observed in the Na2O content with the clinopyroxene 

from Khankandi camptonite showing the highest Na2O content (up to 1.17 wt. %; Table 1).   

Brown mica has a phlogopite composition with high Mg# [Mg/(Mg+Fe)> 0.79] decreasing 

rimward (Fig. 4b; Table 1). As a corollary, phlogopite shows normal zoning, especially in the 

Eslamy minette, with increasing annite end member from core to rim (Table 1). Phlogopite in 

the Eslamy minette has lower Al2O3 and Na2O and higher MgO and SiO2 contents than mica in 

Marand minette (Table 1). Compositional variations in micas follow two distinct arrays: (i) the 

phlogopite from the Marand minette follows the lamprophyric array (i.e. shoshonitic nature) 
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on the plot of Al2O3 vs. TiO2 (Fig. 4c) and FeO (not shown); (ii) Eslamy minette phlogopite 

follows the lamproitic array (Mitchell and Bergman, 1991). Relative to Mediterranean 

minettes and lamproites, micas in the studied minettes show higher Al2O3 but lower SiO2 (Fig. 

4b, 4c and Table 1). From this point of view, micas in Eslamy peninsula minettes are more 

similar to those in Mediterranean lamproites (Fig. 4b, 4c). 

Amphibole from alkaline lamprophyres (i.e., camptonite and sannaite) has calcic-

kaersutitic composition, whereas the few analyzed crystals from calc-alkaline lamprophyres 

(i.e., spessartite) have magnesio-hastingsite and hastingsite compositions. The TiO2 content in 

most amphibole crystals of alkaline lamprophyres is higher than 5 wt.% in keeping with the 

within plate alkaline nature of the magmas from which they crystallise (Fig. 4d). Amphibole 

from the Horand sannaite shows lower Mg# at comparable silica content than that from 

Khankandi camptonite (Table 1).   

5. 40Ar/39Ar dating 

The Ar isotope data and measured K2O concentrations for mica and amphibole separates 

from 4 different alkaline and calc-alkaline samples are listed in Table E3 (electronic 

supplementary materials) and the 40Ar/39Ar age spectra are presented in the figure 5. 

Amphibole crystals separated from Horand (Arasbaran alkaline lamprohyres) sannaite 

samples yield weighted mean plateau dates of 81.2 ± 1.8 Ma (95% conf. MSWD = 129) and 

81.4 ± 1.4 Ma (95% conf. MSWD = 72). Amphiboles separated from Sorkheh (Mishu calc-

alkaline lamprohyres) spessartite samples yield weighted mean plateau ages of 9.57 ± 0.25 

Ma (2, MSWD = 2.7) and 9.95 ± 0.11 Ma (2, MSWD = 2.0). Separated mica from Marand 

(Mishu) and Eslamy minettes yield 10.98 ± 0.04 Ma (2, MSWD = 0.53) and 10.35 ± 0.02 Ma 

(2, MSWD = 2.5), respectively (Fig. 5 and Table 3).  

The Horand sannaites are the oldest dated lamprophyres in the area and their 

emplacement age is Late Cretaceous (Campanian). Our 40Ar/39Ar age data are in accordance 

with the field observations showing that these lamprophyres metamorphosed the Cretaceous 

sedimentary strata. On the other hand, the Khankandi camptonite dykes have not been 

dated, but we suppose an age range between 28 and 15 Ma because they cut the 28 Ma 

Khankandi monzonitic intrusion (Aghazadeh et al., 2010), but not the overlaying Miocene 

sedimentary rocks.  
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6. Whole rock chemistry and radiogenic isotopes 

The studied lamprophyres show variable SiO2 contents: 40-46 wt. % for the Arasbaran 

camptonites and sannaites (alkaline lamprophyres), 44-48 wt.% for the Sorkheh (Mishu calc-

alkaline lamprohyres), and 42-48 wt. % for the Marand (Mishu calc-alkaline lamprohyres) and 

Eslamy minettes (calc-alkaline lamprohyres) (Table 2). Sannaites and camptonites are 

generally enriched in TiO2 with values higher than 1.6 wt.%, whereas spessartites and 

minettes show values lower than 1.7 wt.%. Sannaites and camptonites show high and variable 

MgO (4.8-9.6 wt.%) and Fe2O3t (8.2-15.8 wt.%), whereas in calc-alkaline lamprophyres these 

oxides mainly range from 4.0 to 7.3 wt.% and from 8.4 to 12 wt.%, respectively (Table 2). 

Minettes are enriched in K2O, ranging from 4.6 to 8.1 wt.% for the Eslamy, whereas in 

sannaites and camptonites K2O is lower than 4.1 wt.% (Table 2). Most of the studied rocks are 

MgO-rich (Table 2) and MgO content decreases with increasing silica. Phosphorus (P2O5) in 

minettes is in the range between 0.64 and 1.43 wt.% partially overlapping the range shown in 

sannaites and camptonites (0.46-1.48 wt.%), although some higher values are observed in 

spessartites (P2O5 = 0.71-1.94 wt.%). Overall, the lamprophyres have high L.O.I. (2.6-7.1 wt.% 

in camptonite; 1.4-2.7 wt.% in spessartite; 3.8-7.7 wt.% in minettes), with the highest values 

found in the most weathered rocks characterised by carbonate-rich secondary minerals. 

Regarding compatible trace elements, Ni and Cr show largely variable compositional 

ranges from 10 to 230 ppm and from 30 to 300 ppm, respectively in sannaites and 

camptonites, and from 21 to 86 ppm and 50 to 138 ppm in minettes. Minettes show the 

strongest enrichment in LILE and depletion in HFSE (Nb, Ta, Ti), with positive spikes at Pb and 

P in the incompatible patterns normalised to primitive mantle (Fig. 6a). Similar plots for 

sannaite and camptonite samples do not show any fractionation between LIL and HFS 

elements, with patterns showing typical positive spikes at Ti, and negative ones at Pb (Fig. 6b). 

Spessartite calc-alkaline lamprophyres from Sorkheh and Tasuj (Mishu) show distinct patterns 

with P and Ti positive spikes and mild negative anomalies in Nb-Ta and Pb (Fig. 6c), showing 

intermediate patterns between alkaline lamprophyres and minettes. 

Sr, Nd and Pb isotope data are reported in the Table 3. Initial isotope ratios are calculated 

for the individual 40Ar/39Ar radiometric ages (Table E2 in the electronic supplementary 

materials) and the inferred range of ages for the samples from Khankandi camptonite dykes. 

Two groups are readily distinguishable: the late Cretaceous sannaites on one side (alkaline 
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lamprophyres), and the Miocene Eslamy minettes, on the other one. Alkaline lamprophyres 

are characterized by consistently low initial 87Sr/86Sr (0.70447-0.70563) and high 143Nd/144Nd 

(clustering 0.51267) values, whereas Eslamy minettes show the highest initial 87Sr/86Sr 

(0.70752-0.70760) and the lowest initial 143Nd/144Nd (0.51246-0.51247) values. Spessartite 

calc-alkaline lamprophyres show initial 87Sr/86Sr (0.70476-0.70568) and initial 143Nd/144Nd 

(0.51267-0.51275) values overlapping those of Arasbaran lamprophyres within error (Fig. 7), 

whilst minette from Marand has slightly lower initial 87Sr/86Sr (0.70737-0.70740) and higher 

initial 143Nd/144Nd (0.51256-0.51258) relative to Eslamy. Minettes from northwestern Iran 

(e.g., Eslamy and Marand) overlap the Sr-Nd isotopic field of Miocene lamproite from Corsica 

(Sisco; Conticelli et al., 2007, 2009b; Prelevid et al., 2010). Cretaceous sannaites and 

camptonites (e.g., Horand and Khankandi) show initial Sr and Nd isotopic values overlapping 

the isotopic composition of Oligocene to Eocene within-plate basalts and lamprophyres from 

the Central Mediterranean (e.g., Avanzinelli et al., 2012a, 2013), and fall well within the field 

of CiMACI (Circum Mediterranean Anorogenic Cenozoic Igneous) province (Lustrino and 

Wilson, 2007). Spessartite lamprophyres of Miocene age from Iran (i.e., Sorkheh) also overlap 

the isotopic composition of CiMACI field (Fig. 7).  

Lead isotopes show great variability with Arasbaran lamprophyres showing large ranges 

in initial 206Pb/204Pb (18.448-18.920), 207Pb/204Pb (15.609-15.617), and 208Pb/204Pb (38.783-

39.025) ratios, overlapping completely with the lead isotope ratios of spessartite from 

Sorkheh and Tasuj (206Pb/204Pbi = 18.821-18.973; 207Pb/204Pbi = 15.644-15.667; 208Pb/204Pbi = 

38.923-39.069). Eslamy minettes show the highest lead isotopic ratios (206Pb/204Pbi = 19.015-

19.099; 207Pb/204Pbi = 15.669-15.689; 208Pb/204Pbi = 39.159-39.246). The Pb isotopic ratios of 

minettes differ from those of Mediterranean lamproites and lamprophyres (e.g., Conticelli et 

al., 2002, 2009b; Owen, 2008; Prelevid et al., 2008, 2010), having slightly higher 206Pb/204Pbi 

values. All samples plot above the terrestrial mantle array and the Northern Hemisphere 

Reference Line (NHRL) (Hart, 1984) on 207Pb/204Pb vs. 206Pb/204Pb and 208Pb/204Pb vs. 

206Pb/204Pb (Fig. 8a, 8b). 

7. Discussion 

The Iranian lamprophyres cover a wide chronological range, from Cretaceous to Miocene, 

covering the last stage of the Tethys closure from active continental margin until continental 

collision. The oldest magmatic events are represented by the Horand sannaites intruded at 
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between 81.2-81.4 Ma (Fig. 5) and they show a clear within-plate signature (Fig. 6b). The 

same holds true for the Khankandi camptonites intruded close in space to the Horand alkaline 

lamprophyres, in the Arasbaran region (Fig. 1b), between 28 and 15 Ma and still have a clear 

within-plate signature.  

The intrusion age of spessartite lamprophyres and their peculiar mineralogy and 

chemistry give more significance to this magmatism. They are Miocene in age and almost 

coeval with the minettes of the Marand and Eslamy nearby areas (Fig. 1b). Indeed spessartite 

lamprophyres were intruded between 9.57 ± 0.25 and 9.95 ± 0.11 Ma after the emplacement 

of the Marand (10.98±0.04 Ma) and Eslamy (10.35 ± 0.02 Ma) minettes. Marand and Eslamy 

minettes display clear subduction-related trace element patterns (Fig. 6a), whilst spessartite 

lamprophyres show both subduction-related and within-plate characteristics, with mild 

negative anomalies at Ta and Nb and negative spike at Pb, and a positive one at Ti (Fig. 6c). 

The occurrence of lamprophyres with such contrasting signature is intriguing and their study 

might shed some further light on the geodynamic processes related with the closure of the 

Tethys in the northwestern Iran, Caucasus and surrounding regions.  

7.1 Alteration and low-pressure crustal contamination 

Given the fact that lamprophyres usually represent magma batches of small volumes 

intruded in a dynamic tectonic setting, either secondary alteration or low-pressure crustal 

contamination might have played a role in the acquisition of final geochemical and isotopic 

signatures (Rock, 1991). Before discussing the magma genesis and mantle source 

characteristics, possible effects related to low pressure processes need to be investigated in 

some detail. 

The lamprophyres show a wide range of loss on ignition (LOI), from 1.5 wt.% to about 8 

wt.% (Table 2). Minette samples are characterised by extremely high LOI values up to 8 wt.%, 

which cannot be due to high phlogopite contents. Due to its crystal chemistry, phlogopite can 

accommodate not more than 4 wt.% of OH, F and/or Cl, which indicate that > 2-3 wt.% of the 

LOI is due to weathering or related to either crystallisation of secondary calcite or alteration 

of glass within the groundmass. Alteration did not greatly influence other geochemical 

parameters like the contents of LILE and isotopic compositions, as demonstrated by the 

relatively constant 87Sr/86Sr values, K2O and Rb contents for samples with extremely variable 

LOI and similar degree of differentiation. Conversely, LOI in Horand sannaites and Sorkheh 
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and Tasuj spessartite clearly correlates with 87Sr/86Sr values, K2O and Rb contents (Fig. 9) 

indicating that the extensive post-emplacement weathering might have affected their 

compositions. The variation observed in the initial 87Sr/86Sr at constant initial 143Nd/144Nd (Fig. 

7) are strongly suggestive of addition of fluids derived from continental crustal rocks during 

post-emplacement processes (Staudigel et al., 1995). 

On the other hand, crustal contamination might have played an important role in genesis 

of lamprophyres. Indeed incompatible trace element enrichment with fractionated HFSE with 

respect to LILE is a geochemical characteristic typical of the upper continental crust (e.g., 

Taylor and McLennan, 1985; Elliot et al., 1997; Plank and Langmuir, 1998; Plank, 2005; 

Conticelli et al., 2007, 2009a; Avanzinelli et al., 2012b). When small batches of magma 

penetrate thick continental crust, such as that of an active continental margin, crustal 

contamination might occur (DePaolo, 1981). Shallow level crustal contamination is able to 

increase initial 87Sr/86Sr and concomitantly decrease initial 143Nd/144Nd. However, to obtain 

the increase of incompatible trace elements at the levels observed in the high-Mg rocks 

studied here, a large amount of assimilated crust is needed, which would result in dramatic 

decrease in the MgO and compatible trace element contents (e.g. Conticelli, 1998; Murphy et 

al., 2002).  

Marand and Eslamy minettes show the highest initial 87Sr/86Sr and the lowest initial 

143Nd/144Nd of the entire set of studied samples (Fig. 7), with the strongest fractionation HFSE 

with respect to LILE (Fig 6a-6c) and normalised incompatible trace element patterns 

resembling those of GLOSS and Mediterranean potassic rocks (Fig. 6d). In figure 10 the 

variation of initial 87Sr/86Sr vs. MgO of the studied rocks is shown, and two distinct arrays can 

be clearly observed: (i) the minette array at high and constant initial 87Sr/86Sr and variable 

MgO; (ii) the Horand sannaite and the Sorkheh and Tasuj spessartite array at low initial 

87Sr/86Sr and variable MgO showing a clear negative correlation. These geochemical 

characteristics clearly indicate that: (i) minettes and camptonites are from different parental 

magmas; (ii) minette undergoes neither simple crustal contamination nor AFC processes; (iii) 

Horand camptonites and the intermediate lamprophyres did undergo some crustal 

contamination during differentiation. 

In summary, on the basis of petrographic and geochemical data we may argue that the 

most primitive rocks of the camptonite and minette series are mantle derived magmas that 
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underwent some extent of low-pressure differentiation processes plus alteration, but the 

isotopic and trace element ratios of the MgO-rich samples can be considered as primary 

characteristics acquired from their mantle sources during partial melting.  

 

7.2 Enrichment of lamprophyric mantle source: two types of mantle metasomatism  

Lamprophyric magmas in northwestern Iran occurred in three different periods with 

different mineralogical, geochemical and isotopic characteristics. The major issue here is to 

constrain whether these different lamprophyric types are derived from asthenospheric or 

lithospheric mantle. For the ultrapotassic calc-alkaline lamprophyres (i.e., minettes from 

Eslamy and Marand) their high abundances of MgO and Ni with respect to FeO, Na2O, and Cr 

are strongly suggestive for a lithospheric mantle source. However, the high K and large ion 

lithophile incompatible trace elements contents suggest that the lithospheric mantle source 

was newly fertilised via metasomatism by volatile-rich melts prior to partial melting (e.g., 

Foley, 1992a; Tappe et al., 2007, 2008). Furthermore, lithospheric mantle is a viable source 

also for the alkaline lamprophyres, and this is based mostly on their Sr, Nd and Pb isotopic 

signature that are considerably more “enriched” relative to the convecting mantle array 

illustrated by MORB or OIB fields (Fig. 7 and Fig. 8).   

7.2.1. Mantle source of sannaite and camptonite magmas  

Sannaite and camptonite lamprophyres from Arasbaran region show lower Mg-# and Ni 

and Cr in comparison to primary basaltic magmas originated from fertile mantle sources (Frey 

et al., 1978), and so represent differentiated magmas from mantle-derived primary melts. 

Clinopyroxene in the sannaite and camptonite shows Al2O3 and TiO2 compositions higher than 

in the sub-alkaline or tholeiitic basalts. High TiO2 and Fe2O3 content of sannaite and 

camptonite lamprophyres are similar to experimental melts produced by partial melting of a 

fertile peridotite (e.g., Falloon et al., 1988). Their enrichment in incompatible trace elements, 

considerably more than observed in the OIBs, clearly indicates metasomatism of their mantle 

source. This is further supported by "enriched" Sr, Nd and Pb isotopic signatures, which are 

outside of those typical of MORB and OIB magmas (Fig. 7 and Fig. 8).  

The sannaites and camptonites have high and smooth REE patterns and incompatible 

trace element patterns (Fig. 6b) with negative Pb anomalies typical of ocean island basalts 
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(e.g., Edwards et al., 1994; Hofmann 1997). Furthermore, they have initial 143Nd/144Nd and 

87Sr/86Sr composition falling in the upper left quadrant of the plot of Figure 7. The 80 Ma old 

Horand sannaites show a wide range of 206Pb/204Pb and 208Pb/204Pb ratios and higher 

207Pb/204Pb relative to Khankandi younger camptonite (Table 3; Fig. 8). In order to test if a 

crustal component was involved in the petrogenesis of the amphibole lamprophyre, we used 

a Th/La ratio that is considered as a canonical trace element ratio (Hofmann and White, 1982) 

and is very sensitive to trace the involvement of the upper crust either as a low pressure 

contaminant during assimilation (Sun and McDonough, 1989) or a tracer for upper crust 

recycling into the upper mantle (e.g., Plank, 2005; Tommasini et al., 2011). Arasbaran alkaline 

lamprophyres show Th/La between 0.05 and 0.19, with Khankandi camptonite at the lower 

end (0.05-0.08) and Horand sannaite at the upper one (0.12-0.19), with values comparable to 

those of the primitive mantle (~0.12, Sun and McDonough, 1989). On the other hand, Eslamy 

and Marand minettes have higher Th/La values that fall well within the field of arc magmas 

defined by Plank (2005) with the Eslamy minette overlapping the value of the upper crust 

(i.e., Rudnick and Gao, 2003), at the low Th/La end of the Tethyan Realm lamproites (Fig. 11) 

(Tommasini et al., 2011).  

In the Arasbaran alkaline lamprophyres the Th/U (45-199), Nb/U (28-62), Ba/Nb (2.4-4.2), 

Ce/Pb (0.06-0.13) and Th/Nb (12-13) ratios (e.g., Taylor and McLennan, 1985) are comparable 

with typical oceanic within plate basalts (OIB) arguing for a within plate mantle source for 

sannaitic and camptonitic magmas. These criteria can be well seen in the Th/Nb vs. 87Sr/86Sr 

plot (Fig. 12) where the Arasbaran alkaline lamprophyres and Sorkheh and Tasuj spessartites 

fall well within the OIB field. In contrast, Eslamy minettes overlap with the upper crustal 

Th/Nb value and the Marand minette is close to it (Fig. 12). The Th/Yb versus Nb/Yb plot is 

used to confirm these findings (Pearce, 2008), showing a mantle array characterised by mean 

OIB, E-MORB, N-MORB with subduction-related volcanic rocks falling at higher Th/Yb ratios 

than those of the mantle array (Fig. 13). In this plot the Arasbaran alkaline lamprophyres fall 

in mantle array at its OIB end, with Khankandi and mafic Horand samples falling in the middle 

of the array with the most evolved ones straddling the boundary of the mantle array (Fig. 13). 

Eslamy and Marand minettes plot at higher Th/Yb values well within the field of active 

continental margins, defining a linear array parallel to the MORB-OIB oceanic array (Fig. 13). It 

is important to note the position of the Sorkheh and Tasuj spessartites at higher Th/Yb and 
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variable Nb/Yb values describing a mixing array between the Eslamy minette and the MORB-

OIB array (Fig. 13). This suggests that their parental magmas were probably generated by 

mixing between calc-alkaline and within-plate magmas. 

Volatile-bearing minerals such as phlogopite and amphibole are the major mineral 

repositories for LILE in lithospheric mantle (Foley et al., 1996). Melts produced by the melting 

of amphibole-bearing peridotite are expected to have low Rb/Sr (<0.1) and high Ba/Rb (>20) 

whereas melts produced by melting of phlogopite-bearing assemblages are expected to have 

higher Rb/Sr (>0.1) and lower Ba/Rb (<20) (Furman and Graham, 1999). In both cases, 

hydrous phases are expected to dominate the contribution to the melting assemblages (e.g., 

Foley et al., 1999; Conceição, and Green, 2004; Pilet et al., 2005, 2008). Arasbaran alkaline 

lamprophyres and Sorkheh and Tasuj spessartite show very low Rb/Sr (0.02-0.1) indicating the 

occurrence of amphibole as a major metasomatic phase in the mineralogy of their sources. 

The low Ba/Rb ratio (11-21) found in sannaite and camptonite argues against the occurrence 

of K-richterite suggesting either pargasitic or kaersutitic amphibole as repository of the 

metasomatic within-plate component in their mantle source (Tiepolo et al., 2002). Minette 

samples have higher Rb/Sr (0.09-0.36, except one sample 0.06) and lower Ba/Rb (8-21, except 

one sample 27.2) indicating a predominance of phlogopite rather than amphibole in the 

mantle source. 

Arasbaran amphibole-bearing lamprophyres (i.e., sannaites and camptonites) show OIB-

type geochemical signature, although their LILE (e.g. K, Rb, Sr) and LREE contents are two or 

three times higher than typical OIB type magmas (e.g., Sun and McDonough, 1989; Table 2).  

In addition, amphibole-bearing Arasbaran lamprophyres display low Ba/Rb ratios suggesting 

the possible occurrence of either pargasitic or kaersutitic amphibole in their mantle source. 

Amphibole is unstable in the asthenospheric mantle and in uprising deep mantle plumes, 

whilst it can crystalize in lithospheric upper mantle due to interaction with metasomatic 

agents derived from convecting mantle regions (Class and Goldstein, 1997). Therefore, 

Arasbaran amphibole-bearing parental magmas might have been produced by partial melting 

of lithospheric upper mantle in a within-plate tectonic regime. The La/Nb ratio and La 

concentrations can separate subduction-modified asthenospheric sources from lithospheric 

mantle metasomatised via asthenosphere-derived melts (Seghedi et al., 2004). Arasbaran 

amphibole bearing lamprophyres show low La/Nb ratios (almost <1) and high La content 
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(almost >50). Therefore, we propose that sannaitic and camptonitic magmas originated from 

metasomatised lithosphere that was enriched by asthenosphere-derived melts during 

Cretaceous (Horand) and Oligo-Miocene (Khankandi) times.  

 

7.2.2. Marand and Eslamy minettes mantle source: Recycling of Upper Crust into the 

lithospheric mantle  

Eslamy and Marand minette have geochemical and mineralogical characteristics clearly 

indicating an ultimate derivation from the mantle (e.g., olivine on liquidus, high Ni and Cr, 

high MgO). However, their isotopic and REE signatures, including enrichment in LILE and 

radiogenic isotopic data, are close to upper crustal values. Enrichment in LILE and radiogenic 

isotopes cannot be explained by crustal contamination whereas the high contents of 

compatible elements and MgO as well as low SiO2 content (< 48 wt.%) cannot be justified by 

either bulk contamination or AFC. In addition, Eslamy minettes have constant radiogenic Sr 

isotopic ratios with variable MgO contents and LILE enrichment associated with low Ce/Pb 

ratio. They have a trace element pattern suggesting involvement of crustal material in their 

mantle source, among which Cs, Th, U, Sr, Pb, Ba, and Rb enrichment, higher Th/La ratio as 

well as lower Sm/La ratio can be noticed. Particularly the strong positive spike at Pb is clearly 

distinctive of a recent addition of a crustal component (Fig. 6d; Taylor and McLennan, 1985). 

Furthermore, the following ratios signify continental crust signature in their mantle source 

including enrichment in Rb, Ba, Pb, Sr, U, Th, and Cs and high Th/La as well as low Sm/La. 

Moreover, Th/U (2.7-3.7), Nb/U (3.2-7.6), Ba/Nb (11-44), Ce/Pb (1.1-6.9) and Th/Nb (0.49-

0.99) ratios indicate continental crust signature (e.g., Taylor and McLennan, 1985). All the 

above reported characteristics argue for a recycling of sediments within the upper mantle 

during subduction (e.g., Elliot et al., 1997; Avanzinelli et al., 2012a; Prelevid and Seghedi, 

2013). Partial melting of sediments provides metasomatic agents (melts and/or fluids) that 

react with the ambient lithospheric mantle source to stabilise a new mineralogy with a 

dominance of phlogopite and/or K-richterite.    

7.2.3. Sorkheh and Tasuj spessartite: melting of heterogeneous mantle source 

Hornblende-bearing lamprophyres of the Sorkheh and Tasuj areas (spessartite) have 

distinctive mineralogical, geochemical and isotopic characteristics from both alkaline 

lamprophyres and minette in that they have amphibole and clinopyroxene as the main mafic 
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minerals. According to clinopyroxene chemistry they are comparable with minette type 

lamprophyres. Geochemically, they have similar features to minette type lamprophyres. They 

demonstrate important negative Nb-Ta anomalies like mica-lamprophyres as well, but they 

have positive Ti, P and negative Pb anomalies, which makes them comparable to camptonite 

and sannaite lamprophyres. It is noteworthy that they do not show typical enrichment in LILE 

as in minette type lamprophyres. However, they are similar to minette in that they show 

positive K anomalies in their trace element patterns while no such positive peak in 

camptonite and sannaite is observed. Their Sr and Nd isotopic ratios are similar to Horand and 

Khankandi camptonite and sannaite type lamprophyres and located in the depleted quadrant 

near the bulk earth (Fig. 7). 

In the Th/Yb versus Nb/Yb diagram the intermediate lamprophyres fall outside the 

mantle array and plot between the mantle array and the active continental margin field. This 

may indicate that the parental magma of the intermediate lamprophyres originated from a 

mixed source. The source included two types of metasomatism - one that was tapped by 

minette melts and the other one similar to the within-plate mantle source of the older 

sannaitic to camptonitic magmas. The occurrence of olivine on the liquidus in the 

intermediate lamprophyres and their mafic chemistry preclude the possibility that they 

originated by crustal contamination. 

 

7.3 Geodynamic implications  

The studied area is part of the Zagros orogen that includes magmatism related to the 

subduction of Neo-Tethys oceanic crust during Cretaceous-Late Eocene time and post 

collisional magmatism during and after collision between Arabian and Eurasian continents 

from Late Eocene time onwards (e.g. Allen and Armstrang 2008; Aghazadeh et al., 2011). 

Several terranes separated from Gondwana and collided with Eurasia during Late Paleozoic to 

Early Cenozoic time (Stampfli and Borel, 2002). During Late Triassic-Early Cretaceous time 

Central Iran collided with Eurasia and northeastward subduction of the Neotethys oceanic 

crust beneath the Eurasian margin caused continuous active arc magmatism along the Lesser 

Caucasus and Sanandaj–Sirjan Zone (Sosson et al., 2010; Agard et al., 2011 and references 

therein). In northwestern Iran two branches of the Neo-Tethys ocean were active and include 

the Khoy branches in the south  (Khalatbari-Jafari et al., 2006) and lesser Caucasus branch in 
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the north (Rolland et al., 2007; Galoyan et al., 2009) (Fig.1). During Jurassic-Cretaceous time 

duplicate subduction of these branches caused two magmatic arcs to develop in 

northwestern Iran and Lesser Caucasus, respectively (Sosson et al., 2010). Magmatic rocks 

related to these volcanic arcs with typical arc signatures are exposed in the western part of 

NW Iran that can be regarded as the NW continuation of the Sanandaj-Sirjan zone (e.g. Azizi 

and Jahangiri, 2008; Ghalamghash et al., 2009; Azizi et al., 2014) and lesser Caucasus and 

southern Armenia (e.g. Roland et al., 2009; Mederer et al., 2013). The northern oceanic 

branch closed during Late Cretaceous-Palaeocene time and the South Armenian block and 

Arasbaran zone collided with Eurasia (Sosson et al., 2010). However, the southern branch 

closed in the Paleogene, connecting northwestern Iran and Arabian plates (Allen and 

Armstrang, 2008; Aghazadeh et al., 2011). During Paleogene collision, the Arasbaran and 

South Armenian blocks experienced uplifting and formation of foreland basin and folding as a 

passive margin of northern oceanic branch (Sosson et al., 2010). In the Arasbaran area 

Cretaceous volcanic rocks followed by flysch type sedimentation with volcanic interlayers 

represent the latest existence of an arc in the area. Extensive magmatism in this area during 

the Eocene to Miocene is ascribed to a collisional context (Sosson et al., 2010; Aghazadeh et 

al., 2011). 

Lamprophyric magmatism in northwestern Iran was active from late Cretaceous to late 

Miocene time. Alkaline, amphibole-bearing lamprophyric magmatism occurred in different 

tectonic episodes in late Cretaceous, late Oligocene and late Miocene times. The oldest 

alkaline lamprophyres (Horand and Khankandi sannaites and camptonites) originated from 

metasomatised lithosphere that was enriched by deep asthenosphere-derived melts. 

Sannaitic to camptonitic lamprophyric magmatism taps heterogeneously metasomatised 

lithospheric mantle that melted due to tectonic instability. The Late Cretaceous geological 

situation in the area most likely suggests late stage development of the volcanic arc, meaning 

that the oceanic basin had just closed (flysch sedimentation). This is also supported by the 

fact that the lamprophyres cut flysch sediments. If this is true, then the lamprophyric 

magmatism might represent the waning stage of the subduction-related tectonics, and the 

initiation of collisional/postcollisional tectonics. A potential trigger of mantle melting might be 

slab breakoff (Davies and von Blanckenburg, 1995) or slab tear. In that case, precursor melts 
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principally derived from the asthenosphere will experience slab tear and first metasomatise 

and later initiate the melting of previously metasomatised lithosphere. 

Mica-bearing lamprophyres (minettes) are restricted to late Miocene time in a post 

collisional tectonic setting in which melts originated from enriched sub-continental 

lithospheric mantle. This emphasises the role of the Neo-Tethyian oceanic crust + sediments 

subduction and metasomatism as the cause of the enrichment of their source. The 

intermediate lamprophyres represent batches of magma from lithospheric mantle source that 

was affected by both types of metasomatism: deep astenospheric mantle melts and 

subduction-related crustal melts. Intermediate type lamprophyric magmas show that some 

parts of the mantle are multiply metasomatised, similar to other cases worldwide (e.g., Tappe 

et al., 2008; Prelevid et al., 2012; Abdelfadil et al., 2013).  

8. Concluding remarks  

Lamprophyric magmatism in the northwestern Iran has been active during long period 

from Late Cretaceous to Late Oligocene-Early Miocene and Late Miocene times. According to 

mineralogy, geochemistry and isotopic ratios, the studied lamprophyres can be divided in 

three major groups: sannaite to camptonite (amphibole-bearing), minette (mica-bearing), and 

spessartite. 

Sannaite and camptonite lamprophyres are restricted to the oldest magmatic events in 

Late Cretaceous and Late Oligocene-Early Miocene periods. According to their geochemistry 

and isotopic ratios they originated from a lithospheric mantle affected by the melts ultimately 

derived from the convecting mantle. 

Minettes have a late Miocene age and their geochemistry and isotopic ratios indicate a 

clear subduction-related signature in a collision type geodynamic environment. Minette type 

lamprophyres originated from metasomatised lithospheric mantle affected by subduction 

related agents. 

Spessartite type lamprophyres are coeval with minette showing geochemical features 

transitional between minette and sannaite/camptonite lamprophyres originated from a 

lithospheric mantle metasomatised by subduction related and deep asthenospheric mantle 

agents. 
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Captions 

Fig. 1:  (a) Geological map of Iran with different structural units and position of Paleo and 
Neotethys suture lines; (b) Geological map of northwestern Iran and location of 
studied lamprophyres. 

Fig. 2:  Microphotographs of studied lamprophyres; (a) brown amphibole phenocrysts with 
kaersutitic composition in the Khankandi camptonites; (b) Olivine pseudomorph in 
Sorkheh spessrtite; (c) porphyritic texture with amphibole and clinopyroxene 
phenocrysts in feldspar and chlorite matrix; (d) Phlogopite phenocryst with 
compositional zoning in Eslamy minette. Pictures a, c and d take under plane-
polarized light and b take under crossed polars. 

Fig. 3:  (a) Total alkali vs. silica diagram (Le Maitre, 2002) shows all studied lamprophyres 
located above Kuno (1968) alkali line and in the alkaline field. (b) CaO vs. Al2O3 
diagram show the Eslamy minettes mainly located in the Roman province field. Base 
diagram after Foley et al. (1987). 

Fig. 4:  Major elements variation diagrams for different minerals of studied lamprophyres. 
(a) Al vs. Ti expressed as atoms per formula unit (a.f.u.) for clinopyroxene from 
studied lamprophyres. Fields for clinopyroxe in lamproites and Roman-type rocks 
after Conticelli (1998), fields of clinopyroxene from Italian lamproites after Conticelli 
et al. (1992), Cellai et al. (1994), Conticelli (1998). Note camptonite clinopyroxene 
show higher TiO2 and Al2O3 and spessartite clinopyroxene plot between 
sannaite/camptonite and minette fields. (b) #Mg vs. SiO2 diagram shows studied 
minette micas have lower SiO2 than Mediterranean lamproites and Eslamy minettes 
mica shift toward Mediterranean lamproite field. Eslamy minette micas represent 
higher SiO2 and #Mg than Marand minette micas. Mediterranean lamproite mica 
data after Wagner and Velde (1986); Conticelli et al. (1992); Conticelli (1998); 
Prelevid et al. (2008). (c) Al2O3 vs. TiO2 diagram show studied minette micas located 
in the field of minette and Roman province micas. Different rocks mica fields after 
Mitchell and Bergman (1991). (d) Amphiboles composition from Horand sannaite and 
Khankandi camptonite in the TiO2 vs. SiO2 diagram. Studied amphiboles located in 
the field proposed for alkaline lamprophyres. Diagram and fields of amphiboles in the 
different lamprophyres after Rock (1991), fields of Aillik Bay area lamproites and 
nephelinite after Tappe et al. (2007) and field of Torngat ultramafic lamprophyres 
after Tappe et al. (2004).  

Fig. 5:  40Ar/39Ar age spectra for mica (a,b) and amphibole (c,d,e,f) from Marand (a) and 
Eslamy (b) minettes, Sorkheh spessartite (c,d) and Horand sannaite (e,f).  

Fig. 6:   Primitive mantle normalised spider diagrams of studied minette (a), 
sannaite/camptonite (b), and spessartite (c) lamprophyres. Average of minette, 
camptonite, calc-alkaline, and alkaline lamprophyres after Rock (1991) are added to a 
and b. (d) Average of OIB, MORB, GLOSS and Mediterranean marlstone and shale-
sandstone data to comparison with studied lamprophyres. MORB, OIB and values for 
normalization in this and primitive mantle normalized value after Sun and 
McDonough (1989), average of calc-alkaline, and alkaline lamprophyres after Rock 
(1991), GlOSS-global subducting sediment composition of Plank and Langmuir (1988). 
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Mediterranean sedimentary data after Conticelli et al. (2009b). See text for 
discussion.  

Fig. 7:  Initial Nd–Sr isotopic ratios for studied lamprophyres. Data sources: Arasbaran 
monzonitic plutons (Aghazadeh et al., 2011), Eslamy peninsula ultrapotassic rocks 
(Pang et al., 2013), Turkey lamproites (Prelevid et al., 2008, Fritschle et al., 2012), 
Leucite Hills (Mirnejad and Bell, 2006), Circum Mediterranean Anorogenic Cenozoic 
Igneous (CMACi) rocks (Lustrino and Wilson 2007), Mantle end-members (Zindler and 
Hart, 1986), Upper Continental Crust (UCC) (Jahan et al., 1999), Subduction 
sediments (Lee et al., 2008) and central Mediterranean volcanic rocks isotopic data 
and fields after Conticelli et al. (2002, 2007, 2009a, 2009b 2011, 2013), Perini et al. 
(2004), Avanzinelli et al. (2008), Prelevid et al. (2008, 2010), Boari et al. (2009a, 
2009b).  

Fig. 8:  Variation of 207Pb/204Pb vs. 206Pb/204Pb (a) and 208Pb/204Pb vs. 206Pb/204Pb (b) for 
studied lamprophyres. Mantle, orogen, and upper crust evolution curves are from 
Doe and Zartman (1979) and the average crustal growth curve (SK line) is from Stacey 
and Kramers (1975), Circum Mediterranean Anorogenic Cenozoic Igneous (CMACi) 
rocks (Lustrino and Wilson, 2007), central Mediterranean volcanic rocks isotopic data 
and fields after Conticelli et al. (2002, 2007, 2009a, 2009b 2011, 2013), Perini et al. 
(2004), Prelevid et al. (2008, 2010), Boari et al. (2009a, 2009b) and NHRL (Northern 
Hemisphere reference line) after Hart, (1984).  

Fig. 9:  Evaluation of alteration effect on the chemistry of studied lamprophyres. (a) 87Sr/86Sr 
vs. LOI diagram Horand sannaite and Sorkheh spessartite affected by alteration. This 
criteria can be confirm by K2O and Rb vs. LOI diagrams (b and c).  

Fig. 10:  Variation of initial 87Sr/86Sr vs. MgO of the studied lamprophyres that lamprophyres 
show different arrays. See text for details.  

Fig. 11: Sm/La vs.Th/La diagram show minette located in the arc magma array and 
sannaite/camptonites in the lower part of the Th/La ratio. Sorkheh and Tasuj 
spessartite located between sannaite/camptonite and minette end members. See 
text for details. Upper Crust (UC, Rudnick and Gao, 2003), Global subducting 
Sediment (GlOSS, Plank and Langmuir, 1998), Arc magma array (Plank, 2005) and 
SaLaTHO and related array (Tommasini et al., 2011). 

Fig. 12:  Th/Nb vs 87Sr/86Sr diagram that show sannaite/camptonite type lamprophyres 
located in the OIB field while minette type shift toward upper crust. Data for: 
lamproites from Leucite Hills from Mirnejad and Bell (2006); Mediterranean 
lamproites from Conticelli et al. (1992, 2002, 2007, 2009a); Owen (2008); Prelevid et 
al. (2010); for upper crust from Rudnick and Gao (2003), the data for OIB are taken 
from the GEOROC database (http://www.georoc.mpch-mainz.gwdg.de/georoc). 

Fig. 13:  Th/Yb vs Nb/Yb diagram, sannaite and camptonite fall in mantle array at its OIB end 
while minette type plots in the arc field. Sorkheh and Tasuj spessartite plot between 
sannaite/camptonite and minette fields. Diagram and mantle end members after 
Pearce and Peate (1995). 
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Highlights 

-Northwestern Iranian lamprophyres have alkaline and calc-alkaline nature. 

-Studied lamprophyres are emplaced during Late Cretaceous to Late Miocene time.  

-Lamprophyres originated from different metasomatised lithospheric mantle.  

 
 
 
 


