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[11 A numerical algorithm based on Fermat’s Principle was developed to simulate the
propagation of Global Positioning System (GPS) radio signals in the refractivity field
of a numerical weather model. The unique in the proposed algorithm is that the
ray-trajectory automatically involves the location of the ground-based receiver and the
satellite, i.e. the posed two-point boundary value problem is solved by an implicit finite
difference scheme. This feature of the algorithm allows the fast and accurate computation of
the signal travel-time delay, referred to as Slant Total Delay (STD), between a
satellite and a ground-based receiver. We provide a technical description of the
algorithm and estimate the uncertainty of STDs due to simplifying assumptions in the
algorithm and due to the uncertainty of the refractivity field. In a first application, we
compare STDs retrieved from GPS phase-observations at the German Research Centre for
Geosciences Potsdam (GFZ STDs) with STDs derived from the European Center for
Medium-Range Weather Forecasts analyses (ECMWF STDs). The statistical
comparison for one month (August 2007) for a large and continuously operating
network of ground-based receivers in Germany indicates good agreement between GFZ
STDs and ECMWF STDs; the standard deviation is 0.5% and the mean deviation is 0.1%.

Citation: Zus, F., M. Bender, Z. Deng, G. Dick, S. Heise, M. Shang-Guan, and J. Wickert (2012), A methodology to compute
GPS slant total delays in a numerical weather model, Radio Sci., 47, RS2018, doi:10.1029/2011RS004853.

1. Introduction

[2] Radio signals transmitted by GPS (Global Positioning
System) satellites, traverse the atmosphere before they are
recorded by ground-based receivers. Refraction in the
atmosphere changes the phase and amplitude of the signals.
From GPS dual-frequency phase-observations the signal
travel-time delay induced by the neutral atmosphere, in this
study referred to as the STD (Slant Total Delay), can be
retrieved. Conversely, provided that the refractivity field is
known, e.g. given by a NWM (Numerical Weather Model)
analysis, STDs can be computed. A method to compute
STDs for a given refractivity field is required in both,
meteorological and geodetic applications. Potential applica-
tions in GPS meteorology [Bevis et al., 1992] include vari-
ational data assimilation and least-travel time tomography
[Jérvinen et al., 2007; Bender et al., 2010]. A typical
application in geodesy is the determination of mapping
functions [Rocken et al., 2001; Boehm et al., 2006].

!GPS/GALILEO Earth Observation, Helmholtz Centre Potsdam,
German Research Centre for Geosciences, Potsdam, Germany.
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[3] The computation of the propagation of radio signals in
a refractivity field is based on Fermat’s principle: the path
taken by a ray between the satellite and the ground-based
receiver is the path that can be traversed in the least time.
From calculus of variations the ray-trajectory equation is
derived and solved by a numerical algorithm. To date a
number of different algorithms exist [Mendes, 1999; Pany,
2002; Nievinski, 2009]. Fast and accurate algorithms were
recently summarized and analyzed by Hobiger et al. [2008].
In essence, all of them have in common that the ray-trajectory
equation is solved as an initial value problem. In this study
we present an alternative algorithm; the ray-trajectory equa-
tion is solved directly as a boundary value problem. The
algorithm yields a similar performance, regarding the accu-
racy and the computational speed. In addition, we estimate
the uncertainty of STDs due to simplifying assumptions in
the algorithm and we estimate the uncertainty of STDs due
to the uncertainty of the refractivity field. The algorithm is
particularly suited to compute STDs for a large and con-
tinuously operating network of ground-based receivers. In a
first application, we compare STDs retrieved from GPS
phase-observations with STDs derived from the ECMWF
(European Center for Medium-Range Weather Forecasts)
analysis.

[4] This paper is structured as follows. In section 2 we
provide a technical description of the algorithm. In section 3
we study the accuracy and the computational speed of the
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Figure 1.
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Sketch of the geometry for computing STDs. The location of the receiver is marked with A4, the

location of the satellite is marked with B and Earth’s center is marked with M. Ry denotes the radius of
Earth. ¢ denotes the geometric angle at the receiver and § denotes the arriving elevation angle at the
receiver. The signal path from the satellite to the receiver is indicated by the curved solid line.

algorithm. In section 4 the algorithm is used to compare
STDs retrieved from the GPS phase-observations with STDs
derived from meteorological analyses. Section 5 summarizes
the main results.

2. Technical Description

2.1.

[5] Figure 1 provides a sketch of the geometry for
computing STDs. The radio signal transmitted by the
satellite B traverses the atmosphere before it is recorded
by the ground based receiver A. The signal path, indicated
by the curved solid line, obeys the ray-trajectory equation
(to be described hereinafter). Due to the bending effect of
the atmosphere on the signal path, the arriving elevation
(azimuth) angle of the signal at the receiver is different
from the vacuum elevation (azimuth) angle at the receiver.
The geometric path corresponds to the straight dotted line
connecting the receiver and the satellite. Hereinafter, the
orthonormal system located at Earth’s center will be
referred as the global frame of reference. The orthonormal
system located at the receiver will be referred as the local
frame of reference. Note that the receiver is not necessarily
located on the Earth surface. The Earth is assumed to be a
perfect sphere with radius Rz equal to Earth’s mean radius
of curvature at the center point of the limited area NWM
domain, i.e. Rg = VMN, where M and N are the radii of
curvature of the meridian and the prime vertical respec-
tively. On the uncertainty of STDs due to this assumption
the reader is referred to section 3.

The Geometry

2.2. The Slant Total Delay

[6] The STD, the optical path length minus the geo-
metric path length, is defined as [Hofinann-Wellenhof et al.,

1992]
Sz/sndsf/gdg. (1)

[7] Here n denotes the index of refraction, s denotes the
signal path and g denotes the geometric path. The ray-
trajectory (x, y(x), z(x)) is determined through Fermat’s
principle: The path taken by a ray between the position of the
satellite (b, y;, z,) and the position of the receiver (a, y,, z,) is
the path that can be traversed in the least time. From the
fundamental lemma of calculus of variation it follows that
the ray-trajectory minimizes the optical path length

b
P= [ s sy 1 e 42wl ()

if and only if the integrand f = n(x,y,z)\/1 +y* +z7

verifies the Euler-Lagrange equation
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[8] After some algebra, the following system of equations
is deduced
ny
= (G-

n;
o (_ B
n

[v] Here the subscripts x, y and z denote partial deriva-
tives. With explicit boundary conditions according to

&y')(l +yv2 +Z'2)

n

! @
}: />(1 +yr2 +Z’2)

(@) = ya
z(a) =z, (5)
y(b) =y
z(b) =z

the ray-trajectory equation represents a non-linear two-point
BVP (Boundary Value Problem). Provided that the index of
refraction is known, the ray-trajectory and subsequently the
STD can be computed.

2.3. The Index of Refraction

[10] The index of refraction # is related to the refractivity
N through

n=10"°N +1. (6)

[11] The refractivity NV is related to the partial pressure of
dry air pg,, the partial pressure of water vapor p,, and the
temperature 7 through [Thayer, 1974]

Pd Pw Pw
N=h—+h—+kh—. 7
1T+2T+3T2 (7)

[12] The empirically determined constants k1, k» and k3 are
given by Bevis et al. [1994] In a NWM the pressure p, the
temperature 7 and the specific humidity g are typically
stored at grid points specified by longitude, latitude and
geopotential height. The partial pressure of water vapor is
obtained from

_ qp
Pw = m (®)

where € = R,/R,,. Here R; and R,, denote the specific gas
constant for dry and wet air respectively. The partial pressure
of dry air is obtained from p; = p — p,,. The geopotential
height is converted to the geometric height above the geoid
following M. J. Mahoney (A discussion of various measures
of altitudes, 2001, available at http://mtp.mjmahoney.net/
www/notes/altitude/altitude.html). To compute the refrac-
tivity at an arbitrary point a coordinate transformation routine
and an interpolation routine is needed. For details the reader
is referred to Appendix A.

2.4. The Finite Difference Scheme

[13] The ray-trajectory equation is form invariant. It is
convenient to rotate the local frame of reference such that the
x-axis points from the receiver to the satellite in question.
The ray-trajectory equation is solved in this local frame of
reference.

[14] Let x; for i = 0, .., m + 1 denote a non-uniform
sequence of nodes for which the solution y; and z; for
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i=0,.,m+ 1 is sought. The derivatives of y and z with
respect to x are approximated by

Jj+1

Z G (xy)
k=j—1
!
Xj) = Z Gr(x;) - 2k
iy ©)
V) = Y k)
k=1
Jj+1
Z i (x7)
k=j—1
forj =1, .., m. Here
jt1
k X — X
Gi(x) = =) (10)
p=r-tprk Ok = %)
forj =1, .., m denote Lagrange basis polynomials. Inserting

the 2m finite differences into the ray-trajectory equation
leads to a system of 2m non-linear algebraic equations for

2m unknowns

ik (x/)yk) }
)] o
(55 )|
-

n(x;, %)

Jjtl
" n’(nyWZO)
> Gkl — {} DB

S n(x;,;,z)

Jj+l 2 Il
: [1 + (Z g}‘,k()?/‘)y/c) + <Z G )

k=1 k=1

j+1
(%, ), )) (’E:

k=j—1

nx pr’pZ/
n(x;,;,7)

Jj+l1
S {nz(xmpz])
J» J

k=—1 n(x;,¥;, 7))

(11)

j+1 jtl
(Z Ga(x;) yk) (Z k() 2k

k=j—1 k=j—1
forj =1, .., m with
=0
=0
o= (12)
Ym1 = 0
Zm+1 = 0

[15] In short term notation the system of equations reads
as

F(Z)=0 (13)

where Z = [y1, z1,-., Y, Zm] denotes the solution vector.

[16] Newton’s method is applied to solve the non-linear
system of equations. Let Z, denote the solution vector at the
iteration step 7. The solution vector Z.., at the iteration
step » + 1 is obtained by solving the following system of
linear equations

IZ|(Zi1 — Z,) = —F(Z,) (14)
where J denotes the Jacobian
oF
1= (15)
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Figure 2. The NWM domain and the location of hypothet-
ical (indicated by white dots) and existing (indicated by

black dots) ground-based receivers.

[17] The non-zero entries of the Jacobian are derived by
rigorous application of the chain rule of differential calculus.
The linear system of equation is solved by LU-Decomposition.
The first guess vector is chosen to be equal to the coordinates
of points along the geometric path connecting the first and the
last node, i.e. Z=[0, 0, .., 0, 0].

[18] Once the ray-trajectory is determined, the STD is
computed according to

m+1 m+1

S= Z n(xi,yi 2\ 143 (0 42/ P w; — Z Wi.
i=0

i=0

(16)

[19] Here w; fori=0, .., m + 1 denote quadrature weights
according to the trapezoidal rule. The derivative at the first
(last) node is approximated by a forward (backward) finite
difference. The iteration is stopped if the difference between
the current STD and the previous STD is smaller than a user-
defined threshold (by default 1 mm). Alternatively, the
iteration can be stopped after a predefined number of itera-
tions are performed. For details the reader is referred to
section 3.

2.5. Approximations

[20] Two approximations enhance the computational effi-
ciency without altering the accuracy significantly. Both
approximations are based on the fact that the refractive index
n is more or less stratified with respect to height 4. At first,
the algorithm is restricted to a plane defined by the center
of the Earth, the receiver and the satellite (the x-z plane).
Second, the partial derivative of the refractivity with respect
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to longitude and latitude at any point is neglected. Thus, we
consider the following system of m non-linear algebraic
equations for m unknowns

Jjtl

J+l1
(%,
ZZ}’k X))z i B A ES ) h-(x7,z7) — hy(x;, z)) Z 0k (x7)z
n(x,2;)

k=j—1 k=j—1

for j = 1,.., m with

Z():O

(18)

Zmt1 =0

[21] The non-linear system of equations is solved by
Newton’s method. The STD is computed according to
m+1

S = x,,zl W 1+2( x, ZW,

[22] It is important to note that the approximations do not
imply that the refractivity is a function of the height only.
The errors introduced by the approximations are analyzed in
section 3.

(19)

2.6. The Node-Sequence

[23] The sequence of nodes x; for i =0, .., m + 1 for which
the solution y; and z; for i =0, .., m + 1 is sought was yet not
specified. In fact, the sequence of nodes can be chosen
arbitrary (except for the first and the last node) and a suc-
cessive refinement of nodes can be performed to compute
the STD with a predefined error tolerance. For example, we
may define a uniform sequence of nodes, compute the ray-
trajectory and estimate the STD. Then the number of nodes
is doubled, the computation of the ray-trajectory is repeated,
and another estimate of the STD is obtained. This procedure
is repeated until the difference of the current STD and the
previous STD is smaller than some predefined error toler-
ance. For better computational efficiency, it is convenient
not to use a uniform sequence of nodes but a non-uniform
sequence of nodes. We propose the following ansatz:

Xi = ra cos(0) + \/d* — r2sin(6)* (20)
fori=0, .., m+ 1 with
d():}"a )
exp(\)' —1
di=r7, —Ta)——Fowm—— =1, ., 21
ra+ (1 r)eXpO\) — ! m (21)
dm+1:rb
and
ra:RE+ha
re=Rg+h
ry =Rp+hy' (22)
™
h—¢+ "
a+2

[24] Here A, denotes the height of the receiver, %, denotes
the height of the hypothetical top of the atmosphere, 7,
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Table 1. Summary of Different Configurations in the STD
Algorithm?*

Solution  Approximation  Node-Sequence Earth Interpolation
A no A sphere bilinear
B no B sphere bilinear
C no C sphere bilinear
R no R sphere bilinear
A’ yes A sphere bilinear
B’ yes B sphere bilinear
(o4 yes C sphere bilinear
D’ yes A ellipsoid bilinear
E' yes A sphere bicubic

*The configurations differ by the approximations, the node-sequence, the
interpolation routine and the shape of the Earth (for details refer to the text).

denotes the height of the satellite, ¢ denotes the elevation
angle and A denotes the lapse rate of the node-sequence.
Essentially, this node-sequence takes into account that the
refractivity tends to decrease exponentially with height. By
default, we set m = 800, i, = 150 km, and A = 1072, In the
following this sequence of nodes is referred to as the default
node-sequence.

3. Algorithm Performance

[25] In a numerical experiment the accuracy and the
computational speed of the algorithm are estimated. For this
purpose, refractivity fields are derived from ECMWF
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analyses. Analyses are available at 0, 6, 12 and 18 UTC for
the DOY (Day Of Year) 230-236 in the year 2007. The idea
behind a number of different analysis is to cover the vari-
ability of ECMWEF refractivity fields. Figure 2 shows the
location of hypothetical receivers located at some model
terrain grid points. Hypothetical satellites are located at an
altitude of 20200 km. We use the default node-sequence and
compute STDs at each receiver for elevation angles 1°-90°
(stepsize 1°) and azimuthal angles 45°-315° (stepsize 90°).
By default, we use three iterations in Newton’s method.
STDs exhibit a strong elevation angle dependency. Roughly
speaking, the elevation angle dependency of STDs follows
a cosecant law. For an elevation angle of 90° (in the zenith)
STDs are ~2.4 m, for an elevation angle of 5° STDs are
~24 m.

3.1. Accuracy

[26] The node-sequence is successively refined by node
insertion; in the following referred to as the node-sequence
A (the default node-sequence), B, C and R. For the node-
sequence A, B, C and R we compute STDs (we use three
iterations in Newton’s method); in the following referred to
as solution A, B, C and R. The solution R serves as the
reference solution. The main characteristics of the solutions
are summarized in Table 1. The accuracy is measured in
terms of the root-mean square deviation from the reference
solution. Figure 3 shows the root-mean square deviation as a

YEAR:2007/DOY:230-236/HOUR:0-18UTC/STD#:816480
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10’

elevation angle [deg]

0.4
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0.2
0.1
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0.4
0.3
0.2
0.1
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10
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Figure 3. In the STD algorithm the node-sequence is successively refined by node insertion; solution A,
B, C and R. The latter serves as the reference solution (for details refer to the text). The root-mean square
deviation as a function of the elevation angle for (top) option A, (middle) option B, and (bottom) option C.

In total 816480 STDs enter the comparison.
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Figure 4. In the STD algorithm the number of iterations in Newton’s method is increased from zero (no
iteration) to three. The latter serves as the reference solution (for details refer to the text). The root-mean
square deviation as a function of the elevation angle for (top) option A, (middle) option B, and (bottom)
option C. The blue, black and red line indicate the root-mean square deviation for zero, one and two itera-
tions in Newton’s method respectively. In total 816480 STDs enter the comparison.

function of the elevation angle. As expected, the root-mean
square deviation tends to zero, if the node-sequence is suc-
cessively refined by node insertion. For any solution A, B or
C the root-mean square deviation is <I mm for the entire
elevation range. Next, the number of iterations in Newton’s
method is increased from zero (no iteration) to the default
value three. For the node-sequence A, B and C, the solutions
A, B and C from the previous numerical experiment serve as
the reference solutions respectively. Figure 4 shows the root-
mean square deviation as a function of the elevation angle.
Irrespectively of the node-sequence we observe fast and safe
convergence. This can be explained by the fact that the first
guess vector used in Newton’s method is an approximate
zero. A remarkable feature of the algorithm is obvious;
irrespectively of the node-sequence, two iterations in Newton’s
method are sufficient for the entire elevation range.

3.2. Computational Efficiency

[27] On an ordinary PC (Core2Quad Intel processor,
2.5 GHz, 2 GB RAM) a few tens of STDs per second are
computed using a single core. The data throughput depends
on the node-sequence and the number of iterations in
Newton’s method. Two approximations enhance the com-
putational efficiency without altering the accuracy signifi-
cantly; the algorithm is restricted to the plane defined by the
center of the Earth, the receiver and the satellite and the

partial derivative of the refractivity with respect to the lon-
gitude and latitude at any point is neglected. It is evident that
the two approximations increase computational efficiency;
the number of equations is reduced by a factor of two, the
bandwidth of the Jacobian is reduced from seven to three
and the non-zero entries of the Jacobian simplify consider-
ably. The validness of both approximations is shown in the
next numerical experiment. For the node-sequence A, B, and
C we compute STDs using both approximations (we use
three iterations in Newton’s method); in the following
referred to as solution A’, B’ and C'. The solution R serves as
the reference solution. The main characteristics of the solu-
tions are summarized in Table 1. Figure 5 shows the root-
mean square deviation as a function of the elevation angle.
Again, for any solution A’, B’ or C' the root-mean square
deviation is <1 mm for the entire elevation range. The non-
zero root-mean square deviation is primary due to the dif-
ferent node-sequence and not due to the approximations. In
fact, for the same node-sequence and the same number of
iterations in Newton’s method, the root-mean square devia-
tion is <0.01 mm for the entire elevation range.

[28] Based on the numerical experiments, the following
implementation of the algorithm is proposed: account for the
two approximations, use the default node-sequence and use
two iterations in Newton’s method. This implementation of
the algorithm meets the following criteria: irrespectively of
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YEAR:2007/DOY:230-236/HOUR:0-18UTC/STD#:816480
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Figure 5. The STD algorithm is restricted to a plane and partial derivatives of the refractivity with
respect to the longitude (latitude) at an arbitrary point are neglected. The number of nodes is successively
doubled; solution A’, B" and C'. The solution R serves as the reference solution (for details refer to the
text). The root-mean square deviation as a function of the elevation angle for (top) option A’, (middle)
option B’, and (bottom) option C'. In total 816480 STDs enter the comparison.

the elevation angle the error of STDs is <1 mm and the
computational speed is ~1000 STDs per second using a
single core.

3.3. Uncertainty of STDs

[20] We distinguish between uncertainty of STDs due to
simplifying assumptions in the algorithm and uncertainty of
STDs due to the uncertainty of the refractivity field.

3.3.1. Uncertainty of STDs Due to Simplifying
Assumptions

[30] For better computational efficiency a number of
simplifying assumptions were introduced; the Earth is
assumed to be a perfect sphere with radius equal to Earth’s
mean radius of curvature at the center point of the limited
area NWM domain, the original NWM refractivity field is
re-sampled and the interpolation routine that is used to
compute the refractivity at an arbitrary point is simple (see
Appendix A). Numerical experiments are carried out to
estimate the uncertainties of STDs due to these simplifying
assumptions. In the first numerical experiment, the reference
coordinate system is not an osculating sphere but the
WGS84 (World Geodetic System 1984). We interpret the
latitudes (longitudes) of NWM grid points as geodetic lati-
tudes (longitudes) and convert the height above mean sea
level of NWM grid points to the height above the reference
ellipsoid using the EGM96 (Earth Gravitational Model

1996). In order to highlight differences between the ellipsoid
and the osculating sphere, STDs are computed for azimuthal
angles 0°-270° (stepsize 90°). In the second numerical
experiment the original NWM refractivity field is not
re-sampled and instead of bilinear interpolation, bicubic
interpolation [Keys, 1981] with respect to longitude and
latitude is performed. In both experiments the solution A’
serves as the reference solution. The main characteristics of
the solutions are summarized in Table 1. The uncertainty is
measured in terms of the mean deviation and the standard
deviation from the reference solution. Figure 6 shows the
mean deviation and the standard deviation as a function of
the elevation angle. In both experiments the standard devi-
ation is larger than the mean deviation. In the first experi-
ment this can be explained by the fact that the radius of
curvature of the ellipsoid varies with azimuth while the
radius of the osculating sphere is constant. The increased
(decreased) radius of curvature of the ellipsoid leads to an
increased (decreased) STD. The large standard deviation
compared to the small mean deviation in the second exper-
iment can be explained by the fact that differences between
bilinear and bicubic interpolation are random and not sys-
tematic. Based on the two numerical experiments we esti-
mate that the uncertainty of STDs due to simplifying
assumptions in the algorithm is ~1 mm in the zenith and
~1 cm for an elevation angle of 5°.
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YEAR:2007/DOY:230-236/HOUR:0-18UTC/STD#:816480
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-10
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10’
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Figure 6. In the STD algorithm the WGS84 is used; solution D’. In the STD algorithm a different inter-
polation routine for the refractivity is used; solution E'. The solution A’ serves as the reference solution
(for details refer to the text). (top) The STD deviation versus the elevation angle for option D'. (bottom)
The STD deviation versus the elevation angle for option E’. The black line indicates the mean deviation
and the red line indicates the standard deviation. In total 816480 STDs enter the comparison.

3.3.2. Uncertainty of STDs Due to the Uncertainty
of the Refractivity Field

[31] The ECMWF meteorological variables (pressure,
temperature and humidity) contain model errors. Therefore,
the refractivity field and subsequently the STDs are uncer-
tain. Let & denote the refractivity field and let B denote the
refractivity error covariance matrix. The diagonal elements
of the matrix B store the squared refractivity error variances
and the off-diagonal elements of the matrix B store the
refractivity error covariances. The STD error covariance
matrix B’ can be determined according to (propagation of
uncertainties)

B'[¢] = S[¢]BS[¢]".

[32] The diagonal elements of the matrix B’ store the
squared STD error variances and the off-diagonal elements
of the matrix B’ store the STD error covariances. The
tangent-linear operator of the algorithm S is given through

(23)

os
o€

and is constructed by rigorous application of the chain rule
of differential calculus on a coding level [Giering and

S = (24)

Kaminski, 1998]. If the ECMWF analysis error covari-
ance matrix (the analysis error covariance matrix stores the
uncertainty of the meteorological variables) is accessible,
the refractivity error covariance matrix and the STD error
covariance matrix can be computed.

[33] The ECMWEF analysis error covariance matrix is not
accessible at the GFZ. Therefore, a rough estimate of the
uncertainty of STDs due to uncertainty of the refractivity
field is provided as follows. At first, we assume that in the
vicinity of a ground-based receiver the refractivity N is a
function of height % only, i.e. N = N(h). Second, the refrac-
tivity error variance in percent p as a function of height /4 is
assumed to be of the form [Steiner et al., 2006]

Prv1 — P
p(h) =pr+ AR (h=1r) h& [l )
lpr =1y

(25)
with p = ps for h > [, Significant heights are defined as
lo=0km, [; = 8 km, /, =25 km and /5 = 60 km. Significant
refractivity error variances in percent are estimated from
Steiner et al. [2006] to be pg = 2%, p; = 0.5%, p, = 0.5% and
p3 = 1%. This estimate does not take into account any
hourly, daily, seasonal or geographical dependency. Third,
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Figure 7. (left) The refractivity as a function of the height. The refractivity profile corresponds to the
mean refractivity profile (averaged over the limited area ECMWF model domain) valid at 12 UTC for
the DOY 234 in the year 2007. (middle) The estimated refractivity error variance as a function of the
height. (right) The estimated fractional refractivity error variance as a function of the height (for details

refer to the text).

the refractivity error covariance matrix is assumed to be of
the form [Rodgers, 1990]

By = p(hi)p(hj)N (hi)N (h;) exp(—(h; — h;)*¢2)

where 4; and 4; stand for the ith and jth model height
respectively and ¢ denotes the error correlation length. We
set ¢ = 0 m or alternatively ¢ = 500 m.

[34] Figure 7 shows a refractivity profile and the refrac-
tivity error variance profile. The refractivity profile corre-
sponds to the mean refractivity profile (averaged over the
limited arca ECMWF model domain) valid at 12 UTC for
the DOY 234 in the year 2007. A hypothetical ground based
receiver is located at mean sea level. STDs and STD error
variances are computed for elevation angles 1°-90° (stepsize
1°). Figure 8 shows the STD and the STD error variance as a
function of the elevation angle. The STD error variance
largely depends on the error correlation length (. If { = 0
m, the STD error variance is ~3 mm in the zenith and ~3
cm for an elevation angle of 5°. If ( = 500 m, the STD
error variance is ~8 mm in the zenith and ~8 cm for an
elevation angle of 5°. For both options, the fractional STD
error variance is almost independent of the elevation angle.

(26)

[35] Without detailed knowledge of the ECMWF analysis
error covariance matrix, in particular detailed knowledge of
error correlations, it is difficult to estimate the uncertainty of
STDs due to uncertainty of the refractivity field. However,
our estimates indicate that the uncertainty of STDs due to
uncertainty of the refractivity field is significantly larger than
the uncertainty of STDs due to simplifications in the algo-
rithm. If we sum up the uncertainty of STDs due to the
uncertainty of the refractivity field and the uncertainty of
STDs due to simplifications in the algorithm we estimate the
uncertainty of STDs derived from the ECMWF analysis to
be ~4-9 mm in the zenith and ~4-9 cm for an elevation
angle of 5°. Though this estimate must be regarded as rough
it is in good agreement with the estimate provided by
Jarvinen et al. [2007], who conclude that the uncertainty of
STDs derived from the High-Resolution Limited-Area
Model is ~8 mm in the zenith and ~8 cm for an elevation
angle of 5°.

4. Application

[36] The algorithm is implemented in an OpenMP envi-
ronment. The number of computed STDs per second scales
about linearly with the number of cores. Monitoring of STD
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Figure 8. (left) The STD as a function of the elevation angle. (middle) The STD error variance as a func-
tion of the elevation angle. (right) The fractional STD error variance as a function of the elevation angle.
The STD and the STD error variance are computed using the refractivity and refractivity error variance
shown in the previous figure. The dashed line corresponds to the case of an error correlation length
¢ = 0 m, and the solid line corresponds to an error correlation length ¢ = 500 m (for details refer to the

text).

data processed for a large and continuously operating net-
work of receivers against STDs derived from ECMWF
analyses is efficiently possible. In the following STDs
retrieved from GPS phase-observations will be referred to as
GFZ STDs and STDs derived from the ECMWF analyses
will be referred to as ECMWF STDs.

4.1. GPS Data Processing at the GFZ

[37] The EPOS (Earth Parameter and Orbit determination
System) software developed at the GFZ is used to retrieve
ZTDs (Zenith Total Delays) and STDs from GPS phase-
observations [Gendt et al., 2004]. ZTDs and STDs are pro-
vided for about 300 stations in Germany. Zero-differenced
observations with an elevation cut-off angle of 7° are pro-
cessed in precise point positioning mode [Zumberge et al.,
1997]. Precise satellite orbits and clocks as well as earth
rotation parameters are available from the IGS (International
GNSS Service) analysis center at the GFZ. Atmospheric
parameters are estimated in a least-square adjustment. The
ZTDs are estimated using all satellite-receiver links available
within 15 minutes. STDs are reconstructed for each satellite-
receiver link and are available every 150 s. Specifically, let e
and ¢ denote the elevation and azimuth of the satellite-

receiver link and let ZHD and ZWD denote the zenith
hydrostatic and wet delay [Davis et al., 1985], then the STD
is reconstructed according to

S = my(e)ZHD + m,,(¢)[ZWD + cot(e)(Gy cos(y)

+ G sin(¢))] + P (27)
where m; and m, denote the hydrostatic and wet map-
ping function [Niell, 1996], Gy and Gy denote the gra-
dients in north and east direction [Davis et al., 1993] and
Pr denotes the postfit residual. The zenith hydrostatic
delay is estimated using the pressure at the receiver site
[Davis et al., 1985]. The gradients in north and east
direction are estimated once per hour. The impact of dif-
ferent mapping functions on estimated zenith delays is
subject to numerous studies. Though we can not provide
an estimate of the uncertainty of ZTDs due to the mapping
function in our GNSS analysis, we can anticipate that this
uncertainty of ZTDs is ~1-2 mm for a receiver located in
Germany (see e.g. IERS Annual Report 2006 available
online at http://www.iers.org). For the following statistical
comparison it is also important to note that ZTDs or STDs
are not assimilated at the ECMWF.
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Figure 9. The deviation between GFZ STDs and ECMWF STDs as a function of the elevation angle.
The black line indicates the mean deviation and the red line indicates the standard deviation. The grey dots
represent individual STD differences. In total 3194564 STDs enter the comparison.

4.2. Statistical Comparison

[38] The focus is on DOY 213-243 (August) in the year
2007. STDs are assembled from a network of 270 receivers
in Germany. The location of the receivers is shown in
Figure 2. ECMWEF analyses are available at 0, 6, 12 and
18 UTC. STDs within a time window of 15 minutes around
the ECMWF analysis time enter the comparison. The dis-
crepancy between STDs is measured in terms of the STD
deviation AS = S; — S. Here S denote GFZ and S denote
ECMWF STDs. Figure 9 shows the STD deviation as a
function of the elevation angle. Figure 10 (top) shows the
fractional STD deviation as a function of the elevation angle
and Figure 10 (bottom) shows the fractional number of
STDs as a function of the elevation angle. While the STD
deviation increases with decreasing elevation angles, the
fractional STD deviation is about constant. A possible
explanation for the enhanced negative bias at 7° is signal
multipath contained in GFZ STDs. The fractional standard
deviation is 0.48% and the fractional mean deviation is
—0.06%. With a mean ZTD of 2.4 m, this corresponds to a
standard deviation of 12 mm and a mean deviation of
—1 mm close to the zenith. The STD deviation is a com-
posite of ECMWF and GFZ STD errors. Under the
assumption that error distributions are Gaussian with zero
mean and independent, the standard deviation o is related to
the error variance of ECMWF STDs oy and the error

variance of GFZ STDs o according to 0° = 0% + 0. Our
estimate of the uncertainty of ECMWF STDs close to the
zenith ~4-9 mm indicates that the uncertainty of GFZ STDs
close to the zenith is ~8—11 mm. In essence, the quality of
STDs derived from GPS-phase observations is comparable
to the quality of STDs derived from the ECMWF analysis.
Figure 11 (top) shows the fractional STD deviation for
individual days and Figure 11 (bottom) shows the fractional
number of STDs for individual days. In contrast to the
fractional STD deviation as a function the elevation angle,
the fractional STD deviation as a function of the time exhi-
bits a large variability. The quality of ECMWF STDs
depends on the actual state of the atmosphere. Whether the
quality of GFZ STDs depends on the actual state of the
atmosphere is not known. In any case, a possible explanation
for the increased fractional mean and standard deviation on
particular days are severe weather phenomena. In general,
these results are consistent with results obtained from a
comparable study [Pany et al., 2001].

[39] Next, ZTDs retrieved from GPS phase-observations
(GFZ ZTDs) are compared with ZTDs derived from the
ECMWF analyses (ECMWF ZTDs). The comparison is
carried out for the same time period. The discrepancy
between ZTDs is measured in terms of the ZTD deviation
AZ=Zg — Z, where Z; denote GFZ and Z denote ECMWF
ZTDs. The fractional standard deviation is 0.44% and the
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Figure 10. (top) The fractional deviation between GFZ STDs and ECMWF STDs as a function of the
elevation angle. The black line indicates the mean deviation and the error bars indicate the £ one-sigma
deviation from the mean deviation. (bottom) The fractional number of STDs as a function of the elevation

angle. In total 3194564 STDs enter the comparison.

fractional mean deviation is —0.06%. With a mean ZTD of
2.4 m, this corresponds to a standard deviation of 11 mm and
a mean deviation of —1 mm. Our estimate of the uncertainty
of ECMWF ZTDs ~4-9 mm indicates that the uncertainty
of GFZ ZTDs is ~6-10 mm. Figure 12 (top) shows the
fractional ZTD deviation for individual days and Figure 12
(bottom) shows the fractional number of ZTDs for individ-
ual days. Similar to the fractional STD deviation as a func-
tion of the time, the fractional ZTD deviation as a function of
the time exhibits a large variability. The comparison indi-
cates that GFZ STD data quality is comparable to GFZ ZTD
data quality. The fractional STD standard deviation is
somewhat larger than the fractional ZTD standard deviation.
A possible explanation is more noise contained in GFZ
STDs compared to GFZ ZTDs.

5. Conclusion

[40] An algorithm was developed to compute STDs using
the refractivity field of a NWM. The ray-trajectory equation
is solved using an implicit finite difference scheme. The
location of the ground-based receiver and the satellite is
automatically part of the solution. The structured non-linear
system of equations, arising due to the implicit finite dif-
ference scheme, is solved by Newton’s method. In a series of
numerical experiments the accuracy and the computational

speed of the algorithm are estimated. The implementation
of the algorithm meets the following criteria: irrespectively
of the elevation angle the error of STDs is <1 mm and the
computational speed is ~1000 STDs per second using a
single core. It is important to note that the estimates for
the accuracy and the computational speed of the algorithm
are based on refractivity fields derived from a NWM with
relative low horizontal resolution; the horizontal resolution
of the ECMWF analysis used in this study is 0.5° x 0.5°.
Whether these estimates hold true for refractivity fields
derived from different NWMs, in particular those with
increased horizontal resolution, will be assessed in a future
study.

[41] We experimented with different interpolation routines
and different radii of the Earth to estimate the uncertainty of
STDs due to simplifying assumptions in the algorithm. Since
the ECMWF analysis error covariance matrix and hence the
refractivity error covariance matrix is not accessible a model
refractivity error covariance matrix is used to estimate the
uncertainty of STDs due to the uncertainty of the refractivity
field. Though, our estimates must be regarded as rough, they
indicate that the uncertainty of STDs due to uncertainty in
the refractivity field is larger than the uncertainty of STDs
due to simplifying assumptions in the algorithm. Combining
our estimates we conclude that, the uncertainty of STDs
derived from the ECMWF analysis is on a sub-centimeter
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Figure 11. (top) The fractional deviation between GFZ STDs and ECMWF STDs as a function of the
day of year. The black line indicates the mean deviation and the error bars indicate the £+ one-sigma
deviation from the mean deviation. (bottom) The fractional number of STDs as a function of the day
of year. In total 3194564 STDs enter the comparison.

level in the zenith and on a sub-decimeter level for an ele-
vation angle of 5°. This estimate does not take into account
the uncertainty of the empirically determined constants
relating refractivity to pressure, temperature and humidity
[Aparicio and Laroche, 2011].

[42] In this study, we compare STDs retrieved from GPS
phase-observations with STDs derived from the ECMWF
analysis. The statistical comparison for a large and contin-
uously operating network of ground-based receivers in
Germany indicates good agreement; in August 2007 the
random deviation is 0.5% and the systematic deviation is
0.1%. These values are consistent with values obtained in a
comparable study [Pany et al., 2001].

[43] There are a number of potential applications for the
proposed algorithm. For example, having developed a fast
and accurate method to compute STDs using the refractivity
field of a NWM (the forward code), we can construct the
tangent-linear and adjoint code for variational data analysis.
The technical description of these codes along with simula-
tion studies is subject to a follow-up work.

Appendix A

[44] The ECMWF meteorological fields are provided with
a horizontal resolution of 0.5° x 0.5° on 91 model levels

extending from Earth’s surface to 80 km. The pressure, the
temperature and the specific humidity are stored at grid
points, specified by longitude, latitude and height above
mean sea level.

[45] At first, the refractivity is computed at each grid point
in the NWM domain. Hereinafter, the one dimensional
arrays Uy and @, with /=1, .., M;and J= 1, .., M denote the
horizontal grid point coordinates of the model grid. The
integers M; and M, denote the horizontal dimensions of
the model grid. The three dimensional arrays H;x and Ny
fori=1,..,.M;,J=1,.,M;and K =1, .., Mg store the model
height and the model refractivity respectively. The integer
My denotes the vertical dimension of the model grid. To
compute the refractivity at an arbitrary point N(x, y, z) a
coordinate transformation routine and an interpolation rou-
tine is needed. The coordinate transformation routine con-
sists of transforming cartesian coordinates (x, y, z) to
spherical coordinates (p, ¢, #). Here ¢ denotes the longi-
tude, ¢ denotes the latitude and /% denotes the height. The
interpolation routine consists of the following steps:

[46] Step a) Determine the neighboring grid point indices /
and J and compute the increments X and Y:

X = (80 - ‘1’[) : (\I’Hl - ‘I’l)_l

Y= (¢—®y) (Prag — 0y) " . Ay
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Figure 12. (top) The fractional deviation between GFZ ZTDs and ECMWF ZTDs as a function of the
day of year. The black line indicates the mean deviation and the error bars indicate the + one-sigma devi-
ation from the mean deviation. (bottom) The fractional number of ZTDs as a function of the day of year.

In total 60476 ZTDs enter the comparison.

[47] Step b) Compute the bilinear interpolation coeffi-
cients X, X5, X5, X4

X=(-X)-(1-7)
Xo=(1-X)-Y

Xj:g(-(le) (A2)
Xp=X-Y

[48] Step c) Determine at the neighboring grid points the
adjacent grid point indices with respect to height 4, B, C, D
by binary search and compute the vertical interpolation
coefficients Ly, L,, L3, Ly:

Ly = (h—Hya) - (Hya — HIJA—1)71

Ly = (h— Hys1s) - (Hys1s — Hyip-1)"'
Ly = (h— Hyye) - (Hpse = Hive—r) ™!
Ly=(

1
h— Hryyp) - (Hiew+p — Hivsin-1)

(A3)

[49] Step d) Perform logarithmic interpolation to compute
the refractivity values Ny, N,, N3, Ny:

_ 1L
Nt =Ny - (N - Ny ,)™

_ —1 L
N> =Ny+15° (N1 Nipyip-i)

_ —1 L;
N3 = Npye - (Nrswe - Nibeor)

_ _1
Ny = Nrtiss1p - (Nreso - Nyip-1)

(A4)

Ly

[50] Step e) Compute the refractivity N:

4
N=> XN, (A5)
=1
[s1] Above/below the NWM top/bottom log-linear

extrapolation is performed. Beyond NWM lateral bound-
aries the nearest refractivity profile is used.

[52] The computation of the partial derivative of N with
respect to x, y or z is performed by rigorous application of
the chain rule of differential calculus. For reasons of clarity
and comprehensibility we provide the computations in the
interpolation routine in detail. The computations in the
coordinate transformation routine are carried out in a similar
manner. Hereinafter the subscript ¢ denotes the partial
derivative with respect to x, y or z:

[53] Step a) reads as:

Xe = Pe * (V1 — ‘Ifl)_l

A6
Ye = e (Dray — Dy)~" (49)
[54] Step b) reads as:
X]7§:*Xg-(1*Y)7(le)-Y5
Xe=—X-Y+(1-X)- Y (A7)

Xg=Xe-(1-Y) XY,
X44£:X5-Y+X~Y£
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[55] Step c) reads as:

Lig=he (Hya — HIJA—1)71

Log = he - (Hys1p — Hyr1p-1)""

Ly¢ = he - (Hryie — Hisue—1)~
(

-1
Lag = he - (Hiy o — Hryyip-1)

[s6] Step d) reads as:

Nig =Ny - log(Nys - Nyji- 1) Lig

Nyg =N - log(Niyr15 - N]J-HB 1) Log
N3¢ =Ns - log(Nry1uc NI+IJC 1)Ly
Nye =Ny - 10g(Nrp1s410 - N ysapo1) - Lae

[57] Step e) reads as:

4

Ne = (Xie-Ni+ X Nie)
=1

(A10)

~

[s8] For better computational efficiency a user specific

grid is defined where the model height satisfies H UL = H L
for/=1,., M, J=1, MJandL =0, .., F Foran arbitrary

pornt in the user specrﬁc grid A=B=C=D and L, =

Ly =Ly = Ly. The refract1v1ty at each grid point of the user
specific grid is determined using the coordinate transforma-
tion and interpolation routine outlined above. In order to
circumvent the binary search the user specific grid is defined
such that a simple invertible relation exists between the
height and the grid point index with respect to height. Since
the refractivity tends to decrease exponentially with height,
we propose the following ansatz
- exp(r)% -1
=T =T (A11)
for L =0, .., F. The integer F’ denotes the vertical dimension,
7 denotes the lapse rate and 7 denotes the top height of the
user specific grid. Specifically, for the ECMWF grid we set
=200, 7 = 6 and T = 80 km. On the uncertainty of STDs
due to the interpolation routine the reader is referred to
section 3.

[59] Acknowledgments. The European Centre of Medium-Range
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