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1 Abstract

1.1 Abstract

This work gives an estimate of the impact of non-linear internal waves (NLIWs) on

the mixed-layer heat budget in the eastern Pacific along the continental slope and the

Peruvian shelf region.

During the Meteor 92 research (M92), from January 5th 2013 until January 31st 2013,

turbulent kinetic energy dissipation below the mixed-layer and in the water column was

measured using microstructure sondes. By defining two mean states, one, when NLIWs

were present, and another, during which time no NLIWs were observed, the impact of

these wave events, characterized by enhanced rates of dissipation and large diapycnal

heat fluxes beneath the mixed-layer, on the mixed-layer heat budget will be analysed.

Further, using acoustic Doppler current profiler (ADCP) data to detect NLIW events,

net cooling of the mixed-layer will be analysed directly using thermosalinograph data,

recorded during that same cruise.

The results from both of these analyses indicate a major impact of NLIWs on the mixed-

layer heat budget. Average heat fluxes below the mixed-layer during NLIW events were

60 times higher than background conditions. Single NLIW events resulting in heat fluxes

in excess of 2000Wm−2 were observed. Analysis of TSG data reveiled a mean net cooling

of the mixed-layer of about -0.038°C. Further analysis shows that the heat flux induced

by turbulence through NLIWs accounts for over 80% of the total diapycnal heat flux

below the mixed-layer, compensating for over 100% of the net surface heat flux over the

continental shelf.
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1.2 Zusammenfassung

In dieser Arbeit soll der Einfluss nicht-linearer interner Wellen (NLIW) auf das Wärme-

budget der Deckschicht des östlichen Pazifiks auf dem Kontinentalabhang und in der

Schelfregion vor Peru abgeschätzt werden.

Während der Meteor 92 Forschungsfahrt (M92), vom 05. Januar 2013 bis zum 31. Januar

2013, wurde anhand von Mikrostrukturmessungen die Dissipation von turbulenter kinetis-

cher Energie unterhalb der Deckschicht und der darunterliegenden Wassersäule gemessen.

Mit Hilfe von zwei mittleren Zuständen, einem, während NLIW vermessen wurden und

wiederum eines Hintergrundzustandes, wenn keine Wellenereignisse beobachtet wurden,

soll der Einfluss NLIW induzierter erhöhter Dissipationsraten und diapyknischer Wärme-

flüsse unterhalb der Deckschicht auf das Wärmebudget der Deckschicht untersucht wer-

den. Des Weiteren werden mit akkustischen Doppler-Strömungsmesserdaten nicht-lineare

Wellenereignisse untersucht und die Abkühlung der Deckschicht durch Thermosalino-

graphdaten direkt abgeschätzt.

Die Ergebnisse beider Untersuchungen führen zu dem Schluss, dass NLIW einen er-

heblichen Einfluss auf das Deckschicht-Wärmebudget haben. So waren Wärmeflüsse

während NLIW-Ereignissen im Schnitt etwa 60mal höher als der Hintergrundzustand.

Einzelne Wellenereignisse resultierten in Wärmeflüssen von über 2000Wm−2. Die Un-

tersuchng der Thermosalinographdaten ergibt eine mittlere Abkühlung der Deckschicht

während eines NLIW-Ereignisses von etwa -0.038°C. Weitere Analysen zeigen, dass der

Wärmetransport durch NLIW einen Anteil von über 80% am gesamten diapyknischen

Wärmetransport unter der Deckschicht hat und damit über 100% des angepassten Netto

Oberflächenwärmeflusses kompensieren.
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2 Introduction

2.1 Motivation

During the Meteor 92 cruise from January 5th until January 31st off the coast of Peru,

numerous packets of non-linear internal waves moving shoreward across the continental

shelf were observed using acoustic backscatter amplitudes from the ship’s vessel-mounted

ADCP (VADCP). Measurements of turbulent kinetic energy dissipation revealed signif-

icantly enhanced rates during NLIW events compared to measurements made when no

waves were present. These observations suggest large heat fluxes beneath the mixed-layer

induced by NLIWs, as previously observed by e.g. Moum et al. [2007] off the coast of

Oregon, Shroyer et al. [2010] on the New Jersey shelf or Schafstall et al. [2010] off Maure-

tania. The regular occurrence of these events implies a major impact of (NLIW-induced)

diapycnal heat fluxes on the mixed-layer heat budget, as quantified by Hummels et al.

[2013] in the Atlantic cold tongue.

To better understand the role of non-linear internal waves and their impact on the mixed-

layer heat budget in the Peruvian upwelling region, the contribution of NLIWs to sub-

mixed-layer diapycnal heat fluxes needs to be quantified.

2.2 The Peruvian upwelling region

The Peruvian Upwelling Region (PUR) is one of the most productive eastern boundary

upwelling regions in the world. Moderate, seasonally varying, southerly winds and asso-

ciated wind stress drive upwelling of nutrient-rich Equatorial Subsurface Water (ESSW)

from the subsurface Peru-Chile Undercurrent (PCUC), leading to high primary produc-

tivity in the PUR (Brink et al. [1983], Penven [2005], Echevin et al. [2008], Albert et al.

[2010], Chaigneau et al. [2013]). Maximum winds are observed in austral winter and show

a drop-off towards the coast due to land/sea surface change. Wind variations can lead to

variations in upwelling intensity on time scales from 6 days to several years (Brink et al.

[1983]).

There is equatorward flow in the mainly wind-driven Peru Coastal Current (PCC) along

the Peruvian coast and poleward flow in the Peru-Chile Undercurrent (PCUC) along

the outer shelf (see figure 1). Chaigneau et al. [2013] give a detailed description of the

Northern Humboldt Current System in which the PUR lies.

Mixed-layer depths in the region are usually fairly shallow, with MLDs of less than 20m

(Brink et al. [1983]). SST shows pronounced cycles induced by wind variations on time

scales from 10 days to several years (Brink et al. [1983]), as well as seasonal cycle, with
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Figure 1: (a) Surface and (b) subsurface currents of the Northern Humboldt Current
System and Peruvian Upwelling Region (taken from Chaigneau et al. [2013]). Shown
are (a) the Ecuador-Peru Coastal Current (EPCC), South Equatorial Current (SEC),
Peru Oceanic Current (POC) and Peru Coastal Current (PCC), and (b) the Equatorial
Undercurrent (EUC), primary Southern Subsurface Countercurrent (pSSCC), secondary
Southern Subsurface Countercurrent (sSSCC), Peru-Chile Countercurrent (PCC), Peru-
Chile Undercurrent (PCUC) and Chile-Peru Deep Coastal Current (CPDCC). Also shown
are (a) sea-surface salinity (SSS) and (b) SST contours from CARS 2009 climatology
data.

maximum values of 29°C in austral summer and minimum SSTs of 14°C in austral winter

(Penven [2005]). Coastal trapped waves have been observed in the area by Brink et al.

[1983], with reported periods between 5-20 days. Eddy-like structures at 14°S and 17°S are

a known source for generation of eddy kinetic energy and mesoscale eddies (Chaigneau

et al. [2013]). Intraseasonal variability in wind direction and intensity and associated

changes in upwelling intensity, and therefore SST gradients perpendicular to the coast,

are driven by migration of the inner tropical convergence zone, ENSO events or coastal

or equatorial Kelvin waves (Dewitte et al. [2011]).
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2.3 Non-linear internal waves

The generation of non-linear internal waves is considered to be a consequence of tidal

interactions with topography, such as the shelf break, and the presence of stratification

in the water column (e.g Apel and Holbrook [1985], Apel [1995], Sandstrom and Oakey

[1995], Small et al. [1999], Hallock et al. [2000], Moum and Farmer [2003]). Only a small

part of the tidal energy (10% reported by Pinkel et al. [1997]) is transferred to inter-

nal tides, which have shorter wavelengths and time scales relative to the tides. Most of

the energy of these internal tides goes into the formation of non-linear internal waves.

This energy is then readily available for ocean mixing due to the high intensity and even

shorter time scales of NLIWs (Sandstrom and Oakey [1995]). Non-linear internal waves

can travel long distances from their generation point, life times greater than 2.5 days

have been reported by Apel and Holbrook [1985] for experiments conducted in the Sulu

sea. Moum and Farmer [2003] observed wave propagation speeds of 0.6ms−1 to 0.8ms−1

with amplitudes of 40m over the continental shelf off Oregon’s coast, and Pinkel et al.

[1997] reported waves traveling with more than 0.8ms−1 and amplitudes of over 60m in

the western equatorial Pacific.

The velocity structure of the NLIWs, as they are propagating across the Peruvian con-

tinental shelf, can be seen in figure 2. Ahead of the wave we find downward vertical

velocities, resulting in a depression of isopycnals (not shown, Moum and Farmer [2003])

and convergent surface flow. Waves propagating near the surface pycnocline are therefore

often referred to as waves of depression (Lamb [2014]). A good example of this velocity

structure can be seen in the intense wave event recorded around 05:00:00 UTC in figure

2. Here, vertical velocities recorded earlier show conditions before wave passage. Behind

the wave, upward vertical velocities result in divergent surface flow and an elevation of

isopycnals. These surface convergences and divergences can be used to track internal

waves using synthetic aperture radar imaging, as described e.g. by Jackson et al. [2013].

Turbulence and associated mixing is created by velocity shear and shear instabilities in

the wave’s trough breaking along the trailing edge of the wave (Sandstrom and Oakey

[1995],Moum et al. [2007]). Breaking of shoaling waves also leads to intense turbulence

(e.g. Klymak and Moum [2003]). Non-linear internal waves were observed to transport

fluid of higher or lower density in respect to surrounding waters over several kilometers

and exhibit highly elevated rates of turbulent kinetic energy dissipation in trapped cores

(Lamb [2014]). Waves with trapped cores, or, as they are often referred to, boluses, can

be generated if the stratification reaches up to the sea surface or by the presence of strong

shear in background currents (Lamb [2003]).
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Figure 2: (top) Backscatter amplitude, (center) vertical velocity w and (bottom) cross
shore velocity u measurements of non-linear internal waves, recorded by the SLM 1 moor-
ing on February 8th. Grey areas correspond to missing values in the data.

Inside such trapped cores, Klymak and Moum [2003], during the first measurements of

their kind, observed rates of turbulent kinetic energy dissipation of 10−6m2s−3 in waves

of elevation (waves propagating along the bottom). Horizontal displacement of particles

ranges from 1km to tens of kilometers, as decribed by Shroyer et al. [2010].

Non-linear internal waves are therefore thought to play an important role not only in

mixing on the continental shelf but also in the advection of nutrients and other biota and

larvae.
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2.4 Dissipation of turbulent kinetic energy, mixing and diapy-

cnal heat fluxes

Diapycnal mixing, i.e. mixing across isopycnal interfaces, in the ocean is usually rather

ineffective, as it requires an increase in potential energy and work done against buoyancy.

Turbulence, induced e.g. through shear-instabilities by the passage of non-linear internal

waves or convective processes, is a means to provide this energy. Turbulence increases

diffusion of scalars such as temperature and salinity in the ocean by creating large velocity

gradients on small scales between 1mm to 1cm, and thus creating elevated gradients for

molecular mixing to act. Elevated rates of turbulence and therefore diapycnal mixing in

the region analysed in this work are thought to be the result of non-linear internal waves.

A way to quantify turbulence is by calculating the rate of dissipation of turbulent kinetic

energy, ε, using

ε =
15

2
ν〈
(
∂u

∂z

)2

〉.

Here, ν is the kinematic viscosity and ∂u
∂z

the vertical shear of horizontal velocity u. This

equation is a simplification of a more complex formula, which requires the gradients of all

the velocity components, u, v and w in all directions to be known, by assuming isotropic

conditions (Thorpe [2007]). From this rate of dissipation, the turbulent eddy diffusivity

for density Kρ can be estimated, which in turn can be used to estimate diapycnal heat

fluxes. It also requires the buoyancy frequency, N , to be known, which is a measure of

stratification in the water column and is defined as

N =

√
−g
ρ

∂ρ

∂z
− g2

c2
,

where g denotes the gravitational acceleration, ρ the density of seawater and ∂ρ
∂z

the

density gradient with depth. c is the sound speed and the term −g2c−2 corrects for

compressibility. Based on the turbulent kinetic energy equation, Osborn [1980] proposed

the relation for the turbulent eddy diffusivity to be

Kρ = Γ
ε

N2
,

with the mixing efficiency Γ =
Rf

1−Rf
. Rf denotes the flux Richardson number, a dimen-

sionless number relating the removal of kinetic energy by buoyancy to the production of

turbulent kinetic energy by velocity shear (Thorpe [2007]).
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2.5 Hypothesis

Tidal-induced non-linear internal waves along the Peruvian continental slope and in the

shelf region contribute significantly to the overall diapycnal heat flux below the mixed-

layer and therefore have a great impact on the mixed-layer heat budget.

Analysis to validate this hypothesis will focus on net cooling of the mixed-layer during

and after wave passage, evaluated using thermosalinograph data, and turbulent eddy

diffusivity during non-linear internal wave events as well as for background conditions in

the area and for the duration of the Meteor 92 cruise. An estimate of average heat fluxes

as well as a relative contribution to overall diapycnal heat fluxes (inferred from wave and

background conditions) below the mixed-layer will be presented.
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3 Data and Methods

In this section, a short overview over the data collected during Meteor 92 and used for

analysis in this work will be given. Methods employed for analysis and validation of the

hypothesis will also be presented.

3.1 Data
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Figure 3: MUR sea-surface temperature data
(filled contours) along the repeated cross sec-
tion during M92 (see also figure 4), over-
layed with 60-minute mean thermosalino-
graph temperature data (filled dots).

Multi-scale ultra high resolution sea-

surface temperature (MUR SST) (figure 3)

(downloaded from www.mur.jpl.nasa.gov/;

last visited on April 12th 2014) offers a

spatial resolution of 1 km globally and a

temporal resolution of 1 day, merging data

from MODIS, AMSR-E and AVHRR prod-

ucts. Air-sea fluxes over the Peruvian con-

tinental slope and shelf were obtained from

the Tropflux data center (www.locean-

ipsl.upmc.fr/tropflux/; last visited on May

21st 2014) as monthly averages from Jan-

uary to December 2012 with a spatial res-

olution of 1°. Data for 2013 was faulty and

could not be used for analysis at the time

of this work. Thermosalinograph data (fig-

ure 3) used for analysis of net cooling of

the mixed-layer during non-linear internal

wave events was analysed for the duration

of M92 with a 1-minute temporal resolu-

tion, deemed high enough to resolve pos-

sible changes in temperature during NLIW events. Acoustic Doppler current profiler

(ADCP) data was measured with a vessel-mounted 75kHz ADCP (VADCP) with a ver-

tical resolution of 8m for most of M92. A vertical resolution of 4m was used for two

periods, from January 16th, 07:17 UTC until January 19th, 00:55 UTC and from January

27th, 03:24 UTC until January 28th, 02:59 UTC. Temporal resolutions in both cases were

1 minute. Addtionally, ADCP data from the SLM 1 mooring (see figure 4) deployed at

80m water depth and measuring at a frequency of 300kHz from January 8th, 12:00 UTC

until March 3rd, 18:35 UTC, was analysed.
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Microstructure (MSS) profiles used for analysis of non-linear internal wave events and

calculation of diapycnal heat fluxes below the mixed-layer were collected during M92

over the continental slope and in the shelf region off Peru (see also figure 4). 254 MSS

profiles were measured over the course of 20 days, from January 11th until January 31st

2013. Profiles were not taken to specifically sample NLIW events, as done previously by

e.g. Moum et al. [2007] and Shroyer et al. [2010]. Rather a broad spectrum of dissipation

rates, including times, when no NLIWs were present, was targeted.

SLM 1
b)

-50
-100

-4000

-2000-3000

-1000 -500
-300

-200

-100

-50

-200
-300

-500

-900-2000

Figure 4: (a) Cruise track of Meteor 92 (grey line) as well as positions of the SLM 1
mooring (diamond) and individual microstructure stations (dots). (b) A close up of the
squared area in (a), again showing individual microstructure station and SLM 1 mooring
positions. The repeated cross-section across the continental slope and shelf is shown as a
shaded, light grey bar.
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3.2 Methods

For analysis of wave events through acoustic backscatter and thermosalinograh data,

waves of all magnitudes were considered. This was done to cover a broad spectrum

of non-linear internal waves for a more representative mean net cooling rate. Acoustic

backscatter amplitudes recorded by the ships’s VADCP along the cruise track were used

to detect NLIW events, as done by e.g. Moum and Farmer [2003] or Shroyer et al.

[2010]. Multiple wave events were analysed for duration and, using the thermosalinograph

temperature just before and right after the event, to determine whether a net cooling of

the mixed-layer by the NLIW had occured.

Rates of dissipation of turbulent kinetic energy (TKE) ε were estimated from airfoil

probe velocity shear measurements. Measuring at a frequency of 1024Hz and averaging

over 1 second intervals at a falling speed of approximately 0.6ms−1, results in a vertical

resolution of about 0.6m. Assuming isotropic conditions and using the relation

ε = 7.5µ

∫ kmax

kmin

E du
dz

(k)dk,

with the dynamic viscosity of seawater µ and the shear wave number spectrum E du
dz

(k),

integrating over a defined wave number spectrum (see also Gregg [1998]), ε can be esti-

mated1. Rates of turbulent kinetic energy dissipation were not calculated by the author,

the profiles were already despiked and readily evaluated for analysis. The measured

salinity profiles were corrected against nearby Conductivity-Temperature-Depth (CTD)

profiles, as the conductivity sensor used on the microstructure profiler was malfunction-

ing, resulting in biased conductivity and therefore salinity profiles. This was done by

first calculating the bias between each individual MSS salinity profile and its adjacent

CTD salinity profile, fitting a 3rd-degree polynomial structure function to the bias, to

account for regions of higher variability, e.g. in the mixed layer and the thermocline,

and correcting the MSS salinity profiles using the 3rd-degree polynomial. Profiles of

buoyancy-frequency N2 calculated from corrected salinity and measured temperature

and pressure profiles were smoothed over intervals ranging from bins of 5 to 30 N2-values

(corresponding to depth- intervals of about 3m-15m) for depths mixed-layer depth (MLD)

+2m to MLD+15m, to exclude very small values resulting from low stratification inside

the mixed-layer. Values for N2 below a depth of MLD+15m were then smoothed over

constant intervals of 15m.

1For further information on the method used here, the reader is referred to e.g. Inall et al. [2000],
Schafstall et al. [2010] and Hummels et al. [2013].
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Diapycnal heat fluxes beneath the mixed-layer were estimated using the following formula:

Jh = −ρ · cp ·
Γ · ε
N2
· ∂T
∂z

(1)

(e.g. Hummels et al. [2013]). Diapycnal heat fluxes out of the mixed-layer are considered

positive. The mixing-efficiency Γ was assumed to be 0.2, as e.g. by Schafstall et al.

[2010] or Moum and Farmer [2003] and validated through simultaneous measurements of

velocity shear and temperature gradients by Oakey [1982] and open-ocean measurements

by Moum [1996]. Mean rates of dissipation of turbulent kinetic energy ε and the vertical

temperature gradient ∂T
∂z

were taken from microstructure measurements. Intervals were

defined from just below mixed-layer to insure exclusion of values from inside the mixed-

layer, as they were likely affected by wind- and surface wave-induced turbulence, to a

depth of MLD+10m. Additionally, values for ε recorded at depths above 5m below the

sea surface were discarded, as they are likely to have been contaminated by ship-induced

turbulence. Constant specific heat capacity cp and densitiy for seawater ρ were assumed.

Mixed-layer depths were calculted from microstructure temperature profiles for each in-

dvidual MSS profile, using the 0.2°C-criterion.

Values of ε ≥ 10−5 m2s−3 were scaled down by a factor of three, as they were likely

overestimated due to seemingly slower falling speeds recorded by the sensor during isopy-

cnal displacement during non-linear internal wave events (ε is strongly dependent on the

falling speed, with ε ∼ w−4 (see Inall et al. [2000])). They may otherwise have produced

unrealistically high estimates of Jh. Noise levels of ε from microstructure profilers be-

tween 1× 10−9 m2s−3 and 4× 10−10 m2s−3 were reported by Schafstall et al. [2010] and

10−10 m2s−3 by Gregg [1999].

To assess the impact of non-linear internal waves on the mixed-layer heat budget, the

heat flux that was available for heating the mixed-layer denoted the adjusted net surface

heat flux Qadj after Wang and McPhaden [1999], was calculated using

Qadj = Q0 +Qpen.

Here Q0 is the net air-sea heat flux, and Qpen describes the heat loss due to absorption of

penetrating shortwave radiation in the mixed-layer. Qpen is dependant on the mixed-layer

depth MLD and can be calculated using

Qpen = −0.45 ·Qsho · e−γ·MLD

according to Wang and McPhaden [1999], with Qsho being the net surface shortwave

radiation.
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γ was assumed to be 0.04, as described by Wang and McPhaden [1999] and used by Foltz

et al. [2003]. To quantify heat fluxes induced by non-linear internal waves and compare

them to background conditions, profiles of turbulent kinetic energy dissipation were av-

eraged for two cases. 16 profiles, all of them taken during wave passage, were averaged

for mean dissipation rates εw as well as buoyancy-frequency N2
w and heat fluxes below

the mixed-layer Jwh for depths MLD to MLD+40m. This provided values for mean heat

fluxes beneath the mixed-layer (see e.g. Shroyer et al. [2010]). Heat fluxes were then

averaged again, for overall diapycnal heat fluxes below the mixed-layer. To compare the

mean heat flux and net cooling during NLIW events to background conditions, 25 profiles

during which no waves were observed were analysed as well, with values denoted here εb,

N2
b and J bh. Additionally, depth profiles for means of ε, Kρ and Jh as well as 95% con-

fidence intervals from bootstrap during wave and background conditions were computed

for depths MLD to MLD+40 in 10m intervals. Means for specific depth intervals will be

denoted as e.g. εb(10−20) from here on.

To quantify the overall impact and the cooling effect of non-linear internal waves on the

mixed-layer, a time-weighted average heat flux J th was calculated using

J th = Pw · Jwh + (1− Pw) · J bh

and compared to adjusted net surface heat fluxes. Here Pw denotes the time-fraction

NLIWs were present, derived from vertical velocity measurements at the SLM 1 mooring

(figure 4), previously described by Shroyer et al. [2010]. The criterion for identifying

NLIW events here was w2 ≥ 6.25× 10−4m2s−2 at a depth of 30m.

The relative contribution of NLIWs to the total heat flux was calculated using

%Jwh =
Pw · Jwh
J th

× 100.
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4 Results

The results of this work will be presented here. Observed net cooling of the mixed-layer

by non-linear internal waves will be followed by a description of wave and background

conditions. Further on, a time-weighted average diapycnal heat flux and its impact on

the adjusted net surface heat flux will be presented.

4.1 Observed cooling of the mixed-layer from thermosalino-

graph measurements
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Figure 5: (top) Locations of 42 analysed
NLIW events with observed net cooling. (bot-
tom) Histogram of temperature differences
(net cooling) observed during analysed NLIW
events.

Observed net cooling of the mixed-layer by

non-linear internal waves ranged from

-0.001°C down to -0.14°C. 42 of these

events were analysed (figures 5 and

7). They were observed using acoustic

backscatter from VADCP measurements

along the repeated cross-section at water

depths between 80m and 1100m (figure 4).

The spatial distribution, as seen in figure 5

and figure 7, shows no distinct ’hot spots’,

neither for observations of these events nor

for their intensity. Furthermore, intensities

of observed net cooling rates are fairly well

distributed. However, magnitudes of single

cooling events seem to be greater at deeper

water depths, but the majority of the cool-

ing events remains above -0.06°C (figure

7). The three strongest cooling events,

with observed net cooling of the mixed-

layer below -0.1°C, were recorded at water

depths of 1100m, 850m and 250m. Events

with lowest intensity, exhibiting net cool-

ing around -0.001°C to -0.0065°C, were ob-

served at depths 80m and 1100m, respec-

tively. Durations of wave events ranged

from 5 minutes, for less intense non-linear
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internal waves, to 12 minutes, for waves of higher magnitude. Maximum temperature

anomalies in TSG data, ranging from -0.4°C to almost -3.0°C, were observed just after

wave passage. Figure 6 shows non-linear internal waves as captured by VADCP acoustic

backscatter as well as observed temperature anomalies, stretched to a uniform duration

of 12 minutes. Analysis of all 42 cooling events revealed a mean temperature difference

(net cooling of the mixed-layer) of -0.038°C after wave passage.

Figure 6: (a) Examples of non-linear internal waves as captured by VADCP acoustic
backscatter. (b) Temperature anomalies during non-linear internal wave events as ob-
served and recorded using thermosalinogaph measurements. Shown schematically for the
shaded area in (a), data is stretched to a uniform time scale of 12 minutes for better
comparison between individual events.
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4.2 Wave and background conditions
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Figure 7: Net cooling for non-linear wave
events events plotted against water depth.

In this section, observations and mea-

surements made during wave and back-

ground conditions will first be described

individually. Then a closer look at tur-

bulent kinetic energy dissipation, turbu-

lent eddy diffusivity and associated heat

fluxes in the upper 10m below mixed-

layer depth for the two mean states will

be presented in a direct comparison later

on.

4.2.1 Wave conditions

Figure 8 shows vertical profiles of εw and N2
w from just below the mixed layer to a depth of

MLD+40m as well as temperature gradients for depths MLD to MLD+10m and locations

of the 16 analysed microstructure measurements, during which non-linear internal waves

were observed.

Rates of TKE dissipation in the water column below the mixed-layer, recorded during

NLIW events, were highly elevated. Individual profiles showed different behavior with

depth. For some, the drop-off in dissipation rates happened earlier, or at shallower depths,

than for others, although it was apparent that all of them exhibited elevated rates in the

upper 10m below the mixed-layer. Highest mean rates for individual profiles measured

in the upper 10m below MLD were around 9 × 10−6m2s−3. Lowest rates recorded in

this layer were 3 × 10−7m2s−3 and 7 × 10−7m2s−3. The mean dissipation rate εw(0−10)

in the upper 10m below MLD was 3.40× 10−6m2s−3, changing only slightly with depth,

as seen in figures 8a and 9a. Elevated mean dissipation rates around 2× 10−6m2s−3 and

9× 10−7m2s−3 could still be found at depths MLD+10m to MLD+20m and MLD+20m

to MLD+30m, respectively. From MLD+30m on, mean dissipation rates went below

10−6m2s−3 (figure 8a) and down to 6 × 10−8m2s−3 at MLD+30m to MLD+40m (figure

9a).

Buoyancy frequency N2
w showed highest levels in the upper 5m below MLD, decreasing

nearly exponentially with depth (figure 8b).
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Figure 8: (a,b) Profiles of turbulent kinetic energy dissipation εw and buoyancy-frequency
N2
w, recorded during NLIW events. 16 Profiles from just under the mixed-layer to a depth

of MLD+40m are shown in light gray, means for the same depth interval are shown with
a thick, dark gray line. (c) Histogram of vertical temperature gradients ∂T

∂z w
from MLD

to MLD+10m for the same events. (d) Profile locations with depth contours.
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Figure 9: Depth profiles of (a) turbulent kinetic energy dissipation ε, (b) turbulent eddy
diffusivity Kρ and (c) heat flux Jh ((d) shows a close-up of J bh) for depths MLD to MLD
+ 40m for wave (red) and background (green) conditions. Mean values are shown for
10m intervals. Shaded areas depict 95% confidence intervals from bootstrap.
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Maximum and minimum mean values were around 8× 10−4s−2 in the upper 10m below

MLD and 4 × 10−5s−2 from depths MLD+30m to MLD+40m, respectively. Spikes at

depths MLD+3m and MLD+19m are remnants that did not get smoothed out.

Levels of turbulent eddy diffusivity Kw
ρ were highest between MLD+10m to MLD+20m,

with a mean of 2.40× 10−3m2s−1 (figure 9b), corresponding to the aforementioned only

slight change in εw compared to the upper 10m and the decrease in N2
w at this depth.

Values for Kρ decreased from there on, following εw, to a minimum of 1.90× 10−4m2s−1

between MLD+30m and MLD+40m (figure 9b).

Vertical temperature gradients in the upper layer were steep, also expected due to high

turbulence during NLIW events, down to −0.57
◦C
m

(figure 8c). The mean gradient here

was −0.347
◦C
m

. The median gradient was −0.349
◦C
m

, close to the mean. Temperature

gradients below MLD+20m (not shown) decreased by up to two orders of magnitude.

Still, stronger gradients, of the order of 10−1 ◦C
m

, could be observed at depths between

MLD+10m to MLD+30m.

Resulting mean heat fluxes Jwh were highest in the upper 20m below MLD, with means

Jw0−10 = 1035Wm−2 and Jw10−20 = 900Wm−2. From there on, a sharp decrease to lower,

yet still elevated, values of Jw20−30 = 210Wm−2 was observed, further decreasing to

Jw30−40 = 25Wm−2 (figure 9c). Error bounds for Jwh from bootstrap, shown as shaded

areas in figure 9c, are largest for Jh(10−20), with [205, 2375]Wm−2. The high upper bound

here is resulting from the previously mentioned odd high temperature gradients and

lower stratification, i.e. higher Kρ, at this depth. Error bounds in the layer above are

[705, 1490]Wm−2.

Occurrences of NLIW events, as observed during microstructure measurements and seen

in figure 8d, appear to have been most frequent at depths between 80m-120m and 250m-

300m. This distribution suggests a comparison of measured rates of turbulent kinetic

energy dissipation, turbulent eddy diffusivity as well as calculated heat fluxes at these

water depths.

εw[m2s−3] Kw
ρ [m2s−1] Jwh [Wm−2]

MLD + z [m] 80m 250m 80m 250m 80m 250m
0 to 10 2.9× 10−6 5.0× 10−6 7.2× 10−4 3.7× 10−3 975 1220
10 to 20 5.9× 10−7 8.0× 10−6 2.2× 10−3 2.9× 10−3 210 2990
20 to 30 3.8× 10−7 2.6× 10−6 1.0× 10−3 1.9× 10−3 3 950
30 to 40 5.3× 10−8 8.3× 10−8 1.0× 10−4 4.5× 10−4 30 22

Table 1: Mean values of εw, Kw
ρ and Jwh below the mixed-layer for 10m intervals at water

depths 80m and 250 m.
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Mean values for εw,Kw
ρ and Jwh for 10m depth intervals at the respective water depths of

80m and 250m are shown in table 1.

Dissipation rates at 80m depth were decreasing steadily with depth. Maximum mean

values recorded here were 2.9× 10−6m2s−3, decreasing by about two orders of magnitude

to 5.3× 10−8m2s−3 over three depth intervals. Values of turbulent eddy diffusivity were

largest between depths MLD+10m to MLD+30m. Resulting heat fluxes were highest in

the layer directly beneath the mixed-layer, with J80
h(0−10) = 975Wm−2. Minimum mean

heat fluxes at this water depth were observed between MLD+20m and MLD+30m.

At 250m water depth, maximum rates of TKE dissipation were recorded deeper in the

water column, from MLD+10m to MLD+20m, compared to rates at 80m. Overall, values

for ε250w were higher than for ε80w and exhibited a steeper vertical gradient (table 1). K250
ρ

exhibited similar behavior with depth as ε80w , decreasing from a maximum mean value of

3.7×10−3m2s−1 in the upper layer below MLD to a minimum of 4.5×10−4m2s−1 recorded

between MLD+30m to MLD+40m. High mean heat fluxes, associated with the behavior

of ε250w with depth in these intervals, of J250
h(0−10) = 1220Wm−2 and J250

h(10−20) = 2990Wm−2

were observed, together with a sharp decrease to still highly elevated values between

MLD+20 and MLD+30 and a minimum of 22Wm−2 in the lowest interval beneath the

mixed-layer (table 1).

4.2.2 Background conditions

Dissipation rates for background conditions seen in figure 10 were significantly lower than

during NLIW events, on average two orders of magnitude. Lowest rates of the order of

10−9m2s−3, close to noise level, were recorded in every interval from MLD to MLD+40m.

Although NLIWs were not observed while background profiles were recorded, some pro-

files in the upper 10m below MLD still exhibited elevated rates of TKE dissipation above

1 × 10−7m2s−3, resulting in a slightly elevated mean εb in that layer. Therefore, means

range from εb0−10 = 5 × 10−8m2s−3 to εb30−40 = 5 × 10−9m2s−3 (figure 9a). Minimum

mean dissipation rates are found at depth MLD+25m (figure 10a). At depths between

MLD+25m and MLD+35m, ever so slightly elevated dissipation rates were observed (fig-

ure 10a), again leading to a higher mean εb between MLD+30m and MLD+40m (figure

9a).

Overall, values of N2
b were lower than during wave conditions, decreasing from a mean of

3.4 × 10−4s−2 in the upper 10m below MLD to 3.2 × 10−5s−2 at MLD+30 to MLD+40

(figure 10b). Also, the behavior of N2
b with depth compared to wave conditions was

smoother, with no strongly pronounced peaks.

Resulting values for Kb
ρ were lowest between MLD+10m and MLD+20m (figure 9b).
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Figure 10: Same as fig.8, but for background conditions εb, N
2
b and ∂T

∂z b
from 25 profiles,

when no NLIW events occurred.

Mean values forKρ between MLD to MLD+10m and MLD+30 to MLD+40m were around

5×10−5m2s−1. Compared to wave conditions, the mean temperature gradient from MLD

to MLD+10m was smaller (figure 10c) by roughly a factor of 2.5. The mean and median

vertical temperature gradient ∂T
∂z b(0−10)

during background conditions was −0.146
◦C
m

and

−0.061
◦C
m

, respectively.

Observed diapycnal heat fluxes below the mixed-layer during background conditions

were small. The mean heat flux in the upper 10m below MLD was 17Wm−2, with

error bounds [11, 26]Wm−2. Below that, a sharp decrease to J bh(10−20) = 3Wm−2 and

J bh(20−30) = 1.5Wm−2 is followed by a slight increase to J bh(30−40) = 2Wm−2, with error

bounds [1.5, 6]Wm−2, resulting from the aforementioned enhanced εb(30−40) (figure 9).

As these 25 profiles were evaluated to depict typical background conditions in the area,

their locations, as seen in figure 10d, are spread out over the entire cross section. Still,

local differences in background heat flux intensity were observed, as shown in table 2.

Maximum mean background heat fluxes at water depths around 500m were higher by

almost a factor of 10 compared to fluxes at water depths 100m and 250m.

Water depth 100m 250m 500m 900m
J bh[Wm−2] 8 9.5 72 24.5

Table 2: Mean heat fluxes J bh in the upper 10m below the mixed-layer at water depths
100m, 250m, 500m and 900m, as observed during background conditions. See also figure
10d for profile locations.
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4.2.3 Comparison of wave and background conditions in the upper 10m be-

low mixed-layer depth

Since observed mean heat fluxes and rates of turbulent kinetic energy dissipation were

highest in the layer directly below the mixed-layer, and it therefore seems to play an

important role in the effect of non-linear internal waves on the mixed-layer heat budget,

this section will present a closer look at individual profile means of ε, Kρ and Jh for back-

ground and wave conditions in this layer. Figure 11 shows distributions and occurrences
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Figure 11: Histograms of (a,d) turbulent kinetic energy dissipation ε, (b,e) turbulent eddy
diffusivity Kρ and (c,f) diapycnal heat fluxes Jh below the the mixed-layer for background
conditions (top) and during NLIW events (bottom). (Note, that x-axes in c) and f) do
not show the same limits.)

of mean values for ε, Kρ and Jh for individual profiles in the upper 10m below MLD

during wave (bottom) and background (top) conditions. Corresponding axes show the

same limits, except for figure 11 c and f.

Recorded values for εb range over two orders of magnitude, whereas εw ranges over a little

less than 1.5 orders of magnitude, indicating a higher variance for profiles recorded during

background conditions. The upper limit for εb, as seen in figure 11a, was 3.2×10−7m2s−3,

which, evidently, was the lower limit for εw measured during wave conditions and can be

seen in figure 11d. The same differentiation can be seen in figure 11 b and e, for values of

Kb
ρ and Kw

ρ . Here, the respective upper and lower limit was of the order of 10−4m2s−1.

The median value for Kb
ρ was 1.6×10−5m2s−1, close to the mean and values ranging over

more than 1.5 orders of magnitude. Values for Kw
ρ were distributed almost symmetrical,
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with a slight inclination towards lower values, the median value here being 7×10−4m2s−1.

Individual profiles during wave and background conditions differed by almost four orders

of magnitude.

Diapycnal heat fluxes calculated from individual profiles during background conditions

were mostly small, with a median value of 6Wm−2, around a third of the mean (see

section 4.2.2). Although isolated, larger heat fluxes were also observed (see also table 2).

Values for Jwh showed larger variance and the median value here was 850Wm−2, roughly

of the same order as the mean. Two events of intense heat fluxes Jwh > 2000Wm−2 were

observed.

4.3 Time-weighted average diapycnal heat flux and net surface

heat fluxes

Analysis of vertical velocities from the SLM 1 mooring (figures 2 and 4) revealed that

non-linear internal waves were present for about a fraction of Pw = 0.07 of the time.

Using mean values for Jwh(0−10) and J bh(0−10) described in sections 4.2.1 and 4.2.2, this

estimate leads to a time-weighted average diapycnal heat flux of J th(0−10) = 90Wm−2

directly below the mixed-layer. Based on 95% error bounds for Jwh(0−10) (figure 9), non-

linear internal waves contributed between 75% and 85% of the total diapycnal heat flux

directly below the mixed-layer.

Figure 12 shows monthly mean values for net surface shortwave radiation and net surface

heat flux over the continental shelf and in the area of Meteor 92 for the year 2012.

Additionally, the heat loss of shortwave radiation penetrating the mixed-layer and the

resulting adjusted net surface heat flux are shown, calculated for a mean mixed-layer

depth of 10m. We see a seasonal cycle in net surface shortwave radiation with minimum

and maximum values of 125Wm−2 and 250Wm−2, observed during austral winter and

austral summer, respectively. Net surface heat fluxes show a similar, but more pronounced

cycle, with minimum and maximum values of −20Wm−2 and 150Wm−2, respectively.

The mean mixed-layer depth observed during M92 and hence resutling values for adjusted

net surface heat fluxes over the continental shelf are fairly representative for summer and

autumn in the area of M92, but less so for winter and spring. Mean net air-sea heat

fluxes of 150Wm−2 (from Tropflux data) in January led to an adjusted net surface heat

flux of 80Wm−2 (figure 12), meaning that diapycnal heat fluxes beneath the mixed-layer

transported more than 100% of that heat away from the mixed-layer.
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Figure 12: Monthly mean values for net surface shortwave radiation (blue), net surface
heat flux (yellow). Means are shown for 2012 in the area of Meteor 92. Adjusted net
surface heat flux (green) and heat loss of shortwave radiation penetrating the mixed-layer
(red) are shown for January, calculated assuming a mean mixed-layer depth of 10m.

Based on the mean values for J80
h(0−10) and J250

h(0−10) presented at the end of section 4.2.1,

non-linear internal waves supplied around 81% of the diapycnal heat flux at 80m water

depth, compared to 84% at 250m depth. The difference in relative contributions at the two

depths is more pronounced in layers beneath MLD+10m, as highest diapycnal heat fluxes

at 250m water depth were observed here (see section 4.2.1 and table 1) and background

heat fluxes were small. Between MLD+10m to MLD+20m, non-linear internal waves

accounted for 98% of the overall diapycnal heat flux at 250m compared to 84% at 80m

water depth. At MLD+20m to MLD+30m they contributed 97% and 13%, respectively.

Between MLD+30m to MLD+40m, with diapycnal heat fluxes at 250m sharply decreasing

and a small increase at 80m water depth, contributions were about the same, at 40%.
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5 Discussion

The discussion will be divided into four parts. First, the results of this work will be

summarized. Then, said results will be discussed and compared to previous studies.

Eventually, a discussion of possible errors will be followed by an outlook on future op-

portunities and suggestions for improvements on the methods presented here.

5.1 Summary

Main objective of this work was to quantify diapycnal heat fluxes below the mixed-layer

induced by non-linear internal waves along the continental slope and shelf region off

Peru. Microstructure measurements, acoustic backscatter and thermosalinograph data,

all collected during the Meteor 92 research cruise in January 2013, were analysed and led

to the following results:

• On average, non-linear wave events, as observed with VADCP acoustic backscatter

and analysed using thermosalinograph data, led to local net cooling of the mixed-

layer of -0.038°C after wave passage. Distinct regions over the continental slope and

shelf with particularly high or low net cooling events could not be identified within

the 42 analysed wave events.

• Compared to background conditions, rates of turbulent kinetic energy dissipation,

recorded while non-linear internal waves were present, were highly elevated, by

about two orders of magnitude. Rates exceeding 10−5m2s−3 were observed below

the mixed-layer.

• Resulting mean diapycnal heat fluxes below the mixed-layer during wave conditions

were about 60 times higher than during background conditions.

• A comparison of profiles taken at water depths of 80m and 250m showed that heat

fluxes induced by non-linear internal waves observed at larger water depths were

overall higher and showed a larger vertical extend, exhibiting heat fluxes of almost

3000Wm−2 between 10m to 20m below mixed-layer depth.

• Background heat fluxes below the mixed-layer showed intensifications at water

depths around 500m. Values for J bh observed here were almost 10 times higher

than at depths 100m and 250m and 3 times higher than at 900m.
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• Analysis of vertical velocities from SLM 1 mooring data, taken at 12°13.51” S,

77°10.5” W at 80m water depth, reveiled that non-linear internal waves were present

on the shelf for a fraction of 0.07 of the time.

• In a time-weighted sense, non-linear internal waves supplied between 75% to 85%

of the total diapycnal heat flux below the mixed-layer. Spatial variations in relative

contributions between different water depths were observed.

• The total diapycnal heat flux in the layer directly below the mixed-layer, as inferred

from background and wave conditions, was 90Wm−2, compensating for more than

100% of the adjusted net air-sea heat flux on the continental shelf.

5.2 Discussion of results

Using analyses described in this work, it could be shown that non-linear internal waves,

through their induced turbulence and diapycnal heat fluxes below the mixed-layer, have

a major impact on the mixed-layer heat budget on the Peruvian shelf. In this section,

a comparison of the results presented in this work with other studies and a general

discussion will be presented.

Results from thermosalinograph measurements for net cooling of the mixed-layer induced

by individual non-linear internal waves were slightly higher compared to results reported

by Shroyer et al. [2010], who concluded non-linear internal waves leading to a net cooling

of the mixed-layer of 0.1°C per day. They inferred their cooling rates from heat-flux

divergences at the pycnocline. Since wave events were handpicked and identification

was sometimes difficult, especially in cases when multiple waves inside a wave packet

were appearing in short intervals closely together, the observed temperature differences

between moments before and after the event might differ from real values. The majority

of the analysed events was observed during times when the ship was standing or only

moving very slowly, with ship speeds below 1kn. In cases when the ship was going at

cruising speed, wave events were often only captured very distorted, if captured at all,

and generally could not be considered for analysis. The distribution of maximum cooling

rates and the magnitude of cooling events observed at greater water depths coincides with

the results obtained from heat flux calculations. Wave events observed seaward from the

shelf break could be reflected waves (Munk [1981]) or waves generated at the shelf break

and moving seaward (Henyey and Hoering [1997]).

Background heat fluxes estimated for water depths around 500m were close to the esti-

mate made by Shroyer et al. [2010]. During their study in the northern west Atlantic
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they specifically sampled conditions before non-linear internal wave passage, which they

had identified previously through high frequency echosounder, to compare them to wave

conditions. Their estimate of average background heat fluxes over New Jersey’s continen-

tal shelf came to 80Wm−2. Overall background heat fluxes in the upper 10m below the

mixed-layer presented in this work were about four times smaller than those reported by

Shroyer et al. [2010]. The elevated rates of dissipation and resulting enhanced diapycnal

heat fluxes observed at water depths greater than 500m could result from inertia gravity

waves.

Heat fluxes during wave conditions were roughly of the same order as means described

by Shroyer et al. [2010]. Individual strong mixing events in excess of 2000Wm−2, as

observed here, were also reported by Moum and Farmer [2003] over Oregon’s continental

shelf. Contrary to these observations, Inall et al. [2000] reported across-pycnocline heat

fluxes of 80Wm−2 on the Malin shelf during neap tides for a wave period of 12.4 hours.

The ratio of wave to background conditions estimated here was 60:1, six times larger

than the estimate made by Shroyer et al. [2010]. Reasons for this could be the relative

undersampling of wave events. The 16 analysed profiles taken during non-linear internal

wave passage might not represent typical wave conditions in the area, the few observed

strong wave events, which led to diapycnal heat fluxes over 2000Wm−2, biasing the

estimate for average heat fluxes. Another reason might simply be a different internal

wave field in the region off Peru than off Oregon, as local topographic features on the

shelf strongly influence wave generation, dissipation rates as well as their intensity and

the very nature of dissipation processes that can occurr (Lamb [2014]).

Sandstrom and Oakey [1995] and Sandstrom and Elliott [2011] reported a decrease in wave

energy of shoreward propagating non-linear internal waves. Inall et al. [2000] concluded

that magnitudes of observed enhanced mixing and dissipation rates must decrease in

the shoreward direction. Observations made over the Peruvian shelf and the results

presented here also indicate that heat fluxes induced by non-linear internal waves near

the shelf break as a result of higher dissipation rates were more intense and reaching

deeper into the water column than shoreward from the shelf break.

The estimate for Pw = 0.07 made in section 4.3 is rather conservative, compared to

previous observations, that wave packets in the area usually consist of about 7 single

waves, each event with a duration of approximately 10 minutes, occurring with the semi-

diurnal tides (Dengler, personal correspondence). Estimated time fractions from these

observations would result in Pw
e = 0.097. On average, Shroyer et al. [2010] observed

packets consisting of 10 waves, in aggreement with Inall et al. [2000], reporting the same

number of waves in NLIW packets on the Malin shelf. The approximation of Pw is highly
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dependent on the criterion set for w2. Changing the criterion w2 ≥ 6.25 × 10−4m2s−2

by only 2.5 × 10−5m2s−2, leads to a change in Pw of about a factor 2. Though of the

same order as the average time fraction non-linear internal waves were present on the

shelf off New Jersey reported by Shroyer et al. [2010], estimates here might be too low

and therefore underestimate the imact of NLIWs in the region. At rather shallow depths,

single non-linear internal waves might not be clearly distinguishable from one another

due to interference and interaction of individual waves and wave packets of different

generations with one another, as described by Apel [1995]. In agreement, Shroyer et al.

[2010] reported smaller time fractions shoreward from the shelf break and since only the

mooring at 80m water depth was taken into consideration for the calculation of Pw,

time fractions might be further underestimated. As time-weighted overall diapycnal heat

fluxes depend on the time fraction Pw, the estimate presented here might consequently

be too low.

Hummels et al. [2013] concluded that diapycnal heat fluxes induced by turbulence are

a major contributor to the mixed-layer heat budget and play a big role in cooling the

mixed-layer in the Atlantic cold tongue. Though their study did not revolve around non-

linear internal waves in particular and results can therefore not be directly compared,

the findings of this work here also indicate a large impact of NLIW-induced diapycnal

heat fluxes on the mixed-layer heat budget over the Peruvian shelf. Overall diapycnal

heat fluxes, with non-linear internal waves contributing around 80% through turbulence,

transported more than 100% of the adjusted net surface heat flux away from the mixed-

layer, validating their high impact on the mixed-layer heat budget. This result is in

agreement with Shroyer et al. [2010], who concluded that NLIWs transported all of the

incoming heat away from the mixed-layer, basically leading to cooling by diapycnal heat

fluxes at the bottom of the mixed-layer cancelling out heating by net surface heat fluxes.

Although their estimated relative contribution of non-linear internal waves was lower than

concluded in this study, higher overall background heat fluxes were observed, leading to

higher time-weighted overall heat fluxes over the shelf off New Jersey.

Net surface shortwave radiation and net surface heat fluxes show lower values in austral

winter mainly due to lower insolation and higher latent heat loss. Exact values of net

surface shortwave radiation and net surface heat fluxes might not be fully representative

of the conditions observed during M92, but the obvious seasonality adduced here should

suffice to assess the impact of non-linear internal waves. Provided their impact remained

the same throughout the year, this seasonality of net surface heat fluxes would lead to

even higher compensation of adjusted net heat fluxes and therefore cooling of the mixed-

layer by non-linear internal waves in fall and winter. The factor γ was reported to be
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higher in productive regions (Wang and McPhaden [1999]) and therefore would also show

a seasonal and spatial variability. The sensitivity of the adjusted net surface heat flux to

changes in γ is reportedly fairly small though, according to Wang and McPhaden [1999].

A deeper mixed-layer in austral winter would result in higher relative adjusted net surface

heat fluxes, counteracting the higher impact of non-linear internal waves.

Based on their error bounds, Shroyer et al. [2010] estimated non-linear internal waves to

contribute between 20% to 67% to the overall heat flux below the mixed-layer. Due to

these large error bounds, their conclusion, that non-linear internal waves transported all

heat away from the mixed-layer, might only be the case for individual events of higher

intensity or certain regions on the shelf. Error bounds for heat fluxes in this study were

smaller, leading to an estimate of wave contribution of 75% to 85%. Below the upper

layer beneath the mixed-layer, the ratio of heat fluxes during wave conditions compared

to background conditions was different for different water depths, as heat fluxes in that

layer were much higher at water depth 250m compared to 80m.

As made clear in this work, different wave and background heat flux intensities at different

water depths were observed. Therefore, a spatial variability in the impact of non-linear

internal waves on the mixed-layer heat budget is implied, warranting further investigation.

The exact contribution of non-linear internal waves to the mixed-layer heat budget cannot

be estimated at this point due to the lack of sufficient data and seasonal and spatial

coverage. It is important to note that analysis performed in this study only reflects the

impact of diapycnal heat fluxes on the mixed-layer heat budget. Advective processes

might additionally heat or cool the mixed-layer. For a fully representative analysis, the

complete mixed-layer heat budget, including lateral advection and heat storage terms, as

described by Stevenson and Niiler [1983], need to be evaluated.

28



5.3 Error discussion

Errors in calculated temperature differences lie in the ability of identifying start and end

points of such an event as well as the event itself. Especially when waves were following

closely behind each other, the temperature recorded by thermosalinograph measurements

might not have completely returned to its new steady state and therefore the calculated

differences might be too high. As described before, estimated values here could be wrong

by a few thousandths to a few hundredths of degrees. This error would be significant, as

observed temperature differences were of the same order.

Overestimation of Kρ by applying the Osborn model, as described by Barry et al. [2001],

Shih et al. [2005] and Ivey et al. [2008], could lead to an overestimation of turbulent

eddy diffusivities of about a factor 2 for highly turbulent regimes. As some measured

dissipation rates were very high, this could be a possible source of error.

Assuming the flux Richardson number to be constant and therefore Γ = 0.2 could un-

derestimate or overestimate values for Kρ. Values for Γ could range between 0.15 and

0.25 and disregarding this variability leads to an error of about 30% as reported by Inall

et al. [2000]. Instrumental errors for airfoil probe measurement could be large, resulting

from assuming spectral isotropic conditions and the integration over a fixed wave number

spectrum.

However, the largest error here is most likely resulting from the undersampling of non-

linear wave events. This fact is further evident in the large error bounds for diapycnal

heat fluxes during wave conditions calculated from bootstrap. As wave events were highly

variable in intensity as well as spatial and temporal occurrence, the few observed non-

linear wave events analysed here might not represent actual conditions in the region.

Especially the coverage of background fluxes seems biased, as overall heat fluxes in the

background state seem a little too high.

5.4 Outlook

To better quantify the impact of non-linear internal waves on the mixed-layer heat budget

on the Peruvian continental shelf, more measurements need to be made. Especially the

coverage with microstructure measurements while non-linear internal waves were present

during M92 was sparse, at best. Moored profilers, like the McLane Moored Profiler2,

could be of great importance for future observations and measurements as they offer

depth profiles of hydrographic conditions and velocities with relatively high temporal

2www.mclanelabs.com/master page/product-type/profilers/mclane-moored-profiler; last visited on
May 20th 2014
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resolution. Gliders, equipped with microstructure sondes, could also be a way to go here.

To better capture the spatial and temporal evolution of shoreward propagating non-linear

internal waves, they could be tracked from their generation spot to the cost using an array

of moorings, as described by Apel and Holbrook [1985]. Tracking non-linear internal waves

with high-frequency echosounder and ADCP backscatter, as done in the shelf region off

New Jersey, by Shroyer et al. [2010] and off the coast of Oregon, by Moum et al. [2007],

and sampled directly and repeatedly as they are approaching the coast would not only

lead to a better estimate of background as well as wave conditions, but would also allow

a better temporal description of the development of diapycnal heat fluxes as the waves

approach the shore. This would result in a more in-depth and statistically significant

comparison than this work was able to offer.

A comparison between different seasons would help to further assess the impact of non-

linear internal waves in the area, as a seasonal variability in occurrences and intensities

of these wave events is likely3, also reported on the Malin shelf by Inall et al. [2001].

3An Atlas of Oceanic Internal Solitary Waves: Northwest South America (Feb 2004)
www.internalwaveatlas.com; last visited on May 20th 2014
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