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 Abstract 
 

 Since the species distribution and biochemical composition of planktic 

foraminifera reflect properties of the environment they inhabit, fossil assemblages in 

sediments are often used to reconstruct palaeoenvironments. However, for a correct 

interpretation of fossil data it is important to improve our understanding of the 

relation between recent environmental variability in the ocean and the related 

distribution of living foraminifera and the biochemical composition of their shells. A 

particularly relevant issue is the inconsistency in the results of Mg/Ca thermometry in 

high latitudes that contributes to the uncertainty of palaeo-reconstructions. The 

objective of this study is to obtain new data on the vertical and horizontal distribution 

of planktic foraminifera species in the Fram Strait (Arctic Ocean) and to determine 

the factors controlling the stable isotopic signature and the Mg/Ca ratios of the tests in 

these high latitude waters. 

 The results of this report show that in the Fram Strait the distribution pattern of 

the two dominating species, Neogloboquadrina pachyderma (sinistral) and 

Turborotalita quinqueloba has a distinct relation to the complex hydrography. High 

abundances in the marginal ice zone are related to the increased primary production 

triggered by the strongly stratified water column at the ice margin. The depth habitats 

of N. pachyderma (sin.) and T. quinqeloba in the study area seem to be predominantly 

controlled by the availability of food. We could not verify the hypothesis that 

associates the vertical distribution of N. pachyderma (sin.) to a discrete isopycnal 

band. The foraminiferal fauna living in the water column is fairly well reflected on the 

sediment surface and thus, the sedimentary record in the studied region provides a 

reliable proxy for palaeo-water mass characterization. 

 The average depths of calcification of N. pachyderma (sin.) and T. quinqueloba 

seem to have a similar range, but the "vital effect" in both, oxygen and carbon isotope 

composition shows different values in the two species. The discrepancies with earlier 

published results in the magnitude of the "vital effect" suggest that oceanographic 

variability plays an important role in the incorporation of stable isotopes in the 

foraminiferal tests. The increased offset between δ13CDIC and the δ13C of shells in the 

upper part of the water column indicates the influence of the "carbonate ion effect" on 

the calcification process of the tests. The offset between the stable isotope 
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composition of the net-sampled shells and those from the core tops suggest that the 

tests on the sediment surface recorded changes in environmental parameters in the 

past ~200-1000 years. The negative offset in δ18O between the sediment and plankton 

samples may be explained by the combined effect of temperature rise and δ18Owater-

change, while the offset in δ13C may be due to the surface ocean Suess effect. 

 The Mg/Ca ratios in both species show a very weak correlation with in situ 

water temperatures and at the same time, significantly elevated values compared to 

calibration predictions. The results may be explained by the effect of carbonate 

chemistry on the shells that might mask the temperature-dependence in the studied 

region. The offset in Mg/Ca between N. pachyderma (sin.) and T. quinqueloba most 

likely results from differences in their calcification processes.  
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 Kurzfassung 
 

 Da die Artenverteilung und biochemische Zusammensetzung der Gehäuse von 

Foraminiferen die Umgebung widerspiegeln in der sie leben, werden die fossile 

Exemplare aus Sedimenten oft für paläozeanographische Rekonstruktionen 

verwendet. Um die fossilen Informationen richtig interpretieren zu können, ist es 

jedoch wichtig, unser Wissen über die  Korrelation zwischen der rezenten Variabilität 

in den Ozeanen und der damit im Zusammenhang stehenden Artenverteilung und 

biochemischen Schalenzusammensetzung der Foraminiferen zu erweitern. Ein 

besonders relevanter Aspekt ist die Widersprüchlichkeit der Ergebnisse der "Mg/Ca- 

Thermometrie" in hohen Breiten,  die zu den Unsicherheiten von Paläo-

Rekonstruktionen beiträgt. Das Ziel dieser Studie ist deshalb die Erhebung neuen 

Daten, einerseits über die vertikale und horizontale Verteilung von planktischen 

Foraminiferen-Arten in der Framstraße (Arktischer Ozean), anderseits über die 

Faktoren, die die Isotopenzusammensetzung und den Mg/Ca-Gehalt der kalkschaligen 

Mikroorganismen in dieser Region beeinflussen. 

 Die Ergebnisse dieser Arbeit zeigen, dass die Verteilungen die zwei in der 

Framstraße dominierende Arten Negloboquadrina pachyderma (sinistral) and 

Turborotalita quinqueloba einen eindeutigen Zusammenhang mit der komplexen 

Hydrographie zeigen. An der Eisgrenze spiegelt sich die vom stark stratifizierten 

Wasser begünstigte hohe primäre Produktivität in höheren Häufigkeiten wider. Die 

Tiefenhabitate von N. pachyderma (sin.) und T. quinqueloba scheinen vorwiegend 

von der Nahrungsverfügbarkeit beeinflusst zu sein. Die Hypothese einer Korrelation 

der vertikalen Verteilung von N. pachyderma (sin.) mit bestimmten Schichten 

gleicher Dichte konnte nicht bestätigt werden. Die Foraminiferen-Fauna in der 

Wassersäule wird in sehr ähnlicher Artenverteilung auch  in den 

Sedimentoberflächeproben  gefunden, dieser Proxy ist also gut geeignet für 

Wassermassen-Rekonstruktionen. 

 Die durchschnittliche Kalzifikationstiefen von N. pachyderma (sin.) und von T. 

quinqueloba weisen ähnliche Werte auf, doch die in der Sauerstoff- und 

Kohlenstoffisotopenzusammensetzung erkennbaren "Vitaleffekte" sind in den zwei 

Arten unterschiedlich. Von den gemessenen Werten abweichende, früher publizierte 

"Vitaleffekte" weisen darauf hin, dass die ozeanographische Variabilität eine wichtige 
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Rolle bei der Einlagerung von stabilen Isotopen in die Schalen spielt. Der erhöhte 

Versatz zwischen den δ13C-Werten der Gehäuse und den δ13CDIC-Werten im obersten 

Teil der Wassersäule lässt auf den Einfluss des "Karbonationeneffekts" auf die 

Kalzifikation schließen. Die Differenz in der Isotopenzusammensetzung zwischen den 

in der Wassersäule und von der Sedimentoberfläche gewonnenen Schalen deutet 

darauf hin, dass die Foraminiferengehäusen aus den Sedimenten auch die 

Umweltparameter-Veränderungen der letzten ~200-1000 Jahre reflektieren. Der 

negative Versatz in den δ18O-Werten zwischen den Sediment- und Planktonproben 

deutet auf den kombinierten Effekt von Temperaturanstieg und δ18OWasser-

Veränderungen hin. Der negative Versatz in den δ13C-Werten hingegen lässt sich mit 

dem "Suess-Effekt" im oberflächennahen Ozean erklären. 

 Die Mg/Ca-Verhältnisse beider Arten zeigen eine sehr schwache Korrelation 

mit in situ-Wassertemperaturen; außerdem sind die Werte wesentlich erhöht, 

verglichen mit der Werten, die mit existierenden Kalibrationsgleichungen berechnet 

wurden. Eine Erklärung dafür könnte der Einfluss der Karbonat-Chemie des Wassers 

auf die Mg/Ca-Verhältnisse sein, der in dieser Region die Temperaturabhängigkeit 

abschwächt. Die Differenz in den Mg/Ca-Werten zwischen N. pachyderma (sin.) und 

T. quinqueloba resultiert wahrscheinlich aus Unterschieden im jeweiligen 

Kalzifikationsvorgang. 
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 1. Introduction 
 

 1. 1 Extant planktic foraminifera 
 

 Foraminifera are testate marine protozoa with a variety of test composition and 

morphology (Fig. 1.1). The first planktic forms appeared in the mid-Jurassic. These 

first groups were most probably meroplanktic and have evolved from a group of 

benthic calcareous, hyaline foraminifera. In the early Cretaceous planktic foraminifera 

had become holoplanktic and widespread over the worlds ocean (Culver, 1993). All 

extant planktic foraminifera belong to the suborder Globigerinina (Kingdom: Protista, 

Subkingdom: Protozoa, Phylum: Sarcomastigophora, Subphylum: Sarcodina, Class: 

Granuloreticulosea, Order: Foraminiferida). 

 

  

 Planktic foraminifera consist of single eukaryotic cells and secreted calcareous 

shells. The calcite wall is formed by the primary organic membrane (POM) that 

deposits calcite layers at the inner and the outer side of the POM (bilamellar wall). A 

monolamellar wall has been observed only in the genus Hastigerina. In particular 

areas of the early test-wall "normal" or "microperforate" pores and spines may be 

formed. Accordingly, on the lowest taxonomic level three informal morhpogroups are 

differentiated by the special characteristics of the calcite wall: spinose (all species 

from the superfamily Globogerinoidea), non-spinose (all species from the superfamily 

Figure 1.1. SEM image of a variety of planktic foraminiferal 
tests (Source: http://www.dailymail.co.uk/sciencetech). 
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Globorotaloidea) and non-spinose microperforate (species from the superfamily 

Heterohelocoidea) (Schiebel & Hemleben, 2005).  

 Planktic foraminifera inhabit species-specific water depths that range between 

the sea surface and more than 400 m. The dwelling depths are determined by ecologic 

and autobiologic factors (e.g., food availability, symbionts) and shift during ontogeny. 

Spinose species prefer animal prey while non-spinose species have been reported to 

be mainly herbivorous (Anderson et al., 1979; Caron & Be, 1984; Spindler et al., 

1984). Many species living in the euphotic zone harbour dinoflagellate or chrisophyte 

symbionts. Algal symbiosis may provide energy from the photosynthesis, may 

enhance the calcification and may play a role in the removal of the metabolic products 

of the hosts (Hemleben et al., 1989; Hallock, 2003). In planktic species only sexual 

reproduction has been observed. Shallow-dwelling foraminifera are known to 

reproduce on a synodic lunar cycle once or twice a month (e.g., Globigerina bulloides 

and Globigerinoides ruber, respectively), possibly at the greatest depth level they 

enter during their ontogeny (Schiebel & Hemleben, 2005). Intermediate and deep-

dwelling species (e.g., Globorotalia truncatulinoides) are thought to reproduce much 

less often and they ascend close to the sea surface to release gametes (Berberich, 

1996; Schiebel & Hemleben, 2005). 

 Most of the modern species are ubiquitous. The assemblages can be attributed 

to five major faunal provinces: polar, subpolar, temperate, subtropical and tropical 

(Be, 1977). In the high and mid latitudes a seasonal distribution pattern is 

pronounced, following the primary production. In the Nordic Seas, for instance, the 

production maximum of planktic foraminifera occurs during summer (Kohfeld et al., 

1996; Jonkers et al., 2010), with almost zero production during other seasons. In the 

subtopical-tropical oceans foraminiferal production is more balanced and 

consequently, the sedimentation of empty tests is less seasonally pulsed (Schiebel & 

Hemleben, 2005). 
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 1.2 Foraminifera in palaeoceanography 
  

 Planktic foraminifera are proxies extensively used in palaeoceanography. Their 

constant presence through geological times since the mid-Jurassic, their ubiquitous 

prevalence, and the (often) good preservation of tests in sediments together provide a 

powerful tool to reconstruct past marine environments. Fossil specimens in sediment 

cores offer many possibilities to reveal information about ancient marine systems. 

The ratio between the abundances of different planktic foraminifera species – first 

used as a proxy by Schott (1935) – refer to the hydrographic regime, e.g., the 

distribution of water masses, water temperatures, and the position of the summer sea 

ice margin. Moreover, planktic foraminifera form their calcium carbonate tests from 

the surrounding seawater; the biochemical composition of the shells therefore reflects 

the properties of the ambient water. Oxygen isotopic composition (18O/16O, δ18O) of 

the tests gives information about variations in sea surface temperatures (first 

recognized by Emiliani (1954)) and salinities (e.g., Duplessy et al., 1992) in the past. 

Other widely used measures of palaeotemperature are the Mg/Ca ratio (e.g., Cronblad 

& Malmgren, 1981; Nürnberg et al., 1996) and the Ca isotope composition (Nägler et 

al., 2000) of the calcite tests. Planktic carbon isotope records (13C/12C, δ13C) are 

generally assumed to reflect changes in palaeoproductivity and ventilation of surface 

and near-surface waters (Duplessy, 1978), just like the Cd isotope composition (e.g., 

Boyle et al., 1976).  The B isotope composition of the tests is related to the seawater 

pH (Sanyal et al., 1996). Additionally, there are several other trace elements in 

foraminiferal shells that serve as proxies for various marine biochemical processes. 

 Despite much effort and many calibration studies using modern foraminifera 

and water mass data, there are still uncertainties about the correct interpretation of the 

fossil data. Several studies revealed that foraminifera do not calcify their shells in 

equilibrium with the seawater (Shackleton et al., 1973; Vergnaud Grazzini, 1976; 

Kahn, 1979; Kohfeld, et al., 1996; Bauch et al., 1997; Volkmann & Mensch, 2001) 

and that the above-mentioned proxies (always or under certain conditions) do not 

have a linear correlation with the parameters they are thought to reflect. Moreover, in 

particular cases the degree of disequilibrium seems to vary regionally (e.g., in δ18O: 

Bauch et al., 1997; Volkmann & Mensch, 2001; Simstich et al.; 2003, Jonkers et al., 

2010). Another particularly relevant issue that contributes to the uncertainty of 
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palaeo-reconstructions are the inconsistent results of Mg/Ca thermometry in high 

latitudes (Nürnberg, 1995; Meland et al., 2006; Kozdon et al., 2009; Jonkers et al., 

2013). For the reasons mentioned above, it is important to examine which biological, 

chemical or regional factors affect the incorporation of elements into the tests during 

calcification, and to improve our understanding of the correlation between recent 

oceanic variability and the distribution/biochemical composition of shells of living 

foraminifera. 

 

 1.3 The Arctic Ocean and the Fram Strait 
 

 The Arctic Ocean is an enclosed ocean with a total area of approximately 9.6 x 

106 km2. It is connected to the Pacific Ocean through the Bering Strait, and to the 

Atlantic Ocean through Fram Strait, the Barents Sea and the Canadian Arctic 

Archipelago via Baffin Bay (Fig. 1.2). The Arctic Ocean water mass structure can be 

characterized by the Polar Mixed Layer (PML) at the surface, a cold and saltier 

halocline between 50-200 m water depth, a warm Atlantic Layer (AL; 200-500 m 

water depth), the Upper Polar Deep Water (UPDW) extending down to a depth of 

1700 m, deep water (down to 2500 m), and bottom water beneath that (Jones, 2001). 

 

  
 

 

  

 The Arctic Ocean is particularly sensitive with respect to ongoing climate 

changes. The reported ice extent-decrease (e.g., Stroeve et al., 2012), as a 

Figure 1.2. Schematic surface (grey arrows) and subsurface 
(black arrows) circulation of the Arctic Ocean. The strait 
arrows represent the mouths of major rivers (from Jones, 2001). 
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consequence of rising surface air temperatures (e.g., Rigor et al., 2000; Johanessen et 

al., 2004) causes a decrease in ice albedo and a stronger heat absorption of the ocean. 

This, in turn increases the ice-melt (Arctic amplification; Manabe & Stouffer, 1980; 

Serreze & Francis, 2006; Serreze et al., 2007). The Fram Strait plays a key role in 

these processes, which makes the region of special interest. It is the only deep passage 

between the Arctic Ocean and the rest of the world ocean, supplying the Arctic Ocean 

– apart from the Barents Sea – with North Atlantic-derived waters. It is the most 

important pathway for the oceanic transport of sensible heat to and the main exit for 

Polar Water and sea ice from the Central Arctic (Rudels et al., 1999; Jones, 2001). 

Hence, along its approximately 500 km cross section highly variable oceanographic 

conditions can be found. Two major surface current systems dominate the area: the 

West Spitsbergen Current (WSC) in the eastern part that transports warm and saline 

water masses northward and the southward flowing cold and fresh East Greenland 

Current (EGC) in the west (Fig. 1.3). The upper 500 m of the WSC are dominated by 

Atlantic Water (AW). This submerges north of 78°N beneath a cool and fresh upper 

mixed layer of Arctic origin and continues as a subsurface current into the Arctic 

Ocean (Johannessen, 1986).  

 

  

 

 In the northern part of the Fram Stait also a strong recirculation of AW takes 

place. Here Atlantic Water is carried by meso-scale eddies westward in the strait 

whereby it submerges below the EGC and forms the subsurface Return Atlantic 

Current (RAC) (Johanessen et al., 1987) that contributes to the deepwater formation 

Figure 1.3. Schematic surface circulation of the Fram 
Strait. Red arrows indicate the West Spitzbergen 
Current (WSC) and the Return Atlantic Current 
(RAC), white arrows indicate the East Greenland 
Current (EGC). Map source: the International 
Bathymetric Chart of the Southern Ocean (Jakobsson 
et al., 2012). 
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in the Nordic Seas (Gascard et al., 1988; Marnela et al., 2008). Above it, in the upper 

200 m the EGC carries cold, low-saline Arctic outflow waters along the Greenland 

continental slope into the Nordic Seas.The sea-ice extent in the strait is controlled by 

the interaction between the two strongly contrasting surface/subsurface currents and is 

highly variable (Vinje, 1977, 2001): because of the melting effects of the warm and 

saline AW, usually only the shelf of East Greenland and the northern Fram Strait stay 

covered by ice in the summer, but in the case of extremely cold winter/spring periods 

the ice can even intrude into the eastern part of the strait (Dickson et al., 2000). 

 

 1.4 Objectives and outline of the study 
 

 Despite of its importance in understanding the recent global warming, the Arctic 

realm still represents a challenging field of study for palaeoceanography. Knowledge 

about past climate variability is necessary for evaluating recent changes and 

predicting future climate trends. For this reason, several palaeoceanographic studies 

have been conducted in the area (for recent reviews see Stein, 2008 and Polyak et al., 

2009). However, the interpretation of proxy data from high-latitude oceans raises 

some difficulties. The Arctic region represents an extreme environment to planktic 

life with very low sea surface temperatures (< −1.5°C) and partly permanent ice 

cover, which leads to limitations in the applicability of certain palaeoceanographic 

methods. Low diversity of planktic foraminifera species in the area results in too high 

temperature estimates with modern analog techniques (Pflaumann et al., 1996; Husum 

& Hald, 2013), while cold surface waters seem to cause inconsistency in Mg/Ca 

thermometry (Nürnberg, 1995; Meland et al., 2006; Kozdon et al., 2009; Jonkers et 

al., 2013). Moreover, local environmental parameters like ice coverage and surface 

hydrography might influence abundances, depth habitat and stable isotope 

incorporation of planktic foraminifera (e.g., Carstens et al., 1997; Volkmann, 2000; 

Bauch et al., 1997). Thus, in order to correctly interpret the palaeo-record, it is 

inevitable to examine the modern assemblage, its biochemistry and the relations to 

environmental parameters. However, compared to tropical regions, rather few studies 

on recent planktic foraminifera concentrated on the Fram Strait and generally on the 

(sub)Arctic. Modern distributions and/or stable isotopic compositions of foraminiferal 

shells were analysed in Freemansundet, Svalbard (Hansen & Knundsen, 1995), in the 
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Nansen Basin (Carstens & Wefer, 1992; Bauch et al., 1997), in the North-east Water 

Polynya (Kohfeld et al., 1996) and in the Nordic Seas (Simstich et al., 2003). Samples 

collected close to our study site in the Fram Strait were investigated by Carstens et al. 

(1997), Volkmann (2000) and Volkmann & Mensch (2001). These studies revealed 

that the modern planktic foraminiferal assemblage in the Fram Strait is dominated by 

the polar, non-spinose species Neogloboquadrina pachyderma (sinistral) (Ehrenberg, 

1861) and the subpolar, spinose, symbiont-bearing species Turborotalita quinqueloba 

(Natland, 1938). N. pachyderma (sin.) is often used in palaeoceanographic 

reconstructions in the high latitudes (e.g., Devereux et al., 1970; Kellogg, 1980; 

Spielhagen et al., 2004) because of its almost continuous presence during glacial and 

interglacial times. T. quinqueloba is a reliable proxy for the warmer  Atlantic Waters 

entering the Arctic Ocean (Carstens & Wefer, 1992; Bauch, 1994) and it is 

dominating the Holocene sediments in the Nordic Seas (Bauch, 1993). Nevertheless, 

the ecology of these two species is not well known. In the Fram Strait the ratio 

between the abundances of N. pachyderma (sin.) and T. quinqueloba seems to vary 

with the hydrographical regime (Carstens et al., 1997; Volkmann, 2000). Findings 

about the depth distribution of both species are contradicting: Carstens et al. (1997) 

concluded that N. pachyderma (sin.) and T. quinqueloba follow the path of the 

Atlantic Water submerging below Polar waters, while Volkmann (2000) assumed that 

N. pachyderma (sin.) prefers shallower water depths under permanent ice coverage. 

However, both studies were conducted in late summer and did not take in account that 

– just like in the North Atlantic (Schiebel & Hemleben, 2000) – seasonality might 

influence abundances and depth habitat as well. Moreover, the degree of 

disequilibrium in the stable isotope incorporation of these microorganisms seems to 

vary regionally (e.g., in δ18O: Bauch et al., 1997; Volkmann & Mensch, 2001; 

Simstich et al., 2003; Jonkers et al., 2010), while the Mg/Ca ratio of tests collected in 

high-latitude oceans do not always have the expected exponential correlation with 

water temperatures. Therefore, to improve the reliability of palaeoceanographic 

reconstructions, the factors influencing the biochemical composition of the tests still 

need further attention. For this purpose the upper 500 m of the water column and the 

sediment surface were sampled for planktic foraminifera with a multinet and a 

multicorer, along a transect across the Fram Strait (78°50'N, 5°W-8°E).  Additionally, 

at the same locations temperature and salinity of the water column were measured by 
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a Conductivity-Temperature-Depth (CTD) profiler and water samples were taken with 

a rosette sampler. The sampled transect comprises strongly contrasting water masses 

(see above), which makes it possible to investigate the effects of distinctly different 

water temperatures/salinities on the species assemblage and on the biochemical 

composition of the tests. 

 

 The major objectives of this study are: 

(1) To describe the horizontal and vertical distribution of the planktic foraminiferal 

fauna in the Fram Strait and to determine the factor(s) influencing the depth habitat of 

the two dominating species in this area. 

(2) To compare the species assemblage found on the sediment surface to that sampled 

from the water column. 

(3) To compare the stable isotope composition of shells collected from the water 

column and from the sediment surface to that of the ambient water and to investigate 

possible reasons for discrepancies. 

(4) To test the validity of Mg/Ca thermometry in these high latitudes on 

N. pachyderma (sin.) and T. quinqueloba collected in the water column and from the 

sediment surface.  

 

 This thesis comprises three manuscripts (chapter 2-4) that are published 

(chapter 2 and 3) and to be submitted soon (chapter 4). Plankton, sediment surface 

and water samples analysed in the study were collected during RV Polarstern 

expedition XXVI/1 in the Fram Strait in June/July 2011 and were identical in all three 

manuscripts. Chapter 2 (Pados & Spielhagen, 2014) focuses on the ecology and depth 

distribution of living planktic foraminifera in the study area. Chapter 3 (Pados et al., 

2014) discusses the correlation between stable isotope composition of living planktic 

foraminifera and in situ measured water column properties. In chapter 4 we test the 

temperature dependence of Mg/Ca in planktic foraminifera sampled from the water 

column and from the sediment surface, and describe the Mg/Ca distribution in the 

water column in the Fram Strait (Pados et al., to be submitted). 
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Abstract

To describe the horizontal and vertical distribution of recent planktic

foraminifera in Fram Strait (Arctic), plankton samples were collected in the

early summer of 2011 using a MultiNet sampler (�63 mm) at 10 stations along

a west�east transect at 78850?N. Five depth intervals were sampled from the

sea surface down to 500 m. Additionally, sediment surface samples from the

same locations were analysed. The ratio between absolute abundances of

planktic foraminifera in the open ocean, at the ice margin and in the ice-

covered ocean was found to be approximately 2:4:1. The assemblage was

dominated by the polar Neogloboquadrina pachyderma (sin.) and the subpolar

Turborotalita quinqueloba, which accounted for 76 and 15% of all tests in the

warm, saline Atlantic waters and 90 and 5% in the cold and fresh Polar waters,

respectively. Both species had maximum absolute abundances between 0 and

100 m water depth, however, they apparently lived shallower under the ice

cover than under ice-free conditions. This indicates that the depth habitat of

planktic foraminifera in the study area is predominantly controlled by food

availability and not by temperature. The distribution pattern obtained by

plankton tows was clearly reflected on the sediment surface and we conclude

that the assemblage on the sediment surface can be used as an indicator for

modern planktic foraminiferal fauna.

To access the supplementary material for this article, please see Supple-

mentary files under Article Tools online.

Planktic foraminifera are protozoa that inhabit the upper

part of the water column in the world oceans. As their

species distribution in high latitude oceans reflects pro-

perties of their habitat (i.e., water temperatures and

the position of the summer sea-ice margin), fossil

assemblages in sediments are often used to reconstruct

palaeoenvironments. However, for a correct interpreta-

tion of fossil data, it is important to improve our under-

standing of the correlation between environmental

variability in the ocean and the related distribution of

living foraminifera. It is particularly essential to reveal

the actual depth habitat of recent specimens, as the water

properties reconstructed from their fossil calcite shells

must be attributed to correct water depths.

Many studies on recent planktic foraminiferal distribu-

tions were conducted in tropical/subtropical areas (e.g.,

Bé & Hutson 1977; Andrijanic 1988; Naomi et al. 1990;

Kuroyanagi & Kawahata 2004), while rather few studies

concentrated on (sub-)Arctic regions, mainly on Fram Strait.

Hansen & Knudsen (1995) published data from Free-

mansundet, Svalbard, Carstens & Wefer (1992) presented

results on recent foraminifera in the Nansen Basin, and

Kohfeld et al. (1996) analysed samples from the Northeast

Water Polynya. Close to our work area, studies have

been conducted by Carstens et al. (1997) and Volkmann

(2000), who showed that planktic foraminiferal species

composition in Fram Strait is dominated by polar

Neogloboquadrina pachyderma (sinistral) (Ehrenberg 1861)
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and subpolar Turborotalita quinqueloba (Natland 1938). The

abundance ratio of these two species varies with the

hydrographical regime but they both occur in the upper

500 m of the water column, with highest abundances at

the sea-ice margin. In this paper, we present new data on

the vertical and horizontal distribution of planktic for-

aminifera species, collected during the Polarstern ARK-

XXVI/1 cruise, in 2011, at 10 stations along a transect at

78850?N across Fram Strait (Fig. 1). The samples were

taken using a MultiNet sampler with nets of 63 mm mesh

size at five depth intervals. Additionally, the sediment

surface at the same locations was sampled. In this area, the

production maximum of planktic foraminifera usually

occurs in mid-summer (Kohfeld et al. 1996; Jonkers et al.

2010). Foraminifer assemblages in core-top and down core

samples from Fram Strait are therefore thought to repre-

sent modern and past summer conditions, respectively.

In order to examine whether processes during deposition

(e.g., lateral transport, selective dissolution) significantly

change the distribution of planktic foraminiferal tests in

sediments, our MultiNet sampling results are also com-

pared to the planktic foraminifer assemblages found on the

sea floor.

Oceanography

Fram Strait is characterized by high oceanographic vari-

ability. Two major surface current systems dominate the

area: the West Spitsbergen Current (WSC) in the eastern

part that transports water masses northward and the

southward flowing East Greenland Current (EGC) in the

west (Johannessen 1986). The upper 500 m of the WSC

is dominated by Atlantic Water with a thin (B5 m)

mixed layer on top in the summer, resulting from ice

melting. In winter, the Polar Surface Water takes over its

place and forms a thicker wedge to the west (Rudels et al.

1999). The Atlantic Layer is characterized by salinities

above 34.5 and temperatures higher than 0.58C. It ranges

between 200 and 500 m. The Polar Mixed Layer (PML)

is colder, with a low salinity (B34) and about 50 m

thickness. The two layers are isolated by a cold halocline

(Jones 2001). The EGC carries cold, low-saline Arctic

outflow waters in the upper 200 m. As a result of ice

melt, surface waters at the East Greenland continental

slope are characterized by extremely low salinities in

summer (below 32). The PML here is located above a

well-developed halocline (Rudels et al. 2000). Under-

neath the halocline, warmer and saline waters of Atlantic

origin can be found. The sea-ice extent in the strait is

controlled by the interaction between Polar and Atlantic

waters and is highly variable (Vinje 1977, 2001): usually

only the shelf of East Greenland and the northern Fram

Strait stay covered by ice in the summer, but in the

case of extremely cold winter/spring periods the ice can

even intrude into the eastern part of the strait (Dickson

et al. 2000).

Oceanographic measurements during ARK-XXVI/1

cruise (Beszczynska-Möller & Wisotzki 2012) provided

Fig. 1 Absolute abundances of planktic foraminifera at 10 stations along a transect at 78850?N across Fram Strait. Arrows*red for the West

Spitsbergen Current and white for the East Greenland Current*indicate the ocean circulation in the study area. The white dashed line shows the

position of the sea-ice margin in the transect during the sampling period (shipboard observation and satellite data from the US National Oceanic and

Atmospheric Administration). Map source: the International Bathymetric Chart of the Arctic Ocean (Jakobsson et al. 2012).
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a detailed profile across Fram Strait at the time of sampl-

ing (Fig. 2). The Atlantic Layer in the east was character-

ized by salinities near 35 and temperatures between

7 and 28C, while the Polar Layer in the western part

of the strait yielded salinities around 33 and a mean

temperature of �1.58C. Here, on the surface Beszczynska-

Möller & Wisotzki (2012) found the above-mentioned

low-salinity layer with lowest values of 30.6. Underneath

the Arctic-derived and mainly ice-covered water mass,

submerged warm and salty Atlantic waters can be found.

The sea-ice margin in the transect was located at ca. 28W
during the sampling period.

Material and methods

Samples used in this study were obtained during

the ARK-XXVI/1 expedition with the research vessel

Polarstern in late June/early July 2011 in Fram Strait.

Plankton samples were collected by a MultiNet sampler

(net opening 0.5 m2; Hydro-Bios, Kiel, Germany) at

10 stations along a transect at 78850?N across Fram Strait

(Fig. 1, Table 1). The nets of 63 mm mesh size were

towed vertically on regular depth intervals (500�300 m,

300�200 m, 200�100 m, 100�50 m, 50�0 m) with a

maximum winch speed of 0.3 m/s. During the sampling,

the volume of filtered water was measured with a flow

metre attached to the MultiNet frame. The flow metre

was discovered to be defective and could not be repaired

during the cruise. For some MultiNet casts and depth

intervals, the instrument gave no or obviously unreliable

results. We have therefore decided to omit the flow metre

data for this study. The filtered volume was calculated

from the mouth opening of the MultiNet and the ver-

tical length of the towed interval for each sample. The

plankton samples were sieved with a sieve of 500 mm

mesh size, fixed with ethanol and stored at 48C on board.

Before picking the foraminifera by a pipette, all samples

were rinsed with distilled water, treated with hydrogen

peroxide to remove organic material and preserved in

seawater. The picked specimens were rinsed with distilled

water, dried on air and ashed in a low temperature

vacuum asher for 90 min.

Sediment surface samples were obtained from multi-

corer deployments at the same stations and preserved

in ethanol. Samples were freeze-dried, wet-sieved with

distilled water through a 63 mm mesh, dried at 408C and

split into several fractions.

All foraminifera from a split of the 100�250 mm frac-

tion of the plankton samples (half or quarter) and from

a split of the 100�250 mm fraction of the sediment sur-

face samples (containing �300 individuals) were iden-

tified using the taxonomy of Hemleben et al. (1989)

and counted under dry conditions. Temperature and

salinity of the water column were measured by a

Fig. 2 Temperature and salinity of the water column in the upper 1000 m along a transect at 78850?N across Fram Strait. Data obtained by

conductivity�temperature�density measurements during the ARK XXVI/1 expedition (Beszczynska-Möller & Wisotzki 2012).
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conductivity�temperature�depth (CTD) profiler (Beszczynska-

Möller & Wisotzki 2012) immediately before the plankton tows.

Data of ice coverage were obtained by shipboard observations.

Results

Planktic foraminifera in the plankton samples

The absolute abundances of planktic foraminifera of the

100�250 mm size class in the upper 500 m of the water

column show a general increase from ca. 10 individuals

per cubic metre (ind./m3) at the eastern stations to

29 ind./m3 at the sea-ice margin (station 54). Further

westward we can see a drastic decrease (3 and 9 ind./m3,

stations 75 and 71, respectively; Fig. 1).

The species assemblage is dominated by polar Neoglobo-

quadrina pachyderma (sin.) and subpolar Turborotalita

quinqueloba, with proportions of around 76 and 15% in

the east and 90 and 5% in the west, respectively. Other

planktic foraminifera species found in the samples

(N. pachyderma [dex.] and Globigerina bulloides) contribute

less than 9% to the faunal composition. The relative

abundance of N. pachyderma (sin.) varies between 73 and

92% with an increasing trend towards the west, while

T. quinqueloba shows a reverse tendency with the highest

value of 23% in the eastern part of the strait and the

lowest (5%) at the Greenland slope. Figure 3 shows the

species composition at the stations in preselected depth

intervals. N. pachyderma (sin.) contributes less than 70%

to the total planktic foraminiferal fauna at two stations

(at 88E and 68E), between 0 and 50 m water depth.

The highest proportion of this species was found at

station 75 (48W).

The two dominant species, N. pachyderma (sin.) and T.

quinqueloba, show similar trends in the depth distribu-

tion: both have maximum absolute abundances (ind./m3)

between 0 and 100 m water depths (Fig. 4). N. pachyderma

(sin.) has highest abundances near the surface between

0 and 50 m at stations 35 and 87 in the middle of the

strait (48E and 38E, respectively) and under the ice cover

at station 75. Highest amounts of T. quinqueloba in

the upper 50 m were found at stations 127, 35 and 44

(88E, 48E and 08E, respectively); at the remaining

stations, the depth of 50�100 m yielded maximum

abundances of this species.

Looking at the relative abundances (percentage of total

population of the given species at the given station per

depth interval; Fig. 4), both species show a trend to

increasing percentages from the surface to the interval

50�100 m, followed by a decrease to 300�500 m. Only at

the easternmost station (127), the population maximum

of N. pachyderma (sin.) descends below 200 m, while the

highest relative abundance of T. quinqueloba at all stations

lies above 200 m.

Sediment samples

The samples do not show any evidence of selective car-

bonate dissolution. Only few broken shells were found,

and the two studied species do not show any significant

difference in the degree of fragmentation.

In the absolute abundances of planktic foraminifera, we

see a trend similar to that of the plankton samples: the

station close to Svalbard (25) has a low value (B400 ind./g

sediment), followed by a minor peak at 48E (ca. 6500 ind./g).

After a steady interval (ca. 3000 ind./g), a significant peak

can be observed at the sea-ice margin (station 54, ca.

26000 ind./g), followed by a drastic decrease to ca. 50 ind./g

below the sea ice (Fig. 5).

Neogloboquadrina pachyderma (sin.) has highest propor-

tions in the assemblage at the sea-ice margin (91%)

and lowest (73%) in the east (78E, station 25). Between

these two stations, a steady increase can be detected. T.

quinqueloba shows an exactly reverse trend with abun-

dances between 8 and 24% (Fig. 6). Comparing the relative

abundances of N. pachyderma (sin.) and T. quinqueloba on

Table 1 List of the stations sampled during the ARKXXVI/1 cruise with the Polarstern in June/July 2011.

Station no. Latitude Longitude Water depth Date Ice cover

PS78-19 78849.84?N 680.69?E 2464 m 25.06.11 No

PS78-25 78849.962?N 780.077?E 1465 m 26.06.11 No

PS78-35 78849.772?N 3858.380?E 2335 m 28.06.11 No

PS78-39 78850.09?N 1854.56?E 2554 m 28.06.11 No

PS78-44 78849.972?N 084.630?E 2636 m 29.06.11 No

PS78-54 78850.02?N 280.21?W 2714 m 01.07.11 Ice margin

PS78-71 78849.66?N 5820.99?W 684 m 04.07.11 Ice covered

PS78-75 78849.74?N 3855.44?W 1978 m 04.07.11 Ice covered

PS78-87 78850.44?N 380.19?E 2454 m 06.07.11 No

PS78-127 78849.84?N 881.33?E 1019 m 10.07.11 No
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Fig. 3 Faunal composition of samples taken from the upper 500 m of the water column along a transect at 78850?N in Fram Strait.
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the sediment surface to those counted in the upper 100 m

of the water column, the species composition in the depth

interval of 50�100 m follows the trend of the core-top

samples more precisely than the depth interval between 0

and 50 m mirrors the sediment surface (Fig. 6). All count

data can be found in Supplementary Tables S1�S3.

Discussion

Species assemblage

The planktic foraminiferal species composition of the

study area resembles the typical foraminiferal fauna

previously reported from Arctic/sub-Arctic regions with

Fig. 4 Absolute (blue lines) and relative (black bars) abundances (percentage of total population of the given species at the given station

per depth interval) of Neogloboquadrina pachyderma (sin.) and Turborotalita quinqueloba in the upper 500 m along a transect at 78850?N in Fram

Strait.
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the clear dominance of Neogloboquadrina pachyderma

(sin.) and Turborotalita quinqueloba. A similar species

distribution has been already shown for the Arctic Ocean

(Bé 1960; Carstens & Wefer 1992) and for Fram Strait

(Carstens et al. 1997; Volkmann 2000). Furthermore,

despite the warming of Atlantic waters passing through

the strait (Spielhagen et al. 2011), the polar species N.

pachyderma (sin.) still clearly prevails in our samples,

compared to the subpolar T. quinqueloba. Interestingly, at

the sampled stations, T. quinqueloba showed relatively

low values compared to the results of the above-mentioned

studies (Fig. 3). Carstens et al. (1997) observed a range

from 15 to 64% for this species, while the proportion of

T. quinqueloba in certain samples collected by Volkmann

(2000) in warm, Atlantic Water-dominated regimes re-

ached even 93%. In our plankton samples, the relative

abundance of T. quinqueloba varied between 5 and 23%

and the sediment surface samples showed a very similar

trend. These discrepancies point to a variable foraminif-

eral production found due to different sampling periods.

Carstens et al. (1997) and Volkmann (2000) took their

samples in August, while our samples were collected

in late June/early July and therefore probably reflect

an early summer plankton bloom. In the eastern North

Atlantic Ocean, Schiebel & Hemleben (2000) found

distinctly different planktic foraminiferal faunas in June

and in August. In contrast to early summer, the late

summer assemblage was dominated by species preferring

warmer waters than other species present, just like the

subpolar T. quinqueloba in the planktic foraminiferal

fauna of Fram Strait. It has been shown for the

western North Atlantic that, while the production of

N. pachyderma (sin.) has two peaks during the season

and one already in early summer, the production of

T. quinqueloba reaches its maximum only in early

autumn, after the second bloom of N. pachyderma (sin.)

(Jonkers et al. 2010). Although sediment trap studies

in the Northeast Water Polynya revealed a unimodal

pattern of planktic foraminiferal production (Kohfeld

et al. 1996), our data indicate that a temporal offset in

the production maxima of the two species exists also at

these northern latitudes. This could lead to the relatively

low numbers of T. quinqueloba in our samples, collected in

June/July compared to the studies conducted in August.

Horizontal distribution

The variable species composition along the transect

reflects the complex hydrography of Fram Strait. In the

east, the WSC carries warm, saline Atlantic Water north-

wards. In this area, the subpolar T. quinqueloba had

higher abundances and the polar N. pachyderma (sin.)

had lower abundances than in the western part where

the upper 200 m of the EGC consist of cold, low-saline

Arctic outflow waters. Here, N. pachyderma (sin.) had

a proportion of around 90%. This indicates that the

horizontal distribution of the two species is primarily

controlled by the distribution of different water masses.

The ratio between absolute abundances of planktic

foraminifera in the open ocean, at the ice margin and in

the ice-covered ocean was found to be ca. 2:4:1 (Fig. 1).

Our data show a similar trend to that in the study of

Carstens et al. (1997). The ice margin offers increased

food supply for the foraminifera with higher primary

production caused by diatoms that are the major food

Fig. 5 Absolute abundances of planktic foraminifera on the sediment

surface at 10 stations along a transect at 78850?N across Fram Strait.

The sample from station PS78-127 (88E) did not hold enough individuals

for counting.

Fig. 6 Comparison of relative abundances of Neogloboquadrina pachyderma (sin.) and Turborotalita quinqueloba in the depth intervals 0�50 m and

50�100 m as well as on the sediment surface at 10 stations along a transect at 78850?N in Fram Strait.
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source for N. pachyderma (sin.) (Hemleben et al. 1989).

Diatoms typically do not develop well under permanent

ice cover due to the light limitation, but they prefer

seasonally stratified water conditions that occur in the

marginal ice zone (Smith et al. 1987; Williams 1993). Ice

melting increases stratification and consequently the

stability of the water column, which triggers phytoplank-

ton blooms (Alexander 1980), and the enhanced phyto-

plankton biomass along the ice margin may have led

to a major increase in absolute abundances of planktic

foraminifera.

Vertical distribution

Both N. pachyderma (sin.) and T. quinqueloba had max-

imum absolute abundances between 0 and 100 m water

depth. However, the relative abundances per depth

interval (Fig. 4) showed that in the western Fram

Strait, at the ice-covered stations more specimens of

N. pachyderma (sin.) lived close to the surface (above

100 m), while in the eastern part of the strait the

majority of the population was found deeper, between

50 and 200 m. Simstich et al. (2003) analysed plankton

and several core-top samples from the Nordic seas, taken

mainly south of our transect (808N�628N). They reported

on a shallow apparent calcification depth in T. quin-

queloba over most of the studied profile. If we assume that

foraminifera calcify in the water depth where they are

most abundant, these results are consistent with our

findings. In their study, going from west to the east, the

habitat of N. pachyderma (sin.) seems to sink deeper in the

Atlantic Water off Norway, similar to what we observe

from our samples taken from the warm and saline WSC.

These results contrast with the findings of Carstens et al.

(1997), who concluded that N. pachyderma (sin.) and

T. quinqueloba follow the path of the Atlantic Water

submerging below Polar Water and therefore live deeper

in the western part of the strait. During our sampling

period, in the western Fram Strait, the surface Polar

water masses extended down to 200 m. As none of the

studies on planktic foraminifera conducted in the same

area (including the study of Carstens et al. 1997) revealed

an average depth habitat below 200 m, the scenario

described by Carstens et al. (1997) seems rather unlikely

here. Furthermore, previous investigations revealed

that food availability strongly affects the distribution of

planktic foraminifera (Schiebel & Hemleben 2005). Thus,

the depth habitat of these protozoa might be controlled

by the position of the chlorophyll a maximum (Fairbanks

& Wiebe 1980; Kohfeld et al. 1996) rather than by the

water mass distribution. From the summer months in

the Northeast Water Polynya, with oceanographic con-

ditions similar to the western Fram Strait, Kohfeld et al.

(1996) reported maximum chlorophyll a concentrations

and consequently highest abundances of N. pachyderma

(sin.) between 20 and 80 m water depth, which accords

with the results presented here. Hirche et al. (1991) also

found, for the same period of the year in Fram Strait,

chlorophyll a maxima in the open ocean at greater depth

than under the ice coverage. Assuming that the depth

distribution of N. pachyderma (sin.) is indeed predomi-

nantly controlled by food availability in this area, the

deeper depth habitat reported by Carstens et al. (1997)

could be explained by different sampling periods. It is

possible that during the above-mentioned experiments

in late summer, the ice coverage was not as intact as in

June/July and consequently, due to the higher trans-

lucency, the deep chlorophyll maximum might have

Fig. 7 The position of the isopycnal layer of 27.7�27.85 along the transect at 78850?N across Fram Strait and relative abundance of Neogloboquadrina

pachyderma (sin.) found in the depth intervals including the density range of 27.7�27.8 (green numbers at the top) and the range of 27.7�27.85 (red

numbers at the bottom) at the 10 stations. Water density data obtained by conductivity�temperature�density measurements during the ARK XXVI/1

expedition (Beszczynska-Möller & Wisotzki 2012).
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descended/extended to deeper layers. Planktic foramini-

fera respond to the redistribution of chlorophyll within

several days (Schiebel et al. 2001) and may therefore

have followed the descent of the chlorophyll maximum.

Another possible explanation for the different findings

might be the sampling in different ontogenetic stages.

N. pachyderma (sin.) and T. quinqueloba are known to

reproduce on a synodic lunar cycle (Bijma et al. 1990;

Schiebel & Hemleben 2005) and for reproduction they

simultaneously descend from their average depth habi-

tat, possibly to the greatest depth they inhabit during

their ontogenetic cycle (Berberich 1996; Schiebel &

Hemleben 2005). Volkmann (2000) also assumed that

N. pachyderma (sin.) prefers shallower water depths

under permanent ice coverage. In her study, this

species showed maximum abundances in the narrow

temperature layer between �1.5 and �1.88C, while

T. quinqueloba did not show such preference to a parti-

cular temperature range. In our study, the maximum

abundances of N. pachyderma (sin.) and T. quinqueloba

were found between 0 and 100 m water depth at every

station and therefore in a very wide temperature range

(from �1.7 to 78C; Fig. 2). We therefore assume that

the depth habitat of planktic foraminifera in Fram Strait

during June/July is more influenced by the distribution

of the food source than by temperature.

Kozdon et al. (2009) proposed that the average depth

habitat of N. pachyderma (sin.) in the Nordic seas is

controlled by water density and that this species is bound

to a layer between 27.7 and 27.8 (potential density, st).

Along our studied transect during the sampling period,

this isopycnal layer was found mainly between 0 and

100 m water depth. There are two exceptions. The first

are the stations at 88E, 78E and 48E, where this water

mass reaches deeper. The second is the western part

of the strait (west of ca. 38W), on the Greenland shelf,

where the whole layer submerged below 150 m. Regard-

ing the relative abundances of N. pachyderma (sin.), our

data show that in the eastern and central Fram Strait

(28W�88E) during the sampling period a broad range

from 34 to 81% of the population lived in the depth

intervals including the specific density range. Extending

the range to 27.85, we found a better correlation with

values between 65 and 86% (Fig. 7). In contrast, in the

west, in the cold and fresh water masses of the EGC,

the depth habitat of N. pachyderma (sin.) was found in

significantly shallower water depths than the layer of

st�27.7�27.8. This discrepancy of findings may be

related to the nature of the samples and data used. While

the water mass and foraminifer data of our study are

from just a short time interval and may be representative

of only one early summer plankton bloom, they are

nonetheless consistent in being obtained at the same

time and place (i.e., station and water depth). Kozdon

et al. (2009) calculated the calcification depth of N.

pachyderma (sin.) using a long-term oceanographic data-

base and temperatures obtained from paired Mg/Ca and

d44/40Ca measurements of shells picked from sediment

surface samples. Such samples integrate foraminifer

assemblages over the entire plankton growth seasons in

a certain number of years, depending on sedimentation

rates and bioturbation intensity. Furthermore, variable

ages of the surface samples analysed (modern to more

than 1000 yr ago; see Simstich et al. 2003) may play a

more significant role than anticipated by Kozdon et al.

(2009), who claimed that the samples ‘‘represent modern

oceanographic conditions.’’ Recent work in the Norwe-

gian Sea and Fram Strait (Sejrup et al. 2010; Spielhagen

et al. 2011; Werner et al. 2011) has demonstrated that

temperature variations of 28C and more occurred in the

Atlantic Water layer during the last one to two millennia.

Particularly in areas with low sedimentation rates (i.e., in

ice-covered regions), sediment surface samples may thus

rather represent earlier and colder periods (e.g., the Little

Ice Age) than just modern, warmer conditions of the

comparatively short Industrial Period. For this reason,

the isopycnals calculated by Kozdon et al. (2009) on the

basis of data extracted from a hydrographic database may

not always correspond to the average conditions during

deposition of the related sediment surface samples. Our

comparison of in situ sampled foraminifera and measure-

ments avoid such potential bias and indicates a wider

density range for the habitat of N. pachyderma (sin.).

Comparison with the sedimentary records

Comparison of plankton tow results with those from the

sediment surface has important implications for palaeo-

ceanographic reconstructions because in such studies

core-top samples are usually assumed to represent the

recent foraminiferal fauna and therefore modern condi-

tions. In our study area, the planktic foraminiferal species

composition in the overlying water column is fairly well

reflected in the sediment surface samples: the polar N.

pachyderma (sin.) clearly dominates all the samples, with

relative abundances of the subpolar T. quinqueloba vary-

ing between 8 and 24%. Again, the differences between

plankton tow and sediment data can most likely be

ascribed to the early summer sampling of the water

column. Lateral advection of foraminifera is not consid-

ered a major factor because mean transport distances in

Fram Strait are only 25�50 km for N. pachyderma (sin.)

and 50�100 km for T. quinqueloba, as determined for a

sediment trap at 1125 m water depth (von Gyldenfeldt
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et al. 2000). In the east and the west of the study area

(where differences between plankton tow and sediment

data are largest), the flow direction of warm and cold

water masses is largely normal to the sampling transect

and transport effects of subpolar and polar species on the

species assemblages on the sea floor can be expected to

be minor. Furthermore, the increase in abundances in

the water column at the sea-ice margin compared to the

open ocean and under the ice cover is also seen on the

sediment surface (Fig. 5). Comparison of the relative

abundances of N. pachyderma (sin.) and T. quinqueloba in

the depth intervals of 0�50 m and 50�100 m to those

from the sediment surface (Fig. 6) suggests that the

sediment surface samples relate best to the fauna living

between 50 and 100 m water depth. This hypothesis

is supported by the fact that in the water column at

almost all stations both species were most abundant

in this depth interval. The congruence of the fauna found

in the water column and on the sediment surface

indicates that in this area processes that can influence

the deposition of shells (e.g., lateral transport, selective

dissolution) do not change significantly the distribution

during settling. Since Fram Strait is relatively narrow and

interannual west�east variability in the position of the

average summer sea-ice margin can be high, effects of

fluctuations related to centennial-scale climate changes

may be more subdued in the sediment surface samples

than in the Nordic seas. As a consequence, the large-

scale oceanic regimes are more obvious from the faunal

compositions. This suggests that planktic foraminifera in

Fram Strait sediments provide a fairly reliable proxy for

palaeo-water mass characterization.

Conclusions

In Fram Strait, the distribution pattern of the two dominat-

ing species, Neogloboquadrina pachyderma (sin.) and

Turborotalita quinqueloba shows a distinct relation to the

complex hydrography. Warm and saline Atlantic waters

yield higher abundances of the subpolar T. quinqueloba

than the cold and fresh waters of the EGC, while the

polar N. pachyderma (sin.) shows an exactly reverse

tendency.

The ratio between absolute abundances of planktic

foraminifera in the open ocean, at the ice margin and in

the ice-covered ocean is ca. 2:4:1. High abundances in

the marginal ice zone are related to the high primary

production triggered by the strongly stratified water

column at the ice margin.

The depth habitats of N. pachyderma (sin.) and T.

quinqueloba in the area seem predominantly controlled

by the availability of food. Both species dwell shallower

under the ice cover than under ice-free conditions,

possibly following the position of the deep chlorophyll

maximum. The effect of other water column properties,

like temperature, on the depth habitat seems to be

masked. We could not verify the hypothesis of Kozdon

et al. (2009), which associates the vertical distribution of

N. pachyderma (sin.) to a discrete isopycnal band. This

discrepancy might be due to various factors, for example,

differences in applied methods and palaeoceanographic

variability in the study area in the recent past.

Sediment surface samples, often used for palaeoceano-

graphic reconstructions, fairly well reflect the composi-

tion of the foraminiferal fauna living in the overlying

water column. In Fram Strait, the species composition

and relative abundance in the sediments correlate best

with that of the fauna living between 50 and 100 m

water depth. In this area*and probably beyond*planktic

foraminifera may therefore be used as proxies for subsur-

face water conditions.
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Beszczynska-Möller A. & Wisotzki A. 2012. Physical oceano-

graphy during POLARSTERN cruise ARKXXVI/1. Bremerhaven:

Helmholtz Centre for Polar and Marine Research, Alfred

Wegener Institute.

Bijma J., Erez J. & Hemleben C. 1990. Lunar and semi-lunar

reproductive cycles in some spinose planktonic foraminifers.

Journal of Foraminiferal Research 20, 117�127.

Carstens J., Hebbeln D. & Wefer G. 1997. Distribution of

planktic foraminifera at the ice margin in the Arctic (Fram

Strait). Marine Micropaleontology 29, 257�269.

Carstens J. & Wefer G. 1992. Recent distribution of planktonic

foraminifera in the Nansen Basin, Arctic Ocean. Deep-Sea

Research Part I 39, 507�524.

Dickson R.R., Osborn T.J., Hurrell J.W., Meincke J., Blindheim

J., Adlandsvik B., Vinje T., Alekseev G. & Maslowski W.

2000. The Arctic Ocean response to the North Atlantic

Oscillation. Journal of Climate 13, 2671�2696.
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Supplementary Table S1. Number of counted foraminifera individuals in the 100-250 µm size 
fraction from the water column. (Table continues next page.) 
 

Station 

  
Depth  

(m) 

 
Split   

counted 

Count 
N. 

pachyderma 
(sin.) 

T. 
quinqueloba 

N. 
pachyderma 

(dex.) 

G. 
bulloides 

       

PS78-127 0-50  1/2 108 43 11 2 

 50-100  1/2 176 33 17 1 

 100-200  1/2 241 56 30 0 

 200-300  1/2 326 45 25 0 

 300-500  1/2 222 37 44 0 

PS78-25 0-50  1/4 71 1 5 0 

 50-100  1/2 185 44 3 1 

 100-200  1/2 95 26 7 0 

 200-300  1/2 24 3 0 0 

 300-500  1/2 72 16 2 0 

PS78-19 0-50  1/2 102 62 1 1 

 50-100  1/4 251 72 15 0 

 100-200  1/2 226 59 15 0 

 200-300  1/2 27 8 2 0 

 300-500  1/2 44 9 1 0 

PS78-35 0-50  1/2 274 55 24 2 

 50-100  1/2 246 40 16 0 

 100-200  1/2 300 71 7 1 

 200-300  1/2 83 7 7 0 

 300-500  1/2 52 5 3 0 

mailto:tpados@geomar.de


 
 

PS78-87 0-50  1/4 216 9 11 0 

 50-100  1/2 179 21 14 1 

 100-200  1/2 85 15 10 0 

 200-300  1/2 56 5 5 0 

 300-500  1/2 186 20 14 0 

PS78-39 0-50  1/2 263 24 7 0 

 50-100  1/2 520 87 12 2 

 100-200  1/2 561 75 14 1 

 200-300  1/2 145 20 2 0 

 300-500  1/2 54 4 2 0 

PS78-44 0-50  1/2 484 53 83 0 

 50-100  1/2 827 32 9 0 

 100-200  1/2 489 62 14 1 

 200-300  1/2 124 23 5 0 

 300-500  1/2 88 23 18 0 

PS78-54 0-50  1/4 510 57 10 1 

 50-100  1/4 580 77 46 0 

 100-200  1/4 331 44 13 0 

 200-300  1/2 138 31 13 0 

 300-500  1/2 138 18 8 0 

PS78-75 0-50  1/2 143 4 3 0 

 50-100  1/2 143 13 3 0 

 100-200  1/2 46 3 4 0 

 200-300  1/2 38 2 2 0 

 300-500  1/2 4 0 0 0 

PS78-71 0-50  1/2 361 6 18 0 

 50-100  1/2 420 36 28 0 

 100-200  1/2 160 8 3 0 

 200-300  1/2 70 8 2 0 

 300-500  1/2 39 3 1 0 

              

 

  



 
 

Supplementary Table S2. Abundances of foraminifera (ind./m3) calculated for total samples from the 
water column. (Table continues next page.) 
 

Station Depth 
(m) 

 
Split     

counted 

Abundance calculated for total sample (ind./m3) 
N. 

pachyderma 
(sin.) 

T. 
quinqueloba 

N. 
pachyderma 

(dex.) 

G. 
bulloides 

       

PS78-127 0-50  1/2 8.64 3.44 0.88 0.16 

 50-100  1/2 14.08 2.64 1.36 0.08 

 100-200  1/2 9.64 2.24 1.2 0 

 200-300  1/2 13.04 1.8 1 0 

 300-500  1/2 4.44 0.74 0.88 0 

PS78-25 0-50  1/4 11.36 0.16 0.8 0 

 50-100  1/2 14.8 3.52 0.24 0.08 

 100-200  1/2 3.8 1.04 0.28 0 

 200-300  1/2 0.96 0.12 0 0 

 300-500  1/2 1.44 0.32 0.04 0 

PS78-19 0-50  1/2 8.16 4.96 0.08 0.08 

 50-100  1/4 40.16 11.52 2.4 0 

 100-200  1/2 9.04 2.36 0.6 0 

 200-300  1/2 1.08 0.32 0.08 0 

 300-500  1/2 0.88 0.18 0.02 0 

PS78-35 0-50  1/2 21.92 4.4 1.92 0.16 

 50-100  1/2 19.68 3.2 1.28 0 

 100-200  1/2 12 2.84 0.28 0.04 

 200-300  1/2 3.32 0.28 0.28 0 

 300-500  1/2 1.04 0.1 0.06 0 

PS78-87 0-50  1/4 34.56 1.44 1.76 0 

 50-100  1/2 14.32 1.68 1.12 0.08 

 100-200  1/2 3.4 0.6 0.4 0 

 200-300  1/2 2.24 0.2 0.2 0 

 300-500  1/2 3.72 0.4 0.28 0 

PS78-39 0-50  1/2 21.04 1.92 0.56 0 



 
 

 50-100  1/2 41.6 6.96 0.96 0.16 

 100-200  1/2 22.44 3 0.56 0.04 

 200-300  1/2 5.8 0.8 0.08 0 

 300-500  1/2 1.08 0.08 0.04 0 

PS78-44 0-50  1/2 38.72 4.24 6.64 0 

 50-100  1/2 66.16 2.56 0.72 0 

 100-200  1/2 19.56 2.48 0.56 0.04 

 200-300  1/2 4.96 0.92 0.2 0 

 300-500  1/2 1.76 0.46 0.36 0 

PS78-54 0-50  1/4 81.6 9.12 1.6 0.16 

 50-100  1/4 92.8 12.32 7.36 0 

 100-200  1/4 26.48 3.52 1.04 0 

 200-300  1/2 5.52 1.24 0.52 0 

 300-500  1/2 2.76 0.36 0.16 0 

PS78-75 0-50  1/2 11.44 0.32 0.24 0 

 50-100  1/2 11.44 1.04 0.24 0 

 100-200  1/2 1.84 0.12 0.16 0 

 200-300  1/2 1.52 0.08 0.08 0 

 300-500  1/2 0.08 0 0 0 

PS78-71 0-50  1/2 28.88 0.48 1.44 0 

 50-100  1/2 33.6 2.88 2.24 0 

 100-200  1/2 6.4 0.32 0.12 0 

 200-300  1/2 2.8 0.32 0.08 0 

 300-500  1/2 0.78 0.06 0.02 0 

              

 

  



 
 

Supplementary Table S3. Number of counted foraminifera individuals in the 100-250 µm size 
fraction from sediment surface samples and their abundances (ind./g) calculated for total samples. 
The sample from station PS78-127 did not contain enough individuals for counting.  
 

Station Split   
counted 

Count 
Ind./g 

sediment 
N. 

pachyderma 
(sin.) 

T. 
quinqueloba 

N. 
pachyderma 

(dex.) 

G. 
bulloides 

      

PS78-127 – – – – – – 

PS78-25 1/8 508 167 18 0 399.2 

PS78-19 1/128 318 89 20 1 4248.0 

PS78-35 1/256 534 72 5 0 6495.5 

PS78-87 1/128 329 32 8 0 3240.7 

PS78-39 1/128 322 43 5 0 2982.9 

PS78-44 1/128 387 48 7 0 3280.2 

PS78-54 1/1024 483 44 5 0 25948.2 

PS78-75 1/1024 292 44 30 0 19367.7 

PS78-71 1/2 316 40 5 0 48.3 
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Abstract

The upper 500 m of the water column and the sediment surface along an E–W transect
in the Fram Strait were sampled for recent planktic foraminifera. The δ18O and δ13C
values of the tests are compared to the stable isotope composition of water samples
taken from the same depths, and related to the characteristics of the water column.5

The polar species Neogloboquadrina pachyderma (sin.) clearly dominates the species
assemblage in the Fram Strait in the early summer, while the subpolar Turborotalita
quinqueloba accounts only for 5–23 %. In this area the average depth of calcification of
N. pachyderma (sin.) lies between 70–150 m water depth, T. quinqueloba shows a sim-
ilar range with 50–120 m water depth. The δ18O values of N. pachyderma (sin.) show10

an average vital effect of about −1.5 ‰ compared to calculated equilibrium calcite val-
ues. Except for the upper ∼75 m, the vertical profiles of δ13C of the net-sampled shells
are nearly parallel to the values measured in the water column with an average offset of
−1.6 ‰ and −3.6 ‰ for N. pachyderma (sin.) and T. quinqueloba, respectively. The dis-
crepancy found in the upper ∼75 m might indicate the influence of the “carbonate ion15

effect” on the carbon isotope incorporation in the tests. Oxygen and carbon isotopes
from the sediment surface yield higher values than those from the water column for
both species. This may be because specimens from the water column reflect a modern
snapshot only, while tests from surface sediments record environmental parameters
from the past ∼1000 years.20

1 Introduction

The stable isotope composition of foraminiferal shells from sediment cores is often
used in palaeoceanographic studies to reconstruct past oceanic environments. Plank-
tic foraminifera precipitate their calcite tests from the surrounding seawater. Thus, vari-
ations in the stable oxygen (18O/16O, δ18O) and stable carbon (13C/12C, δ13C) iso-25

tope ratios of shell carbonate should reflect variations of the stable isotope compo-

8636



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

sition of the ambient water. This, on the other hand, is determined by the interplay
of various factors (e.g., evaporation, sea-ice formation, productivity). Therefore, δ18O
values of fossil planktic foraminiferal shells have been widely used to estimate sea
surface temperatures (e.g., Kellogg et al., 1978; Erez and Luz, 1983), salinity (e.g.,
Duplessy et al., 1992), and ocean stratification (Simstich et al., 2003). Planktic δ13C5

records are generally assumed to reflect changes in paleoproductivity and ventilation
of surface and near-surface waters (Duplessy, 1978). Several studies of living planktic
foraminifera showed that these protozoa do not calcify in equilibrium with the ambi-
ent sea water (Shackleton et al., 1973; Vergnaud Grazzini, 1976; Kahn, 1979; Kohfeld
et al., 1996; Bauch et al., 1997; Volkmann and Mensch, 2001) and that the stable10

isotope composition of their tests is influenced not only by regional effects but also
by numerous other chemical (e.g., pH, carbonate ion concentration) and biological
(e.g., symbiont photosynthesis, metabolic activity, test weight) factors. Increasing pH
and carbonate ion concentrations are known to decrease stable isotope ratios (Spero
et al., 1997; Bauch et al., 2002), while the presence of symbionts causes depletion in15
18O and an increase in δ13C values of the shells (Spero and Deniro, 1987). A higher
metabolic rate, characteristic for earlier ontogenetic stages (Hemleben et al., 1989), is
associated with a discrimination against heavy isotopes (McConnaughey, 1989). Fur-
thermore, planktic foraminifera are assumed to migrate in the water column during
ontogeny (Berberich, 1996; Schiebel and Hemleben, 2005) and form their secondary20

calcite crust while descending into deeper layers (Simstich et al., 2003). Heavier, en-
crusted individuals are reported to have higher δ18O and lower δ13C values (Kohfeld
et al., 1996; Bauch et al., 1997; Volkmann and Mensch, 2001; Simstich et al., 2003).
Combinations of these and other factors make the fossil record difficult to interpret. For
example, while both increasing temperature and symbiont activity tend to decrease the25

δ18O value, at the same time both of them can increase the test weight (Hecht, 1976;
Spero, 1992), and thereby also indirectly increase the 18O / 16O ratio. Thus, it is es-
sential for an improved interpretation of isotopic records from sediment cores to have
detailed knowledge on how modern environmental parameters influence the stable iso-
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tope composition of living foraminifera and to which degree the isotopic composition of
their shells reflects the composition of the ambient sea water.

Here we report on results from a multidisciplinary approach to investigate the effects
of environmental factors on the isotopic composition of polar planktic foraminifera. Our
study was performed in the Fram Strait that connects the Arctic and North Atlantic5

Oceans and comprises strong oceanographic contrasts (Fig. 1). On an E–W transect
between the Svalbard and Greenland margins, the upper water column and sediment
surface were sampled for planktic foraminifera species Neogloboquadrina pachyderma
(sinistral) (Ehrenberg, 1861) and Turburotalita quinqueloba (Natland, 1983). The stable
oxygen and carbon isotope compositions of net-sampled tests are compared to the10

isotope data of ambient seawater and to that of tests from sediment surface samples.
Possible reasons for the revealed discrepancies are discussed. Findings about the
species assemblage and depth distribution of foraminifera from the same samples are
discussed in Pados and Spielhagen (2014).

2 Hydrographical setting15

The Fram Strait is the only deep passage between the Arctic Ocean and the rest of
the world ocean, supplying the Arctic Ocean with waters of North Atlantic origin. The
oceanography is dominated by two major surface current systems: the northward flow-
ing West Spitsbergen Current (WSC) carries warm and saline water masses, while in
the East Greenland Current (EGC) cold and fresh Polar waters exit the Arctic Ocean20

(Johannessen, 1986). The upper 500 m of the WSC are dominated by Atlantic Water
(Rudels et al., 1999), characterized by temperatures higher than 0.5 ◦C and salinities
above 34.5 (Jones, 2001). In the western part of the strait the upper 200 m are charac-
terized by temperatures below 0 ◦C and salinities between 32 and 34. In the summer,
as a result of ice melt, the surface waters have even lower salinities (below 32). A well-25

developed halocline separates the Polar waters from the Atlantic Layer found between
200 and 500 m (Rudels et al., 2000). The interaction between these two water masses
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controls the sea-ice coverage in the strait. In summer the ice cover usually extends
from Greenland to the East Greenland shelf edge but it can intrude also into the east-
ern part of the strait in the case of extremely cold winter/spring conditions (Dickson
et al., 2000).

The oceanographic system is highly variable and the surface distribution of Polar wa-5

ters can change on a daily timescale (e.g. Beszczynska-Möller et al., 2011). Oceano-
graphic measurements during cruise ARK XXVI/1 (Beszczynska-Möller and Wisotzki,
2012) provide a detailed profile across the Fram Strait at the time of sampling (Fig. 2).
The upper 500 m of the WSC were characterized by salinities near 35 and tempera-
tures between 4 ◦C and 2 ◦C. At the surface an approx. 100 m thick, warm layer was10

observed, with temperatures up to 7–8 ◦C. During the time of sampling, at stations 35
and 39, cold and fresh water masses intruded into the upper 50–100 m of this layer.
After one week these water masses were not present anymore at the same locations
(see water column properties at 3◦ E (station 87) that was sampled 8 days later), in
agreement with high variability of oceanic fluxes in this region (Beszczynska-Möller15

et al., 2011). In the western part of the strait and in the EGC, the Polar waters extended
down to ∼ 200 m water depth and had salinities around 33 and an average temperature
of −1.5 ◦C at the time of the sampling (Fig. 2). Here, on the very surface low salinities
(∼ 30) were found that is probably caused by melt water. The Polar waters were mainly
ice-covered. Below ∼ 200 m water depth submerged warmer and salty Atlantic waters20

were found. The sea-ice margin over the position of the transect was located at ∼ 2◦ W
during the sampling period.

3 Material and methods

Plankton tow, sediment surface and water samples used in this study were obtained
during expedition ARK XXVI/1 with research vessel Polarstern in June/July 2011 in the25

Fram Strait. Samples were collected at 10 stations along a transect at 78◦50′ N across
the Fram Strait (Fig. 1, Table 1). Plankton samples were collected by a MultiNet sampler
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(net opening 0.5 m2, Hydro-Bios, Kiel, Germany); the nets of 63 µm mesh size were
towed vertically on regular depth intervals (500–300 m, 300–200 m, 200–100 m, 100–
50 m, 50–0 m). Sediment surface samples were obtained from multicorer deployments
at the same stations. Sample collection and handling procedures are described in detail
by Pados and Spielhagen (2014).5

For stable isotope analysis 10–25 specimens of N. pachyderma (sin.) and 10 spec-
imens of T. quinqueloba were picked from the >100 µm fraction (plankton samples)
and from the 100–250 µm fraction (sediment samples). The number of picked tests
was restricted by the number of available, same-sized and clearly identifiable shells.
The oxygen and carbon isotope analysis was performed at the GEOMAR Stable Iso-10

tope Lab using a Finnigan-MAT 253 mass spectrometer system connected to a Kiel IV
Carbonate Preparation Device.

Temperature and salinity of the water column were measured by a conductivity-
temperature-depth (CTD) profiler (Beszczynska-Möller and Wisotzki, 2012), immedi-
ately before the deployment of plankton tows. Data of ice coverage were obtained by15

shipboard observations. Water samples for stable isotope analyses were taken from
the rosette sampler, immediately after arriving on the deck to minimize the exchange of
contained CO2 with the atmosphere. Water samples for δ13C analysis (100 mL) were
drafted carefully into glass bottles without sputtering and thus avoiding bubbles. Sam-
ples were immediately poisoned with HgCl2 (0.2 mL) to stop biochemical reactions,20

which may alter the carbon isotopic composition of CO2, and bottles were then sealed
by aluminium caps with high-density butyl-rubber plugs. Water samples for δ18O anal-
ysis (50 mL) were filled into glass bottles and sealed by plastic screw-on caps. The
oxygen and carbon isotope mass ratios of the water samples were measured in the
stable isotope laboratories of AWI Potsdam with a Finnigan-MAT Delta-S mass spec-25

trometer with two coupled equilibration units (δ18O) and of MARUM (Bremen) using
a Gasbench coupled to a MAT 252 mass spectrometer (δ13CDIC), with a precision and
accuracy of at least ±0.1 ‰ and ±0.15 ‰ for δ18O (Meyer et al., 2000) and δ13CDIC,
respectively.
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“Equilibrium calcite values” (δc) were calculated for the water samples between sea
surface and 500 m water depth from actual δ18O (δw) and temperature (T ) measure-
ments according to the so called “palaeotemperature equation” of O’Neil et al. (1969):

T = 16.9−4.38(δc −δw)+0.1(δc −δw)2 (1)5

where δc and δw are the stable oxygen isotope values of the calcite and the water
on the PDB scale, respectively. Isotope measurements of water are presented using
SMOW as a standard. δ18O (SMOW) was converted to δ18O (PDB) for the palaeotem-
perature equation according to Bemis et al. (1998):

δ18O(PDB) = 0.9998δ18O(SMOW)−0.2‰. (2)10

Weighted averages of the stable isotope results for each station were calculated using
the standing stock (sum of isotope values for each interval multiplied with the concen-
tration of foraminifera in depth interval/sum concentrations in all intervals; see Bauch
et al., 1997).

4 Results15

4.1 Water column properties

4.1.1 Stable isotopes in the upper water column

In general, oxygen isotope composition of water is roughly linearly correlated to salinity
(Fig. 3). Both change along the transect with lowest values at the surface and are
continuously increasing with depth. Surface δ18O and salinity are lowest in the west20

and highest in the east (Fig. 4). The vertical δ18O profiles of the two westernmost
stations show strong similarities with the vertical profiles of stations 35 and 39 (4◦ E
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and 2◦ E, respectively) where during the time of sampling cold and fresh water masses
intruded into the warm surface waters. At these four stations extremely low salinity and
δ18O values mark Polar waters at the surface that are reaching from the surface down
to ∼ 200 m water depth at stations 75 and 71 and to ∼ 100 m water depth at stations 39
and 35. Below the surface layers the Atlantic waters are characterized by relatively high5

and constant δ18O values of about +0.3 ‰ (Fig. 4). The remaining six stations reveal
more scatter: we found a slight increase from the surface to 25 m water depth, then
a decrease to 75–100 m depth, followed by homogeneous δ18O values of the Atlantic
Layer (Table 2). When evaluating average values over the upper 500 m of water column,
the two westernmost stations (75 and 71) yield the lowest average values (−0.41 ‰,10

±0.94 and −0.84 ‰, ±1.16, respectively) while the highest average value (+0.34 ‰,
±0.03) is observed at 3◦ E at station 87.

The vertical variation of the carbon isotope composition of the dissolved inorganic
carbon (DIC) in the upper 500 m of the water column is rather small. The δ13CDIC
values have an average value of about +1.04 ‰ with a standard deviation of 0.24.15

Surface waters always yield heavier values, decreasing down to ∼ 100 m water depth
followed by relatively constant values down to 500 m water depth (Fig. 4, Table 2).

4.1.2 Equilibrium calcite values

The equilibrium calcite values calculated from δ18O and temperature of seawater in-
crease constantly with depth in the eastern part of the strait, while at stations 71 and20

75, in the western part of the strait, a stronger increase is observed from the surface
down to 150 m water depth, followed by a slight decrease. A similar pattern, though
in a narrower range, can be found at stations 35 and 39, in the middle of the strait,
where near the surface unusually low temperatures of the water were recorded during
the sampling period (Fig. 7, Table 2).25

8642



D
iscussion

P
a

per
|

D
iscussion

P
a

per
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Species distribution of planktic foraminifera

In the Fram Strait the planktic foraminiferal fauna is dominated by polar species
Neogloboquadrina pachyderma (sinistral coiling) and subpolar symbiont bearing Tur-
borotalita quinqueloba (Volkmann, 2000; Simstich et al., 2003; Pados and Spielhagen,
2014). N. pachyderma (sin.) clearly prevails in our samples contributing to the total5

assemblages with 73–92 % compared to the the subpolar T. quinqueloba, contributing
with 23–5 %. The proportion of N. pachyderma (sin.) shows an increasing trend to-
wards the west while T. quinqueloba follows an exactly reverse tendency. Both species
have maximum absolute abundances between 0–100 m water depth with a shallower
maximum under the ice cover than in the open ocean (Figs. 5 and 6). The species10

assemblage found in the sediment surface was found to correlate best with the living
fauna caught between 50–100 m water depth (Pados and Spielhagen, 2014).

4.3 Stable isotope composition of foraminifera

4.3.1 Neogloboquadrina pachyderma (sin.)

The oxygen isotope composition of N. pachyderma (sin.) from sediment surface sam-15

ples shows lowest values at the three easternmost stations (stations 127, 25, 19; at
8–6◦ E). The highest value is found in the western part at station 75, at 4◦ W. The sed-
iment surface samples have an average δ18O value of +3.2 ‰ (±0.3) (Table 3). The
plankton samples generally have a lower oxygen isotope composition than the sedi-
ment surface samples. The weighted average δ18O values at each station are ranging20

from −0.7 ‰ to +3.3 ‰ over the whole transect. There is no clear east-west difference
and the stations in the middle of the strait (stations 35, 39 and 54) yield the highest
values. The vertical distribution of δ18O does not show a well-pronounced trend. The
only clearly recognizable pattern is that values in the depth interval of 0–50 m are usu-
ally lower than those from the interval 50–100 m (an exception is station 54 where the25

surface waters yielded slightly heavier δ18O values) (Fig. 7, Table 4).
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The δ13C values of N. pachyderma (sin.) from sediment surface samples are rel-
atively constant and have an average value of +0.5 ‰ (±0.2). The lateral distribution
of the δ13C values from the sediments shows a trend similar to the δ18O results: the
easternmost stations (stations 127, 25, 19; at 8–6◦ E) have the lowest values while
the highest are found in the western part of the section, at the sea ice margin at 2◦ W5

(Table 3). The carbon isotope composition of N. pachyderma (sin.) from plankton tows
shows lower values at each station than the δ13C values from sediments. The δ13C
values of plankton samples have a mean of −0.8 ‰ (±0.7) of weighted averages over
the whole transect. The plankton samples do not follow the E–W trend found in the
core top samples and both the lowest and the highest values are found at stations in10

the middle of the transect (stations 87 and 39, respectively). Vertical δ13C profiles of
the plankton samples show increasing values from the sea surface down to the depth
interval of 100–200 m (exceptions are stations 127, 87 and 71 where maximum val-
ues lie in the depth interval of 50–100 m), followed by a slight decrease to 300–500 m
(Fig. 7, Table 4).15

4.3.2 Turborotalita quinqueloba

Both oxygen and carbon isotope compositions of T. quinqueloba from sediment surface
samples show increasing values from east to west; averaging over the transect −0.1 ‰
(±0.2) and +2.7 ‰ (±0.3), respectively (Table 3).

The weighted average of the δ18O and δ13C values of net sampled specimens scat-20

ter along the stations and do not show any pronounced east-west difference. The ver-
tical profiles of both parameters show extremely low values near the surface compared
to all other depth intervals. The vertical variation of the δ18O and δ13C values in T.
quinqueloba is much bigger than the variation found in N. pachyderma (sin.) (Fig. 8,
Table 4). However, it has to be taken into account that the number of specimens avail-25

able for isotope analysis (on average ten tests) was rather low and possibly not suf-
ficient to yield reliable results for this thin-walled species. We cannot exclude that the
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differences in variation are due to a non-systematic error in the isotope measurements
of T. quinqueloba.

5 Discussion

5.1 Oxygen isotope values of water samples and foraminifera

The calculated equilibrium calcite isotope composition represents the theoretical δ18O5

value of inorganic calcite precipitated in isotopic equilibrium with the surrounding sea-
water. The offset found between the equilibrium calcite value and the measured δ18O
value of foraminiferal tests is commonly described as “vital effect” related to differen-
tial isotopic uptake in carbonate organisms compared to equilibrium conditions. The
δ18O values of living foraminifera in our work area during early summer were con-10

sistently lower than the calculated equilibrium calcite values. The mean offsets were
−1.5 ‰ in N. pachyderma (sin.) and −3.7 ‰ in T. quinqueloba. Based on previously
published results, the magnitude of the vital effect in N. pachyderma (sin.) appears to
vary regionally. Bauch et al. (1997) reported a consistent offset of −1.0 ‰ between
equilibrium calcite values and δ18O data of net-sampled N. pachyderma (sin.) in the15

Nansen Basin. Volkmann and Mensch (2001) found an average vital effect of −1.3 ‰ in
the Laptev Sea for N. pachyderma (sin.) and −1.6 ‰ and −1.3 ‰ in the Fram Strait for
N. pachyderma (sin.) and for T. quinqueloba, respectively. Plankton tows from various
hydrographic regimes in the Nordic Seas revealed vital offsets of −1.0 ‰ and −1.1 ‰
for N. pachyderma (sin.) and T. quinqueloba, respectively (Simstich et al., 2003). Sig-20

nificantly smaller offsets were reported from the western subpolar North Atlantic, cal-
culated from shells collected with sediment traps (Jonkers et al., 2010).

In our study T. quinqueloba shows larger offsets between the equilibrium calcite val-
ues and the measured δ18O values than N. pachyderma (sin.). Earlier works (e.g.,
Fairbanks et al., 1980; Lončariċ et al., 2006) also recorded a larger negative offset25

in spinose species compared to nonspinose species. Moreover, symbiont-containing
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species, like T. quinqueloba, are known to be more depleted in 18O as a consequence
of higher CO2 fixation caused by photosynthesis (Bijma et al., 1990; Spero et al., 1997).
In N. pachyderma (sin.) we found a clear east-west difference in the magnitude of the
vital effect along the transect, similar to observations by Volkmann and Mensch (2001).
In their study the eastern and western part of the strait yielded significantly different5

offsets, with highest deviations from the equilibrium calcite values in the west. They
concluded that ice coverage increases the magnitude of the vital effect. In our samples
in N. pachyderma (sin.) the strongest disequilibrium was indeed found at the two ice-
covered stations (−4.0 ‰ and −1.8 ‰, at 4◦ W and 5◦ W, respectively) and at station 87
(−3.9 ‰, at 4◦ E). These results are also in line with observations of Bauch et al. (1997)10

who found slightly increasing isotopic differences between water and plankton samples
with decreasing salinity and temperature. Volkmann and Mensch (2001) explained the
greater vital offset in the cold and less saline waters of the western Fram Strait with
faster growth and consequently higher calcification rates caused by unfavourable con-
ditions. An increased calcification rate decreases the δ18O of tests (McConnaughey,15

1989) and may thus increase the disequilibrium. While this hypothesis can explain
high offsets at increased calcification rates, the validity of the hypothesis seems rather
unlikely as unfavourable conditions generally lead to lower metabolism and thus, de-
creased calcification rates. Moreover, lower temperatures decrease metabolic rates in
all organisms (Hemmingsen, 1960; Gillooly et al., 2001). The abrupt increase in the20

offset close to the sea-ice margin may rather be explained by increased primary pro-
duction, associated with the ice margin. During biological production dissolved inor-
ganic carbon is consumed and this considerably increases pH and consequently the
carbonate ion concentration ([CO2−

3 ]) of the water (Chierchi and Franson, 2009). Spero

et al. (1997) showed that increasing seawater [CO2−
3 ] decreases the 18O/16O ratios of25

the shells of foraminifera and may thus simultaneously increase the vital effect. Still,
the effect of carbonate ion concentrations alone cannot explain the high deviation from
equilibrium calcite found at station 87 where no increased primary production is ex-
pected. A possible reason for the increased vital effect at stations 71, 75 and 87 might
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also be a sampling during different ontogenetic stages. N. pachyderma (sin.) is known
to reproduce on a synodic lunar cycle (Bijma et al., 1990; Schiebel and Hemleben,
2005) and as these three stations were sampled in sequence in the second half of
the cruise, it is possible that in the respective samples there were more specimens in
early life stages compared to the stations sampled 7–10 days before. Early ontoge-5

netic stages are associated with higher respiration and calcification rates (Hemleben
et al., 1989). Rapidly growing skeletons tend to show depletion in both 13C and 18O
(McConnaughey, 1989), which could account for the increased vital effect observed at
the respective stations.

In contrast to N. pachyderma (sin.), the offsets found between equilibrium calcite val-10

ues and the δ18O values of T. quinqueloba do not follow a clear trend along the transect
and show great scatter (Fig. 8). However, the low numbers of specimens found in the
samples at most of the stations did not allow us to determine δ18O over the whole
water column sampled. Moreover, as a consequence, lower numbers of tests (on aver-
age ten) were used for stable isotope analysis than in N. pachyderma (sin.) (25), which15

might also account for the scatter in both δ13C and δ18O values in T. quinqueloba. We
therefore refrain from discussing the vital effect in T. quinqueloba.

Our analysis shows that recent specimens of planktic foraminifera from the water col-
umn have a lower oxygen isotopic value than fossils on the sediment surface (Figs. 7
and 8). This is in agreement with a number of studies conducted in different regions of20

the world (e.g., Duplessy et al., 1981; Schmidt and Mulitza, 2002). Berger (1970) sug-
gested in his hypothesis on intraspecific selective dissolution that within one species
preferentially the thin-shelled individuals are dissolved during deposition. These tests
are secreted during the warmest period of the year and thus, their dissolution increases
the average δ18O value of the species in the core top samples. In the Nordic Seas the25

production maximum of planktic foraminifera occurs during summer (Kohfeld et al.,
1996; Jonkers et al., 2010), with almost zero production during other seasons. This
means that the majority of the specimens calcifies the shells under similar conditions.
Accordingly, differences in the thickness of tests are not to be expected. Therefore the
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hypothesis of Berger (1970) cannot explain the isotopic differences between plank-
ton and sediment surface samples in this region. Lateral transport of the shells dur-
ing deposition is another effect that could explain the discrepancies. However, mean
transport distances in the Fram Strait are only 25–50 km for N. pachyderma (sin.) and
50–100 km for T. quinqueloba (von Gyldenfeldt et al., 2000). These distances are too5

short to transport isotopic signatures from water masses with significantly different tem-
perature/salinity signatures into the sediments. The offset found in the δ18O values
between plankton and sediment surface samples can be attributed rather to the age
difference between living plankton and sediment surface samples. Core top samples
are assumed to represent modern conditions in palaeoceanographic reconstructions.10

Nevertheless, depending on sedimentation rates and bioturbation intensity, their aver-
age age can vary in a great range (in the Fram Strait a few decades to 3 ky, on average
1 ky, see Simstich et al., 2003) while net-sampled foraminifera reflect a snapshot of
actual modern conditions. Discrepancies found between isotopic composition of shells
collected on the sediment surface and in the water column may therefore be related15

to changes in the oceanographic parameters between the early summer of 2011 and
average conditions during the period represented by sediment surface samples. To
explain the lower modern δ18O values, the water mass in the calcification depth in-
terval of the foraminifera must have become warmer and/or the δ18Owater must have
decreased and thus, the salinity signature must have changed significantly. Both ris-20

ing temperatures and increasing river discharges have been documented for the last
decades in the Arctic (e.g., Zhang et al., 1998; Serreze et al., 2000; Peterson et al.,
2002; Spielhagen et al., 2011). The mean offset found between the δ18O values of
net-sampled foraminifera and the tests from the sediment surface along the transect
is ∼ 1.3 ‰. Assuming that the oxygen isotope composition of the water remained con-25

stant over the time, this difference would correspond to a change in water temperature
of about 5 ◦C. Neglecting the two extremely high offsets found at stations 75 and 87,
the mean offset would decrease to ∼ 0.6 ‰, corresponding to a temperature change
of ∼ 2.4 ◦C. A temperature change of 2.4 ◦C is similar to the reconstructed temperature
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increase of Atlantic Water during the last 200 years (Spielhagen et al., 2011). How-
ever, a temperature change of 5 ◦C during the last millennia over the whole Fram Strait
area seems much too large and clearly, water temperature changes may not solely ac-
count for the differences found in the isotopic composition between modern and fossil
foraminifera. The results nevertheless suggest the combined effect of temperature rise5

and δ18Owater-change, possible dissolution and transport effects during the last ∼ 1000
years.

5.2 Calcification depth

With currently available methods we cannot directly determine the actual calcification
depth of planktic foraminifera in the water column. Therefore we assume that planktic10

foraminifera build their shells at the depth where they are most abundant. The average
depth of calcification (calculated from the standing stock) of N. pachyderma (sin.) in the
Fram Strait lies between 70–150 m water depth. T. quinqueloba shows a similar calci-
fication range at 50–120 m water depth (Figs. 5 and 6). Both species show deepest
average calcification depth at the easternmost station. Our results are in accordance15

with Simstich et al. (2003) who calculated an apparent calcification depth for N. pachy-
derma (sin.) of 70–130 m and 70–250 m in the EGC and off Norway, respectively. From
the Nansen Basin (eastern Arctic Ocean), Bauch et al. (1997) reported a deeper av-
erage calcification depth for N. pachyderma (sin.). However, in the northern regime of
the Nansen Basin, where the water column properties are similar to those in the west-20

ern Fram Strait, N. pachyderma (sin.) prefers shallower waters than in the southern
Nansen Basin where the water column is strongly influenced by the subsurface inflow
of Atlantic Waters (Bauch et al., 1997). This trend observed by Bauch et al. (1997)
coincides with our results. The difference found in calcification depths in the Nansen
Basin and in the Fram Strait might be caused by the different habitats that these loca-25

tions represent. The northern Nansen Basin is covered by sea ice throughout the year
and thus represents a different habitat for planktic foraminifera compared to the narrow
Fram Strait. Here, the interannual W–E variability in the position of the average summer
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sea ice margin is high and the ice-covered stations sampled in this study might there-
fore be ice-free in another summer. It has been shown that the depth habitat of planktic
foraminifera in the Fram Strait in the early summer is predominantly controlled by the
position of the deep chlorophyll maximum (Pados and Spielhagen, 2014). The perma-
nent ice cover in the Nansen Basin may alter the factors controlling the depth habitat5

of foraminifera and may consequently cause a different depth habitat (and calcification
depth) than in the Fram Strait.

Calculating the vital effect from differences between water and plankton samples at
each depth level assumes that foraminifera calcified their tests at the depth interval
where they were caught. This might not be true, as foraminifera are known to migrate10

in the water column during their life cycle. Alternatively we may assume that the main
encrustation process of foraminifera indeed happened solely at the average calcifica-
tion depth that is derived in our study from the standing stock. When calculating the
average offset between water and foraminifera for the calcification depth only, a vital
effect of −0.9 ‰ in N. pachyderma (sin.) and −3.1 ‰ in T. quinqueloba is determined.15

These vital effects are significantly smaller than those determined over the whole water
column, which are −1.5 ‰ and −3.7 ‰ for N. pachyderma (sin.) and T. quinqueloba,
respectively. In general, we have to take into account that both calcification-scenarios
represent extreme cases and the actual vital effect may be between these two ex-
tremes.20

5.3 Carbon isotope values of DIC and foraminifera

The interpretation of the carbon isotope composition of foraminiferal shells is quite
complicated as several factors can influence the carbon isotope incorporation. The
gas exchange between sea and atmosphere, the biological production, the community
respiration and species dependent incorporations of carbon isotopes are the main pro-25

cesses that can affect the 13C/12C ratio in calcite tests. A number of studies reported
on a consistent offset between δ13C of calcite shells and the δ13CDIC measured within
the water column (e.g., Bauch et al., 2000; Volkmann and Mensch, 2001). According to
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Romanek et al. (1992) δ13C of inorganic calcite that precipitates in equilibrium with sea-
water is 1 ‰ higher than δ13CDIC. In our study area below 75 m water depth the δ13C
values of N. pachyderma (sin.) run relatively parallel to the δ13CDIC, but with an average
offset of −1.6 ‰. This reveals a vital effect of about −2.6 ‰. Kohfeld et al. (1996) re-
ported from the Northeast Water Polynya on the Greenland shelf a vital effect of −1 ‰5

while another study in the Nansin Basin (Bauch et al., 2000) revealed a vital effect of
−2 ‰. The discrepancies found here may suggest the influence of oceanographic vari-
ability on the vital effect in δ13C of N. pachyderma (sin.). The δ13C of T. quinqueloba
shows a stronger vertical scatter with an average vital effect of −4.6 ‰. However, in
the upper 75–100 m of the water column for both species the δ13CDIC and the δ13C10

of shells show an exactly reverse tendency (Figs. 7 and 8). The high δ13CDIC values
found close to the sea surface are assumed to be caused by high primary production,
resulting in enrichment in 13C (Fogel and Cifuentes, 1993): as 12C is taken for photo-
synthesis, the water becomes enriched in 13C. However, if no other processes would
affect the incorporation of carbon into the calcite shells, the tests should also show the15

enrichment in 13C. One possible explanation for the deviation might be an increased
carbonate ion concentration ([CO2−

3 ]) as a consequence of strong biological production
in the upper water column (Chierchi and Franson, 2009). Both culturing (Spero et al.,
1997) and field experiments (Bauch et al., 2002) have shown that the carbon isotope
composition of foraminifera is correlated to the carbonate ion concentration of the wa-20

ter. The “carbonate ion effect” (CIE) describes that increasing seawater [CO2−
3 ] causes

depletion in 13C of the foraminiferal tests. The CIE could therefore explain our observed
low δ13C values of shells living in 13C-enriched waters. However, an in-depth interpre-
tation of this effect is not possible as during cruise ARKXXVI/1 the parameters needed
to calculate [CO2−

3 ] (pH and total alkalinity of the water samples) were not determined.25

As also discussed with respect to the offset in δ18O between coretop and living
foraminifera, the age of core top samples can vary in a great range (between modern
to 3 ky, with an average of ∼ 1 kyr, Simstich et al., 2003). As a result, they may re-

8651

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

flect significantly older environments than the plankton samples. The negative offset
in δ13C between the sediment and plankton samples may thus be explained by the
surface ocean Suess effect: during the last 100 years the carbon isotope composition
of the atmosphere has changed due to the increased anthropogenic combustion of
fossil carbon which is extremely negative in δ13C. The δ13C values of the atmospheric5

CO2 have decreased by about 1.4 ‰ (Friedli et al., 1986; Francey et al., 1999) and the
concurrent shift in the stable carbon isotope composition of ocean surface water is re-
flected in the decrease of δ13C of recent foraminiferal shells (Bauch et al., 2000). The
offset of roughly −1 ‰ in δ13C between the sediment and plankton samples observed
both in this study and in that of Bauch et al. (2000) may therefore be explained by the10

different ages of the carbonate in both sample sets.

6 Conclusions

1. The polar species Neogloboquadrina pachyderma (sin.) clearly dominates the
foraminiferal species assemblage in the Fram Strait in the early summer. Subpolar
Turborotalita quinqueloba accounts for only 5–25 %.15

2. In the study area both species dwell shallower under the ice cover than in the open
ocean. The average depth of calcification of N. pachyderma (sin.) lies between
70–150 m water depth, T. quinqueloba shows a similar range with 50–120 m water
depth.

3. When calculating the average vital effect in the oxygen isotope composition for the20

whole sampled water column, N. pachyderma (sin.) and T. quinqueloba show an
average offset of about −1.5 ‰ and −3.7 ‰ (respectively) compared to calculated
equilibrium calcite values. These vital effects are higher than those determined
at the calcification depth only where it is −0.9 ‰ for N. pachyderma (sin.) and
−3.1 ‰ for T. quinqueloba.25
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4. The δ13CDIC and the δ13C values of net-sampled shells show an average offset
of −1.6 ‰ and −3.6 ‰ for N. pachyderma (sin.) and T. quinqueloba, respectively.
The discrepancies with earlier published results may suggest the influence of
regional variability on the vital effect in δ13C.

5. In the upper ∼ 75 m of the water column the δ13CDIC and the δ13C of shells of5

both species show an exactly reverse tendency that might relate to the influence
of the “carbonate ion effect” on the carbon isotope incorporation in the tests.

6. The shells of both species collected from the water column yield lower δ18O and
δ13C values than those from the sediment surface, suggesting that the tests
recorded changes in environmental parameters influencing the stable isotope10

compositions in the past ∼ 200–1000 years. The negative offset in δ18O between
the sediment and plankton samples suggests a combined effect of temperature
rise and δ18Owater-change, while the offset in δ13C may be explained by the sur-
face ocean Suess effect.
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Table 1. List of the stations sampled during cruise ARKXXVI/1 in June/July 2011.

Station Latitude Longitude Water depth Date Ice cover

PS78-19 78◦49.84′ N 6◦0.69′ E 2464 m 25.06.11 no
PS78-25 78◦49.962′ N 7◦0.077′ E 1465 m 26.06.11 no
PS78-35 78◦49.772′ N 3◦58.380′ E 2335 m 28.06.11 no
PS78-39 78◦50.09′ N 1◦54.56′ E 2554 m 28.06.11 no
PS78-44 78◦49.972′ N 0◦4.630′ E 2636 m 29.06.11 no
PS78-54 78◦50.02′ N 2◦0.21′ W 2714 m 01.07.11 ice margin
PS78-71 78◦49.66′ N 5◦20.99′ W 684 m 04.07.11 ice covered
PS78-75 78◦49.74′ N 3◦55.44′ W 1978 m 04.07.11 ice covered
PS78-87 78◦50.44′ N 3◦0.19′ E 2454 m 06.07.11 no
PS78-127 78◦49.84′ N 8◦1.33′ E 1019 m 10.07.11 no
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Table 2. δ18O, δ13C and equilibrium calcite values in the upper 500 m of the water column.

Station Depth (m) δ18O (‰ SMOW) δ13C (‰ PDB) Equ. calc.

PS78-19

0 0.29 1.63 2.90
25 0.38 1.71 3.01
50 0.4 1.39 3.32
75 0.34 0.92 3.44
100 0.21 0.66 3.33
125 0.95
150 0.28 1.06 3.49
200 0.31 0.84 3.55
250 0.21 3.50
300 0.31 0.95 3.66
400 0.23 1.10 3.77
500 0.27 1.06 3.91

PS78-25

0 0.32 0.89 2.70
25 0.37 0.92 2.73
50 0.33 0.96 3.24
75 0.3 0.98 3.29
100 0.31 0.86 3.36
125 0.3 0.83 3.44
150 0.28 0.97 3.47
200 0.29 0.90 3.50
250
300 0.26 0.95 3.53
400 0.25 0.99 3.70
500 0.25 0.94 3.94

PS78-35

0 −0.98 1.30 3.06
25 −0.46 1.30 3.99
50 0.09 1.03 4.26
75 0.23 0.96 3.62
100 0.29 0.70 3.53
125 0.37 0.73 3.65
150 0.29 0.99 3.63
200 0.33 1.05 3.82
250
300 0.33 1.01 3.81
400 0.23 1.07 3.82
500 0.29 1.01 4.00

PS78-39

0 −0.29 1.50 3.92
25 −0.25 1.31 4.27
50 0.06 1.21 4.64
75 0.14 1.11 3.99
100 0.17 0.97 4.02
125 0.22 1.05 3.82
150 0.25 1.13 3.67
200 0.36 1.01 3.87
250
300 0.28 0.82 3.76
400 0.29 0.79 3.71
500 0.28 1.09 3.80
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Table 2. Continued.

Station Depth (m) δ18O (‰ SMOW) δ13C (‰ PDB) Equ. calc.

PS78-44

0 0.25 1.39 2.73
25 0.38 1.16 3.03
50 0.38 1.01 3.14
75 0.3 0.88 3.19
100 0.37 0.89 3.40
125 0.38 0.98 3.48
150 0.31 0.96 3.45
200 0.29 1.19 3.47
250
300 0.28 0.88 3.60
400 0.35 0.98 3.79
500 0.28 1.14 3.89

PS78-54

0 0.33 1.68 4.41
25 0.41 1.61 4.69
50 0.37 0.94 3.06
75 0.32 0.95 3.21
100 0.37 1.06 3.38
125 0.36 0.94 3.44
150 0.36 1.10 3.49
200 0.25 1.09 3.46
250
300 0.21 0.90 3.49
400 0.36 1.04 3.72
500 0.3 0.87 3.77

PS78-71

0 −2.63 1.49 1.67
25 −2.4 1.50 2.15
50 −2.18 1.23 2.38
75 −1.41 1.12 3.13
100 −1 1.11 3.49
125 −0.52 1.02 3.98
150 −0.25 1.09 4.24
200 0.04 1.13 4.15
250
300 0.36 0.94 4.13
400 0.37 0.95 4.07
500 0.4 1.18 4.34

PS78-75

0 −2.2 1.34 2.31
25 −1.85 0.96 2.70
50 −1.2 1.15 3.34
75 −0.51 1.10 3.94
100 −0.27 1.11 4.05
125 −0.09 0.91 4.16
150 0.21 0.86 4.24
200 0.36 0.91 3.34
250
300 0.37 1.01 3.46
400 0.34 0.87 3.56
500 0.36 0.99 4.19
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Table 2. Continued.

Station Depth (m) δ18O (‰ SMOW) δ13C (‰ PDB) Equ. calc.

PS78-87

0 0.31 1.54 2.58
25 0.38 1.20 2.51
50 0.35 1.08 2.94
75 0.3 1.02 3.02

100 0.36 0.64 3.19
125 0.35 0.70 3.27
150 0.37 0.69 3.38
200 0.29 0.86 3.46
250
300 0.36 0.79 3.67
400 0.33 0.64 3.74
500 0.37 0.87 3.87

PS78-127

0 0.34 1.64 2.60
25 0.49 1.31 2.64
50 0.4 0.95 2.91
75 0.21 0.85 2.76

100 0.38 0.87 2.96
125 0.32 0.93 2.94
150 0.36 0.88 3.03
200 0.34 0.94 3.07
250
300 0.28 0.96 3.22
400 0.32 1.00 3.40
500 0.3 1.02 3.49
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Table 3. δ18O and δ13C values of N. pachyderma (sin.) (N.p. (sin.)) and T. quinqueloba (T .q.)
from sediment surface samples.

δ18O (‰ PDB) δ13C (‰ PDB)

Station N. p. (sin.) T. q. N. p. (sin.) T. q.

PS78-19 3.17 2.56 0.44 −1.10
PS78-25 2.84 2.05 0.15 −1.28
PS78-35 3.36 2.70 0.66 −1.05
PS78-39 3.31 2.53 0.61 −1.20
PS78-44 3.35 2.98 0.49 −1.09
PS78-54 3.44 3.08 0.75 −0.59
PS78-71 3.32 0.50
PS78-75 3.57 3.00 0.72 −0.67
PS78-87 3.36 2.75 0.58 −1.02
PS78-127 2.71 0.09
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Table 4. δ18O and δ13C values of N. pachyderma (sin.) (N. p. (sin.)) and T. quinqueloba (T. q.)
from plankton tows.

δ18O (‰ PDB) δ13C (‰ PDB)

Station Depth (m) N. p. (sin.) T. q. N. p. (sin.) T. q.

0–50 2.38 −0.99
50–100 2.69 1.96 −0.40 −1.64

PS78-19 100–200 2.82 1.81 −0.38 −1.88
200–300 2.36 −0.74
300–500 2.67 −0.78

0–50 2.40 −0.78
50–100 2.55 −2.85 −0.37 −4.25

PS78-25 100–200 2.51 1.64 −0.10 −1.72
200–300 1.98 −1.40
300–500 2.56 0.31 −0.43 −2.50

0–50 2.32 −5.54 −0.89 −6.13
50–100 3.08 −5.57 −0.28 −6.03

PS78-35 100–200 3.00 2.25 −0.15 −1.68
200–300 2.95 −0.16
300–500 2.88 −0.44

0–50 3.25 −4.99 −0.19 −5.79
50–100 3.25 −1.36 −0.13 −3.61

PS78-39 100–200 3.34 1.57 0.08 −1.99
200–300 3.34 0.03
300–500 2.32 −0.75

0–50 2.58 −7.35 −0.60 −7.86
50–100 2.64 −0.44

PS78-44 100–200 3.01 2.13 −0.10 −1.44
200–300 2.86 0.41 −0.25 −2.46
300–500 2.65 −0.51 −0.83 −5.78

0–50 2.77 −0.86 −0.62 −5.96
50–100 2.75 2.46 −0.21 −1.22

PS78-54 100–200 2.83 2.20 −0.21 −1.56
200–300 2.69 1.59 −0.24 −2.57
300–500 2.61 2.18 −0.28 −1.52

0–50 0.99 −0.63
50–100 1.86 1.72 −0.14 −1.78

PS78-71 100–200 1.80 −1.93 −1.04 −3.84
200–300 2.89 0.85 −0.15 −2.30
300–500 2.12 −0.50

0–50 −2.94 −4.14
50–100 1.36 −2.72 −0.79 −4.00

PS78-75 100–200 0.93 −0.69
200–300 0.56 −1.38
300–500

0–50 −1.54 −2.14
50–100 1.87 0.25 −0.43 −3.54

PS78-87 100–200 1.89 0.25 −1.37 −2.22
200–300 0.23 −1.88
300–500 −2.56 −4.38

0–50 1.07 −5.01 −2.59 −7.79
50–100 2.80 1.99 −0.48 −1.72

PS78-127 100–200 2.06 2.39 −0.98 −1.51
200–300 2.08 2.42 −1.02 −1.54
300–500 2.16 1.90 −1.06 −1.76
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Figure 1. Map and schematic surface ocean circulation of the study area (red arrows: West
Spitsbergen Current, white arrows: East Greenland Current). The enlarged part shows the
sampled stations (yellow dots). Bars represent absolute abundances (ind./m3 water) of planktic
foraminifera in the upper 500 m of the water column along the transect at 78◦50′ N across
the Fram Strait. The white dashed line shows the position of the sea ice margin during the
sampling period (shipboard observation and satellite data from the US National Oceanic and
Atmospheric Administration). Map source: the International Bathymetric Chart of the Southern
Ocean (Jakobsson et al., 2012).
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Figure 2. Temperature and salinity of the water column in the upper 500 m along a transect
at 78◦50′ N across the Fram Strait. Data obtained by conductivity–temperature–density (CTD)
measurements during the expedition ARK XXVI/1 (Beszczynska-Möller and Wisotzki, 2012).
The figure comprises data obtained from 30 CTD stations, equally distributed along the tran-
sect.
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Figure 3. δ18O (‰ SMOW) values of the upper 500 m of the water column vs. salinities (PSU)
for the sampled transect at 78◦50′ N across the Fram Strait.
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Figure 4. Salinity, temperature, δ18O (‰ SMOW) and δ13CDIC (‰ PDB) profiles of the upper
500 m of the water column from the westernmost and easternmost stations sampled along
a transect at 78◦50′ N across the Fram Strait.
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Figure 5. Standing stock of N. pacyhderma (sin.) for each sampling  interval. The black dashed 
line indicates the average depth of calcification (calculated from the standing stock). 
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Figure 6. Standing stock of T. quinqueloba for each sampling  interval. The black dashed line 
indicates the average depth of calcification (calculated from the standing stock). 
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Figure 7. (a) δ18O and (b) δ13C values of N. pachyderma (sin.) from the water column (red 
squares) and from the sediment surface (green dashed line). The blue dots indicate (a) the 
equilibrium calcite and (b) the δ13CDIC profile of the water column.  
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Figure 8. (a) δ18O and (b) δ13C values of T. quinqueloba from the water column (red squares) and 
from the sediment surface (green dashed line). The blue dots indicate (a) the equilibrium calcite 
and (b) the δ13CDIC profile of the water column.  
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 Abstract 
 

 To resolve the uncertainties of palaeotemperature reconstructions based on 

Mg/Ca thermometry in high latitude-regions, recent planktic foraminifera were 

collected from the water column and from the sediment surface in the Fram Strait. 

The Mg/Ca ratios measured in the foraminiferal tests were compared to in situ water 

column properties, like temperature, salinity and Mg/Ca ratios of the seawater. The 

two dominating species, N. pachyderma (sin.) and T. quinqueloba show a clear offset 

in Mg/Ca ratios, which might be due to the effect of secondary calcification and/or 

different calcification depths. The observed elevated shell Mg/Ca ratios and their 

weak correlation with in situ water temperatures cannot be explained with the 

influence of lateral transport, incompletely calcified shells or the Mg/Ca ratios of the 

water column, but the observed anomalous results might be related to the seawater 

carbonate chemistry in the area.  
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  4. 1 Introduction 
 

 Mg/Ca thermometry in planktic foraminiferal calcite has become a widely used 

proxy method for reconstructing past sea surface temperatures. While another 

commonly used foraminiferal palaeotemperature proxy, the oxygen isotope 

composition (δ18O) is influenced not only by temperature but also by the oxygen 

isotope composition of the surrounding seawater (δ18Ow), the Mg/Ca ratio of the tests 

has been shown to have an exponential relationship with the calcification temperature 

(e.g., Nürnberg et al., 1995; Lea et al., 1999; Dekens et al., 2002; Anand et al., 2003; 

Regenberg et al., 2009). Thus, combination of Mg/Ca and δ18O measurements in the 

same samples theoretically allows to reconstruct both temperature and δ18Ow changes 

distinctly. Moreover, inter-species differences in Mg/Ca due to different depth 

habitats provide a tool to reconstruct changes in the water column structure from a 

single sediment core (Elderfield & Ganssen, 2000). Several studies have been 

conducted to calibrate Mg/Ca versus temperature for different planktic foraminifera 

species using core-top, culture and sediment-trap samples. Calibrations with core-top 

samples (Nürnberg et al., 1995; Elderfield & Ganssen, 2000; Dekens et al., 2002; 

Kozdon et al., 2009; Regenberg et al., 2009) have the advantage that the studied 

material will eventually form the palaeoceanographic record and that the analysed 

tests most probably have gone through a complete life cycle, potentially including 

secondary calcification (Barker et al., 2005). The disadvantage of this method is that 

corrections for post-depositional alterations, like partial dissolution might be needed 

(Dekens et al., 2002; Regenberg et al., 2006; Regenberg et al., 2014). Further, the 

calcification temperature must be derived from δ18O measurements or from 

hydrographical databases and thus, it becomes a dependent variable that can introduce 

an error into the calibration (Anand et al., 2003). In culturing studies (Nürnberg et al., 

1996; Lea et al., 1999; Maschiotta et al., 1999) foraminifera calcify under defined 

parameters in a controlled environment, but laboratory conditions may not fully 

reproduce natural processes and consequently, natural chamber growth. Moreover, the 

number of species that can be cultured is limited. Sediment-trap material, analysed by 

Anand et al. (2003) and Jonkers et al. (2013), represents closely the planktic 

assemblage in the sedimentary record, thereby avoiding post-depositional alterations. 

It also allows tracking the Mg incorporation into different species during seasonal 
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cycles. However, in these studies the depth habitat and calcification temperature of 

foraminifera is estimated from measured (δ18Oforaminifera) and calculated (δ18Ow) 

variables. Another way of water column sampling is the collection of planktic 

foraminifera by nets. Using this approach for calibration, we have the possibility to 

determine the actual depth habitat of the studied species and to obtain, parallel to the 

plankton samples, in situ water column properties (temperature, salinity, δ18O and 

Mg/Ca value) from the same locations. In this way we minimize the uncertainties 

concerning the temperature that controlled the Mg incorporation into the tests. 

 Here we report on the results of Mg/Ca thermometry in planktic foraminifera 

collected in the water column and on the sediment surface, combined with in situ 

measurements of water column properties from the Fram Strait. This strait connects 

the North Atlantic Ocean with the Arctic Ocean and comprises strong oceanographic 

contrasts (Fig. 4.1). The Mg/Ca signal of foraminiferal tests from such high-latitude 

areas has been shown not to follow the logarithmic temperature calibration curve 

(Nürnberg, 1995; Elderfield & Ganssen, 2000), which increases the uncertainty of 

palaeotemperature reconstructions based on Mg/Ca thermometry in cold water-

regions. Meland et al. (2006) and Kozdon et al. (2009) analysed the dominating 

planktic foraminifera species, Neogloboquadrina pachyderma (sinistral) from 

sediment surface samples from the Nordic Seas and found that in Polar waters the 

temperature information in the Mg/Ca signal is lost. Jonkers et al. (2013) applied 

sediment-trap time series and assumed that temperature might not be the driving 

factor behind N. pachyderma (sin.) Mg/Ca changes in the Irminger Sea. Here we test 

the reported limitations of the Mg/Ca approach in high-latitude areas on the polar N. 

pachyderma (sin.) and the subpolar Turborotalita quinqueloba sampled from the 

upper water column. We compare the Mg/Ca compositions of net-sampled tests to the 

Mg/Ca values of ambient seawater and to that of shells from sediment surface 

samples, and evaluate the temperature dependence of Mg/Ca in the tests. Eventually 

we discuss factors other than temperature that might control the Mg/Ca proxy signal 

in the two dominating planktic foraminifera species in this high latitude region.  
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 4.2 Material and methods 

 

 4.2.1 Study area 

 

 Plankton tow, sediment surface and water samples used in this study were 

obtained during expedition ARK XXVI/1 with research vessel Polarstern in June/July 

2011 in the Fram Strait. Samples were collected at 10 stations along a transect at 

78°50'N across the Fram Strait (Fig. 4.1, Table 4.1). The samples from station 127 did 

not contain enough foraminifera for Mg/Ca measurements; this station is therefore 

excluded from the study.  

 

 

  

 The oceanographic properties of the study area during sampling have been 

extensively discussed previously (Pados & Spielhagen, 2014). Briefly, the area is 

dominated by two major surface current systems: in the West Spitsbergen Current 

(WSC) warm and saline water masses flow northwards while the East Greenland 

Current (EGC) carries cold and fresh Polar waters from the Arctic Ocean into the 

Atlantic Ocean (Johannessen, 1986) (Fig. 4.1). Oceanographic measurements during 

cruise ARK XXVI/1 (Beszczynska-Möller & Wisotzki, 2012) provide a detailed 

profile across the Fram Strait at the time of sampling (Fig. 4.2). In the WSC at the 

surface an approx. 100 m thick, relatively warm layer was observed, with 

temperatures up to 7-8°C. The remaining water column in the upper 500 m was 

characterized by temperatures between 2-4°C and salinities near 35. During the time 

Figure 4.1. Map and schematic surface circulation of 
the Fram Strait. Red arrows indicate the West 
Spitzbergen Current (WSC) and the Return Atlantic 
Current (RAC), white arrows indicate the East 
Greenland Current (EGC). The enlarged part shows 
the sampled stations (orange dots with station 
numbers) along the transect at 78°50'N across the 
Fram Strait. Map source: the International 
Bathymetric Chart of the Southern Ocean (Jakobsson 
et al., 2012). 
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of sampling, between 2°E and 4°E, cold and fresh water masses intruded into the 

upper 50-100 m. After one week these water masses were apparently not present 

anymore at the same location (see water column properties at the station 87 that was 

sampled 8 days later; Fig. 4.2 and Beszczynska-Möller & Wisotzki, 2012), in 

agreement with the high variability of oceanic fluxes in this region observed earlier 

(Beszczynska-Möller et al., 2011). The Polar waters in the EGC extended down to 

∼200 m water depth and had an average temperature of −1.5°C and salinities around 

33 at the time of the sampling. Below ∼200 m water depth submerged warmer and 

salty Atlantic waters were found (Fig. 4.2). The Polar waters were mainly ice-covered 

(sea-ice margin located at ~2°W) and on the very surface low salinities (∼30) were 

found that were probably caused by meltwater.  

 
Figure 4.2. Salinity, temperature and Mg/Ca ratios of the water column in the upper 700 m along a 
transect at 78°50'N across the Fram Strait. The salinity and temperature figures comprise data from 30 
CTD stations, equally distributed along the transect (Beszczynska-Möller & Wisotzki, 2012). The 
Mg/Ca figure displays Mg/Ca ratios measured in selected water depths at nine sampled stations (black 
dots). 
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 4.2.2 Foraminifera/water sampling and analyses 

 

 Plankton samples were collected by a MultiNet sampler (net opening 0.5 m2); 

the nets of 63 µm mesh size were towed vertically on regular depth intervals (500-

300 m, 300-200 m, 200-100 m, 100-50 m, 50-0 m). Sediment surface samples were 

obtained from multicorer deployments at the same stations. Sample collection and 

handling procedures are described in detail in Pados & Spielhagen, 2014. 

Temperature and salinity of the water column were measured by a Conductivity-

Temperature-Depth (CTD) profiler (Beszczynska-Möller & Wisotzki, 2012), directly 

before the deployment of plankton tows. Data of ice coverage were obtained by 

shipboard observations. Water samples for stable isotope and Mg/Ca analyses were 

taken from the rosette sampler, filled into glass bottles (50 ml) and sealed by plastic 

screw-on caps. Stable isotope measurement procedures and database for δ18O values 

are described in Pados et al. (2014). 

 A new analytical method was developed for the determination of molar Mg/Ca 

and Sr/Ca ratios in seawater using ICP-optical emission spectrometry (ICP-OES). 

Seawater samples were 50-fold diluted and introduced into the simultaneous ICP 

spectrometer (Spectro Ciros SOP), equipped with micronebulizer (200 µl/min sample 

uptake, SeaSpray™, Glass Expansion, Australia) and cyclonic spray chamber (Glass 

Expansion, Australia) at the Institute of Geosciences, CAU Kiel University. A series 

of reagent blanks, calibration solutions and reference standards were analysed along 

with the samples. Emission lines at 315.887 nm and 317.933 nm (Ca), 279.079 nm 

and 279.806 nm (Mg), 407.771 and 421.552 nm (Sr), and 597.159 nm (Ar) were 

monitored during data acquisition, and Sr-407, Mg-279.0, and Ca-317 giving lowest 

analytical error were selected for subsequent data evaluation. Data read out was truly 

simultaneous after 20 s measuring time for all spectral lines. Raw data output was 

then transferred to spreadsheet software and processed manually. We applied a 

combination of intensity ratio calibration (De Villiers et al., 2002) and external 

normalization (Schrag, 1999) for the calculation of molar Mg/Ca and Sr/Ca ratios. 

IAPSO seawater was used for external normalization of Mg/Ca = 5.185 mmol/mmol 

and Sr/Ca = 8.286 µmol/mmol. Further details on instrumentation and analytical 

procedures can be found in Garbe-Schönberg et al. (in prep). The average internal 

analytical error of 5 runs was 0.07 and 0.08 %RSD (1sigma) for Mg/Ca and Sr/Ca, 
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respectively. The external error as estimated from 5 replicate analyses over 18 hours 

was 0.11 and 0.12 %RSD for Mg/Ca and Sr/Ca.   

 For foraminiferal Mg/Ca measurements 10-55 specimens of N. pachyderma 

(sin.) and 15-40 specimens of T. quinqueloba were picked from the 100-250 µm 

fraction (plankton net and sediment samples). The number of picked tests was 

restricted by the number of available, same-sized and clearly identifiable shells. The 

picked shells were crushed and homogenized. The monospecific samples were 

cleaned with methanol, hydrogen peroxide and repeated treatments with ultrapure 

water, followed by a weak acid leach and final dissolution (Martin & Lea, 2002; 

Barker et al., 2003). Element analyses were performed at the Kiel University, on the 

Spectro CircoCCD ICP OES (analytical error for Mg/Ca ratios ±0.1‰). The certified 

reference material ECRM 752-1 with an expected Mg/Ca ratio of 3.9 mmol/mol 

(Greaves et al., 2008) was run as standard. The measurements revealed low mean 

Mn/Ca and Fe/Ca ratios of 0.04 (±0.03) mmol/mol and 0.68 (±0.53) mmol/mol 

(respectively) in 22 samples, indicating proper cleaning. 

 Correlation analysis between Mg/Ca ratios, temperature, and salinity measured 

in the water column was performed by Spearman rank correlation.  

 

 
Table 4.1. List of the stations sampled during cruise ARKXXVI/1 in June/July 2011. 
 

Station Latitude Longitude Water depth Date Ice cover 

PS78-19 78°49.84´N 6°0.69´E 2464 m 25.06.11 no 

PS78-25 78°49.962´N 7°0.077´E 1465 m 26.06.11 no 

PS78-35 78°49.772´N 3°58.380´E 2335 m 28.06.11 no 

PS78-39 78°50.09´N 1°54.56´E 2554 m 28.06.11 no 

PS78-44 78°49.972´N 0°4.630´E 2636 m 29.06.11 no 

PS78-54 78°50.02´N 2°0.21´W 2714 m 01.07.11 ice margin 

PS78-71 78°49.66´N 5°20.99´W 684 m 04.07.11 ice covered 

PS78-75 78°49.74´N 3°55.44´W 1978 m 04.07.11 ice covered 

PS78-87 78°50.44´N 3°0.19´E 2454 m 06.07.11 no 

PS78-127 78°49.84´N 8°1.33´E 1019 m 10.07.11 no 
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 4.3 Results 
 

 4.3.1 Mg/Ca in the water column 

 

 The Mg/Ca ratio of the water samples varies between 5.4 and 4.9 mol/mol 

(Table 4.2). The two highest values were measured at station 54 in 100 m water depth 

and at station 71 in 500 m water depth (2°W and 5°W, respectively). Moreover, high 

values mark the halocline that separates the Atlantic Layer from the Polar Mixed 

Layer in ∼500 m water depth. Low values characterise water masses below this 

halocline and on the surface of Polar waters in the EGC (stations 71 and 75) and in 

the upper 100 m at stations 35 and 39 where cold and fresh water masses intruded in 

the upper layers of the water column (Fig. 4.2). Correlation analysis between Mg/Ca 

ratios, salinity and temperature of the water column revealed stronger correlation 

between Mg/Ca and temperature (r=0.539, p<0.01; Spearman rank correlation) than 

between Mg/Ca and salinity (r=0.470, p<0.01; Spearman rank correlation). 

 

 4.3.2 Mg/Ca in planktic foraminifera 
 

 The Mg/Ca ratio in polar Neogloboquadrina pachyderma (sin.) from the water 

column is varying between 1.26 and 2.89 mmol/mol, in subpolar Turborotalita 

quinqueloba between 2.15 and 2.88 mmol/mol. The values of N. pachyderma (sin.) 

are on average 0.7 mmol/mol lower than the values measured in T. quinqueloba, 

taken at the same stations from the same depth intervals. The Mg/Ca ratio of tests 

from the sediment surface is ranging from 1.11 to 2.65 mmol/mol in N. pachyderma 

(sin.) and from 1.62 to 2.86 mmol/mol in T. quinqueloba (Table 4.3). The offsets 

between the two species from the same sediment surface samples do not show a well-

pronounced trend. If we compare the Mg/Ca values of the shells of given species 

collected in the water column to those from the sediment surface at the same 

locations, the offset is ranging from −0.84 to +1.55.  
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Table 4.2. Mg/Ca ratios measured in the water column at certain water depths. 

       Station Depth (m) Mg/Ca (mol/mol)  Station Depth (m) Mg/Ca (mol/mol) 

PS78-19 0 5.037 
 

PS78-44 200 5.047 

 
25 5.107 

  
300 5.008 

 
50 5.042 

  
400 5.236 

 
75 5.008 

  
500 5.008 

 
100 5.073 

  
600 5.001 

 
150 5.007 

  
700 5.002 

 
200 5.168 

 
PS78-54 0 5.086 

 
250 5.007 

  
25 5.094 

 
300 4.998 

  
50 5.063 

 
400 5.006 

  
75 5.194 

 
500 4.995 

  
100 5.452 

 
600 4.989 

  
125 5.024 

PS78-25 0 4.993 
  

150 5.126 

 
25 5.068 

  
200 5.011 

 
50 5.089 

  
300 5.019 

 
75 5.021 

  
400 5.022 

 
100 5.021 

  
500 5.244 

 
125 5.004 

  
600 5.023 

 
150 5.087 

  
700 5.000 

 
200 5.178 

 
PS78-71 0 4.954 

 
300 5.025 

  
25 4.954 

 
400 5.091 

  
50 4.965 

 
500 5.182 

  
75 4.973 

 
600 4.996 

  
100 5.113 

 
700 4.987 

  
125 4.988 

PS78-35 0 4.984 
  

150 5.020 

 
25 4.996 

  
200 4.996 

 
50 5.013 

  
300 5.002 

 
75 5.060 

  
400 5.165 

 
100 5.099 

  
500 5.440 

 
125 5.037 

  
600 4.992 

 
150 5.237 

  
660 4.998 

 
200 5.110 

 
PS78-75 0 4.963 

 
300 5.262 

  
25 4.966 

 
400 5.143 

  
50 4.991 

 
500 5.000 

  
75 4.993 

 
600 5.011 

  
100 5.002 

 
700 4.994 

  
125 5.048 

PS78-39 0 5.005 
  

150 5.023 

 
25 4.991 

  
200 5.012 

 
50 5.051 

  
300 5.010 

 
75 5.027 

  
400 5.105 

 
100 4.997 

  
500 5.018 

 
125 5.003 

  
600 5.028 

 
150 5.218 

  
700 4.996 

 
200 5.175 

 
PS78-87 0 5.091 

 
300 5.144 

  
25 5.013 

 
400 5.160 

  
50 5.036 

 
500 5.206 

  
75 5.044 

 
600 5.014 

  
100 5.043 

 
700 5.008 

  
125 5.151 

PS78-44 0 5.019 
  

150 5.039 

 
25 5.158 

  
200 5.003 

 
50 5.075 

  
300 5.031 

 
75 5.183 

  
400 5.227 

 
100 5.036 

  
500 4.988 

 
125 5.024 

  
600 5.179 

  150 5.047     700 4.997 

       



 84 

 Shell Mg/Ca in N. pachyderma (sin.) from plankton tows does not show a clear 

correlation with temperature (Fig. 4.3a) or Mg/Ca ratios (Fig. 4.3g) of the water mass 

from where the tests were collected. Comparing the δ18Ocalcite values to the Mg/Ca 

ratios in the same shells, we can see a broad range of Mg/Ca values (1.3-

2.9 mmol/mol) relating to relatively similar δ18Ocalcite values (Fig. 4.3c). In T. 

quinqueloba the correlation seems to be stronger between Mg/Ca ratio and 

temperature than between Mg/Ca and δ18Ocalcite  (Fig. 4.3b and 4.3d), but the low 

number of samples containing enough specimens of T. quinqueloba for Mg/Ca 

analysis allowed only 6 measurements, which may be too few for a robust evaluation. 

 To compare the calcification temperature of N. pachyderma (sin.) from core top 

samples, the average depth of calcification was calculated from the modern standing 

stock, assuming modern-like habitats for the time interval represented by a surface 

sample (see Pados et al. 2014). When doing so, above 0°C the Mg/Ca values of N. 

pachyderma (sin.) from core tops seem to decrease with increasing calcification 

temperature (Fig. 4.3e). At the same time, we cannot observe any correlation with the 

δ18Ocalcite values measured in the same samples (Fig. 4.3f). Because of the low number 

of T. quinqueloba samples from sediment surface (four) we refrain from discussing 

the temperature dependence of Mg/Ca content in these shells. 
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Figure 4.3. (a) Mg/Ca ratios measured in net-sampled N. pachyderma (sin.) versus in situ water 
temperatures in the collection depth. (b) Mg/Ca ratios measured in net-sampled T. quinqueloba versus 
in situ water temperatures in the collection depth. (c) Mg/Ca ratios versus δ18O measured in net-
sampled N. pachyderma (sin.). (d) Mg/Ca ratios versus δ18O measured in net-sampled T. quinqueloba. 
(e) Mg/Ca ratios measured in N. pachyderma (sin.) sampled from the sediment surface versus water 
temperatures in the assumed calcification depth. (f) Mg/Ca ratios versus δ18O  measured in N. 
pachyderma (sin.) sampled from the sediment surface. (g) Mg/Ca ratios of net-sampled N. pachyderma 
(sin.) versus Mg/Ca ratios of the water in the collection depth. 
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 4.4. Discussion 

 

 4.4.1 Critical evaluation of the data points 
 

 N. pachyderma (sin.) builds its secondary calcite shell while descending to a 

certain depth level for reproduction (Kohfeld et al., 1996; Simstich et al., 2003; 

Schiebel & Hemleben, 2005). Thus, the tests collected close to the sea surface are 

most probably incompletely calcified. Secondary crust and generally final chambers 

of foraminifera have been shown to yield significantly lower Mg/Ca ratios compared 

to the earlier formed parts of the shells (Anand & Elderfield, 2005; Sadekov et al., 

2005; Marr et al., 2011). Tests without secondary crust have therefore – independent 

of the water temperature – increased Mg/Ca ratios compared to individuals that 

completed their life cycle before collection. For this reason we decided to omit the 

data points belonging to samples collected in the 0-50 m depth interval when 

discussing the results. Additionally, we rejected from further consideration the sample 

from the depth interval 50-100 m at station 71 that yields – similar to the above-

mentioned samples from the 0-50 m depth interval at stations 35 and 71 – anomalous 

δ18Ocalcite value (Fig 4.3c; Pados et al., 2014). 

 

 4.2 Difference between species 
 

 In general, we found in the symbiont-bearing subpolar T. quinqueloba 

significantly higher Mg/Ca ratios than in the symbiont-barren polar N. pachyderma 

(sin.) taken from the same samples (Table 4.3). Jorgensen et al. (1985) measured 

increasing pH at the shell surface of symbiotic foraminifera as a result of 

photosynthesis. However, shell Mg/Ca and [CO3
2-] has been shown to have an inverse 

relationship (Russell et al., 2004). Thus, if the variation in pH in the calcifying 

microenvironment would alter the Mg/Ca ratio of the symbiont-bearing tests, we 

would expect to find lower Mg/Ca ratios in T. quinqueloba than in N. pachyderma 

(sin.), which is not the case. The offset is more likely related to two other factors. 

First, N. pachyderma (sin.) goes through a secondary calcification, unlike T. 

quinqueloba (Hemleben, 1989; Kohfeld et al., 1996; Simstich et al., 2003; Schiebel & 

Hemleben, 2005), and as mentioned above, the presence of secondary crust decreases 
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the Mg/Ca ratio measured in the whole shell (Anand & Elderfield, 2005; Sadekov et 

al., 2005). Second, T. quinqueloba has been assumed to have a shallower calcification 

depth than N. pachyderma (sin.) (Be, 1977). Simstich et al. (2003) reported on 

significantly different depth habitats in these two species in the Fram Strait, while 

Carstens et al. (1997) and Pados & Spielhagen (2014) found in the same area only 

slight differences between T. quinqueloba and N. pachyderma (sin.). However, along 

our sampled transect in the upper 150 m of the water column alone, a temperature 

decrease of up to 5°C was measured with increasing depth (Fig. 4.2), which could 

result in recording colder temperatures by the slightly deeper dwelling N. pachyderma 

(sin.). The observed difference in shell Mg/Ca between the two species may thus 

reflect a combined effect of secondary calcification and different calcification depths. 

 
 
Table 4.3. Mg/Ca ratios measured in N. pachyderma (sin.) (N. p. (sin.)) and in T. quinqueloba (T. q.) 
from both sediment surface and water column in the sampled depth intervals that contained enough 
specimens for the analysis. Red numbers indicate anomalous values that were obtained probably due to 
unsuccesful measurements and were therefore excluded from the study. 

             Mg/Ca (mmol/mol)      Mg/Ca (mmol/mol) 
Station Depth (m) N. p. (sin.) T. q.  Station Depth (m) N. p. (sin.) T. q. 
PS78-19 0-50    PS78-44 200-300 

  
 50-100 1.268   

 
300-500 

  
 100-200 

 
  

 
sed. surface 1.519 2.860 

 200-300 
 

  PS78-54 0-50 2.720  
 300-500 

 
   50-100 1.682 2.884 

 sed. surface 1.864 4.377   100-200 1.570 2.481 
PS78-25 0-50 

  
  200-300  2.825 

 50-100 1.942 
 

  300-500   
 100-200 

  
  sed. surface 1.68 1.622 

 200-300 
  

 PS78-71 0-50 2.659  
 300-500 1.697 

 
  50-100 1.739  

 sed. surface 1.575 
 

  100-200   
PS78-35 0-50 2.930 

 
  200-300   

 50-100 1.431 
 

  300-500   
 100-200 1.371 2.253   sed. surface 1.109  
 200-300 

  
 PS78-75 0-50   

 300-500 
  

  50-100   
 sed. surface 2.212 

 
  100-200   

PS78-39 0-50 4.730 
 

  200-300   
 50-100 2.081 

 
  300-500   

 100-200 2.256 2.159   sed. surface 1.226  
 200-300 

  
 PS78-87 0-50   

 300-500 
  

  50-100   
 sed. surface 2.650 2.236   100-200   
PS78-44 0-50 3.617 

 
  200-300   

 50-100 2.897 
 

  300-500   
  100-200 1.422 2.185     sed. surface 1.120 1.841 
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 4.4.3 Controls on Mg/Ca ratios in planktic foraminiferal calcite in 

 the Fram Strait 
 

 It has been shown that magnesium uptake during inorganic precipitation of 

calcite is substantially different from biologically mediated partitioning in 

foraminiferal shells (Nürnberg et al., 1996). It is therefore assumed that physiological 

processes are responsible for regulating the Mg concentrations in foraminifera. These 

processes seem to be predominantly controlled by temperature (Nürnberg et al., 1996; 

Mashiotta et al., 1999; Elderfield & Ganssen, 2000; Lea et al., 2000). However, the 

relation between temperature and Mg/Ca content of the shells appears to vary among 

species, requiring species (or genus)-specific Mg/Ca-temperature calibration 

equations (Lea et al., 1999; Anand et al., 2003). Elderfield & Ganssen (2000) 

published a Mg/Ca-temperature calibration equation for N. pachyderma (sin.) and 

(dex.) using core-top samples from the North Atlantic Ocean: 

 

Mg/Ca=0.50*e(0.10*Temperature).      (1)  

 

Analysing cultured N. pachyderma (dex.) von Langen et al. (2005) developed a 

similar equation: 

 

Mg/Ca=0.51*e(0.10*Temperature)  .      (2) 

 

However, these equations do not describe the relationship between Mg/Ca and water 

temperatures in our samples. Even though N. pachyderma (sin.) and T. quinqueloba 

from both plankton tow and sediment surface samples in general show increasing 

Mg/Ca ratios with increasing temperature, they have much higher Mg/Ca ratio than 

what the equations yield with respective water temperatures (Fig. 4.3b and 4.4). Our 

results coincide with those of Meland et al. (2006), Kozdon et al. (2009) and Jonkers 

et al. (2013) who also observed in sediment surface and sediment trap samples from 

the Nordic Seas Mg/Ca ratios in N. pachyderma (sin.) higher than expected from the 

above-mentioned equations.  
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 For the Norwegian Sea Kozdon et al. (2009) recommended a modified, linear 

Mg/Ca-temperature relationship to refine the "cold end" branch of the existing 

calibrations for N. pachyderma (sin.): 

 

Mg/Ca=0.13*Temperature+0.35.       (3) 

 

Jonkers et al. (2013) adjusted the calibration equation of Elderfield & Ganssen (2000) 

according to their results from the Irminger Sea: 

 

Mg/Ca=0.89*e(0.08*Temperature).       (4)  

 

 Nevertheless, none of the above-mentioned equations fits our data set either 

(Fig. 4.4), they all lead to an overestimation of in situ water temperatures. 

Hypothetically assuming that the equations by Elderfield & Ganssen (2000) and von 

Langen et al. (2005) reflect the calcification temperatures of N. pachyderma (sin.), 

our measured Mg/Ca values would yield calcification temperatures higher than 8°C, 

which is very unlikely in this region. Applying the linear correlation introduced by 

Kozdon et al. (2009) we would get slightly lower calcification temperatures. 

Calculating hypothetical Mg/Ca ratios of foraminiferal shells for the measured 

seawater temperatures according to the equations, we get Mg/Ca ratios lower than 

0.8 mmol/mol.  

  

Figure 4.4. Mg/Ca ratios of N. 
pachyderma (sin.) from the water 
column compared to existing Mg/Ca 
calibrations of Elderfield & Ganssen 
(2000) (orange), Kozdon et al. (2009) 
(blue) and Jonkers et al. (2013) (green). 
Anomalous data points are omitted (see 
text). 
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 Martínez-Botí et al. (2011) conducted an extensive study about Mg/Ca in 

plankton tow samples from various regions of the world ocean and also found 

elevated Mg/Ca ratios with respect to calibration predictions in distinct foraminifera 

species, just like van Raden et al. (2011) in the Mediterranean Sea and Friedrich et al. 

(2012) in the North Atlantic. Martínez-Botí et al. (2011) speculated that the 

specimens leading to overestimation of in situ temperatures were incompletely 

calcified, which resulted in increased Mg/Ca ratios compared to individuals that 

completed their life cycle before collection. Although the possible effect of 

incomplete secondary calcification cannot be discounted in our plankton tow samples, 

this hypothesis cannot explain the elevated Mg/Ca ratios in the tests from the 

sediment surface that were thick-walled and looked completely calcified. Lateral 

transport has been also suggested to resolve the enigmatic, anomalously high Mg/Ca 

ratios (Friedrich et al., 2012). However, as described by von Gyldenfeldt et al. (2000), 

mean transport distances of planktic foraminifera in the Fram Strait are short (ca. 25-

50 km for N. pachyderma (sin.)) and the flow direction of warm and cold water 

masses is largely normal to the sampling transect, with only minor temperature 

changes on such distances.  It thus seems unlikely that the majority of foraminifera 

calcified in water masses with temperatures significantly different from where they 

were caught. Moreover, if lateral transport would account for the anomalous Mg/Ca 

ratios, we would expect to find different Mg/Ca signatures in the core top and 

plankton tow samples, which is apparently not the case. 

 One possible explanation for the elevated Mg/Ca ratios found both in plankton 

and sediment surface samples and for the absence of a clear exponential or linear 

correlation between Mg/Ca values and water temperatures might be the influence of 

seawater chemistry on the Mg/Ca composition of the tests. This might mask the 

temperature-dependence, as already hypothesized by Meland et al. (2006). A relation 

of Mg/Ca ratios in foraminiferal shells to salinity was suggested from analyses of 

sediment samples (Nürnberg et al., 1996; Arbuszewski et al., 2010), sediment and 

plankton net samples (Mathien-Blard & Bassinot, 2009), and from culturing 

experiments (Lea et al., 1999). However, in our study the tests collected in the fresh 

waters of the EGC yield similarly high Mg/Ca values as the shells from saline 

Atlantic waters. Therefore salinity is unlikely to be of major influence here, just like 

in the laboratory experiments of Hönisch et al. (2013). Another factor that might 

influence the Mg/Ca composition of foraminiferal shells – and thus mask the 
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temperature-dependence – is the variability of the Mg/Ca ratio in the water column. 

The Mg/Ca ratio of seawater is considered to be constant and termed "conservative" 

(Broecker et al., 1982). Nonetheless, our measurements show that the Mg/Ca 

distribution of the water column in the Fram Strait reflects quite well the distribution 

of the main water masses. Low ratios (<5 mol/mol) mark the cold and fresh waters of 

the Polar Layer in the west and that of the Mixed Polar Layer below the Atlantic 

Layer. In general, the Mg/Ca composition of the water apparently follows the 

temperature variability. In contrast, shell Mg/Ca of N. pachyderma (sin.) seems to be 

less related to the Mg/Ca ratios measured in the water column than to in situ 

temperatures (Fig. 4.3g). Thus we find it unlikely that Mg/Ca ratios of seawater may 

explain the discrepancies found. 

 To explain the elevated Mg/Ca ratios in our samples, we speculate that they 

might result from the effect of carbonate ion concentration ([CO3
2-]) of the seawater 

on the tests´ biochemical composition. Lea et al. (1999) and Russell et al. (2004) 

reported on a negative correlation between Mg/Ca of foraminiferal tests and [CO3
2-] 

under constant temperatures in laboratory experiments. Moreover, in N. pachyderma 

(sin.) from high latitude areas a possible increased sensitivity to [CO3
2-] changes has 

been assumed (Jonkers et al., 2013). The majority of our samples was taken from cold 

Polar water masses, characterized by low [CO3
2-] (Chierchi & Franson, 2009). This 

may explain the elevated Mg/Ca ratios found in the tests compared to the studies of 

Kozdon et al. (2009) and Jonkers et al. (2013), conducted in areas south of our study 

site. However, more investigations need to be done to evaluate the potential effect of 

in situ [CO3
2-] on Mg/Ca ratios of planktic foraminifera in regions with cold surface 

and subsurface waters.  
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 4.5. Conclusions 
 

 Mg/Ca ratios in planktic foraminifera collected from the water column in the 

Fram Strait reveal a very weak correlation with in situ water temperatures. The two 

dominating species show a clear offset in Mg/Ca ratios: N. pachyderma (sin.) have 

significantly lower Mg/Ca ratios than T. quinqueloba, which might be explained by 

the combined effect of secondary calcite crust and different calcification depths. 

  N. pachyderma (sin.) both from the water column and from the sediment surface 

have elevated Mg/Ca ratios with respect to predictions from available equations 

involving water temperatures. Incompletely calcified specimens leading to an 

overestimation of water temperatures or lateral transport are unlikely the reasons 

explaining the discrepancies found. One possible explanation is that foraminiferal 

Mg/Ca ratios in the area may be significantly influenced by seawater chemistry that 

might mask the temperature dependence of this proxy. However, salinity and Mg/Ca 

ratios of the water column are probably not a major factor inducing the observed 

anomalous values. The elevated Mg/Ca ratios of N. pachyderma (sin.) in the Fram 

Strait are more likely related to the influence of sewater carbonate chemistry. Further 

in situ-studies are needed to confirm this hypothesis. 
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