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Abstract6

To investigate the influence of atmospheric model resolution on the representation of daily7

precipitation extremes, ensemble simulations with the atmospheric general circulation model8

ECHAM5 at different horizontal (T213 to T31) and vertical (L31 to L19) resolutions and9

forced with observed sea surface temperatures and sea ice concentrations have been carried10

out for 01/1982 - 09/2010. All results have been compared with the highest resolution, which11

has been validated against observations.12

Resolution affects both the representation of physical processes and the averaging of13

precipitation across grid boxes. The latter, in particular, smoothes out localized extreme14

events. These effects have been disentangled by averaging precipitation simulated at the15

highest resolution to the corresponding coarser grid. Extremes are represented by seasonal16

maxima, modeled by the generalized extreme value distribution.17

Effects of averaging and representation of physical processes vary with region and sea-18

son. In the tropical summer hemisphere, extreme precipitation is reduced by up to 30%19

due to the averaging effect, and a further 65% owing to a coarser representation of physical20

processes. Towards mid- to high latitudes, the latter effect reduces to 20%; in the winter21

hemisphere it vanishes towards the poles. A strong drop is found between T106 and T6322

in the convection dominated tropics. At the lowest resolution, northern hemisphere winter23

precipitation extremes, mainly caused by large scale weather systems, are in general repre-24

sented reasonably well. Coarser vertical resolution causes an equatorward shift of maximum25

extreme precipitation in the tropics. The impact of vertical resolution on mean precipitation26

is less pronounced; for horizontal resolution it is negligible.27
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1. Introduction28

Much of our knowledge about future changes in extreme weather events and the mech-29

anisms causing these changes is based on global climate model simulations that employ30

general circulation models (GCMs). There is confidence that climate models provide credi-31

ble quantitative estimates of future climate change, particularly at larger scales, because of32

their physical basis and the ability of models to reproduce observed climate and past climate33

changes (Flato et al. 2013). The representation of mean precipitation patterns has steadily34

improved between each phase of the Coupled Model Intercomparison Project (CMIP) used35

for the Intergovernmental Panel on Climate Change (IPCC) assessment reports (Flato et al.36

2013). However, confidence in projections of extremes is generally weaker than for projec-37

tions of long-term averages (Seneviratne et al. 2012). Extreme precipitation intensities (e.g.,38

Sun et al. 2006), frequencies (e.g., Allan and Soden 2008) and return levels (Wehner et al.39

2010) are generally underestimated by GCMs.40

The simulation of precipitation is much more complex than that of temperature; anisotropic41

multifractal behavior over a wide range of scales has been attributed to precipitation (e.g.,42

Lovejoy and Schertzer 1995) and the simulation of precipitation depends heavily on processes43

that are parameterized in current GCMs (Flato et al. 2013). To accurately represent extreme44

precipitation, models must correctly simulate atmospheric humidity as well as a number of45

relevant processes, such as evapotranspiration, condensation and transport processes (Ran-46

dall et al. 2007). There are uncertainties in the simulation of the water cycle in most CMIP347

GCMs due to a time varying imbalanced atmospheric moisture budget. These biases in turn48

imply biases in the energy balance (Liepert and Previdi 2012; Lucarini and Ragone 2011).49

Along with the increase of computational capacity since the first assessment report (FAR)50

of the IPCC, typical model resolution for short term climate simulations has increased from51

T21 (∼500 km) in the FAR to T106 (∼110 km) in the fourth assessment report (AR4)52

(Le Treut et al. 2007). Vertical resolution has also increased, from ten atmospheric layers53

in the FAR to about 30 layers in the AR4 (Le Treut et al. 2007). Nevertheless, resolving54
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all important spatial and temporal scales remains beyond current capabilities for transient55

global climate change simulations (Le Treut et al. 2007). Biases thus remain, particularly on56

smaller scales and in the tropics, where the regional distribution of precipitation is strongly57

determined by convection, on a wide range of spatial and temporal scales, and on interactions58

between convective processes and the large scale circulation (Flato et al. 2013). For high59

resolution projections of precipitation extremes, different approaches have been employed:60

high-resolution GCMs, dynamical downscaling using regional climate models (RCMs) (Rum-61

mukainen 2010) and statistical downscaling (Maraun et al. 2010).62

Several studies have investigated the resolution dependence of spatial precipitation pat-63

terns in atmospheric general circulation models (AGCMs). For example, patterns of seasonal64

mean precipitation in the NCAR AGCM CCM3 (Duffy et al. 2003; Iorio et al. 2004), as well65

as patterns of extreme precipitation (20-yr return levels) in the NCAR AGCM fvCAM266

(Wehner et al. 2010), are better represented over the USA with enhanced model resolution.67

Wehner et al. (2010) suggest 0.5◦×0.625◦, their highest resolution, to be a breakthrough68

resolution for the representation of extreme precipitation. However, precipitation intensity69

is still limited at this resolution, particularly for tropical cyclones (Wehner et al. 2010).70

Kopparla et al. (2013) have found biases in high percentiles (>95th) of daily precipitation71

in the NCAR AGCM CAM4 to decrease with finer resolution over the USA and Europe,72

whereas their highest resolution (0.25◦) overestimates these high percentiles over Australia.73

Li et al. (2011) have shown in aqua-planet simulations with the CAM3 model that total74

precipitation increases at higher resolutions, especially in the tropics. The larger scales of75

the zonal average precipitation converge with increasing resolution for T85 and higher in the76

aqua-planet version of CAM3 (Williamson 2008). Seasonal differences in resolution depen-77

dence of extreme precipitation are indicated by Prein et al. (2013), who have found different78

mechanisms to be responsible for higher resolution requirement in June, July and August79

(JJA) (more small scale convective events) than in December, January and February (DJF)80

in an RCM over the Colorado Headwaters.81
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Changing horizontal model resolution has two effects on the representation of precipi-82

tation, in particular on its extremes. First, GCM simulated precipitation represents grid83

box area averages (e.g., Osborn and Hulme 1997; Chen and Knutson 2008); the coarser the84

model resolution, the more strongly localized events are smoothed out. To account for this85

“averaging effect”, Chen and Knutson (2008) advise to compare extreme rainfall for different86

model resolutions after all data have been averaged to the lowest considered model resolu-87

tion. Second, coarser model resolution involves reduced precision in the simulation of various88

features, especially feedbacks from smaller to larger scales. These feedbacks, including the89

impact of changes in resolved scales as well as in subgrid scales represented by parameter-90

izations, deteriorates with coarser resolution. Hence, we refer to this effect as the “scale91

interaction effect”. For instance, transient vertical velocities, and accordingly vertical mois-92

ture transport, are simulated more accurately with enhanced horizontal resolution (Pope and93

Stratton 2002; Li et al. 2011). A better representation of orography, due to higher horizontal94

resolution, improves local precipitation patterns (e.g., Smith et al. 2013; Pope and Stratton95

2002; Duffy et al. 2003; Iorio et al. 2004) and has remote effects on the storm tracks as well96

as on the mean circulation (Pope and Stratton 2002; Jung et al. 2006). In general, changes97

in resolution mostly affect resolved scales, but there are also impacts on the parameterized98

physics (Roeckner et al. 2004). The more realistic representation of resolved dynamical99

properties provides, in turn, improved input to the parameterization schemes. Also, the100

interaction between parameterization schemes (e.g., between the convection and cloud mi-101

crophysics schemes) is more detailed at higher resolution. Finally, truncation causes artificial102

separation of resolved and unresolved (i.e., parameterized) processes (Arakawa 2004). When103

changing the horizontal model resolution, one faces the combined effects of averaging and104

scale interaction. We call these overall effects “resolution effects”1.105

Changing vertical resolution affects several physical processes, particularly those related106

1Note that resolution effects include changing grid size as well as changing the resolution dependent

tunable parameters, see section 2b.
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to the hydrological cycle. Higher vertical resolution leads to a marked redistribution of107

humidity and clouds (Roeckner et al. 2006). Most notable is the drying of the upper tro-108

posphere, which is related to a lowering of the tropopause and hygropause (Roeckner et al.109

2006). In the tropics, the response of humidity and clouds to increased vertical resolution is110

related to changes in cloud top detrainment of water vapor and cloud water/ice (Roeckner111

et al. 2006). These improvements are largely due to the smaller numerical diffusion at higher112

vertical resolution, allowing for a larger, and also more realistic, vertical moisture gradient113

to be maintained throughout the troposphere (Hagemann et al. 2006). These changes in114

humidity and clouds in turn influence precipitation. On the global scale, both precipitation115

and evaporation are smaller at higher vertical resolution over land, in better agreement with116

observations (Hagemann et al. 2006). Finally, the sensitivity of the hydrological cycle to117

vertical resolution might be closely related to the tropospheric moisture changes caused by118

a more accurate vertical moisture transport at higher vertical resolution (Hagemann et al.119

2006).120

Which minimum resolution of GCMs is sufficient to represent patterns and characteristics121

of extreme precipitation at the global scale remains an open question. To our knowledge,122

there is no study investigating the resolution dependence of (1) extreme precipitation on (2)123

the global scale, with (3) realistic topography and (4) separately for different seasons. We124

are also not aware of any study investigating the impact of vertical resolution on extreme125

precipitation. While it is widely acknowledged that the averaging effect plays an important126

role when evaluating extreme precipitation on gridded datasets, and therefore should be127

removed before any comparisons of extreme precipitation from different sources are carried128

out, its separation from the overall resolution effect and quantification across different scales129

remains an open question.130

Here, we study the dependency of extreme precipitation on horizontal and vertical model131

resolution. In particular, we address the following questions:132

i. What is the importance of the averaging effect to the overall resolution effect when133
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simulating extreme precipitation?134

ii. To what extent does representation of extreme precipitation at different resolutions135

depend on season?136

iii. At which resolution, compared with the highest considered resolution, is the strongest137

deterioration in the representation of extreme precipitation evident?138

iv. Are there regions where the dependence of extreme precipitation on resolution is weak139

or where the scale interaction effect can be neglected?140

v. What is the influence of vertical resolution on the representation of extreme precipita-141

tion?142

In section 2 of the paper, we describe the setup of the atmospheric model, the design of143

the resolution experiment and the statistical model used to analyze extremes. In section 3,144

modeled extreme precipitation return levels at different horizontal and vertical resolutions145

are compared for different seasons. Finally, section 4 contains the conclusions.146

2. Data and Methods147

We consider daily precipitation simulated by the AGCM ECHAM5. A key part of our148

study is to disentangle the averaging and scale interaction effects. To this end, we consider149

simulations at different resolutions and compare them with the highest resolution simulation,150

averaged to the corresponding lower spatial scales as recommended by Chen and Knutson151

(2008).152

a. The Atmospheric General Circulation Model153

We use the AGCM ECHAM5 (Roeckner et al. 2003), developed at the Max Planck154

Institute for Meteorology, Germany. ECHAM5 is a global spectral model and calculates155
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precipitation fluxes on the Gaussian transform grid (Roeckner et al. 2003). The sensitivity156

of ECHAM5 to horizontal and vertical resolution has been studied for mean climate charac-157

teristics (Roeckner et al. 2006) and the hydrological cycle (Hagemann et al. 2006). Notable158

deficiencies in the hydrological cycle are a dry bias over Australia and a lack of a rainforest159

climate in central Africa, where precipitation is too low during the dry season (Hagemann160

et al. 2006). The ECHAM5 model overestimates precipitation over the oceans, especially161

in high-resolution simulations. This bias is a general problem in current GCMs that could162

possibly be related to insufficient atmospheric absorption of solar radiation by aerosols, wa-163

ter vapor, or clouds (Hagemann et al. 2006). The bias of basic climate variables decreases164

monotonically with increasing horizontal resolution from T42 to T159 (Roeckner et al. 2006).165

As the L31 vertical resolution versions are superior to their L19 counterparts, except for166

T42 horizontal resolution, Roeckner et al. (2006) recommend the vertical resolution L19 for167

the horizontal resolutions T31 and T42, and the vertical resolution L31 for higher horizon-168

tal resolutions. Enhanced vertical resolution is more beneficial than increased horizontal169

resolution for the simulation of mean precipitation in ECHAM5 (Hagemann et al. 2006).170

b. Experiments171

We carried out simulations covering the period 01/1982 - 09/2010 (29 years), driven with172

the same transient present day boundary forcing for all resolutions. Sea surface temperatures173

(SSTs) and sea ice concentrations (SICs) were interpolated to the corresponding horizontal174

resolutions from optimal interpolation 1/4 degree daily SST analysis (OISST), version 2,175

(Reynolds et al. 2007) and high resolution (12.7 km) observed SIC from Grumbine (1996)176

of the National Oceanic and Atmospheric Administration (NOAA). Greenhouse gas forcing177

was kept constant at present day concentrations (348 ppm). An overview of the different178

horizontal and vertical resolutions of these simulations is given in Table 1. Three ensemble179

realizations of the resolutions T106L31, T63L31, T42L19 and T31L19 were run to assess180

internal variability. The top four and bottom two vertical levels of L31 and L19 are similar.181
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The greatest difference (doubling) in vertical resolution occurs between approximately 70182

and 500 hPa (Roeckner et al. 2003). In all resolutions we used the default ECHAM5 param-183

eterization and the parameter settings recommended by Roeckner et al. (2004, 2006) for the184

respective resolution. Note that our aim is not to isolate the sensitivity of the dynamical185

and physical response to pure grid spacing from the sensitivity of modeled precipitation to186

tunable parameters. Such intention would require experiments with fixed parameterizations187

and tuning parameter values such as proposed in Leung et al. (2013) and applied by, e.g.,188

Rauscher et al. (2013). Our objective is rather to quantify the effect of changing the model189

resolution, and to separate this effect into the contribution of spatial averaging and the resid-190

ual scale interaction effect. Our definitions of both scale interaction and resolution effect191

thus are not limited to changing the grid spacing, but additionally include the adaptation of192

tunable parameters to recommended values as feedback from parameterizations also interact193

with different scales. Nevertheless, additional experiments showed that the sensitivity of194

extreme precipitation to parameter choice is negligible in the range of considered resolutions195

(not shown).196

c. Statistical Model197

We modeled daily precipitation extremes with the block maxima approach, following the198

Fisher-Tippet theorem: Given a sequence of n independent identically distributed random199

variables Xi, i = 1, . . . , n, the properly rescaled maximum of this sequence Mn converges for200

large n - in case a limiting distribution exists - to the Generalized Extreme Value (GEV)201

family of distributions (Fisher and Tippett 1928; Gnedenko 1943; Coles 2001):202

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
(1)

with the location parameter µ, the scale parameter σ and the shape parameter ξ. The tail203

of the distribution is determined by ξ as follows: ξ → 0: infinite smooth tail; ξ > 0: infinite204

heavy tail; ξ < 0: bounded tail (Coles 2001). The independence assumption of the Fisher-205
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Tippet theorem can be relaxed to a wide class of stationary, but not necessarily independent,206

processes (Coles 2001; Rust 2009; Faranda et al. 2011, 2013).207

Extreme quantiles are obtained by inverting Eq. 1:208

zp =


µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
for ξ 6= 0

µ− σ log {− log(1− p)} for ξ = 0

, (2)

where G(zp) = 1− p. The return level zp associated with the return period 1/p is expected209

to be exceeded on average once in 1/p blocks, i.e., zp is exceeded in any particular block with210

probability p (Coles 2001).211

Parameters of the GEV distribution (Eq. 1) were estimated with Probability Weighted212

Moments (PWM) (Hosking et al. 1985) using the “fExtremes“ package (Wuertz 2009) in213

R (R Development Core Team 2011). PWM performs well for small sample sizes and is214

computational efficient (Hosking et al. 1985). The analysis was carried out seasonwise. A215

block length of one season (i.e., three months) turned out to be a good compromise between216

an appropriate fit for most regions and a sufficiently long maxima time series of 29 years to217

keep sampling uncertainties reasonably low. To avoid a misfit of the GEV distribution in218

very dry regions, we excluded time series from our analysis that contained more than one zero219

in the seasonal maxima time series. As a representation of extreme events, we considered220

the 20 season return level of daily precipitation (RL20S). For example, the RL20S for DJF221

is exceeded in any DJF season with the probability 1/20, i.e., on average every 20th DJF222

season. The RL20S is already reasonably extreme, but still low enough to avoid biases223

caused by the estimation procedure (Hosking et al. 1985) or undesirably high estimation224

uncertainty. Sampling uncertainties of RL20S were assessed by a bootstrap method (see225

appendix for details).226

9



d. Separation of averaging and scale interaction effects227

The results of the simulations at different model resolutions are compared with our highest228

resolution (T213L31). Chen and Knutson (2008) advise that, when comparing extreme229

precipitation from different sources, precipitation should be averaged to the same spatial230

scale beforehand, as climate models provide grid box averages of precipitation (e.g., Roeckner231

et al. 2003, for ECHAM5), which includes the averaging effect if precipitation is compared on232

different grids. We averaged daily precipitation at the highest resolution (T213) to coarser233

grids for comparison with the coarser resolutions on similar spatial scales (see Table 2).234

Statistics were calculated after daily precipitation had been averaged to the appropriate235

spatial scale. In the following, we refer to the simulations carried out at different model236

resolutions (Table 1) as coarser resolution simulations (CRS). The averaged T213 resolutions237

T2132×2, . . . ,T2137×7 (Table 2) are referred to as averaged high resolution simulations (AHS).238

The averaging effect was approximately disentangled from the scale interaction effect by239

comparing RL20S in CRS with those in AHS on similar spatial scales.240

3. Results and Discussion241

The highest resolution, T213L31, has been validated against observational datasets: glob-242

ally for seasonal mean precipitation and over the USA, Europe, Russia, the Middle East and243

southeast Asia for extreme precipitation. The global pattern of seasonal mean precipitation,244

as well as many features of the regional spatial distribution of RL20S, are well represented245

(see appendix for details).246

a. Resolution and averaging effect247

Fig. 1 illustrates the global pattern of RL20S as a function of resolution for DJF and JJA.248

The first and third rows (panels a - c and f - h) show CRS and, hence, the full resolution effect,249
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including both averaging and scale interaction. The second and fourth rows (panels d - e and250

i - k) show AHS and, thus, represent solely the averaging effect in relation to the respective251

first panel (a and f). The differences between the first (third) and second (fourth) rows252

illustrate the scale interaction effect. The middle panels differ in horizontal resolution, while253

the right panels differ in horizontal and vertical resolution. The general global pattern of254

the RL20S is captured by all resolutions: differences are rather small and mainly related to255

reduced magnitudes2. The differences between RL20S in CRS and in AHS are in general256

smaller for T63L31 than for T31L19, see, e.g., the south Pacific in DJF and Siberia in JJA.257

These differences indicate a better performance of T63L31 in both DJF and JJA.258

Fig. 2 demonstrates the different effects for four example regions: the tropical Amazon259

region, which is governed by deep convection; the southeastern USA, a subtropical climate260

with mild winters; eastern Asia, a continental climate with cold snowy winters; northern Eu-261

rope, where winter precipitation is mainly caused by large scale weather systems AHS (black)262

represents the averaging effect of RL20S, i.e., this scaling dependence is caused by increased263

grid size. CRS (blue) shows the overall resolution effects of the RL20S. The difference be-264

tween the RL20S in AHS and in CRS is a first order estimate of the scale interaction effect.265

The pure averaging effect in general causes a decrease of RL20S in AHS with increasing266

spatial length scale. The same holds for CRS. Three different horizontal scaling dependen-267

cies of RL20S are found. CRS is either below (e.g., Amazon region), approximately equal268

(95 % confidence intervals overlap; e.g., southeastern USA) or above (e.g., eastern Asia)269

AHS. This finding indicates that the dominant mechanism strongly influences the scaling270

behavior and thereby also determines the minimal required horizontal resolution. Different271

vertical resolutions (blue and red) are compared in section c.272

2Note that regional differences are masked by the logarithmic scale.
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b. Influence of horizontal resolution273

To quantify the differences between the RL20S in the CRS and in the AHS, grid box274

wise ratios of the RL20S at each resolution to the corresponding averaged high resolution3
275

were computed (see Fig. 3). The colors in Fig. 3 correspond to the different scaling types276

in Fig. 2 as follows: (a) red: RL20S in CRS below RL20S in AHS, (b) yellow: both curves277

approximately equal, and (c) blue: RL20S in CRS above RL20S in AHS. RL20S strongly278

decreases between T106 and T63 over an almost entire zonal band. This behavior is partic-279

ularly pronounced in regions where deep convection is the main mechanism causing extreme280

precipitation, i.e., close to the intertropical convergence zone (ITCZ). This big difference281

between T106 and T63 suggests that T106 is an efficient horizontal resolution for simulating282

extreme precipitation at these latitudes. However, for all resolutions, parts of the northern283

hemisphere’s landmass remain in the range of ± 20% from T213 in DJF, indicating that284

extreme precipitation is still represented comparably well at T31L19 resolution.285

Fig. 4 shows the impact of all resolution effects in CRS compared to the high resolution at286

its original resolution - not to those in AHS - on the representation of extreme precipitation.287

T106 resolution is again good enough for simulating extreme precipitation. The deterioration288

of return level representation from T106 to T63 is even more pronounced and extends to a289

wider area as when compared with AHS (see Fig. 3). Yet still, wide areas in the northern290

hemisphere in DJF are not sensitive to changes in resolution. In these regions, both scale291

interaction and averaging effects are negligible.292

To illustrate the benefit of choosing a higher resolution, compared with the nearest coarser293

resolution, the overall difference of extreme precipitation return level representation without294

“removing” the averaging effect between consecutive resolutions is provided in Fig. 5. Again,295

T106 is an efficient resolution for simulating extreme precipitation.296

3For resolutions which do not have an exactly corresponding averaged T213 resolution (T159, T63, T31),

the corresponding value was linearly interpolated between the two surrounding averaged T213 resolutions

(e.g., T2133×3 and T2134×4 for T63).
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Fig. 6 provides zonal means of the RL20S for all considered resolutions. Panels a and297

b show zonal means of the RL20S covering the overall resolution effect. In panels c and d298

the zonal means (a, b) are normalized by the zonal mean of the RL20S of the corresponding299

averaged high resolution4, i.e., the averaging effect is approximately removed and only the300

residual scale interaction effect is shown. As expected, meridional variation decreases at301

coarser resolution. The highest relative reduction occurs in the belt of extreme tropical302

summer precipitation related to the ITCZ: here the RL20S decreases by about 75% from303

T213 to T31 (a and b). This reduction is dominated by the scale interaction effect. After304

removing the averaging effect, the decrease still amounts to 65% (c and d). The averaging305

effect alone thus causes a decrease of approximately 1 − 0.25
0.35

= 29%. In the mid-to higher306

latitudes of the summer hemisphere, the scale interaction effect reduces to a decrease of307

about 20%; in the winter hemisphere it vanishes towards the poles.308

The most noticeable differences are again found between the RL20S in T106 and in T63.309

For instance, the RL20S peaks just off the equator, towards the winter hemisphere, vanish310

at T63 and lower resolutions (a and b). The corresponding dips in panels c and d indicate311

that this reduction is caused by the scale interaction effect. However, consistent with the312

ratios in Fig. 3 - 5, the zonal means of the RL20S in the mid- and high latitudes in winter313

are not sensitive to changes in resolution.314

4For resolutions which do not have an exactly corresponding averaged T213 resolution (T159, T63, T31),

the corresponding averaged T213 zonal mean was approximated as follows: Initially, both surrounding

averaged T213 zonal means (e.g., T2133×3 and T2134×4 for T63) were interpolated to the latitudinal scale

of the coarser horizontal resolution (e.g., T63) to have an equal number of values. Subsequently, a weighted

mean between the averaged T213 zonal means was taken. The weights were chosen according to the position

of the coarser horizontal resolution’s latitudinal length scale in relation to each surrounding averaged T213

resolution’s latitudinal length scale.
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c. Vertical resolution315

Fig. 2 shows that vertical resolution also has a regionally varying impact on the repre-316

sentation of extreme precipitation. Over northern Europe in DJF, differences between the317

area averages of the RL20S at different vertical resolutions are negligible, whereas in the318

other regional examples the area average of the RL20S at coarser vertical resolution is less319

than the area average of the RL20S at higher vertical resolution. This difference is more320

pronounced at T63 than at T42.321

To further investigate the structure of changes in the RL20S with vertical resolution,322

zonal means of the RL20S (Fig. 6) of high vertical resolution (solid lines) are compared with323

the RL20S of the low vertical resolution (dashed lines). Coarser vertical resolution causes324

a decrease in the RL20S. Additionally, the peak of extreme tropical summer precipitation325

associated with the ITCZ is shifted equatorwards at coarser vertical resolution. This effect326

is stronger in boreal summer (JJA) than in austral summer (DJF). The spatial structure327

of changes in extreme precipitation return levels with vertical resolution is shown in Fig. 7.328

The impact of vertical resolution is higher at T63 than at T42, consistent with the regional329

examples (Fig. 2). High vertical resolution is particularly important in a zonal band around330

the ITCZ. For extreme precipitation associated with the Asian monsoon, high vertical res-331

olution is crucial. However, over parts of the northern hemisphere in DJF, coarser vertical332

resolution is sufficient for the representation of the RL20S.333

d. Comparison with mean precipitation334

Fig. 8 shows zonal means of mean precipitation totals (a, b), mean precipitation inten-335

sities (c, d) and the mean number of wet days (e, f) for DJF and JJA to study differences336

to the scale dependence of extreme precipitation. The impact of horizontal resolution on337

mean precipitation totals and mean precipitation intensity is negligible. Peaks of the high338

resolutions T213, T159 and T106 are similar, however coarser resolutions show slightly de-339
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creased peaks. Even though these differences are small compared to those of extremes, there340

is consistency regarding the large differences between T106 and T63 which were observed for341

extremes. As zonal means of coarser vertical resolution show a slightly different structure,342

higher vertical resolution is beneficial for the representation of mean precipitation totals and343

intensities as well. However, these differences are less pronounced than for extremes.344

The mean number of wet days increases with coarser resolution due to small scale events345

being averaged over a larger area (”drizzle effect“). The differences in the mean number of346

wet days between resolutions are most pronounced in the mid- and high latitudes of the347

northern hemisphere in DJF, as well as in JJA. Most landmasses are located in this area,348

leading to different representations of orography at different resolutions, which influences,349

e.g., precipitation induced by orographic lifting. In JJA, over the mid- and high latitudes of350

the northern hemisphere, vertical resolution appears to be an important factor, in addition351

to horizontal resolution. In DJF, vertical resolution does not appear to play an important352

role in the mean number of wet days. These results suggest that spatial resolution also has353

an impact on the representation of dry spells in the model we use.354

Discussion355

The strong dependence of extreme precipitation on model resolution is consistent with356

Wehner et al. (2010), Chen and Knutson (2008) and Kopparla et al. (2013). Wehner et al.357

(2010) found 0.5◦×0.675◦ (similar to T213) of the fvCAM2 to be a breakthrough resolution358

for the representation of 20-yr return level patterns over the USA, particularly for precip-359

itation intensities of tropical cyclones in the southeastern USA, by validating the model360

with observational patterns of 20-yr return levels on similar spatial scales. We found that361

return levels at T106 (1.13◦×1.13◦) were comparable to those of the highest resolution T213362

(0.56◦×0.56◦) in most regions. Thus, in general, at least T106 appears to be required for the363

representation of extreme precipitation. Consistent with our results, their coarsest resolu-364

tion 2◦×2.5◦ (between T63 and T42) is too coarse to represent the main features of extreme365
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precipitation return levels, compared with observations (Wehner et al. 2010).366

The efficiency of ECHAM5 in simulating extreme precipitation at different resolutions367

varies with season and region. These differences are likely due to a varying convective con-368

tribution to total precipitation and a changing height of the convective cell. Areas where369

deep convection is an important process generally require higher horizontal resolution than370

regions where extreme precipitation is mainly due to large scale weather systems. For the371

representation of extreme precipitation resulting from large scale weather systems, the scale372

interaction effect is negligible and higher horizontal resolution only reduces the averaging ef-373

fect. These differences, which are related to different underlying mechanisms, were identified374

by studying seasonal instead of annual return levels.375

Roeckner et al. (2006) found an adequate representation of climate in ECHAM5 with376

a vertical resolution of L19 for T42 and T31. In contrast to these findings, Hagemann377

et al. (2006) found a higher vertical resolution of L31 to improve the representation of378

mean precipitation in ECHAM5. Here we show that this effect is even more pronounced for379

extreme precipitation. Our results demonstrate that, in general, higher vertical resolution is380

necessary to study extreme precipitation: L31 outperforms L19 at all horizontal resolutions,381

except for parts of the mid- and high latitudes in winter. Mean precipitation, as well as382

evaporation, at coarser vertical resolution is higher over land and lower over the ocean in383

ECHAM5 (Hagemann et al. 2006), whereas dependence of extreme precipitation on vertical384

resolution varies with latitude and season over ocean as well as land.385

We show that for mean precipitation, the impact of horizontal resolution is negligible,386

which is consistent with Hagemann et al. (2006) and Kopparla et al. (2013). A compari-387

son of mean precipitation totals and intensities with extreme precipitation yields completely388

different structures of resolution dependence and, hence, extreme precipitation cannot be389

estimated directly from mean precipitation intensities or from a distribution that was esti-390

mated or corrected according to the mean.391
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4. Conclusions392

We analyzed the impact of horizontal and vertical resolution on the representation of393

extreme precipitation return levels in the AGCM ECHAM5. ECHAM5 was driven with the394

same transient present day boundary forcings for all resolutions.395

Decreasing horizontal resolution has several impacts on extreme precipitation. First, in-396

creasing grid size has the effect that precipitation is averaged over a larger area (averaging397

effect). Second, in lower horizontal resolutions the coarser representation of, e.g., physical398

processes and orography yields inferior representation of extreme precipitation (scale inter-399

action effect). Note that we do not intend to identify the pure grid spacing effect, but rather400

define the resolution effect as the overall effect of changing grid spacing and tunable parame-401

ters. If one were interested in a separation of the pure grid spacing, one would have to carry402

out experiments as proposed by Leung et al. (2013) and applied by, e.g., Rauscher et al.403

(2013). The highest resolution (T213) averaged to coarser grid sizes (T2131×1 - T2137×7:404

averaged high resolution simulation - AHS) was compared with coarser resolutions (T159 -405

T31: coarser resolution simulations - CRS). Differences between AHS and CRS provide406

an approximate first order discrimination between these two effects. Thereby, the relative407

importance of both effects was determined. 20 season return levels of daily precipitation408

(RL20S) in different resolutions were compared, derived from a generalized extreme value409

(GEV) distribution.410

Horizontal, as well as vertical, model resolution were found to affect the representation411

of extreme precipitation. The averaging effect contributes considerably to decreasing re-412

turn levels with resolution. In the belt of tropical summer extreme precipitation associated413

with the ITCZ, averaging from T213 to T31 reduces the RL20S by almost 30%. Hence,414

in accordance with Chen and Knutson (2008), we strongly recommend to compare extreme415

precipitation from different sources (e.g., different models, observations) only after averaging416

to the same spatial scale. The scale interaction effect is strongest in the summer hemisphere.417

In the band of extreme precipitation associated with the ITCZ, the reduction amounts to418

17



around 65% when changing the model resolution from T213 to T31. Towards mid-to higher419

latitudes, the scale interaction effect reduces to a decrease of about 20%. In the winter420

hemisphere it vanishes towards the poles.421

The minimum required horizontal resolution for extreme precipitation was found to de-422

pend on season and region and, thus, mainly on the underlying process(es). In general,423

extreme precipitation caused by small scale convective events requires higher horizontal res-424

olution than extreme precipitation caused by synoptic scale weather systems. Particularly425

in the tropics, but also in the extratropics during summer, at least T106 is required to rep-426

resent comparable return levels to the highest resolution T213. Only marginal changes to427

RL20S, caused by the averaging effect, were found in the mid- and high latitudes in winter,428

such as over parts of the northern hemisphere’s landmass in DJF; here RL20S in T31L19 are429

comparable to those in the highest resolution (T213) on similar spatial scales. Over wide430

areas of the mid- and high latitudes during winter (e.g., Canada and Asia in DJF), extreme431

precipitation was even found to be insensitive to changes in resolution when comparing T31432

with the highest resolution (T213) at its original resolution.433

Higher vertical resolution is crucial for the representation of precipitation (consistent434

with Hagemann et al. 2006). This applies particularly to the extremes, as coarser vertical435

resolution causes an equatorward shift of maximum extreme precipitation, as well as a de-436

crease in return levels. Therefore, we recommend the use of higher vertical resolution for437

extreme precipitation, even for relatively coarse horizontal resolutions such as T42 or T63.438

Yet, the impact of vertical resolution is more pronounced in T63 than in T42. An exception439

is during winter in the mid- and high latitudes where RL20S in coarser vertical resolution440

are comparable to those in high vertical resolution.441

Extreme precipitation shows a completely different scale dependence to mean precipita-442

tion. The impact of horizontal resolution on mean precipitation is negligible, whereas higher443

vertical resolution is still meaningful but less pronounced than for the extremes. This implies444

that extreme precipitation cannot be estimated directly from mean precipitation intensities445
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or from a distribution that was estimated or corrected according to the mean.446

Here we present a model study where we take the highest model resolution as reference447

for comparison with the coarser model resolutions. This reference simulation, in general,448

compares well with gridded observations, but also shows deficiencies in simulating Asian449

monsoon as well as orographic extreme precipitation, which both tend to be overestimated.450

By construction, we disregard effects not correctly simulated by the highest considered reso-451

lution of the chosen model. In all considered resolutions, convection is parameterized. Thus,452

related dynamical feedbacks are not resolved. Other relevant processes for extreme precipita-453

tion that might need even higher resolution than all considered resolutions, such as tropical454

cyclones (Wehner et al. 2010), are beyond the scope of our study. Furthermore, climate mod-455

els may not fully capture important features of atmospheric dynamics related to extremes,456

in particular persistent weather regimes (Petoukhov et al. 2013; Palmer 2013). Finally, as we457

have employed an atmosphere only model with prescribed ocean boundary conditions, ocean458

feedbacks are likewise not represented. Any recommendations for minimum resolutions refer459

solely to the representation of RL20S in an AGCM and do not imply that the above listed460

phenomena are well represented at these resolutions.461

Although we have only studied the scaling behavior of extreme precipitation in one462

AGCM, i.e., ECHAM5, we believe that our results are also valid for other AGCMs as physical463

explanations for the scale dependence of extreme precipitation could be identified.464
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APPENDIX481

482

Uncertainties in the Return Levels483

a. Internal model variability484

One source of uncertainty in the estimation of return levels is internal variability of the485

climate system. To assess this unforced internal variability of the climate model, long time486

series are required. As our model runs are only 29 years long, due to limited availability of487

the high resolution boundary conditions, we performed three ensemble members with slightly488

different initial conditions for the resolutions T106L31, T63L31, T42L19 and T31L19 which489

are each 29 years long. The difference between RL20S in these three ensemble members yields490

uncertainties in the return level estimation due to the climate model’s internal variability.491

Fig. 9 shows zonal means and the respective zonal standard deviations of RL20S in these492

three ensemble members for different resolutions. Rather small differences between the zonal493

means of the three ensemble members in all resolutions in DJF as well as in JJA indicate494

that the forced climate is reliably represented.495

b. GEV sampling uncertainty496

In this study, GEV parameters were estimated from 29 data points of three month long497

blocks. This rather small sample size may cause uncertainties in the return levels. To assess498

these uncertainties, we applied a parametric bootstrap method (Efron and Tibshirani 1993)499

to the highest (T213L31) and coarsest resolution (T31L19) as follows. 1000 random time500

series (size: 29 data points, as in the actual sample), distributed according to the fitted GEV501

distribution, were generated for each grid box. Subsequently, GEV parameters for each time502

series were estimated. The 95% confidence interval of the empirical distribution of RL20S in503
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these 1000 realizations quantifies the GEV parameter uncertainties of RL20S. Fig. 10 shows504

the zonal mean of RL20S in this study (solid lines) and the zonal mean of the grid box wise505

95% confidence intervals derived from the bootstrap method (dashed lines), i.e., the latitude506

dependent mean parameter uncertainty of a grid box is shown. The confidence intervals507

are quite symmetric and indicate an acceptable spread, which gives us confidence in our508

return level estimates. Note that this is the parameter uncertainty of the mean grid box at509

a given latitude. Under the assumption that the empirical distribution is symmetric and the510

samples are independent, the parameter uncertainty of the zonal mean is related to the zonal511

mean of the parameter uncertainty by a scaling factor of 1√
n
(according to Gaussian error512

propagation). Thus, sampling uncertainties for the zonal mean (see Fig. 10) are negligible.513

c. Validation of the highest resolution of ECHAM5 with observational datasets514

To assess the performance of the highest resolution (T213L31) of ECHAM5 which is used515

as reference for the coarser resolutions in our study, we validated model precipitation with516

gridded observational datasets. As no global daily precipitation dataset with sufficient den-517

sity of rain gauges is available to reliably estimate extreme precipitation return levels, the518

latter were only validated for regions where daily precipitation gridded datasets with a high519

density of rain gauges are available. On a global level we validated seasonal mean precipita-520

tion using the global precipitation climatology project (GPCP) dataset (Adler et al. 2003).521

The GPCP gridded dataset is a globally complete monthly analysis of surface precipitation522

at 2.5◦×2.5◦ resolution (Adler et al. 2003). It incorporates precipitation estimates from low-523

orbit satellite microwave data, geosynchronous-orbit satellite infrared data and surface rain524

gauge observations (Adler et al. 2003). Precipitation of the ECHAM5 model output was av-525

eraged by area conservative remapping to the GPCP grid. 20 season return levels (RL20S)526

were validated over the USA, Europe, Russia, the Middle East and southeastern Asia. For527

the USA, the NOAA CPC (Climate Prediction Center) “US Unified Precipitation” dataset528

(Higgins et al. 2000) was used. This is based on approximately 35 000 rain gauges over529
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the whole continental USA, sparsest in the western USA, and gridded to 0.25◦×0.25◦ (Hig-530

gins et al. 2000). RL20S over Europe is validated with the European daily high-resolution531

(0.25◦×0.25◦) gridded data set (E-OBS, version 9) of precipitation (Haylock et al. 2008).532

This has been developed in the framework of the ENSEMBLES project. The density of533

rain gauges is irregular and, in some regions, sparse (Haylock et al. 2008). To estimate534

RL20S over Asia, the “Asian precipitation - highly-resolved observational data integration535

towards evaluation of the water resources” (APHRODITE) dataset (Yatagai et al. 2012) was536

employed. The APHRODITE dataset comprises Global Telecommunication System-based537

data (the global summary of the day), data precompiled by other projects or organizations,538

and APHRODITE’s own collection (Yatagai et al. 2012). The number of included rain539

gauges varies considerably over the domain (Yatagai et al. 2012). From all observational540

datasets the same time period as in the model runs was used for the validation, with the541

exception of the APHRODITE datasets which cover a slightly shorter time period up to542

2007. Precipitation in the gridded datasets was averaged by area conservative remapping to543

the T213 grid.544

Fig. 11 shows seasonal mean precipitation in ECHAM5 (T213L31) and in the GPCP545

dataset. In both seasons, the global pattern is well captured by ECHAM5. However, regional546

biases can be seen, such as an overestimation of monsoon precipitation over southeastern547

Asia in JJA. Large uncertainties in the simulation of the Asian summer monsoon have been548

shown by Hasson et al. (2013) for CMIP3-GCMs. Precipitation over parts of the oceans549

in both seasons is also too high. Over the western Asian continent and Australia in DJF,550

precipitation is underestimated by ECHAM5. These biases are consistent with the validation551

of the hydrological cycle in ECHAM5 by Hagemann et al. (2006).552

In Fig. 12 and 13, RL20S of daily precipitation as simulated by ECHAM5 at T213L31553

resolution and different high resolution observational gridded datasets are provided over the554

USA, Europe, Russia, the Middle East and southeastern Asia for DJF and JJA, respectively.555

In Tab. 3, the root mean squared errors of the spatial mean of RL20S over these analyzed556
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regions of the ECHAM5 model at T213L31 resolution are displayed. The pattern of RL20S557

in the USA (panels a - b) is generally well captured by ECHAM5 at T213L31 resolution. The558

major deficiencies are a wet bias in the east in DJF and too dry regions in JJA in Florida559

and north of the Gulf of Mexico. The latter is in accordance with Wehner et al. (2010), who560

suggested that this high resolution is still too coarse to capture precipitation intensities that561

are related to tropical cyclones which might not be resolved. Over Europe (panels c - d), the562

pattern of RL20S is well captured by the ECHAM5 model compared to the E-OBS dataset.563

RL20S in mountainous regions (e.g., the Alps) are overestimated. In JJA, some regions are564

slightly too wet, such as eastern Europe. Yet, rain gauge density in the E-OBS dataset565

is sparsest in this region (Haylock et al. 2008), and hence, extreme precipitation might be566

underrepresented in the E-OBS dataset, especially in summer when many heavy rainfall567

events are caused by small scale convective events. The patterns of RL20S over Russia568

(panels e - g) in ECHAM5 and in the APHRODITE dataset are similar, but the model is569

slightly too wet, especially in eastern Russia, in JJA. Again, the sparse density of rain gauges570

in eastern Russia (Yatagai et al. 2012) might contribute to this difference. In the Middle East571

(panels g - h), the RL20S pattern around the Black Sea is reasonably captured. However, a572

wet bias in DJF as well as in JJA can be identified, which is particularly pronounced in the573

southwest of the Arabian peninsula in JJA and in the Iranian plateau in DJF. Although the574

rain gauge density in the APHRODITE dataset over the Arabian peninsula is quite sparse575

as well (Yatagai et al. 2012), this wet region in the southwest of the Arabian peninsula with576

high RL20S appears to be mainly due to a bias in the model, as in the observations no577

evidence for this wet region is visible. Panels i - k show patterns of RL20S over southeastern578

Asia in ECHAM5 and the APHRODITE dataset. Many features of the RL20S pattern are579

captured by the model. However, this region exhibits the largest deficiencies of the analyzed580

regions which is in accordance with the wet bias in the summer monsoon that is also visible581

in seasonal mean precipitation totals (see Fig. 11). The Himalayas are too wet in DJF as582

well as in JJA, of which no considerable part can be attributed to the rain gauge density583
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as this region is well covered with rain gauges (Yatagai et al. 2012). A wet bias over India584

can be identified in the monsoon season - with India being well covered with rain gauges as585

well. Heavy precipitation associated with the summer monsoon is not well captured, which586

is a general problem in current GCMs (Hasson et al. 2013). This is underlined by the high587

RMSE for southeastern Asia in JJA (42.5 mm d−1; see also Tab. 3), the RMSEs in all other588

regions are considerably lower.589

Summarized, the ECHAM5 model at T213L31 resolution well represents the large scale590

pattern of seasonal mean precipitation, as well as many features of the regional spatial dis-591

tribution of RL20S. In most regions, the range of RL20S is well captured, but over parts of592

southeastern Asia (e.g., the monsoon region) and in mountainous regions (e.g., Himalayas,593

Sierra Nevada, Alps, Iranian plateau), RL20S is overestimated by a factor of two. This594

validation of RL20S is limited by the availability of high quality observational datasets with595

suitable rain gauge density. Generally, it is difficult to produce reliable gridded precipi-596

tation datasets for the analysis of extremes due to spatial and temporal inhomogeneity of597

precipitation - especially of precipitation extremes (Teegavarapu 2012).598
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Table 1. List of horizontal and vertical resolutions of the ECHAM5 simulations used in
this study. Horizontal resolution is given as spectral resolution and Gaussian transform grid
resolution. Vertical resolution is given as the number of vertical levels.

Horizontal resolution Vertical resolution
Spectral Gaussian
T213 0.56◦×0.56◦ L31
T159 0.75◦×0.75◦ L31
T106 1.13◦×1.13◦ L31
T63 1.88◦×1.88◦ L31/L19
T42 2.81◦×2.81◦ L31/L19
T31 3.75◦×3.75◦ L19
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Table 2. Spatial averaging of the highest used ECHAM5 resolution T213L31: Number of
averaged grid boxes and resulting Gaussian grid box size.

Spatial averaging Gaussian grid box size
2×2 1.125◦×1.125◦
3×3 1.69◦×1.69◦
4×4 2.25◦×2.25◦
5×5 2.81◦×2.81◦
6×6 3.38◦×3.38◦
7×7 3.94◦×3.94◦
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Table 3. Root mean squared error of simulated 20 season return levels (RL20S) [mm d−1]
in the highest used ECHAM5 resolution T213L31 validated by CPC, E-OBS (version 9) and
APHRODITE gridded precipitation datasets.

USA Europe Russia Middle East Monsoon Asia
DJF 14.02 6.59 7.19 9.74 15.48
JJA 4.87 8.08 26.60 6.47 42.54
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Fig. 1. 20 season return level (RL20S) [mm d−1] maps for (a - e) DJF and (f - k) JJA;
logarithmic color scale, a - c and f - h: changing model resolution, d - e and i - k: averaged
high resolution. White: seasonal maxima time series contain more than one zero value.
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Fig. 2. Scaling behavior for example regions; area averages (with 95% confidence inter-
val, as 1.96×area standard deviation) of 20 season return levels (RL20S). Black: averaged
high resolution, blue: coarser horizontal resolutions in high vertical resolution, red: coarser
horizontal resolutions in low vertical resolution.
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Fig. 3. Ratios between 20 season return levels (RL20S) at coarser horizontal resolutions
(for T63 and T42 the L31 simulations are shown) and RL20S at the respective averaged
high resolution for DJF (left hand column) and JJA (right hand column). White: seasonal
maxima time series contain more than one zero value. Before computing the ratios, RL20S
in all resolutions were interpolated bilinearly to a T63 grid.
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Fig. 4. Ratios between 20 season return levels (RL20S) at coarser horizontal resolutions
(for T63 and T42 the L31 simulations are shown) and RL20S at the highest resolution at
its original resolution for DJF (left hand column) and JJA (right hand column). White:
seasonal maxima time series contain more than one zero value. Before computing the ratios,
RL20S at all resolutions were interpolated bilinearly to a T63 grid.
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Fig. 5. Ratios between 20 season return levels (RL20S) in consecutive horizontal resolutions
(for T63 and T42, the L31 simulations are shown) at their original resolutions for DJF
(left hand column) and JJA (right hand column). White: seasonal maxima time series
contain more than one zero value. Before computing the ratios, RL20S in all resolutions
were interpolated bilinearly to a T63 grid.
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Fig. 6. Zonal means of 20 season return levels (RL20S); (a, b): different horizontal (solid
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ima time series contain more than one zero value in at least one resolution are excluded in
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Fig. 9. Zonal means (solid lines) and zonal standard deviations (dashed lines) of 20 season
return levels (RL20S) for three ensemble members with slightly different initial conditions
in the resolutions T106L31, T63L31, T42L19 and T31L19 for DJF (left hand column) and
JJA (right hand column).
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Fig. 10. Zonal means of 20 season return levels (RL20S) of this study (solid lines) and zonal
means of 95% confidence intervals (dashed lines) for RL20S in DJF and JJA; Confidence
intervals are computed with a parametric bootstrap method.
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Fig. 12. Simulated (T213L31, left hand panels) and observed (right hand panels) 20 season
return levels (RL20S) [mm d−1] in DJF; Observational datasets are b) CPC, d) E-OBS
version 9, f) APHRODITE Russia, h) APHRODITEMiddle East, k) APHRODITEMonsoon
Asia. White: missing values in observational dataset or seasonal maxima time series contain
more than one zero value.
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Fig. 13. Simulated (T213L31, left hand panels) and observed (right hand panels) 20 season
return levels (RL20S) [mm d−1] in JJA; Observational datasets are b) CPC, d) E-OBS version
9, f) APHRODITE Russia, h) APHRODITE Middle East, k) APHRODITE Monsoon Asia.
White: missing value in observational dataset or seasonal maxima time series contain more
than one zero value.
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