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Abstract Five years of oxygen isotope and hydrological surveys reveal interannual variations in the
inventory and distribution of river water over the Laptev Sea. In 2007, 2009, and 2010 relatively low amounts
of river water (≤1500 km3) were found and were mostly located in the southeastern Laptev Sea. In 2008 and
2011, high amounts of river water (~1600km3 and ~2000 km3) were found, especially in the central and
northern part of the shelf, suggesting a northward export of this water. This temporal pattern is coherent with
the summer Arctic Dipole index that was higher in 2008 and 2011. Our results suggest that the Arctic Dipole
might influence the export of river water from the Laptev Sea. Moreover, the river water inventory in the Laptev
Sea seems related to the freshwater content of the Arctic Ocean with a 2 years lag.

1. Introduction

During the last decades, multiple studies highlighted decadal and annual variations in liquid freshwater
storage in the Arctic Ocean [Polyakov et al., 2008; Proshutinsky et al., 2009; Morison et al., 2012; Krishfield et al.,
2014; Rabe et al., 2014]. Notably, it has been estimated that the liquid freshwater content in the Beaufort Gyre
increased by about 5000 km3, which represents an increase of 25% compared to the level of the 1970s
[Krishfield et al., 2014]. Moreover, a time series of liquid freshwater content was computed for the whole Arctic
basin and estimated a 30% increase in freshwater storage over the 1992–2012 period [Rabe et al., 2014].
However, the exact causes for this increase are still hypothetical. One explanation relies on the strengthening
of the Beaufort High, which increases the anticyclonic (clockwise) wind pattern causing a convergence of
fresh surface water toward the gyre’s interior [Proshutinsky, 2002]. However, increasing freshwater content
under weakened Beaufort High suggests that other factors must be considered [Proshutinsky et al., 2009]. It
was also suggested that runoff from Eurasian rivers could be diverted eastward to the Canadian Basin under
an increasingly positive Arctic Oscillation Index (from 2005 to 2008), highlighting the importance of the
pathway by which freshwater is exported from the Eurasian shelves on the global freshwater budget of the
Arctic [Morison et al., 2012].

The Arctic Ocean receives 11% of the global riverine freshwater discharge [Fichot et al., 2013]. This freshwater
contributes to the strong stratification that characterizes the upper layers of the Arctic Ocean and insulates
the perennial sea ice cover from heat contained in the warm Atlantic-derived water [Aagaard et al., 1981]. The
Lena River is one of the largest Arctic rivers, delivering around one fifth of total river water to the Arctic
Ocean. The river water discharging into the Laptev Sea can be exported to the Arctic Ocean interior directly at
the northward shelf break or to the Canadian part of the basin after being advected eastward [Guay et al.,
2001; Dmitrenko et al., 2005, 2008]. Thus, interannual variation in the hydrology of the Laptev Sea can
significantly influence the structure of the Arctic halocline and consequently the freshwater inventory of the
Arctic Ocean [Johnson and Polyakov, 2001; Bauch et al., 2009; Morison et al., 2012].

It has been suggested that the Laptev Sea summer surface hydrography is mainly controlled by the dominant
winds [Guay et al., 2001; Dmitrenko et al., 2005, 2008]. Two different atmospheric regimes are thought to
characterize the eastern Siberian shelves: (1) an anticyclonic regime caused by a strong Siberian High and a
suppressed Icelandic Low and (2) a cyclonic regime driven by a weaker sea level pressure (SLP) in the western
Arctic (i.e., a reduced Siberian High) and a strong Icelandic Low that extends into the Barents and Kara Seas
[Johnson and Polyakov, 2001]. During the anticyclonic phase offshore winds shift the Lena River plume
northward, while during the cyclonic phase, eastward along-shore winds push the Lena River water into the
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East Siberian Sea [Dmitrenko et al., 2005]. This pattern was observed in river water inventory along the 130°E
meridian in cyclonic (1994) and anticyclonic (1999) years [Bauch et al., 2009]. Moreover, it was also observed
beyond the Laptev Sea shelf that years with positive SLP anomalies north of the Laptev and East Siberian Seas
(1995 and 2005) were characterized by a higher northward export of river water [Bauch et al., 2011].

However, the Laptev Sea hydrography might also be influenced by pan-Arctic atmospheric patterns (Figure S1
in the supporting information) as the Arctic Oscillation or the North Atlantic Oscillation [Johnson and Polyakov,
2001; Peterson et al., 2002; Steele and Ermold, 2004]. Moreover, recent evidence highlighted a dipole-
structured anomaly in the Arctic atmosphere with its two poles distributed between the Laptev and Kara and
the other one located from the Canadian Archipelagos through Greenland to the Nordic Seas [Wu et al., 2006;
Wang et al., 2009]. This atmospheric pattern, referred as the Arctic Dipole, can influence the intensity of the
Beaufort Gyre and the Transpolar Drift, the latter being a key part in the export of water and ice from the Laptev
Sea [Wu et al., 2006;Wang et al., 2009;Overland et al., 2012]. During positive Arctic Dipole summer anomaly (AD),
there is a negative pressure anomaly in the Kara Sea and a positive in the Beaufort Gyre, which creates
anomalous winds that blow from the Siberian shelves toward Fram Strait, enhancing the strength of the
Transpolar Drift while oppositely directed winds slowing the Transpolar Drift and restraining runoff along the
Siberian coast during negative AD [Wu et al., 2006;Wang et al., 2009;Overland et al., 2012] (Figure S1). Therefore,
a comparison with hydrographic field data is mandatory in order to fully understand the link between the
different atmospheric and hydrologic forcing and the freshwater export mechanisms over the Laptev shelf and
thus to eventually detect the long-term tendency of fresh water storage associated with climate change.
Using field measurement of oxygen isotope (δ18O) and salinity we estimated the river water distribution and
inventory over the Laptev shelf from2007 to 2011 and compared thesewith atmospheric and hydrologic forcing.

2. Methods

Samples were collected during TRANSDRIFT expeditions in Arctic summer 2007 (29 August to 17 September),
2008 (7 August to 25 September), 2009 (9 September to 16 September), 2010 (9 September to 20 September),
and 2011 (25 August to 4 September) (Figure 1). Water samples were taken with a conductivity-temperature-
depth (CTD)-rosette. Individual temperature and conductivity measurements were obtained using Sea-Bird
SBE-19+ with accuracy ±0.005°C and ±0.002 S/m in conductivity. In addition to CTD measurements, bottle
salinity was determined directly from the same water samples taken for δ18O analysis using an AutoSal 8400A
salinometer (Fa. Guildline) with a precision of ±0.003 and an accuracy of at least ±0.005. Oxygen isotopes
were analyzed at the Leibniz Laboratory (Kiel, Germany) except the 2010 samples, which were analyzed at the
Stable Isotope Laboratory (Oregon State University, United States). All isotope measurements were performed
using the classical CO2-water equilibration method [Epstein and Mayeda, 1953]. The overall measurement
precision for all δ18O analysis was ± 0.04‰ or better. The 18O/16O ratio is given in respect to Vienna Standard
Mean Ocean Water in the δ notation [Craig, 1961].

The river water contribution can be quantified by applying a mass-balance calculation [Bauch et al., 1995]
(Text S2 and Table S3). River water inventories were estimated by integrating the fractions of river water over
the whole water column, which yields the averaged thickness of the water column containing pure river
water. The inventory was calculated using the averaged thickness of river water extrapolated over the surface
using the weighted-average tool in Ocean Data View. We strategically divided the Laptev shelf into four parts
in order to track the river water inventory distribution annually (Figure 1 and Table S4). We hypothesized
that during typical “offshore year” the majority of the river inventory would be located within the central,
north, and/or west zone, while during “onshore year” the river water would be mostly constrained within the
southeast zone. Our field measurement did not record any evidence of river water possibly originating from
the Ob or Yenisey Rivers via the Vilkitsky Strait that could have penetrated the north or northwestern part
of the Laptev shelf and reached our sampling sites (Figure 2). However, even if the main route for the Barents
and Kara Seas shelf water into the Arctic is thought to be the recently identified Arctic Shelf Break Branch
and frontal system located at the Laptev Sea slope [Aksenov et al., 2011; Bauch et al., 2014], we cannot
completely rule out the possibility that some river water from the Kara Sea reached our sampling site. The
Kara Sea river water carries an isotopic signature of about �17.5‰, while the Lena is about �20‰, so a
significant input of Kara Sea river water would cause an underestimation of our river water inventory [Bauch
et al., 1995]. If one would considers that the totality of Ob and Yenisey discharge reaches the Laptev shelf and
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mix with the Lena discharge, one would estimate a river water inventory 9% higher than ours. Since
evidences suggest that the Kara Sea river water outflow is mostly constrained far from our sampling site
[Aksenov et al., 2011; Bauch et al., 2014], we are confident that our river water inventory is not significantly
affected by this potential influx of river water characterized by a different isotopic composition.

The fact that surface salinity pattern can be maintained from summer until the polynya events [Dmitrenko
et al., 2005] suggests little variability from August to April–May; thus, we hypothesized that our data set is
representative of the summer river water distribution, which is controlled by atmospheric forcing [Dmitrenko
et al., 2005]. The estimated inventory is as good as possible considering the station coverage, which is limited
compared to easy-reachable oceanic areas but can be considered to be extremely high for the Arctic region.
So while the inventory should be considered carefully (e.g., with partly varying station coverage between
years) this collection of field data provides an unparalleled insight both in space and time on the river water
distribution over the Laptev Sea.

3. Results

The hydrography on the central Laptev Sea shelf (between 74 and 77.5°N along the 126°E meridian) is
influenced by the large input of freshwater from the Lena River (Figure 2). From 2007 to 2011, the surface
temperature varied from 0 to 8°C over this transect. In 2007 and 2008, high temperatures (>4°C) were
measured in the southern part of the profile, while in 2009 and 2010 the whole surface layer was found to
be relatively cold (<4°C). The year 2011 was exceptionally warm, with the surface layer temperature above
(<4°C) for the whole transect, with maximum temperatures (>6°C) located in the northernmost part of the
profile, which is a unique feature in our record. In 2007, 2009, and 2010 most of the surface layer was
characterized by salinities over 25, except for the very southern part. However, in 2008 and 2011 most of the
surface layer was fresher than 25, with a minimum (<10) at 75°N in 2008.
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Figure 1. Map of the Laptev Sea with sampling stations along with the salinity versus δ18O plot for year 2007 (Black), 2008 (Blue), 2009 (Green), 2010 (Orange), and
2011 (Red). Rectangles on the map represent the interpolation zones used to calculate the river water inventory. The black line in the plot represents the mixing line
between the river and seawater end-members.
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From 2007 to 2011, the fraction of river water varied from 0 to 80% along the 126°E meridian (Figure 2). The
strong contribution (up to 80%) of river water in the surface layer in 2008 and 2011 results in an average
thickness of pure river water of ~ 9 and 11m, respectively (Figure S5). This amount was higher than in 2007,
2009, and 2010, which were characterized by a ~ 6–7m thick river water layer. Similar interannual variations
were found when calculating inventories over the whole central Laptev Sea (74–76°N; 120–135°E), which
yielded 600–650 km3 of river water in 2007, 2009, and 2010, much lower than the 800 and >950 km3

estimated for 2008 and 2011, respectively (Table 1). We also found a high amount of river water (>450 km3) in
the northern part of the Laptev Sea in 2011 (76°N–77°N), which is contrasting all other years within our data
set, where the river water inventory was relatively constant and much lower (<300 km3). The same holds
true for the western part of the Laptev Sea, which is characterized by a high–river water inventory solely in
2011 (~150 km3). The Lena River directly influences the southeastern part of the Laptev Sea (Figure 1). The

Figure 2. The temperature (CTD measurement), salinity (from sampled bottle), and river water (from sampled bottle) fraction profile against depth (m) in the central
Laptev Sea (74–77°N along the 126°E meridian) for 2007 to 2011. Dots represent each sample taken (exact dates of sampling are listed in the online data).
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highest inventory in this sector was observed in 2010 (~500 km3), while all the other years on record had
similar inventory values (~400 km3), which is not coherent with the discharge variation from the Lena River
(Table 1). From our record, the central Laptev Sea contained 42 to 50% of the total Laptev shelf river water
depending on the year. The total amount of river water over the Laptev Sea was highest in 2011 (+28%
compared to the 2007–2011 average), and 2007 and 2009 were the lowest (�16% compared to the 2007–
2011 average). Total shelf river water inventory constantly represented ~2.5 times the amount of river water
released by the Lena during the preceding year even though both the discharge volume and river water
inventory are characterized by relatively high interannual variations (Table 1).

4. Local Forcing

The atmospheric pressure distribution over the greater Laptev Sea region is highly variable on interannual
time scales and seems to be the major factor influencing the river water distribution [Guay et al., 2001;
Dmitrenko et al., 2005, 2008; Bauch et al., 2009, 2011]. Based on a simple wind-driven surface water transport
model and reanalyzed SLP data, it was suggested that the third empirical orthogonal function (EOF) was
the major factor to influence the export or river water from the Laptev Sea [Bauch et al., 2011]. The EOF
represents the spatial pattern of variability and its variation in time and is estimated by solving the eigenvalue
problem for the covariance matrix [Preisendorfer, 1988]. While the Arctic Oscillation index was described as
the first EOF of the SLP, the second EOF was recently defined as the Arctic Dipole [Thompson and Wallace,
2000; Wu et al., 2006]. The third EOF of the SLP over the Laptev Sea area was linked to the variation of local
low-pressure systems generated over the Siberian landmass during summer, which are thought to greatly
influence the distribution of river water over the Laptev Sea [Bauch et al., 2011].

When looking at the SLP in the Laptev Sea region over the summer months (June-July-August-September;
JJAS), a spread of low-pressure system over the whole Siberian coast is observed in 2007, 2008, and 2011
(Figure S6). However, in 2009 and 2010, lows were either centered over the central Kara Sea (2009) or over the
Kara Sea coast (2010). On the other hand, small-scale features seem to have somehow created local SLP
minimum over the Laptev Sea (or just north of it) with isobars being perpendicular to the coast from 2007 to
2010, while in 2011 the isobars are parallel to the coast. This contrast with the simple north-south SLP gradient
previously highlighted for 1994 and 1999 that were respectively categorized as typical offshore and onshore
years [Bauch et al., 2009]. Despite observing typical offshore and onshore river water distribution and inventory
between 2007 and 2011, we did not observe the atmospheric setting that was previously thought to be typical
for offshore or onshore years [Dmitrenko et al., 2005; Bauch et al., 2009, 2011]. This suggests that different
forcings might have controlled the river water distribution from 2007 to 2011 compared to the last decades.
This could be linked to the recent observation that the Arctic Dipole intensity has increased over the Arctic
Ocean since 2007 [Overland et al., 2012]. This could also explain previous observations that highlighted a
difference in the river water inventory on the continental slope north of the Laptev Sea between 1995 and 2005

Table 1. River Water Inventory Estimate for the Different Sectors of the Laptev Seaa

River Water Inventory (km3) Lena River

Years Central Southeast North West Total Discharge Volume (km3) AOe NAOe ADf

2007 608 368 261 89b 1375 578c �0.2 �0.3 �1.4
2008 810 416 298 89b 1613 585d �0.2 �0.7 �0.5
2009 652 396b 252 91 1395 637d �0.5 �0.5 �1.0
2010 653 503 262 87 1505 525c �0.1 �0.8 �1.0
2011 961 405 491 154 2012 707c �0.4 �0.9 �0.4

aFrom 2007 to 2010, the Lena freshwater discharge was relatively constant, except for 2011 where the discharge was
estimated to be higher (+ 25%). The river water inventory was compared to atmospheric indexes: Arctic Oscillation Index
(AO; June-July-August-September-averaged (JJAS), North Atlantic Oscillation Index (NAO; JJAS averaged) and the Arctic
Dipole Index.

bData estimated from the average of similar years in term of inventory distribution (Table S4)
cRiver water discharge from Fedorova et al. [2013].
dRiver water discharge from Bauch et al. [2013].
eAO and NAO indexes data from NOAA Climate Prediction Center (http://www.cpc.ncep.noaa.gov).
fAD index data from Overland et al. [2012].
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despite both years being characterized
as “offshore years” based on the dominant
SLP distribution [Bauch et al., 2011].

5. Pan-Arctic
Atmospheric Forcing

The Arctic Oscillation (AO) and the North
Atlantic Oscillation (NAO) are often
discussed in order to explain the
freshwater content of the Arctic Ocean
and shelves [Steele and Ermold, 2004;
Steele et al., 2004; Morison et al., 2012].
When averaging the AO index for
summer months (June–September),
2009 was the year with the most
negative AO, which is not coherent with
low-observed freshwater storage on the
central Laptev Sea shelf and neither
with high amount of freshwater found in
the southeast part of the shelf. Moreover,
we observed an increase of 30% in the

freshwater inventory from 2007 to 2008 despite an invariable AO index, a situation similar to a 47% increase
in river water between 2010 and 2011 despite a similar AO index. While there is evidence that the AO influences
the Arctic-wide circulation [Morison et al., 2012], our record suggests that it is not the major factor controlling
the freshwater storage neither its distribution over the central Laptev Sea shelf. This is in agreement with
earlier findings that theminor components of the EOF have a larger impact on the freshwater distribution north
of the Laptev Sea shelf break than the first EOF that defines the AO [Bauch et al., 2011]. Four out of our five years
on record indicate that the river freshwater inventory follows the pattern predicted by the NAO tendency.
Nevertheless, 2010 was characterized by a low NAO, but the river water was diverted eastward as is typical for
positive NAOs. Overall, our inventories seem to generally respond to the NAO index, although some additional
factors might impact the distribution of river water over the Laptev Sea shelf, such as the Arctic Dipole.

The summer (JJAS) AD index is characterized by the same trend as our freshwater distribution and inventory
with the highest values in 2008 and 2011 and the lowest in 2007 (Table 1 and Figure 3). Thus, our data suggest
that the Arctic Dipole summarizes atmospheric conditions that dominate the distribution and fate of the
Laptev Sea river runoff for the 2007–2011 period, which could imply a recent increase in the importance of
the second EOF in regard to the distribution of river water over the Laptev Sea.

6. Impact of River Freshwater Export From the Laptev Sea on the Arctic

When comparing the interannual variation of river water inventory over the Laptev Sea, we found no
relationship (and neither a 1 year lagged) with the Arctic-wide freshening estimated by Rabe et al. [2014]. This is
not surprising since the total Laptev shelf inventory represents about ~2.5 times the amount of river water
released by the Lena during 1 year; and thus, it seems unlikely that this water significantly impacts the
Arctic-wide budget within only a year. The best fit was found when comparing the Laptev Sea river water
inventory with the Arctic-wide liquid freshwater inventory with a 2 years lag (Figure 3), which also holds true
when comparing with the liquid freshwater inventory of the Beaufort Gyre [Krishfield et al., 2014]. The fit with a
2 year lag is even better when only considering the inventory of the central Laptev Sea, which would suggests a
transport time of about 2 years for the river water that is advected northward to reach the Arctic Basin and/or
the Beaufort Gyre. If we consider a 2 year lag, the 200 km3 increase in river water on the central Laptev Sea
shelf between 2007 and 2008 would account for 50% of the increase in liquid freshwater in the Beaufort Gyre
from 2009 to 2010 [Krishfield et al., 2014] and ~20% of the Arctic-wide freshening for the same period [Rabe
et al., 2014]. Thus, our data suggest that the Arctic Dipole might play a significant role for the Siberian shelves
river water inventory and consequently on the Arctic Ocean freshwater budget.
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7. Concluding Remarks

This 5 year isotopic survey of the Laptev Sea highlights the strong link between atmospheric patterns and
the Laptev Sea hydrography and suggests that, for the 2007–2011 period, the Arctic Dipole has exerted a
strong influence on the distribution and export of river water from the Laptev Sea shelf. This is different than
the previous decades, when the local SLP pattern (third EOF) was the main driver of the river water
distribution and export.

An analysis of recent Arctic atmospheric patterns suggested a persistent change in early summer (June) SLP
for 2007–2012 that was recognized as the Arctic Dipole [Overland et al., 2012]. This feature might be linked to
an earlier snow or ice cover loss over high latitudes, notably over the Hudson Bay since it would allow an
earlier warming of those waters and a subsequent increase in SLP [Joly et al., 2010; Overland et al., 2012].
Potential impacts of this newly persistent pattern are increased Arctic sea ice loss in summer, long-lived
positive temperature anomalies and ice sheet loss in west Greenland, and increase in Arctic-subarctic
weather linkages through higher-amplitude upper level flow [Overland et al., 2012]. Our results suggest that it
also plays an important role on the freshwater budget of the Arctic Ocean via its influence on the freshwater
export from the Siberian Seas, notably the Laptev Sea. Thus, it highlights the need of research focused on
atmosphere-ocean interaction in order to understand potential impact of high-latitude warming on the
global Arctic Ocean freshwater budget as well as increasing effort to understand the role of Siberian shelves
on the Arctic Ocean freshening.
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