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1. Executive summary  

A primary aim for the ECO2 project was to determine the possible impacts of sub-seabed CO2 

leakage on marine communities and the ecosystem processes they support. In addition to the leakage 

of CO2 it was also considered that the additional environmental risks associated with the displacement 

of high salinity, low oxygen reservoir formation water should also be explored. ECO2 (Work Package 

4) addressed this issues using controlled laboratory exposure experiments and observations from a 

marine environment with naturally high levels of CO2.   

Modelling and experimental studies have shown that, due to the rapid dissolution of CO2 into 

sediment porewaters and into the seawater immediately above the seafloor, the majority of biological 

impacts from CCS leakage are likely to be seen in benthic or epibenthic communities. At the centre of 

a leak large changes in carbonate chemistry can occur within the sediment, whilst further from the 

leak plumes of dense CO2 enriched water can wash over the seabed. Consequently, although some 

information on pelagic systems is presented in this report, effort with the ECO2 project was primarily 

concentrated on the study of benthic habitats and communities.  

Mesocosm experiments and observations at natural CO2 seeps have confirmed that leakage 

from CCS has the potential to cause significant impacts and mortalities in benthic organisms leading 

to changes in community structure and a reduction in both biodiversity and ecosystem function. These 

community level impacts are driven by both the physiological response of organisms to high levels of 

CO2 (see ECO deliverable D4.2 “The response and potential adaptation of marine species to CO2 

exposure associated with different potential CO2 leakage scenarios” for a description of these 

responses) and the indirect effects of altering ecological drivers such as competition and predation. In 

addition, exposure to high salinity, low oxygen formation water can also have a significantly negative 

impact on marine communities and function. 

Data from ECO2, and from other projects, has confirmed that the size and severity of the 

response of benthic communities to CO2 exposure is strongly moderated by both the magnitude of the 

CO2 dose and the duration of the exposure period. By combining this knowledge with the outputs of 

CO2 dispersion models it should be possible to appreciate the spatial and temporal scales over which 

biological impacts are likely operate in the advent of leak.   

In summary, this WP identified impacts on benthic communities by both CO2 leakage 

scenarios and formation water release. These were observed not only at the biogeochemical level, but 

also in microbial communities, fauna and their behaviour. Whilst some information remains to be 

gathered, the results summarised in this report identified that the impacts of leakage of CO2 on benthic 

ecosystems will be influenced by the scale and duration of the leak, and that potential effects will be 
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modulated by seasonality and hydrodynamics. These can act to mitigate impacts, or to exacerbate 

them, depending on the response measured. Some of this information generated by WP4.1 is entirely 

novel and lends support to the perspective the future monitoring work aimed at characterising 

potential impacts of CCS on benthic habitats should therefore consider this element of natural 

variability in natural systems. Without it, we are likely to fail to provide a true assessment of risk, 

impact and recovery. 
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2. Gathering data – methods and approaches 

 

During the ECO2 project, a variety of methods and approaches have been used to assess the 

potential impacts of CCS leakage on the structure and function of marine communities. The 

use of these different approaches allows us to identify generic patterns and paradigms 

independent from the recognised, method specific weakness associated with single approach 

studies. Tightly controlled mesocosm based studies allow us to demonstrate cause and effect 

between specific environmental drivers (such as pH, hypoxia and salinity) and key biological 

responses. We have used a large mesocosm facility to examine the potential impacts of CCS 

leakage on typical NE European soft sediment biological communities and processes. In 

parallel to these experiments WP4 researchers have also studied natural CO2 vents as 

analogues for the long-term impact of CO2 leakage on shallow water and continental margin 

ecosystems, communities, species and their function. During joint campaigns with WP2 and 

WP3, changes in diversity and structure of marine communities along natural gradients from 

high CO2 leakage to background levels have been analysed. By comparing mesocosm results 

with observations from field sites which are naturally exposed to elevated levels of CO2 we 

can determine if experimental responses are seen in the more complex, natural, marine 

systems.  

 

2.1 Mesocosm studies  
 

A high CO2 exposure system was built at the NIVA marine research station in Solbergstrand, 

Oslofjord, Norway. This was used to perform an exposure experiment (2012/2013) where 5 

CO2 concentration treatments were used (control (400 ppm), 1000, 2000, 5000 and 20000 

ppm of CO2), to investigate the impacts of a leakage from a CCs injection site or pipeline on 

benthic communities and processes. Sampling took place after 2 and 20 weeks of exposure, to 

identify potential short and medium term impacts, respectively. The severity and speed of 

impact on diversity and structure of micro-, meio- and macrobenthic communities were 

determined. Moreover, impacts on benthic ecosystem processes were also determined at each 

time-point by measuring changes in bioturbation activity (i.e. mixing of sediment particulates 
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by burrowing infauna), bio-irrigation (i.e. flushing of benthic sediment by burrowing fauna 

through burrow ventilation), and community respiration, all expected to reflect the 

physiological impact of environmental stressors. A variety of biogeochemical parameters and 

processes were also measured to identify potential changes in sedimentary nutrient and 

organic matter cycling. These included sedimentary pH profiles, fluxes of nutrients (PO4, 

NH4, SiO4, NO2, NO3), and the rate of ammonia oxidation in the seawater and sediment, 

associated with experimental treatments. Seawater total alkalinity, total inorganic carbon, 

temperature, salinity, seawater and sedimentary pH were also monitored. Sedimentary 

properties including particle size distributions and porosity were also measured. To assess the 

impact of treatments on microbial activity, densities and organic matter composition and 

turnover, a new partner representing the Polytechnic University of Marche (UNIVPM) and 

lead by Prof Roberto Danovaro entered this WP free of costs. This group further measured 

viral abundance; total Prokaryotic abundance; relative importance of Bacteria and Archaea on 

total prokaryotic abundance; viral production; selective viral impact on Bacteria and Archaea; 

prokaryotic heterotrophic production; extracellular enzymatic activities; organic matter 

composition and turnover; and meta-genetic analysis of prokaryotic and metazoan benthic 

assemblages. 

 

In response to recommendations from the 18 month project review, a second mesocosm 

experiment was devised to assess the short-term impacts of the release of hypoxic brine from 

formation waters during a sub-seabed CO2 injection. The high CO2 mesocosm system used in 

the first year was thus modified to accommodate this work, and this experiment ran in the end 

of summer 2013. Because we were interested in the effects of hypoxic brine, we also 

investigated, in parallel, the individual effects of hypoxia and high salinity on benthic biota 

and processes, to disentangle the potential contributions of each stressor to potential changes 

in the benthos. A fourth impact scenario was considered, in which tidal flushing of a brine 

plume by standard seawater was simulated (section 2.1.1), in light of the findings of the FP7 

project QICS. This experiment therefore gauged five experimental treatments: control, high 

salinity (48 g/l NaCl), hypoxia (1.4 g/l O2), mixed (48 g/l NaCl and 1.4 g/l O2), and tidal(see 

section 2.1.2 for details). These exposures lasted 2 weeks.  
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To assess the impacts on benthic community structure and processes, the same endpoints 

were measured as had been for the high CO2 experiment. Additional measurements were 

carried out for sedimentary sulphide and redox profiles.  

 

2.1.1 Elevated CO2 in the overlying water to simulate the impact of a plume of CO2 
enriched water 
 

During the 3
rd

 week of August 2012 (from the 13
th

 to the 15
th

) 

sediments were collected in the Oslofjord (59°49.4788’ N, 

10°58.8595E), Norway, at 100m depth. Samples were 

collected using a KC Denmark 0.1m
2
 box corer equipped with 

a liner, which allowed retrieving the sediment cores with 

minimal disturbance (fig.1a). Each box corer had an average 

penetration depth of ~40 cm. A total of 50 liners were 

collected and transferred to the benthic mesocosm system at 

the Marine Research Station, Norwegian Institute of Water 

Research, Solbergstrand, Norway. All cores were kept in 

complete immersion during transport and retrieval to the 

mesocosm, to prevent desiccation, and to minimise 

temperature changes. Once in the mesocosm, the liners were 

placed in a flow-through holding basin filled with seawater to 

a depth of 1 m for approximately 4 weeks, to allow organisms 

to acclimate to laboratorial conditions. A pipeline situated at 60 

m in the adjacent fjord continuously supplied the holding basin 

with physically filtered, natural seawater (fig.1b).  

 

After acclimatization, the high CO2 experiment was initiated, including 5 treatment levels 

(400 (control), 1000, 2000, 5000 and 20000 ppm of CO2). The 50 liners were distributed 

randomly between treatments in equal numbers. Each liner was allocated to a treatment via 

constant supply of water from one of the five treatment seawater header tanks (fig.1c) at a 

flow rate of 120 mL.min
-1

. The day light regime in the basing was approximately 8 hours 

Figure 1: (a) K-C Denmark box 

corer deployment in the Oslofjord. 

(b) mesocosm acclimation of 

sediment liners (September 2012). (c) 

high CO2 mesocosm setup (October 

2012). 
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light: 16 hours dark, and temperature was allowed to follow ambient fluctuations. Sampling 

took place at the beginning of the experiments, prior to the beginning of the CO2 exposures 

(T0); after 2 weeks (T1); and after 20 weeks (T2). These sampling points provided data on 

control conditions, the effects of a potential CO2 short term leek, and those of a potential 

medium term leek, respectively. On each occasion, the liners were sampled for the 

parameters listed, using the methods below. 

 

Impacts on macrofauna were determined from samples collected at all sampling points 

(T0, T1, T2, four liners per treatment). Two types of samples were collected from each liner 

to this end. A sub-core was collected to assess changes in diversity with depth within the 

sediment; and a second sample was acquired using all the sediment left in the liner after all 

other sampling had been carried out, to identify bulk changes in sedimentary macrofaunal 

comunities. In the first case, 10 cm diameter PVC corers were used to extrude a core 

approximatelyy 15 cm deep from each liner, which was sliced at 0–1, 1–3, 3–5, 5–10, 10–15 

cm sediment layers. Each sediment layer was sieved through a 500 µm sieve, and each 

sample fixed in 10% buffered formaldeheyde until processing. The second macrofauna 

sediment sample was also sieved and fixed as above. In the lab, specimens were identified to 

the lowest taxonomical level possible, to estimate taxa abundances per m
2
.  

 

Impacts on meiofauna will be determined from four 10 ml sediment samples, collected at 

all sampling points (T0, T1, T2) from the first 5 cm sediment layer using a cut-off syringe, 

and pooled within each of four replicates per treatment. 

 

Impacts on microbial communities are also being assessed. Three independent replicates 

of sediment samples form each liner were collected by hand coring (using Plexiglas tubes, 5.5 

cm inside diameter) and sliced in 0-1; 1-3; 3-5; 5-10; 10-15 cm layers. For each layer, 

aliquots were collected and stored (-20°C) for subsequent analysis of viral and prokaryotic 

abundance (epifluorescence microscopy), organic matter composition (concentration of 

phytopigments, total lipids, carbohydrates and proteins) and metagenomic analysis of 

prokaryotic and metazoan benthic diversity (by means of 16S and 18S rRNA gene 

pyrosequencing). Incubations of sediment samples at in situ temperature for fluorometric 
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analysis of extracellular enzymatic activities (aminopeptidase, alkaline phosphatase and β-

glucosidase) was conducted on the top sediment layer (0-1 cm). Sediment samples from the 

0-1 and 10-15 cm layers were incubated at in situ temperature and stored (-20°C) until 

epifluorescence microscopy and genetic analyses for viral production and selective viral 

impact on Bacteria and Archaea. Prokaryotic heterotrophic production analysis was 

conducted on the 0-1 and 10-15 cm layers using the tritiated leucine incorporation method, 

(i.e. incubation of sediment samples at in situ temperature and subsequent storing of samples 

at +4°C until further analysis by liquid scintillation counting). 

 

To complement the biological 

datasets, the impact on a 

number of biogeochemical 

parameters and processes was 

quantified. Impacts on 

sedimentary pH profiles 

were determined by use of 

optical sensors (T1 and T2, 

Fig. 2, Queirós, Taylor et al. in 

review). Sediment cores (12x12 cm) were extruded from two replicate experimental units per 

treatment level onto tight fitting clear acrylic aquaria, within which optical pH sensors had 

been mounted. These cores were then allowed to equilibrate over 24 hours under the 

corresponding experimental seawater flow and CO2 conditions, at the end of which pH 

profiles were acquired. pH was measured using Dual Lifetime Referencing based optical 

sensors, at cm intervals, and down to a depth of 5 cm within each core.Two cores were 

profiled per CO2 treatment at T1 and T2.  

 

Impacts on ammonia oxidation rates were measured following the method Kitidis et al. 

(2011) at T1 and T2. For this, 3-5 ml of the first cm of the sediment in each liner were 

sampled into six individual 10 ml Weathon glass serum bottles and filled with overlying 

treatment seawater. Each bottle was immediately sealed with a butyl rubber stopper under 

water, avoiding trapping of air bubbles. Three of these bottles were then injected with 100µL 

Figure 2: Acquisition of sedimentary pH profiles. Left: aquarium housing sediment 

and optical sensors (white), connected to a PC. Right: acquisition of otical pH 

profile using optical sensors at T2, showing temperature sensor (balck), and 

handhelp pH macroprobe. 
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of 100 mM stock solution of NaClO3, and the remaining three bottles injected with 100 µL of 

100 mM stock solution of allylthiourea. Additionally, six 10 ml Weathon glass serum bottles 

were filled with the seawater in each header tank and treated in the same way. All bottles 

were incubated in the dark within the mesocosm basin for approximately 20 hours, at known 

temperature, and subsequently frozen at -20
o
C until processing. A 10 ml Weathon glass 

serum bottle was additionally filled with surface sediment from each liner to assess sediment 

porosity via dehydration. Ammonia oxidation rates in the sediment and seawater were 

subsequently calculated using the concentration of NO2
-
 in the NaClO3 samples, considering 

that in the allylthiourea treated samples, in each treatment. Allylthiourea and NaClO3 are 

inhibitors of ammonia oxidation into nitrite and of nitrite into nitrate, respectively. NO2
- 
 

concetrations were estimated using spectrophotometry, as described in Kitidis et al. (2011). 

 

Impacts on nutrient fluxes (PO4, NH4, SiO4, NO2, NO3) were measured at T0, T1 and T2. 

To this end, 50ml samples of seawater from each inlet and liner pair  were collected on three 

occasions to cover the night night cycle, at each time point (T0, T1 and T2). The 

concentration of each nutrient in each sample was estimated using a nutrient auto-analyser 

(Branne & Luebbe, AAIII) and standard methods  (Brewer and Riley 1965; Mantoura and 

Woodward 1983; Kirkwood 1989; Zhang and Chi 2002; Grasshoff, Kremling et al. 2009). 

Fluxes were calculated using the equation in Widdicombe and Needham (2007) considering 

the difference in concentration between paired inlet and liner samples. 

 

Sediment granulometry and organic content were determined at all time-points (T0, T1 

and T2) from 10 ml sediment samples collected from the first 5cm of sediment layer of each 

of four replicates per treatment, using a cut-off syringe. Particle size distributions were 

estimated using a Beckman Coulter LS laser particle size analyser. Organic content is to be 

determined as in Buchanan (1984). 

 

Fluxes of oxygen, alkalinity TIC and manganese were measured using a flow-through 

technique at T2 (Schaanning et al., 2008). A lid was placed on top of each box to eliminate 

gas exchange with the atmosphere. With the use of a multichannel peristaltic pump with 

separated tubes from the respective header tanks to each tank, a flow through system was 
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rebuilt. When the rate of the water flow through the tanks was stabilized, concentrations of 

dissolved oxygen, pH, total Mn, alkalinity and TIC were measured. We measured 

concentrations of dissolved oxyegen (with a Clark electrode and with Winkler 

technique(Hansen, 1999), pH (with Metrohm 380 pH meter), total Mn with 

spectrophotometric technigue (Grashoff et al., 1999), alkalinity and TIC as recommended in 

(Dickson et al., 2007). 

 

Impacts on bioturbation (i.e. the biogenic mixing of sedimentary particulates) were 

measured at T1 and T2. This process can be used to assess the overall activity of faunal 

organisms, resulting from the displacement of materials during feeding, scavenging and 

burrow construction. Bioturbation was quantified by use of a fluorescent sediment tracer 

adequate to the sediment type used in this experiment (i.e. luminophores, fig. 4.3a) and 2D 

UV imaging. These well established methods consist in the addition of luminophores 

(Mahaut and Graf 1987) to sediments containing a community or species of interest in situ or 

under laboratory conditions (Gerino, Aller et al. 1998; Solan, Wigham et al. 2004), followed 

by an incubation period and subsequent retrieval. A profile of the tracer distribution with 

sediment depth can then be visualised at a cross-section of the sediment (e.g. liner wall, Fig. 

3a,b), and the bioturbation activity of the species present quantified from this in a number of 

ways. 

Two sets of data were acquired at each time-point: whole liner measurements (all liners, Fig. 

3a); and additional measurements were carried out using UV time-lapse photography in the 

cores extruded for pH profiling (two replicates per treatment level, Fig 3b and c). In the first 

case, we added 0.15g.cm
-2

 of homogenised luminophores to the sediment surface within each 
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liner, making up a luminophore surface of approximately 0.02 m
2
 (Figure 3a), 

 

Figure 3: Measuring bioturbation. (a) laying luminophores for whole liner bioturbation assessment. (b) a sediment core used 

for time-lapse bioturbation assessment, under UV light. (c) the time-lapse setup for 5 CO2 treatments, showing imaging 

boxes and PC setup. 

covering approximately 25% of the liner surface area. At this stage, all circulation was 

interrupted to allow the tracer to settle. The tracer formed a layer approximately 0.3 cm thick 

within one hour, after which time the re-circulation in each liner was re-initiated. One side of 

each of four liners per CO2 treatment was photographed under UV light at this point, to 

define initial conditions for the bioturbation transport models used subsequently (section 3.6). 

For imaging, we  used a modification of the camera setup in Schiffers, Teal et al. (2011); i.e. 

an imaging black box was lowered onto each liner, housing the individual liner at one end, 

for each photograph. Two 8W UV-A lights, fixed onto the inside of the box and powered 

externally, stimulated luminophore excitation, enabling the tracing of the fluorescent 

luminophore particles against the dark background sediment. Images were captured using a 

digital SLR camera (Canon EOS 500D; 15.1 MP; pixel size≈ 100µm), which had been fixed 

at the opposing end of the imaging box, at 90 cm from the wall of the visualised liner. 

Cameras were set to use 10 seconds exposure, f=5.6, ISO=100, and were remotely controlled 

via a PC using time-lapse software (GB Timelapse, V 3.6.1). Images were captured in RGB 

format and stored using JPEG compression. At the end of 48 hours, the same side of each 

liner was photographed again to estimate bioturbation profles.  

For the time-lapse bioturbation incubations, we extruded 12 x 12 x 20 cm cores used for pH 

profiling (as above) onto clear acrylic aquaria, at the end of each time-point, insuring that at 

least 3.0 L of overlying exposure water was retained above the sediment. Each aquarium was 

transferred into a second type of imaging black box, following the setup in Schiffers, Teal et 
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al. (2011), the inside of which was illuminated by an 8W UV-A light. Inside, each core was 

supplied with seawater from the corresponding exposure water system using a peristaltic 

pump system (Watson Marlow) to generate a flow through. The flow was set to 20 mL.min
-1

, 

one sixth of the flow in the experimental exposure liners given the relatively smaller surface 

area of these cores, and therefore maintaining a similar water residence time. After 24 hours, 

0.15g.cm-
2
 of the same luminophores were gently added to the surface of each core as before, 

raising the sediment-water interface by approximately 0.3 cm. This marked the beginning of 

a two day observation of community bioturbation behaviour, during which one of the walls of 

each core was photographed continuously, using fluorescent time-lapse photography at 

hourly intervals, which started one hour after the addition of the tracer (Figure 3b and c). 

Camera and software setups used were the same as described above. At the end of the 48 

hours, all of the cores were sieved over a 500 µm round mesh, retaining all macrofauna which 

was fixed in 10% buffered formaldeheyde, and stained with rose Bengal until processing. 

All images were analysed using custom-made standardized scripts modified from Queirós 

(2010), which enable the extraction of the location of the flurescent luminophoes in each 

image in relation to the linearized sediment water interface, and thus the reconstruction of 

luminophore profiles within the sediment. We used the whole liner data to quantify 

bioturbation by estimation of maximum bioturbation depth. We also fitted the observed 

luminophore profiles to the biodiffusion transport model (Guinasso and Schink 1975) to 

quantify the biodiffusion coefficient, an indicator of bioturbation intentsity and thus 

activity.We used the time-lapse data to estimate the same parameters and model coefficients, 

and to fit the Shiffers model that describes bioturbation as a on random-walk process 

(Schiffers, Teal et al. 2011). 
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Impacts on bio-irrigation, i.e. sediment flushing 

by burrowing fauna, were quantified, as this 

process has important effects on sedimentary 

biogeochemistry (Kristensen, Penha-Lopes et al. 

2012) and can also be used to assess the overall 

condition of the infuanal communities. In 

summary, we used a chamber setup (Fig. 4) to 

incubate four liners per treatment, at T0, T1 and T2. To each liner, we added the innert tracer 

NaBr to make up a concentration of 10M, considering the exact volume of water in each 

liner. Each liner was incubated over four hours under controlled flow conditions (5 rpm, 

Figure 4), during which no circulation to and from the main seawater system was allowed. 

Water samples were collected at hourly intervals to determine variation of tracer 

concentrations over time. 50 ml water samples were immediately filtered (GF/F), and frozen 

at -20
o
C until processing. Concentrations will be determined via spectrophotometric methods 

sensu Presley and Claypool (1971). 

 

Seawater total alkalinity and total inorganic carbon were monitored in each header 

tank and in liners, once a week, using the methods in Dixson, Munday et al. (2010). Sewater 

temperature, pH, salinity and oxygen, were monitored twice a week in each liner, and in 

header tanks, using macro probes. Table I illustrates environmental parameters measured in 

the water overlying each liner throughout the 20 week experiment, providing mean ± sd for 

each parameter estimated across replicate liners. 

 
Table I: Experimental conditions in water overlying sediments during the high CO2 experiment (rows 1-5, section 2.1.1), 

and the formation water experiment (rows 6-10, section 2.1.2). Nominal stressor treatments in the first column, and the 

associated geochemical impacts illustrated in the pH, salinity and oxygen columns. 

 

 

 

 

 

 

 

Treatment Temperature Salinity pH Oxygen 

400 ppm 8.89 +/-2.35  33.82 +/-0.52  8.05 +/-0.06  7.31 +/-0.35  

1000 ppm 8.75 +/-1.61  33.82 +/-0.52  7.68 +/-0.10  7.34 +/-0.33  

2000 ppm 8.70 +/-1.65 33.82 +/-0.52  7.47 +/-0.11  7.34 +/-0.32  

5000 ppm 8.75 +/-1.54  33.82 +/-0.52  7.06 +/-0.08  7.26 +/-0.33  
20000 ppm 
ppm 

8.79 +/-2.3 
 

33.81 +/-0.52 6.58 +/-0.06 7.23 +/-0.35 

     
Control 12.3 +/-1.6  33.9 +/-0.3  8.0 +/-0.1  7.8 +/-0.5 

Hypoxic 13.1 +/-1.6  33.9 +/-0.1  7.9 +/-0.1  3 +/-1.3 

Figure 4: Bio-irrigation measurement chamber setup. 
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2.1.2 The ECO2 hypoxic brine “Formation water” experiment 
  

Sediment cores (32 x 27 x 40 cm, 0.9 m
2
 surface area) were collected on the 13

th
 -14

th
 of 

August 2013 from Oslofjord (Norway, 59
o
49.4788' N 10

o
58.859' W, 100 m depth) using a KC 

Denmark 0.1m
2
 box-corer. All cores were returned to the laboratory within 8 hours of 

collection, at the Marine Research Station, Norwegian Institute of Water Research, 

Solbergstrand, Norway. On arrival, the liners were distributed randomly within the 

experimental basin where they were immediately submerged in a common flow through bath 

of physically filtered seawater collected locally from Oslofjord (approx. 60 m depth) for 19 

days. T0 was set as the control sampling point, lasting between the 3
rd

 and the 10
th

 of 

September 2013. Experimental exposures ran between the 11
th

 of September and the 7
th

 of 

October 2013 (T1), when the last sediment core was sampled. During these 3 ½ weeks, 20 

liners were exposed to the five experimental treatment levels described above, generated and 

maintained as batch water in 4 individual 16m
3 

basins. High salinity was achieved by raising 

the salinity of control seawater to 48 g/L using 99% NaCl (GCRiebber) in line with a 

conservative estimate of the levels estimated for formation fluids in the Southern Viking 

Grabben (MA 2003). Hypoxia was achieved by bubbling of N2 gas in the batch basins 

containing control seawater, via an adapted Walchem system. Oxygen was lowered to 1.4 

g/L. The tidal treatment was simulated by flushing of a header tank that was supplied with 

water from the mixed treatment with control water, twice a day (9AM-3PM, and 9PM-3AM 

of each experimental day). At each time point, samples were collected to determine a range 

of environmental responses for all of the endpoints described above for the high CO2 

experiment (section 2.1 and 2.1.1), using the same methods. 

 

In this experiment, sedimentary pH profiles were acquired using glass microelectrodes 

(Cai and Reimers 1993) and macroprobes (Metrohm 380 pH meter). These were acquired on 

slicing of the sediment cores to quantify possible effects on the vertical distribution of 

macrofauna, as before (section 2.1.1) Sedimentary sulphide and redox profiles were 

Hypersaline 12.5 +/-1.8 48.2 +/-1.2  7.9 +/-0.1  7.2 +/-0.5 

Mixed 12.9 +/-1.8  48.0 +/-1.3  7.8 +/-0.1  2.7 +/-0.1 

Tidal 12.7 +/-1.8 41.6 +/-8.5  7.85 +/-0.1  4.25 +/-2.2  
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acquired simultaneously, also using macroprobes (Radiometer  En,  silver chloride electrode 

filled with potassium chloride solution, which is suitable as a reference electrode). The 

experimental conditions observed in the liners are summarized in Table I, and in figure 5, 

below. In addition, distributions of phosphate, ammonia, nitrate, dissolved 

manganese (Mn2+) and dissolved iron (Fe2+), and alkalinity in the pore water were 

measured in 10 cm cores at the end of experiment, on the 10
th

 of October 2013. We calculated 

the DIC and saturations of calcite and aragonite as a functions of pH and alaklinity with the 

CO2SYS excel sheet (http://cdiac.ornl.gov/ftp/co2sys/). 

 

 

 

 
Figure 5: Oxygen concentration in the header tank seawater (a) and in the tidal treatment seawater mixing basin (b) during 

the formation water experiment (section 2.1.2). a) shows the difference between oxygen concentration in the control (open 

circles) and the high salinity treatment (open squares), and that in the hypoxic (filled circles) and mixed treatments (filled 

squares).b) show the by-daily tidal regime imposed in the “tidal treatment”, illustrating the oscillation of oxygen 

concentration between conditions during the flushing of the high salinity and hypoxic plume by control water (normoxic 

conditions, high tide), and when no flushing of the high salinity and hypoxic plume was simulated (low tide). 
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2.2 Field observations at a natural CO2 seeps 
 

Several field campaigns were carried out in natural CO2 vents at the Panarea island, part of 

Aeolian islands, as natural analogues. The Aeolian Islands are located in the south-eastern 

Tyrrhenian Sea, north of the town of Messina, in Sicily, Italy. They are the visible part of the 

mainly submarine Aeolian volcanic structure (Beccaluva et al. 1982). Panarea is a small 3.3 

km
2
 island and its nearest neighbor is Stromboli Island with its active volcano. The release of 

CO2 from the seabed in Panarea, visible by gas emissions, is mostly controlled by the NE-

orientated faults (Gabbianelli et al. 1933). The gas contains mostly of CO2 (Calanchi et al. 

1995).  

Gas emissions at the Panarea site are present in moderate flows and also in strong fumaroles. 

Emissions are found in rocky, sandy and seagrass areas. The underwater habitats are a 

patchwork of sand slopes and seagrass meadows. Close to the island and also between the 

small islands, rocky habitats are dominant. Explorative dives have confirmed that some areas 

are influenced by thermal fluids and / or sulfur precipitations. Those with pure CO2 venting 

have been selected as field sites for the study of CO2 effects in this project. Where gas 

emissions occur, reduced pH in the seawater was detected (pH range 7.4 to 8.1; pCO2 range 

360 to 3000 ppm, Figure 6), corresponding to a low to intermediate CO2 treatment in the 

mesocosm experiments. 

 

 

Figure 6: pH and pressure (tide) data measured in situ with RBR sensors (RBR-Datalogger XR-420 D; RBR, Ottawa, 

Canada, www.rbr-global.com). RBRs were positioned at St. B2 (Reference) and St B1 (seep: HighCO2), 2 cm above the 

sediment surface, and they collected measurements in continuo for two weeks. At the same time and location the 

“Handheld” microsensor instrument recorded data for pCO2 (Microelectrodes Inc., USA), temperature (Pt100; UST 

Umweltsensortechnik GmbH, Geschwenda, Germany), pH and oxygen (data not show). 
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After an initial sampling campaign in the summer of 2011, two CO2-impacted and one 

background site had been identified as suitable sampling sites for functional long-term 

investigations of the microbial and meiofaunal community affected by CO2 emissions: 

“HighCO2” (St. B1), “LowCO2” (St. B3) and “Ref” (St. B2). Stations B1 and B2 (referred to 

as the control sites), were chosen also for water column characterization. The same sites were 

re-visited for biological and geochemical sampling. Furthermore, OGS and UniRoma1-CERI 

collected waters samples for chemical and biological analyses along a transect crossing a 

vents area between Bottaro and Lisca Bianca Isles (LB transect). In this area, gas emissions 

characterized by H2S smell were also detected. 

 

 
Figure 7: Position of stations sampled off of Panarea during Eurofleets, in the summer of 2011 (P= PACO2 stations – long 

transect, B= Basiluzzo stations, CB=CB stations, LB=LB stations – short transect). 

  

In addition, in the summer of 2011, under the framework of the ‘Eurofleets’ Project (call 

2010), an oceanographic survey (PaCO2) was carried out onboard the R/V Urania, off the 

coast of Panarea Island. Detailed profiles conducted in deep water sites, impossible from the 

small boats normally used at Panarea test site, have allowed for a complete characterization 

of the water column along a transect cutting the submerged seamount where the bulk of 

previously known gas leakage points occur (McGinnis et al. 2011). During the cruise, OGS 

and UniRoma1-CERI carried out chemical and biological analyses in the water column and 

set up an experiment to evaluate the intensity and impact of viral production and decay on 

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

B1B1
B2B2

LB7LB7

LB1LB1

Adriatic
Sea

Tyrrhenian
Sea

Tyrrhenian Sea

Panarea

Basiluzzo

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

P0P0P0P0

P33P33P33P33

P26P26P26P26

P30P30P30P30

P31P31P31P31

P35P35P35P35

P15P15P15P15

P19P19P19P19

P23P23P23P23

P25P25P25P25

B1B1
B2B2

B1B1B1B1
B2B2B2B2

LB7LB7

LB1LB1

LB7LB7

LB1LB1

Adriatic
Sea

Tyrrhenian
Sea

Tyrrhenian Sea

Panarea

Basiluzzo

B3B3

CBHot

CBCold

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

B1B1
B2B2

LB7LB7

LB1LB1

Adriatic
Sea

Tyrrhenian
Sea

Tyrrhenian Sea

Panarea

Basiluzzo

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

P0P0P0P0

P33P33P33P33

P26P26P26P26

P30P30P30P30

P31P31P31P31

P35P35P35P35

P15P15P15P15

P19P19P19P19

P23P23P23P23

P25P25P25P25

B1B1
B2B2

B1B1B1B1
B2B2B2B2

LB7LB7

LB1LB1

LB7LB7

LB1LB1

Adriatic
Sea

Tyrrhenian
Sea

Tyrrhenian Sea

Panarea

Basiluzzo

B3B3

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

B1B1
B2B2

LB7LB7

LB1LB1

Adriatic
Sea

Tyrrhenian
Sea

Tyrrhenian Sea

Panarea

Basiluzzo

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

P0P0

P33P33

P26P26

P30P30

P31P31

P35P35

P15P15

P19P19

P23P23

P25P25

P0P0P0P0

P33P33P33P33

P26P26P26P26

P30P30P30P30

P31P31P31P31

P35P35P35P35

P15P15P15P15

P19P19P19P19

P23P23P23P23

P25P25P25P25

B1B1
B2B2

B1B1B1B1
B2B2B2B2

LB7LB7

LB1LB1

LB7LB7

LB1LB1

Adriatic
Sea

Tyrrhenian
Sea

Tyrrhenian Sea

Panarea

Basiluzzo

B3B3

CBHot

CBCold



ECO2 project number: 265847 

 

 

Deliverable 4.1: Potential impact of CCS leakage on marine communities 

WP4; lead beneficiary: Plymouth Marine Laboratory 
 

 

21 

 

prokaryotes along a CO2 gradient. The indicative position of the stations sampled during the 

different campaigns are reported in figure 7. 

In October 2012, May 2013, and May 2014 further research within the framework of WP2, 

WP3 and WP4 was conducted. Two more sites, characterized by very different sediment 

temperatures across a distance of approx. 1 m, were included in the study (CB-HOT, CB-

COLD). A summary of site conditions is given in Tables II and III. Details about the methods 

used in Table II can be found in Annex I. 

 

Table II: Main characteristics of the three sedimentary sampling sites at Basiluzzo Island (Panarea Island, Italy). 

Observations were made during field trip ECO2-3 (June, 2012) by divers (*).. 

 “HighCO2” St. B1 “LowCO2” St. B3 “Ref.” St. B2 

Coordinates N 38°39.749' E 15°07.123' N 38°39.820' E 15°07.137' N 38°39.827' E 15°07.118' 

Water depth* 14-15 m 21 m 14-16 m 

Temperature
1
 19°C  19°C  19°C 

Gas emission
2
 Yes (CO2 98%) Yes (CO2 97%) no 

Area* 10 × 20 m 2 areas, each 3.5 × 5 m  10 × 10 m 

Substrate
3
 fine-medium sand fine-medium sand fine-medium sand 

Seagrass* Posidonia oceanica Posidonia oceanica Posidonia oceanica 

Seagrass 

Epibionts* 

hydrozoa & bryozoa, but also 

calcareous 

hydrozoa & bryozoa, but also 

calcareous 

calcareous, but also hydrozoa 

& bryozoa 

 

1bottom water temperature was measured with SeaGuard CTD (AADI, Norway) 
2CO2 concentrations were determined via gas chromatography 
3Subrate type was assess via physical separation through sieving 

 

 
Table III: Main characteristics of the two sedimentary sampling sites close to Panarea Island (Italy). Observations were 

made during field trip ECO2-6, ECO2-7 and ECO2-9 (October, 2012, May 2013 and May 2014). 

 “CB-HOT” “CB-COLD”  

Coordinates N 38°38.536' E 15°04.714' N 38°38.536' E 15°04.714' 

Water depth 11.9 m 11.9 m 

Temperature 40 ± 5 °C  19 ± 2 °C  

Gas emission No bubbles No bubbles 

Thermal waters 

leakage 

Yes, enriched in CO2 (5-11 mg /m
3
 s flux) No 

Area 1 × 1 m 1 × 1 m 

Substrate fine-medium sand fine-medium sand 

Seagrass Posidonia oceanica Posidonia oceanica 
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In the latter campaign, the general physical-chemical properties of the water column 

were determined with a CTD SeaBird 19 probe. This unit was equipped with sensors for 

temperature, conductivity, pressure, fluorescence, pH, and dissolved oxygen. Water samples 

were collected at discrete depths with Niskin bottles for an accurate characterization of the 

marine carbonate system (pCO2, pH, AT, DIC), chemical properties related to natural seabed 

CO2 leakage (H2S, nutrients) and planktonic communities. The rates of prokaryotic carbon 

production and the exoenzymatic activities have also been examined. 

The headspace technique was used for the quantification of seawater pCO2 (Capasso and 

Inguaggiato, 1998), whereas the pH and total alkalinity was determined following the 

standard operating procedures (SOP 3b, SOP 6a, SOP 6b) described in Dickson et al., 2007. 

Hydrogen sulphide concentrations were estimated spectrophotometrically according to 

Fonselius et al. (1999). A Bran+Luebbe Autoanalyzer 3 was used for the colorimetrical 

analysis of nutrients (nitrite, NO2, nitrate, NO3, ammonium, NH4, phosphate, PO4 and 

silicic acid, H4SiO4) as reported by Hansen and Koroleff (1999). 

Viral abundances were determined from formalin-fixed samples which were immediately 

stored in liquid nitrogen (-80°C) until processing. Samples for the analysis of prokaryotic 

abundance were preserved in buffered formalin, stored at 4 °C and processed within a 

week.  

Viruses and prokaryotes were enumerated in epifluorescence microscopy. Water samples 

for the estimate of viral production and decay were incubated at in situ temperature, as 

well as the incubations with antibiotics to determine the burst size and lysogenic prokaryotic 

fraction.  

Prokaryotic heterotrophic production analysis in seawater was conducted using the 

tritiated leucine incorporation method, (i.e. incubation of water samples at in situ 

temperature, extraction using the microcentrifugation method and subsequent storage of 

samples at +4°C until the analysis of the activity by liquid scintillation counting).  

Extracellular enzymatic activities (aminopeptidase, alkaline phosphatase, β-glucosidase 

and lipase) were determined using fluorometric analysis of hydrolisis rate of water samples 

incubated at in situ temperature. 
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Abundance and species composition of Phytoplankton and Microzooplankton were 

estimated according to the Utermöhl’s method (1958). 

Virtually undisturbed sediment cores were collected by scuba divers and subsampled for the 

analyses of abiotic parameters (sediment grain-size, Total Organic Carbon and Total 

Notrogen, Biopolymeric Carbon) and benthic communities (microphytobenthos and 

meiofauna) and both primary production and prokaryotic heterotrophic production. 

Sediment grain-size analyses were performed using a Malvern Multisizer 2000S analyzer.   

Total Organic Carbon and Nitrogen were determined using a CHNO-S elemental analyzer 

mod. ECS 4010 (Costech, Italy) according to the methods of Pella and Colombo (1973) and 

Sharp (1974). 

Biopolymeric carbon (BPC, sensu Fichez, 1991) was rquantified as the sum of the carbon 

equivalents of carbohydrates, proteins and lipids. Two different carbohydrate (CHO) 

fractions were analysed on lyophilized sediment samples following Blasutto et al. (2005). 

The carbohydrate fraction was measured spectrophotometrically using the phenol-

sulphuric acid assay following Dubois et al., (1956), modified by Gerchacov & Hatcher 

(1972).  

Proteins were determined according to Hartree (1972) modified by Rice (1982).  

Total lipids were extracted from lyophilized sediment samples by direct elution with 

chloroform and methanol (1:2 v/v) following the procedure of Bligh and Dyer (1959) and 

analysed according to Marsh and Wenstein (1966). 

To estimate the impacts on Microphytobenthos, the surface sediment layer was collected 

in triplicates and fixed with 4% formaldehyde/filtered sea water. Only cells containing 

pigments were counted and identified to the genus and, when possible, to the species level 

under an inverted light microscope. 

Some associated processes were measured. Primary production (PP) was estimated using 

the 
14

C incubation method (i.e. incubation of sediment samples in situ and subsequent storing 

of samples at +4°C until further analysis by liquid scintillation counting).  

Prokaryotic heterotrophic production in surface sediment was measured using the the 

tritiated leucine incorporation method (i.e. incubation of sediment samples in situ and 

subsequent storage of samples at +4°C until further analysis by liquid scintillation counting).  
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PAR measurements were performed at the beginning and at the end of all incubations. 

3. Response of specific ecosystem components to leakage from CCS 

3.1 Macrofauna  

3.1.1 High CO2 mesocosm experiment 

The macrofauna data from this experiment is still being processed by NIVA. Therefore, there 

is no preliminary information available at this stage, about the impact of the formation water 

treatments on macrofauna community structure. Some information about the level of activity 

of these communities can, however, be derived from section 3.6.1, as bioturbation activity 

and depth can be used a proxies for individual fitness.. 

3.1.2 Formation water leakage mesocosm experiment  
 

The macrofauna data from this experiment is still being processed by NIVA. Therefore, there 

is no preliminary information available at this stage, about the impact of the formation water 

treatments on macrofauna community structure. Some information about the level of activity 

of these communities can, however, be derived from section 3.6.2, as bioturbation activity 

and depth can be used a proxies for individual fitness. 

3.1.3 Natural seeps 

Macrofauna found at the Panarea sites during the field campaign in 2012 was composed of 

relatively small organisms, occuring in low densities (0-10 cm, CO2 seep St.B1: 1884 ± 1306 

ind.m
-2

, CO2 seep st. B3: 509 ± 392 ind.m
-2

, control site St. B2: 2063 ± 792 ind.m
-2

). 

Densities at the CO2 seep site St. B3 were significantly lower than those at both other sites. 

Although diversity did not differ, the macrofauna composition at both CO2 seep sites differed 

from the control site based on the occurrence of more oligochaetes and amphipods, and less 

polychaetes and gastropods at the seep sites. The macrofaunal organisms are currently being 

identified to the lowest possible taxonomic level. 
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3.2 Meiofauna 
 

3.2.1 High CO2 mesocosm experiment  

Sample processing is ongoing, having suffered significant delays associated with sample 

shipment between Norway (NIVA) and the UK (PML). No preliminary findings are thus 

available. 

3.2.2 Formation water leakage mesocosm experiment 
Meiofauna sample processing is ongoing, having suffered significant delays associated with 

sample shipment between Norway (NIVA) and the UK PML). No preliminary findings are 

thus available. 

3.2.3 Natural seeps 
The results from the 2012 meiofaunal samples indicated density differences in sediments and 

on seagrass shoots under the influence of CO2 seepage. Total meiofauna densities were 

significantly higher in the control sediments at St. B2 compared to the CO2 seep sediments at 

St. B1 and B3 (1340 ± 176 ind.10cm
-2

 vs. 384 ± 201 ind.10cm
-2

, respectively), while in the 

seagrass shoots, the opposite was true (169 ± 53 ind.10cm
-3

 vs. 467 ± 217 ind.cm
-3

, 

respectively, figure 8). From the sediment samples collected in 2013, similar trends emerge. 

Where CO2 seepage occurs, densities are highest in the first two centimeter of sediment, 

showing a steep decline with depth, while at the background site, a more gradual decline with 

depth was observed. This pattern is also reflected by the nematode biomass, which was also 

significantly reduced at the CO2-impacted site (27 ± 15 µg dwt 10cm
-2

 versus 152 ± 55 µg 

dwt 10cm
-2

; 2012). In the sediments, nematode species composition differed between CO2
-

impacted sites and a non-impacted background site for both 2011, 2012 and 2013. This was 

not observed in meiofaunal taxonomical composition. The nematode species composition 

also differed between the two different seepage sites in 2011 and 2012, but not in 2013. In the 

most severe CO2-impacted site differences were also observed in nematode species 

composition between the three consecutive years, caused by the shifting abundance of one 

particular species, i.e. Calomicrolaimus compridus. This species dominated (average ranging 

from 20 - 26%) in 2011 and 2013, in equal contributions to 2 other species,   and dominated 

communities in 2012 with 84 ± 7%. Nematode species richness was significantly lower in the 
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CO2-impacted sites compared to the non-impacted sites, for all three consecutive years 

(averages of 9 - 12; 12 - 17 and 29 – 32 species for the station B1, B3 and B2, respectively). 

Similar trends were found when comparing the diversity index ES (51). In the seagrass (leafs 

and shoots), no significant effects of CO2 were detected on the taxonomical composition of 

meiofauna assemblages. There are more results to follow on the potential effect of acidified 

porewater on the physiology (respiration rates) of the meiobenthos. 

 

 
 

Figure 8: non-metric Multi-Dimensional Scaling plot illustrating the dissimilarity between samples based on nematode 

densities (standardised). Note the clear dissimilarity between the nematode assemblages found at Control st.B2 (=G-) and 

both CO2 seep st.B1 (=R+) and CO2 seep st.B3 (=G+) 

3.3 Microbes 
 

3.3.1 High CO2 mesocosm experiment 
 

Results obtained for the top 1 cm layer of the sediments show that the prokaryotic abundance 

in the controls increased during the entire experiment (Fig.9). Conversely, all the acidified 

systems, independently on the level of acidification, showed values of prokaryotic abundance 

comparable or lower than the control at T0. However, the prokaryotic abundance in the CO2
-

treated systems reached values comparable to the control after the long-term acidification.  
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Figure 9: Prokaryotic abundance in the 0-1 cm sediment layer 

The temporal trends in viral abundance (Figure 10) differed from those of the prokaryotes, 

both in the controls and in the treatments. Indeed, viral abundance decreased in the controls at 

T1 and increased again at T2, at values almost identical to those at T0. The acidified systems 

showed trends similar to the control at T1, but, at T2, viruses did not reach the same 

abundance determined at T0.  

 

 

Figure 10: Viral abundance in the 0-1 cm sediment layer. 

Given the increasing trend in prokaryotic abundance and the decrease or steady value of viral 

abundance over time, the virus-to-bacterium ratio (VBR) decreased over time (Figure 11), 

with the lowest values displayed at the end of the experiment (T2), both in the untreated and 

in the acidified systems. However, in the controls, the VBR reached this low value already at 

T1, while in the treatments this decrease was less evident or even not significant at T1.  

This suggests that the lowering of the pH can alter the natural trends of the variations in viral 

and prokaryotic abundances, due to the different response of viruses and prokaryotes to the 

acidification. In particular, prokaryotes seem to be negatively affected more than viruses after 
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a short-term acidification treatment, independently of the level of acidification. On the 

contrary, the levels of acidification determine different responses in the long-term period, 

with  the lowest VBR resulting in the two extreme acidification conditions (5000 and 20000 

ppm), the 1000 and 2000 ppm treatment being otherwise similar to the control. 

 

 

Figure 11: Virus-Bacteria ratio in the 0-1 cm sediment layer 

The rates of viral production showed the highest peak in the control at T1 (Figure 12), 

decreasing then at T2, but still more than 3 times higher than at T0. This trend did not result 

from any of the acidified system, with viral production rates generally lower than the control, 

with the exception of the most acidified samples at T2. During some specific time intervals, 

viral production in the acidified systems appeared to be inhibited, with resulting values 

extremely low or below the detection limit. 

 

Figure 12: Viral production in the 0-1 cm sediment layer. 

In the control systems, the prokaryotic heterotrophic carbon production did not change 

significantly after the first two weeks of the experiment (Figure 13), while it significantly 
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decreased at T2. The decrease in prokaryotic heterotrophic production at T2 was reported 

also in the acidified systems; however, in all of the acidified systems, this decrease was 

evident at T1 already. 

 

Figure 13: Prokaryotic heterotrophic production in the 0-1 sediment layer. 

All of the enzymatic activities decreased over time in all of the systems, including controls 

(Figures 14a, 14b and 14c). As already noticed for the decreasing trends in prokaryotic 

heterotrophic carbon production, also the rates of extracellular enzymatic degradation of 

protein, lipids and carbohydrates did not change significantly after the first two weeks of the 

experiment (T1), while a significant decrease was evident at T2. Notably, in all of the 

acidified systems, the reduced rates of the extracellular enzymatic degradation of the organic 

matter was evident at T1 already. 
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Figure 14: Extracellular enzymatic activities in the 0-1 cm sediment layer; a) Aminopeptidase; b) Alkaline phosphatase; c) 

Beta-Glucosidase. 

The values of biopolymeric carbon (defined as the carbon equivalents of proteins, 

carbohydrates and lipids assuming as a conversion factor  0.49, 0.40 and 0.75 respectively) 

did not show significant trends of increase or decrease in concentration over time (Figure 15). 

Moreover, the protein-to-carbohydrate ratio did not change significantly during the 20 weeks 

of the experiment, also  suggesting that the availability and quality of food resources was not 

limiting the activity and metabolism of the microbial compartment during the experiment. 

 
Figure 15: Biopolymeric Carbon concentration in the 0-1 cm sediment layer. 

 

3.3.2 Formation water leakage mesocosm experiment 

Microbial samples from this experiment are still being processed, and there are therefore no 

preliminary results, at this stage. 
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3.3.3 Natural seeps 

3.3.3.1 Microphytobenthos 
Comparing the three sampling periods, the highest microphytobenthic abundances in the 

Basiluzzo site were reached in October 2012, both in the red vent (B1) and in the grey vent 

(B3). Intermediate abundance values were observed in May 2013 while the lowest ones were 

obtained in June 2012. The highest microphytobenthic densities were consistently recorded at 

St. B1, with its absolute maximum in October 2012 (20045 ± 2344 cells cm
-2

), about four 

times higher than the abundance observed at the reference site (B2). Differences in the 

microalgal densities between St. B2 and St. B3 were not so marked. Only in October 2012 

the abundances in the reference site (B2) and in the grey vent (B3) considerably differed, but 

in June 2012 and in May 2013 the microalgal numbers were comparable, indicating that at St. 

B3 there is no clear influence of the CO2 emission on the development of the 

microphytobenthic community. In fact, the absolute minimum was not detected at the 

reference site (B2) but at St. B3 in June 2012 (1617 ± 177 cells cm
-2

, figure 16a).  

 

 

Figure 16: a) Total abundance of the microphytobenthic community in the Basiluzzo site. b) Total abundance of the 

microphytobenthic community at the hot and cold part of St. CB. 

 

On the contrary, very remarkable differences in the values of microphytobenthic abundance 

were recorded between the cold and hot part of St. CB during all three sampling periods. In 

June 2012 values in St. CB-HOT reached 243361 ± 14384 cells cm
-2 

and were almost 100 

times higher compared to those observed at St. CB-COLD (2510 ± 29 cells cm
-2

). Even 

though the difference in total densities was much lower in October 2012 and May 2013, in 

(a) (b) 
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both periods the microphytobenthos abundance at the St. CB-HOT was still about 10 times 

higher compared to that at St. CB-COLD (Figure 16b). Taking into account the total values 

of microphytobenthic abundance only, St. CB-COLD can be considered reasonably 

comparable to the St. B1. 

At all sites the microalgal community was mainly composed of different pennate diatoms. At 

St. CB-HOT the predominant genus was Navicula sp. and Navicula cf. cancellata alone 

exceeded 30% of the total abundance compared to the nearby St. CB-COLD, where its 

abundance was negligible. 

3.3.3.2 Bacteria 
In the water column and on the seagrass leaves, the bacterial community structure did not 

show any significant differences between the sites investigated. Conversely bacterial 

community analyses of recovered sediments confirmed the previously detected difference 

between the CO2-impacted sites and the background site without seepage (Figure 17a). The 

analysis of similarity of the molecular fingerprinting results (ARISA) also confirmed the 

presence of significant different bacterial communities inhabiting the three sites investigated 

(ANOSIM: R = 0.919, p<0.001), and these differences were constant over all investigating 

period (2011-2012). Further both the number of OTUs and diversity index (Simpson’s 

evenness) provide evidence of reduction of the bacterial diversity in seep sites compared to 

the background site. The results of pyrosequencing (454 MPTS) confirmed that the seabed 

CO2 emissions are responsible for a change in the bacterial community structure, already 

visible at Phylum level. CO2 sensitive taxa belonged to phyla Proteobacteria (e.g. γ- and δ-

proteobacteria), Bacteroidetes (e.g. Flavobacteriales), Cyanobacteria, and Chloroflexi. 

Overall, CO2 effects explained up to 60% of the variance in community composition. Both 

OTU richness and evenness were reduced at CO2-impacted vs the reference site (Figure 17b). 

Despite these change in bacterial community structure and diversity, both total prokaryotic 

abundance and active fraction of Bacteria (as detected by CARD-FISH) were not affected by 

different environmental setting characterizing CO2-seep sites and background site, indicating 

that CO2-sensitive types are replaced by taxa tolerant of high CO2. Although the effect of 

CO2 seabed leakage on bacterial extracellular enzymatic activities has been observed, the 

differences responses of enzymes (beta-glucosidase, chitobiase, aminopeptidase and esterase) 
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in CO2-impacted and non-impacted sites suggest a non-uniform response of whole bacterial 

metabolism (organic matter degradation) and the presence of functional groups differentially 

affected by CO2 emissions. Ongoing analyses are investigating the identity of high CO2-

tolerant bacterial types and their functional role. The results from the transplantation 

experiments, to assess the short and middle CO2 leakage effect on bacterial assemblages, are 

currently under processing as well.  

 

Overall these preliminary results show that at Basiluzzo CO2-impacted sites the CO2 leakage 

is responsible of shift in bacterial diversity and increase of benthic diatoms (Table IV), the 

latter as response of enhance of nutrient availability (i.e. silicate and iron; see 3.5.3.2). 

However any relevant change both in active bacterial population size and in organic matter 

degradation rates suggest that not all bacterial taxa present at background CO2 levels were 

able to profit from this higher microphytobenthic biomass, maybe due to the acidification of 

the site, and therefore that bacterial functions between the sites are more or less retained. 

 

 

 
Figure 17: Difference in bacterial community communities between sites investigated. a) nMDS ordination, based on Bray-

Curtis similarity, carried out on the results of high-resolution fingerprinting technique (ARISA).b) Richness, diversity and 

evenness indices calculated from fingerprinting (ARISA) and pyrosequencing (454 MPTS) data-set. 

 

3.3.3.3 Microbe mediated processes 
In October 2012, preliminary estimates of some functional parameters, i.e. Primary 

Production (PP) and Prokaryotic C Production (PCP), were carried out nearby Panarea Island 

which was characterised by the emission of hot gas from the coarse sand sediments (St. CB). 

(a) (b) 
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Primary production rates were six times higher in the hot part of the site (42.88 ± 5.75 mg C 

m
-2

 h
-1

) than in the cold one (7.16 ± 0.13 mg C m
-2

 h
-1

). The photosynthetic rate generally 

strongly depends upon the microphytobenthic abundance and in fact the microalgal density 

was more than 8 times higher in the hot part compared to the abundance in the cold part of 

the site.  

Prokaryotic C Production rates were comparable between the two parts of St. CB: 0.112 ± 

0.011 µg Cdry h
-1

 (St. CB- COLD) and 0.113  ± 0.001 µg Cdry h
-1

 (St. CB-HOT). In May 

2013 PP and PCP were estimated in Basiluzzo at St. B1, St. B2 and St. B3. The highest PP 

was estimated at St. B1 (8.39 ± 1.98 mg C m
-2

 h
-1

), a similar value was obtained at St. B2 

(7.54 ± 1.43 mg C m
-2

 h
-1

) while the lowest photosynthetic rate was measured at St. B3 (4.36 

± 0.62 mg C m
-2

 h
-1

). Although measurements were carried out in two different periods, PP 

rates obtained at St. B2 and B3 were comparable to the one observed at the cold part of St. 

CB. However, considering the total microphytobenthic abundance (almost twice in the cold 

part of St. CB compared to that at St. B1) the microalgal community seemed to be more 

photosynthetically active in May than in October.  

The highest Prokaryotic C Production rate was measured at St. B1 (0.276 ± 0.030 µg Cdry h
-

1
) while the lowest at the reference site (0.110 ± 0.019 µg Cdry h

-1
), with a value comparable 

with St. CB. The third site (B3) was characterised by an intermediate PCP rate (0.185 ± 0.028 

µg Cdry h
-1

). 

 

For what concerns microphytobenthos, there is no clear influence of the CO2 emission on the 

development of the microphytobenthic community, since according to the vent different 

results were obtained. However, the elevated abundances of microalgae inhabiting the 

sediments of St. CB-HOT suggest that the combined effect of higher CO2 concentration and 

high temperatures could exert a stimulatory effect on this community which seems also very 

active as shown by the elevated primary production rates.  

 

For what concerns the prokaryotic heterotrophic production, both the high CO2 concentration 

(St. B1 and B3) and its combined effect with elevated temperatures (St. CB-HOT) seems to 

not exert clear effects on such prokaryotic activities since the rates measured at vents are 

rather comparable with those of control sites (St. B2 and CB-COLD, respectively). 
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3.4 Seagrasses 

At the Panarea site, studies on ecological aspects of CO2 effects on the seagrass Posidonia 

oceanica included the Leaf Area Index (LAI), photosynthetic rate, weight of calcareous 

epibionts, abundance and diversity of epibionts and grazing indications on the leaves. Under 

the influence of CO2, the determined LAI was smaller, but the epibiont abundance and 

diversity were higher as compared to a background site without seepage. Grazing marks by 

the sea urchin Paracentrotus lividus were less and by the fish Sarpa salpa were more 

abundant at the impacted sites. 

The seagrass leaf area index was reduced at the two CO2-impacted sites. At the non-impacted 

site, the seagrass Posidonia oceanica has ca. twice the leaf area per square meter. Preliminary 

grazing data showed that the overall grazing was reduced at the highest impacted site. 

Grazing of seagrass might be altered with less impact of echinoderms but more impacts from 

fish. Grazing marks by the sea urchin Paracentrotus lividus were less abundant, but more 

grazing marks by the fish Sarpa salpa were more frequently observed at the CO2-seep sites. 

The epifauna studies of the upper seagrass leaves revealed that Coralliacea algae were not 

missing, contrary to expectation, but were less abundant, whereas thalleous, gelatinous and 

filamentous algae were more frequently observed at the CO2-impacted sites, c.f. controls. The 

hydrozoans Sertullariidae, Plumulariidae and Aglaopheniidae were more abundant, and 

Campanulariidae was present, at the impacted site but not at the non-impacted site. The 

bryozoans Lichenopora and Microporella were more abundant, whereas Celleporina and 

Chorizopora were less abundant at the CO2-impactet sites. Cellepora, Collarina, 

Fenestrulina and Tubulipora were only present at the seep site. The abundance of the 

ascidiacea genus Botyllus was seven times higher at the impacted site. This indicates a shift in 

the species community. Overall the study showed that the abundance and taxonomic groups 

is increased at the CO2-impacted site (Table IV). The weight of calcareous epibionts on the 

first ten centimeters of the leaves was ca. two and a half times higher than at the reference 

site. This indicates that the growth of specific calcareous species seems to be favored at the 

seep sites.  

The experiment on the net photosynthetic rate of the lowest 10 centimeters of the leaves 

revealed that this function is not impacted by the surrounding water CO2. The same positive 
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rate in oxygen production was measured at both sites. That was also the case when the leaves 

were exposed to the water of the respective other site. 

 

Table IV: Synthesis of CO2 leakage effects on benthic communities at Panarea (Basiluzzo rock island sites). 

 Abundance Biomass 
Community 

Composition 

Species 

Diversity 
Activity 

Microphyto-

benthos 

(diatoms) 

Yes
1
 − Yes − No 

Bacteria No No Yes Yes Yes 

Meiofauna Yes Yes Yes Yes − 

Macrofauna Yes
2
 − Yes No − 

Seagrass 

(Posidonia 

oceanica) 

No Yes
3
 na na No 

Epibionts Yes Yes Yes Yes na 

1 markedly at St. B1 
2 only at St. B3 
3 Leaf Area Index (LAI) 

− = data currently under processing 

na = data not available 

 

 

3.5 Biogeochemistry  
 

3.5.1 High CO2 mesocosm experiment  
 

3.5.1.1 Sedimentary pH profiles  
 

The sediment in the liners was characterized as mud, having a mud content 95.12 ± 3.35 % 

(mean ± sd), and sediment porosity within the first cm horizon was 71.25 ± 15.76%. The 

corresponding pH profiles are given in figure 18, below. Sediments were more acidic (i.e. 

lower pH profiles) at 20 weeks than at 2 weeks, except in control cores. As expected, pH was 
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higher at the sediment water surface than at depth, except in the highests CO2 treatments, at 

T1 (2 weeks). Differences between the experimental treatments were clear with regard to 

sedimentary pH profiles, indicating that the increase in CO2 concentration in the overlying 

water could disturb carbonate chemistry down to 5 cm within the sediment. The degree of 

departure from the control profiles increased with increased CO2 concentration in the 

overlying water, and the duration of the exposures. This effect may have significant 

consequence for organisms inhabiting these sediments, and associated ecosystem processes. 

Indeed, burrowing fauna have been found to surface in response to short-term drop in pH 

(Murray, Widdicombe et al. 2013). This was also observed here (see section 3.6.1), as 

burrowing depth and bioturbation activity both decreased significantly with CO2 increase 

(fig.23), but only at 20 weeks. Thus, the experimental treatments used here to simulate a CO2 

leak at the seabed, were found to modify sedimentary conditions. These apprently small 

changes appeared to cause or at least be linked to changes in macrofauna behaviour within 

the sediment at 20 weeks, that are consistent with physiological stress (Section3.6.1), but not 

at 2 weeks. It is thus likely that prolongued (though not short term) changes induced by 

exposures to a CO2 leak may have discernable, negative consequences for benthic 

communities and processes. These effects are further explored int he subsequent sections (but 

see section 3.6.1). 
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Figure 18: mean sedimentary pH profiles, measured and averaged over two sediment cores at T0, T1 (two weeks) and T2 

(20 weeks) during the high CO2 experiment (leakage experiment). Corresponding CO2 nominal treatments are highlighted in 

the yy axis (400 to 20000 ppm, section 3.5.1.1). 

 

3.5.1.2 Nutrient fluxes  
 

Fluxes of ammonia, nitrite, nitrate, phosphate and silicate measured during the high CO2 

experiment are illustrated in figure 19 a-e, below. Large variability in fluxes was observed 

within treatments, particularly in fluxes measured after 2 weeks of exposure, leading to error  
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Figure 19: Fluxes of Ammonia (a), Nitrite (b), Nitrate (c), Phosphate (d) and Silicate (e) measured during the high CO2 

mesocosm experiment (section 3.5.2.1).  

bars that predominantly overlapped zero, particularly for nutrients involved in the nitrogen 

cycle (Figure 19a-c). The preliminary data are now being assessed to determine the cause of 

variability and whether there are problems with specific samples, but similar results were 

identified in at the natural seeps (section 3.5.3.1). 

The analysis of the phosphate and silicate fluxes does not render any clear patterns of impact 

of CO2 levels at either 2 or 20 weeks (Figure 19). However, the decrease in phosphate uptake 

(towards phosphate release) observed at T1 with increased CO2 levels matches the short-term 
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impacts of CO2 measured by Widdicombe and Needham (2007). This pattern was not 

observed at 20 weeks, as was also found by Widdicombe, Dashfield et al. (2009). The same  

studies didn’t find short or medium effects of increased CO2 levels on silicate fluxes in 

muddy sediments, as also seen here.  

Please see section 3.6.1 for overall system analysis. 

3.5.1.3 Ammonia oxidation in the water and sediments  
 

Nitrite levels in seawater and sediments in ATU and NaClO3 treated samples are summarized 

in figure 15. ATU and NaClO3 are inhibitors of NH3
-
 and NO2

-
 oxidation, respectively, 

playing an important role in the fixation of nitrogen. All values measured were well above the 

detection limit of the instrument, which was 0.005 and 0.009 µmol NO2
-
 L

-1
, for seawater and 

sediment samples, respectively (Kitidis, Laverock et al. 2011).  

Two factors may have confounded our results. Some variability was observed between 

treatments, indicating the need for use of higher replication in future work. Additionally, 

some nitrite was available when the oxidation of NH3
-
 to NO2

-
 was inhibited in ATU treated 

samples. This was particularly visible at two weeks, in the control sediment samples, and at 

twenty weeks in the control seawater samples collected from the header tanks (Figure 20). 

Possible alternative sources of nitrite in these samples are the reduction of nitrate to nitrite 

(de-nitrification) and the anaerobic oxidation of ammonia, both of which are anaerobic 

processes. Seawater in both the header tanks and liners was normoxic in all CO2 treatments 

(Table I). However, it is possible that during the ammonia oxidation incubations, which lasted 

approximately 24 hours, oxygen may have become depleted within the incubation vials, 

triggering these other pathways. For example, nitrate was high in the header tank seawater in 

control conditions at twenty weeks (raw nutrient flux data, not shown), so de-nitrifcation may 

have been stimulated by possible exhaustion of oxygen and abundance of substrate (nitrate),  
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Figure 20: Nitrite concentration measurements in seawater (a,b,e and f) and sediment (c,d,g and h) used to estimate 

ammonia oxidation rates during the high CO2 experiment (section 3.5.1.3). 
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explaining the peak in nitrite in the ATU treated control seawater samples at the end of our 

incubations in fig. 20. 

Ammonia oxidation rate estimates for the seawater and sediment are summarized in figure 

21a and b, below. The range of values measured are in in line with Kitidis, Laverock et al. 

(2011) which measured rates associated with CO2 disturbances in three distinct ecosystems. 

Ammonia oxidation rates with negative values indicate higher availability of Nitrite in ATU 

than in NaClO3 treated samples (fig.15), as discussed above. Contrary to the standing 

paradigm (Beman, Chow et al. 2011; Kitidis, Laverock et al. 2011), we found that ammonia 

oxidation in the water column did not appear to decrease with increased CO2. Rather, it 

appeared to be stimulated above 1000 ppm CO2 in relation to control conditions (fig. 21a), 

where the rates were near zero. At two weeks of exposure, ammonia oxidation rates above 

1000 ppm of CO2 were consistently statistically different for zero across seawater samples 

and treatments, while at lower CO2 levels, they were not. This interpretation could not be 

corroborated by the nutrient flux data, which was highly variable. At twenty weeks, this 

change was not observed, but this result may be a reflection of possible seasonality in 

microbial activity (winter months), as sedimentary nitrite was low also in control conditions 

at this stage (fig.21b), consistent with the findings in section 3.3.1. It is also possible that at 

twenty weeks, such results may be confounded by the high values of nitrite we measured in 

the ATU treated sediment samples (fig.20h), which may have resulted from other 

biogeochemical pathways.  
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Figure 21: Ammonia oxidation rates in the seawater (a) and sediments (b), estimated during the high CO2 experiment 

(section 3.5.1.3). 

In the sediment, and in agreement with other studies, ammonia oxidation did not appear to 

change in relation to CO2, being low and not statistically different from zero in any of the 

treatments, at 2 or 20 weeks of exposure (Figure 21b). So overall, sedimentary ammonia 

oxidation did not appear to be significantly impacted by our CO2 treatments, and the short 

and medium-term exposures (T1 and T2). Covnersely, seawater ammonia oxidation rates 

appeared to be stimulated above 1000 ppm of CO2 in comparison with the control data, in 

which rates were variable, and overall close to zero. This result suggests that a possible effect 

of CO2 on ammonia oxidation could occur even after short term exposures (T1, 2 weeks), and 

that this type of leakage scenario has the potential to significantly impact seawater nitrogen 

cycling. However, this potential finding could not be confirmed by the nutrient flux data, 

which exhibited high variability. The lack of observed long term effects of exposure to CO2 

on ammonia oxidation may have been played down in this experiment by variability 

associated with possible seasonality in microbial activity (see section 3.3.1). Future studies 

examining the effects the length of exposure duration in the context of CCS leakage should 

thus take this element of natural variability into account. 
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3.5.1.4 Sediment-water fluxes of  dissolved oxygen, dissolved manganese, total 
alkalinity, TIC and H+ 
 

The fluxes rates in the overlying water measured during the high CO2 experiment at T2 are 

shown in figure 22, below. No measurements were successful at the other time-points.   

Sediment Oxygen Consumption (SOC) values for the control experiment (3.3 mmol O2 m
-2

 d
-

1
 in electrode measurement, and 3.9 mmol O2 m

-2
 d

-1
in Winkler measurements, ), Figure 22 a 

and b) were lower than those determined in the field at that time (approx.9.6 ± 7.7 mmol O2 

m
-2

 d
-1

 (n=2). That is a reasonable value, since the sediment in these experiments had been 

isolated from a natural input of organic matter for 20 weeks, at this point. Both electrode and 

Winkler estimates showed that SOC decreased with increasingly acidic conditions.  

Calculated on the base of pH, sediment consumption of H+ (fig. 22, actually an apparent 

sediment consumption of H+, because sediment –water exchange is one of factor affecting 

sediment water H+ ) indicated that the direction of this “flux” changes in the most acidic 

conditions (pH=6,6): This may be due to carbonate dissolution in the sediments. 

The flux of Mn was variable. Some liners exhibited much higher fluxes of manganese from 

the sediment to the overlying water than others. This can testify to a patchiness of this flux, 

that can be influenced by the micro scale features, i.e. presence of Mn nodules or 

bioirrigation effects. Subsurface pore water often has high concentrations of dissolved, 

divalent manganese. Under well oxygenated bottom water, upwards diffusing Mn
2+

 will 

normally be trapped by oxidation and precipitation within the sediment, near the sediment-

water interface. However, a random disturbance of this Mn cycling, e.g. by bioturbation, can 

easily produce occasional leakage of dissolved Mn into the overlying water. We cannot 

explain the efflux of Mn from the sediment in the most acidic conditions. TA consumption 

increased with decreased pH and no significant effect was measured in seawater TIC in 

relation to CO2 treatments. 

 

(b) 
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Figure 22: Oxygen and carbonate chemistry in the water column at T2. Sediment Oxygen Consumption measured in tanks 

using Clark electrode (a) and Winkler (b) techniques (see 2.1.1 for methods). Sediment Consumption of H+ (c), total Mn(d), 

Total Titratable Alkalinity (e) and total inorganic carbon (f) measured in tanks at T2. 

 

3.5.2 Formation water leakage mesocosm experiment  
 

3.5.2.1 sedimentary pore-water oxygen, pH, sulphide, redox, alkalinity, phosphate, 
nitrate + nitrite,  ammonia, manganese (II) , iron (II), DIC, ΩAr and ΩCa profiles  
 

(a) (c) 

(d) (e) (f) 
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The sediment in the liners was characterized as mud, having a mud content of 95.36 ± 1.64 % 

(mean ± sd), and sediment porosity within the first cm horizon was 78.89 ± 6.85% (mean ± 

sd). The corresponding profiles for pH, sulphide (pS) and redox (Eh) are given below, at the 

begining of the experiment (T0, figure17 a-c), and at the end (T1, Figure 23 d-e). In control 

conditions, sedimentary pH varied btween 8 and 7.6 units. At the end of the experiment, high 

salinity treatments (high salinity and mixed treatements) had pH profiles that were more 

acidic overall. This effect can impact burrowing fauna, which have been found to surface in 

response to short-term drop in pH (Murray, Widdicombe et al. 2013). Indeed, shallower 

burrowing depth was observed in fauna exposed to the high salinity treatment (section 3.6.2, 

fig.35b). Treatments with low oxygen (hypoxic and mixed treatments) had shallower redox 

transition depths overall (Figure 23f). This effect may also have impacted burrowing fauna, 

which tends to concentrate above the redox transition to avoid the formation of H2S (Aller 

1982; Birchenough, Parker et al. 2012). This effect was indeed observed, as bioturbation 

depth was also shallower in the hypoxic and mixed treatments in relation to the controls 

(section 3.6.2, fig. 35b). The hypoxic treatment did indeed have the highest concentration of 

sulphide (fig.23e).Thus, the experimental treatments used here to simulate a short term 

exposure (2 weeks) to formation water released through CO2 injection into sub-seabed 

reservoirs, were found to modify sedimentary conditions.  

The maximum oxygen penetration depth (10 mm) was found in the Control and Hypersaline 

treatments (Annex II, Fig. A1), when dissolved oxygen (DO) concentrations in the water 

were 125-160 µM. Minimum DO penetration was observed in the  Mixed and and Hypoxic 

treatments (3 mm), with DO content in the bottom water  of around 30-40 µM. The Tidal 

treatment induced and intermediate penetration depth of about 7 mm. The depth of DO 

penetration doesn’t seem to depend on salinity. See annex II for DO plots. 
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Figure 23: Profiles of pH (-log10[H
+] ,a and d), sulphide (-log10[H2S total], b and e), and redox (mV, c and f) within the 

sediment (depth, cm), estimated during the formation water experiment at T0 (left) and T1 (right, section 3.5.2.1). Symbols 

represent control (○), high salinity (□), hypoxia (●), mixed (■), and  tidal treatments (▲) . All values are averaged over 
measurements carried out in the four replicate sediment cores used to assess the vertical distribution of fauna (section 3.1.2). 

 

Phosphate was characterized by concentrations 2-5 µM in the upper 12 cm of the water 

column and its distribution was of irregular character (at least with the sampling resolution 

used, Annex II, Fig. A2 for all plots). The upper layer of the sediment was enriched with 

nitrate (up to 40 µM). Its concentration then decreased, but remained high (5 µM) even in 

anoxic conditions. This can be probably explained by an oxidation of ammonia during 

sampling and storage of the samples. The concentrations of ammonia generally increased 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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from low values up to 80-120 mm in the deepest layer 10-15 cm. The distribution of Mn
2+ 

was characterized by a maximum  (50-130 µM) in the layer 3-5 cm. Concentrations of Fe
2+

 

had a general tendency of an increase in the deeper layers > (to about 50 -70 µM). Alkalinity 

was in the limits 5200-6400 µM with a tendency of an increase with depth. The values of 

DIC were in the limits 5200-6400. The upper 2 centimetres of the pore water was 

oversaturated for both calcite and aragonite, while in the deeper layer (5-15 cm) the pore 

water was close to saturation or undersaturated for aragonite (Figure A2, Annex II). 

In general, a clear connection between the experimental treatments and the profiles for 

alkalinity, phosphate, nitrate+nitrite,  ammonia, manganese (II) , iron (II), DIC, ΩAr and ΩCa 

was not evident (Annex II). However, the more typical pattern of a replacement of nitrate 

with ammonia in the deeper layer, a maximum of Mn
2+ 

followed by a maximum of Fe
2+

 was 

found in the Control treatments but not others. The classical increase of alkalinity with 

sediment depth was most pronounced under hypersaline conditions. 

The apprently small observed changes in sedimentaty bigeochemical profiles appeared to 

cause or at least be linked to changes in macrofauna behaviour within the sediment, that are 

consistent with physiological stress (3.6.2) It is thus likely that such changes induced by even 

short term exposures to stressors associated with the release of formation water may have 

discernable, negative consequences for burrowing communities (see section 3.6.2). These 

effects may be directly linked to the increase in salinity and decrease in oxygen simulated 

here, or to the consequential measured effects on pore-water profiles. 

 

3.5.2.2 Nutrient fluxes  
 

The experimental treatments had a significant effect on nutrient fluxes. The main finding is 

that the natural variability observed in nutrient fluxes in the controls (Figure 24) was limited 

in the other treatments, although different stressors appeared to drive different nutrients in 

various ways. The high variability observed in the controls somewhat limits the statistical 

approaches we were able to use, and so focus is drawn to particular cases in which the 

nutrient fluxes appeared to be consistently driven in a specific direction, between treatments. 

Of particular interest is the case that the single-stressor treatments (hypoxic and high salinity) 
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appear to cause directional changes in the nitrogen cycle, but multi-stressor treatments 

(mixed and tidal) appeared to cause change that was not directly a sum of the former. The 

combination of the two individual stressors (hypoxia and high salinity) on the microbes 

mediating nutrient cycling, or on the fauna impacting those processes (e.g. bioturbation, 

excretion), was thus greater than that expected from the sum of the individual stressor 

impacts. These effects were observable when all the nutrient data were pooled together 

(Figure 25), and the liners from the multi-stressor treatments exhibited the greatest departure 

(overall) from the other treatments. 

Nitrite fluxes varied the most in control conditions, where the highest rates of both 

production and uptake in the sediment were measured. Variance was the lowest in both 

hypoxic and high salinity treatments, where the values were concentrated around zero. It 

appears that in these treatments, pathways associated with nitrite production and uptake in the 

sediment may have thus been balanced (fig.24b). Conversely, nitrite was high in liners and 

low in header tank seawater in the tidal treatment, indicating the presence of a marked and 

consistent flux from the sediment into the water column in the liners, which was not present 

in other treatments (i.e. negative flux, fig.24b one-way Analysis of Variance: R
2
= 44.55% and 

p< 0.05). This result suggests that the tidal treatment may have stimulated nitrite production 

within the sediment. 

 

-5000

-2500

0

2500

5000

Control High Salinity Mixed Hypoxia Tidal

ppm CO2

A
m

m
o
n
ia

 f
lu

x
 (

u
m

o
l m

2
h

1
)

time point

T0
T1

-5000

-2500

0

2500

Control High Salinity Mixed Hypoxia Tidal

ppm CO2

P
h
o
s
p
h
a
te

 f
lu

x
 (

u
m

o
l m

2
h

1
)

time point

T0
T1

(a) (d) 



ECO2 project number: 265847 

 

 

Deliverable 4.1: Potential impact of CCS leakage on marine communities 

WP4; lead beneficiary: Plymouth Marine Laboratory 
 

 

50 

 

 

 

Figure 24: Fluxes of Ammonia (a), Nitrite (b), Nitrate (c), Phosphate (d) and Silicate (e) measured during the formation 

water experiment (section 3.5.2.2). 

 

Ammonia fluxes were not significantly impacted by experimental treatments statistically. 

(fig.24a). However, production of ammonia from the sediment (negative flux) was 

consistently observed in the hypoxic treatment (to a less extent also in the high salinity 

treatment). The spike in sedimentary nitrite observed in the ATU treated samples from the  

hypoxic treatment (see section 3.5.2.3) suggests that denitrification may have been stimulated 

by hypoxia, reducing nitrate to nitrite and eventually to ammonia in this treatment. Thus, 

hypoxia appeared to stimulate denitrification, in relation to the controls. 

-500

-250

0

250

Control High Salinity Mixed Hypoxia Tidal

treatment

N
it
ri
te

 f
lu

x
 (

u
m

o
l m

2
h

1
)

time point

T0
T1

-20000

-10000

0

Control High Salinity Mixed Hypoxia Tidal

ppm CO2

S
ili

c
a
te

 f
lu

x
 (

u
m

o
l m

2
h

1
)

time point

T0
T1

-5000

0

5000

Control High Salinity Mixed Hypoxia Tidal

ppm CO2

N
it
ra

te
 f

lu
x
 (

u
m

o
l m

2
h

1
)

time point

T0
T1

(c) 

(b) (e) 



ECO2 project number: 265847 

 

 

Deliverable 4.1: Potential impact of CCS leakage on marine communities 

WP4; lead beneficiary: Plymouth Marine Laboratory 
 

 

51 

 

Nitrate fluxes were not statistically significantly affected by experimental treatments overall, 

with variance observed between replicates, particularly in control conditions, leading to error 

bars that overlapped with zero (fig.24c). There was a suggestion of production of nitrate 

within the sediment in the tidal treatment, as was observed with nitrite (fig.24c). Consistency, 

across analyses, was observed in the high salinity treatments, where release of nitrate from 

the sediment was consistently observed (negative fluxes observed in all samples, fig. 24c). 

This finding is consistent with a high and significant ammonia oxidation rate observed in 

surficial sediments in the high salinity treatment (see section 3.5.2.3, fig.27b), suggesting that 

sedimentary nitrification (at least at the sediment water interface) was stimulated by high 

salinity, departing from the results observed in control conditions (i.e. ammonia oxidation 

was not consistently observed in the controls). 

 
Figure 25: non-linear Multi-Dimensional Scalling plot illustrating the dissimilarity (Euclidean distance) between samples 

based on all (normalised) nutrient fluxes together. Note how the multi-stressor treatments (mixed and tidal) exhibit the 

overall greatest departure from the other treatments, except for controls. 

Phosphate and silicate fluxes exhibited similar patterns of impact by experimental treatments, 

but these were not statistically significantly different from the controls, overall. Release of 

phosphates from sediments did not increase in low oxygen in relation to the controls 

(negative flux, fig.24d), contrary to the expectation that iron oxy-hydroxides (important in the 

adsorption of phosphate) would be converted to iron sulphides in low oxygen conditions 

(Krom and Berner 1980). This result may be a consequence of the high variability observed 
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in the controls, or a consequence of oxygen availability not changing markedly between the 

two treatments within sediments (not measured). A flux of silicate from the sediments was 

consistently observed in the hypoxic treatment (and to an extent in the high salinity 

treatment). Silicate in sediments is required by the growth of diatoms and some foraminifera, 

and the release of silicate from muddy sediments is typically dominated by the regeneration 

of biogenic silica from accumulated organic material, consequentially from dead and 

decaying diatoms and hypoxia intolerant, silicated foraminifera (Marinelli 1992; Platon, Sen 

Gupta et al. 2005; Widdicombe and Needham 2007). As such, it is suggested that the 

observed flux of silicate may be indicative of increased mortality of benthic diatoms or 

forams under hypoxic conditions. There is plenty of evidence in the literature to suggest that 

foraminifera communities can be highly sensitive to consistent reductions in bottom water 

oxygen (Alve and Nagy 1990). Analysis of alkalinity data in these treatments will aid this 

interpretation, as silica tends to dissolve in high alkalinity. 

In summary, the short term chemical changes imposed by the experimental treatments that 

simulated formation water release caused discernable impacts in the flux of nutrients between 

the sediment and seawater, in relation to control conditions. These results are corroborated by 

the results of the ammonia oxidation analysis and bioturbation (sections 3.5.2.3 and 3.6.2). In 

summary, hypoxia stimulated denitrification and an increase in silicate fluxes, and high 

salinity stimulated ammonia oxidation, in relation to control conditions. These changes are 

likely to have significant implications for benthic-pelagic coupling in impacted ecosystems. 

The duration of these impacts, and recovery from them, would thus depend on the ability of 

the local hydrodynamic regime to disperse/ dissolve formation water plumes. The tidal and 

mixed treatments caused variable responses that could not be easily interpreted across the 

various datasets, but see section3.6.2, which suggests that these systems exhibited, overall, 

the greatest change from the controls.  

 

3.5.2.3 Ammonia oxidation in the water and sediments  
 

Nitrite levels in seawater and sediments in ATU and NaClO3 treated samples are summarized 

in figure 26. We used ATU and NaClO3 in the same way as in the high CO2 experiment, 



ECO2 project number: 265847 

 

 

Deliverable 4.1: Potential impact of CCS leakage on marine communities 

WP4; lead beneficiary: Plymouth Marine Laboratory 
 

 

53 

 

because they inhibit NH3
-
 and NO2

-
 oxidation, respectively, impacting the fixation of 

nitrogen. All values measured were above the detection limit of the instrument, which was 

0.005 and 0.009 µmol NO2
-
 L

-1
, for seawater and sediment samples, respectively (Kitidis, 

Laverock et al. 2011). 

Ammonia oxidation rate estimates for seawater and sediments are provided in figure 27 a and 

b, respectively. These rates were variable in control replicates, and thus averaged around 

zero, in both sediment and seawater samples. Negative rate estimates indicate that nitrite 

concentration was higher in ATU treated samples (where ammonia oxidation is inhibited, 

figure 26 c and d) than in those treated with NaClO3 (in which oxidation of nitrite to nitrate is 

inhibited, figure 26 a and b). We found that in both sediment and seawater, hypoxia and high 

salinity appeared to have inverse effects on ammonia oxidation rates. I.e. hypoxia caused 

negative oxidation rates, which were more consistently measured in the sediment samples 

(fig.27 b). This result appeared to be driven by a marked spike in nitrite in all ATU treated 

sediment samples, suggesting that this effect was consistent across replicates (fig.26c). The 

parallel observation of increased production of ammonia in the sediment in the hypoxic 

treatment (section 3.5.2.2) indicates that this nitrite concentration is probably a result of a 

stimulation of denitrification in relation to control conditions (fig. 24a and fig.26c). 

Conversely, high salinity appeared to cause a consistent increase of ammonia oxidation rates 

in relation to controls, that was statistically different from zero in the sediment samples, but 

more variable in seawater samples (fig. 27b). This result is driven by high values of nitrite 

measured in the NaClO3 but not ATU treated sediment samples (fig.26 a and c), consistent 

with a statistically significant flux of nitrate from the sediment into the water column 

(negative flux, fig. 24c). Together these result point towards the stimulation of nitrification 

pathways in relation to controls, caused by high salinity. This positive effect appeared to be 

dominant with regard to ammonia oxidation in the seawater when the two stressors were 

combined (mixed treatment, fig. 24a), while for sedimentary communities, this effect was not 

observed, suggesting a difference in the microbial communities driving these pathways in the 

sediment and seawater. The effect of hypoxia or high salinity in single and the multi-stressor 

mixed treatment on ammonia oxidation were however not observed the seawater and 
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sediments exposed to the tidal treatment, suggesting that tidal variability may enable the 

recovery/ or limit the overall impacts of these stressors on microbial communities. 

So in summary, the short term exposures of these microbial communities to hypoxia and high 

salinitiy associated with formation waters caused marked effects on ammonia oxidation. 

Analysed in conjuction with the nutrient flux measurements (section 3.5.2.2), this experiment 

suggests that even short term exposures to formation water can significantly impact nitrogen 

cycling in both sediment and seawater. However, these effects appeared to be to an extent 

mitigated by tidal flushing. Hence, an understanding of hydrodynamic conditions (i.e. bottom 

currents) near plume sites may be an important component of quantifying the potential 

impact of formation water release in a CCS risk assessment. 

 

 

Figure 26: Nitrite concentration measurements in NaClO3 treated sediment and seawater samples (a and b, respectively), 

and in ATU treated sediment and seawater samples ( c and d, respectively), used to estimate ammonia oxidation rates at the 

end of the formation water experiment (section 3.5.2.3). 
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Figure 27: Ammonia oxidation rates in the seawater (a) and sediments (b), estimated during the formation water experiment 

(section 3.5.2.3). 

 

3.5.3 Natural seeps 
 

3.5.3.1 Water column 
 

 The Panarea sites at Basiluzzo rock Island exhibited specific biogeochemical properties. The 

analysis carried out by GEOMAR of videos acquired at bottom of CO2-impacted sites 

showed that CO2 vents were characterized by an average bubble size of 1.14 cm (radius 

range: 0.94 – 1.30 cm) and gas-flow of 11.1 ml sec
-1

 (range: 9.2 – 15.3 ml sec
-1

).  

CTD data on water column stratification and pH were by OGS/UniRoma1used to decide the 

location and depth of discrete water sampling for various chemical and biological analyses. 

Among chemical parameters studied, data on seawater carbonate system (pCO2 and dissolved 

inorganic carbon, i.e. DIC), silicate and hydrogen sulphide appear the most relevant to 

identify CO2 the presence of seeps. The greatest impact occurred at St. B1 during June 2012 

campaign, when the strongest water column stratification was present. The leaking CO2 was 

therefore less rapidly diluted in the bottom waters, resulting in the increase of seawater pCO2 

and DIC values, and a decrease in pH. Measured inorganic nutrients did not show a 

significant correlation with CO2 leakage points, with the exception of silica. This may leach 

(a) (b) 
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due to reactions between the acidified waters and the shallow sediments, or due to co-

migration of silica-charged waters together with the CO2, and silica exhibited a very similar 

distribution in the water column to that of pCO2 and pH. 

Along the transect between Bottaro and Lisca Bianca Isles (LB transect), data on the 

carbonate system, nutrients, basic aqueous chemistry, allowed the identification of three main 

anomalous areas, with one on either side and one above the mount itself. In correspondence 

of this geothermal spring, hydrogen sulphide concentration as well as the partial pressure of 

CO2 (max = 11020.1 µatm) exhibited very high values. These results clearly evidence the 

presence of gas leakage from the seabed at this point, which can influence the water column 

chemistry. In particular, in the same water mass, an extraordinary acidification was detected 

(pHT min = 6.680) in association with undersaturation of the aragonite (ΩAragonite < 1) (Figure 

28) 

 

 

Figure 28: Contour plot of  seawater (a) temperature - density anomaly (σt – dashed isolines), (b) partial pressure of CO2 

(pCO2), (c) pH at total scale (pHT), (d) hydrogen sulphide, (e) aragonite saturation state (ΩAr), and (f) silicic acid, along the 

transect between Bottaro and Lisca Bianca Isles (section 3.5.3.1). 
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Such extreme seawater acidity represents the typical condition of the CO2 vents in this area 

and it could easily lead the dissolution of calcareous shells or skeletons of calcifying 

organisms. 

The high increase of the silicates concentration observed in correspondence with the 

hydrothermal vents probably as a consequence of the turbulence induced by the seepage of 

gas bubbles which transport upwards the interstitial water enriched in silicates. 

Despite the occurrence of this significant leakage-related trend, the other measured nutrients 

did not exhibit similar variation in relation to the presence of the vents (i.e. ammonium and 

phosphate might be expected to increase together with the silicates). The reason for this 

discrepancy is under investigation, but this was also observed in the mesocosm experiments 

(section 3.5.1). 

3.5.3.2 Sediments 
 

The effect of CO2 seabed emissions was clearly visible on pore water chemistry, and 

concurrent pH reduction, increase of DIC and, alkalinity, reduction of and Ω calcite (<1), and 

enhanced of chemical weathering (high concentration of iron, manganese and silicate) were 

observed along sediment profiles in CO2-impacted sites (Figure 29).  

At St. B3, all these parameters exhibited high variability and, on average, they had 

intermediate values compared to those measured at other CO2-seep (St. B1) and at the 

reference site (St. B2). This suggests a weaker or less constant CO2 flow at St. B3 than at St. 

B1. Conversely, the concentration of nutrients (ammonia, nitrite, nitrate and phosphate) in 

pore waters did not vary significantly between CO2-impacted sites and non-impacted sites.  

Coarse sand was the dominant fraction in all three sites (from 40% to 60%), with variable 

contributions of fine and medium fractions. Mean grain size was somewhat higher at the 

reference site (average 775±37 μm in 2012 and 699±12 μm in 2013; ANOVA, p<0.0001) 

compared to Grey-CO2-seep (658±88 μm in 2012 and 640±16 μm in 2013) and Red-CO2-

seep (508±87 μm in 2012 and 548±20 μm in 2013). The differences in granulometry between 

the sites concerned mainly the medium and coarse sand fractions, thus there was no 

significant difference in porosity between Background and CO2-seep sites (values of ca 

50%). 
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Figure 29: Sediment profiles for DIC (dissolved inorganic carbon), TA (total alkalinity), pH and concentration of silicate, 

iron and manganese are showed. Pore-water samples were obtained with the help of the TUBO device and by using Rhizons 

MOM (19.21.21F, mean pore size 0.15 µm; Rhizosphere Research Products, Wageningen, Netherlands) attached to 10 mL-

syringes (for more sampling and analytical details please see cruise report ECO2-3).  If sample’s replicates had a variability 

of less than 25%, then the average and standard deviation are reported. Otherwise, all replicate profiles are plotted. 

 

Sediment porosity was found to be ca 50% in all sites investigated, with no variation 

observed along sediments profiles. Sediment samples were also analysed for phytopigment 

content (chlorophyll-a and phaeopigment) and total organic matter (TOM). In all sedimentary 

layers analysed, the amount of chlorophyll-a in the sediment was significant higher at High 

CO2-seep (8.7±3.5 μg.g
-1

 dwt) compared to the Reference and Low CO2-seep sites (1.2±0.4 

μg.g
-1

 dwt and 2.0±0.8 μg.g
-1

 dwt, respectively; ANOVA, p<0.0001). We observed also 

significant differences in phaeopigment content (ANOVA, p<0.0001), which decreased 

significantly from sediments of HighCO2-seep to those of LowCO2-seep and the reference 

site. TOM exhibited higher variably than phytopigments in the sediments investigated, and 

sediments of the High CO2-seep sediments had a TOM content significantly higher compared 
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to LowCO2-seep and Reference sediments (1.2±0.5 % vs. 0.7±0.3 % and 0.7±0.6 %, 

respectively). 

 

In the sites investigated in October 2012 and May 2013, the grain size of the sediments was 

dominated by coarse and medium sand (sand generally > 80-90 %); gravel contributed from 

0.4 to 21 % while mud was negligible (always lower than 0.4%). 

The distribution of total carbon (TC), organic carbon (TOC) and total nitrogen (TN) is quite 

variable both among the stations and the campaigns (Figure 30). Very high TC values 

characterized the October 2012 campaign showing a maximum > 2 mg C g
-1

 at station B2 

where the minimum of TN concentration was detected. TOC constituted from 47% to 96% of 

the TC reaching the highest percentage at the hot part of the CB station. In May 2013, a 

general decrease of concentrations (both of carbon and nitrogen) characterized all the 

sampled stations with values up to 2- and 9-fold lower for carbon and nitrogen, respectively. 

These differences could be ascribable to the variation of the sediment grain size and to the 

changes in the benthic biomass. 

 

 

Figure 30: TC (Total Carbon), TOC (Total Organic Carbon) and TN (Total Nitrogen) concentrations in the sediment 

sampling in the studied area in October 2012 and May 2013 campaigns. 

A similar trend was observed also in the biopolymeric carbon (BPC) content of sediments 

from the same campaigns (Figure 31). In October 2012, the total content of BPC was 

relatively low (~ 260 µg C g
-1

) at the reference site (St. B2) and the cold part of CB station, 
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while approximately 2-fold higher concentrations were detected at the two CO2 impacted 

stations (B1 and B3) and at CB-HOT station. Lipids were the dominant fraction of the BPC 

pool, followed, with the only exception of station CB-COLD, by proteins. EDTA extractable 

carbohydrates were generally lower while water soluble carbohydrates were not detectable. 

Both lipid and protein contents were 2-fold higher in hot sediments than in cold ones. This 

variability could be attributed to the elevated densities of microalgae in the hot site. A similar 

trend was observed also at Basiluzzo site with the higher values measured at the CO2 

impacted stations in respect to the control site but without the same correspondences with the 

benthic communities. 

During the May 2013 campaign, the BPC concentrations dropped off reaching values lower 

than 200 µg C g
-1

 at all the stations. Similarly to the pattern observed in TOC, the higher 

decrease was detected at stations CB-HOT, B1 and B3 and it was attributable to a drastic 

reduction of lipid contents. 

 
Figure 31: Biopolimeric Carbon concentration during the October 2012 and May 2013 campaigns as sum of protein (C-

PRT), lipids (C-LIP), EDTA extractable carbohydrates (C-CHOEDTA) and water soluble carbohydrates (C-CHOH2O). 

 

3.6 Bioturbation and bio-irrigation 
 

Bioturbation (i.e. the biogenic mixing of sedimentary particulates resulting from the 

displacement of materials during faunal feeding, scavenging and burrow construction) and 

bio-irrigation (flushing of burrows by burrowing fauna) can be used to assed the overall 

activity of faunal organisms. This is because metabolically challenging environments, such as 
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those imposed by environmental stressors, can lead to overall changes in individual activity, 

as a consequence of survival strategies. In such environments, species are required either the 

ability to re-locate energetic resources to cope with modified physiological pressures (Brown, 

Gillooly et al. 2004; Pörtner and Farrell 2008) or the ability to adapt (Somero 2010; 

Hoffmann and Sgrò 2011). Because of the duration of the experiments carried out in this 

project, our results fall into the first category. In this case, organisms that are physiologically 

impacted by environmental stressors will either require more resources (i.e. food) to sustain a 

possible higher energetic cost of living associated with stress response pathways (Thomsen, 

Casties et al. 2013), or they may be able counteract the deleterious effects of stressors via 

metabolic depression (Pörtner, Langenbuch et al. 2004). In the first case, and increase in 

individual activity would be expected, while in the second case, a reduction in activity would 

be more likely, and these should thus be observable in changes in bioturbation and bio-

irrigation of burrowing macrofauna, which result from the overall activities of these 

organisms. The effect in either process at the community level, as measured here, will likely 

depend on which species are present, their vulnerability, and their abundances. 

The bio-irrigation samples are still in process, and so this section focuses on the analysis of 

the bioturbation data. We have yet to finalise the estimation of bioturbation via fitting of the 

random-walk model to the time-lapse data, which will enrich the conclusions of this section. 

Nevertheless, we provide information about the impact of the experiments on bioturbation 

depth and biodiffusion, two key aspects of bioturbation as a process that can be used as 

proxies for the occurrence of physiological stress associated with environmental conditions 

(section 2.1.1). 

 

3.6.1 High CO2 mesocosm experiment  

Analysis of the macrofauna communities at 2 weeks of exposure (T1) indicated that there was 

no apparent difference in the communities exposed to different CO2 treatments (section 3.1.1, 

TBC). At 20 weeks, however, the average abundance in the bioturbation time-lapse cores was 

higher than in the highest CO2 treatment (3680 ± 491 ind.m
-2

 c.f. 3159 ± 49 ind.m
-2

, mean ± 

sd), with the values in the other three treatments fluctuating between the two. This suggests 

that mortality at 20000 ppm of CO2 may have been higher than in controls. This effect on 
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community structure is visible when macrofaunal community biodiversity measurements 

taken on these cores (number of species, Margalef species richness index, Pielou’s evenness 

index, Shannon and Simpson’s diversity indices) are considered together to establish the 

similarity between communities exposed to the different treatments (Euclidean distance based 

on normalized diversity measurements, calculated on untransformed community abundance 

data). Indeed, the corresponding nMDS plot of the dissimilarity between these communities 

(fig.32, below) illustrates the control and 1000 ppm communities clustering together, with 

distance to these increasing as the CO2 concentration increased. This result indicates a change 

in these communities after 20 weeks of exposure to the CO2 treatments, which had a bearing 

on the bioturbation measurements carried out.  

We focus here on the bioturbation measurements carried out on the whole liners (section 

2.1.1), while the bioturbation data from the time-lapse incubations is still being processed. 

The results are presented in figure 33, below. We found that the biodiffusion coefficient, an 

indicator of the intensity of bioturbation, did not change in response to the CO2 treatments at 

2 weeks (T1, one way Analysis of variance, R
2
=9.7%, p>0.10), but decreased significantly 

with increased CO2 levels in the seawater at 20 weeks (T2, fig. 33a, one way Analysis of 

variance, R
2
=30.64%, p< 0.10). This result suggests that after 20 weeks, the fauna was less 

active in the sediment as CO2 increased, while at 2 weeks the intensity of bioturbation was 

variable, but not statistically related to the CO2 treatments.  

In addition, we found a significant effect of the CO2 treatments on maximum bioturbation 

depth. Maximum bioturbation depth became significantly shallower as CO2 increased at 20 

weeks (T2, fig. 33b, generalized least squares model fit allowing for heterogeneous variances 

between CO2 treatments, p=0.05), but not at 2 weeks (T1, fig. 33b, generalized least squares 
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Figure 32: non-metric Multi-Dimensional Scaling plot illustrating the dissimilarity (Euclidean distance) between samples 

based on diversity measurements (normalised) taken on the communities at 20 weeks of exposure to high CO2 treatments. 

Note how the higher CO2 concentrations exhibit overall greatest departure from the control treatment (section 3.6.1). 

 

model fit allowing for heterogeneous variances between CO2 treatments, p>0.10). A lack of 

effect on bioturbation depth at 2 weeks of exposure indicates that the organisms did not try to 

re-position themselves vertically within the sediment in response to short-term CO2 exposure, 

but that this effect was visible at 20 weeks. Shallow burrowing depth is a common response 

of bioturbators to stressors (Pearson and Rosenberg 1978; Marsden and Bressington 2009; 

Queirós, Hiddink et al. 2011) and so it is possible that the fauna may not have been 

significantly impacted by CO2 in a short term exposure (T1) but that the continuous exposure 

to high CO2 may have led to more profound physiological stress, in the long run (T2). 
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Figure 33: Estimates of bioturbation, made during the high CO2 experiment. (a) Biodiffusion coefficient; and (b) 

bioturbation depth. 

 

As there was a suggestion that community structure may have changed after 20 weeks (fig. 

32), the finding of shallower burrowing depth and less intense bioturbation with increased 

CO2 at 20 weeks suggests that overall, the community bioturbation may have change as a 

result of a different community structure. Consequentially, the potential effect of these 

communities on sedimentary geochemistry, through sediment transport, may also have 

changed in a medium-term exposure scenario, that worsened with the degree of hypercapnia 

observed. Figure 34 illustrates that the ordination of systems associated with the CO2 

treatments (Euclidean distance) did indeed increase with exposure time (T1 (a) c.f. T2 (b)), 

once the results from the (normalized) bioturbation measurements, nutrient fluxes (section 

3.5.1.2) and ammonia oxidation in the sediment (3.5.1.3) were considered simultaneously. 

The dissimilarity between systems at twenty weeks shows a gradation associated with CO2, 
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which also appeared to reduce system variability. I.e. high CO2 systems cluster closer than 

lower CO2 systems in figure 34b. This effect is generally seen as negative, as variability 

within natural systems is typically expected to be an insurance against variable environments. 

The absence of significant findings relating to bioturbation in the short exposure scenario 

(T1) suggests that the bioturbation activity of these communities (and potential effect on 

biogeochemistry) may be preserved in in short-lived leakages (fig.34a), although this may be 

likely dependent on the degree of hypercapnia caused.  

The difference in the bioturbation measurement range between T1 and T2, particularly in the 

controls, is surprising (figure 33), and we can only speculate that it may possibly be related to 

seasonal effects (Teal, Bulling et al. 2008). Indeed, globally, bioturbation depth is expected to 

be deeper in winter than in autumn, as observed here (T2 c.f. T1). Our understanding of 

seasonality in biodiffusion is currently limited (Teal, Bulling et al. 2008).  

 

 

Figure 34: nMDS plot  of systems plotted based on distance calculated considered the bioturbation, nutrient fluxes and 

ammonia odxidation data, together, at 2 weeks of exposure (T1, a), and 200 weeks (T2, b). 
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3.6.2 Formation water leakage mesocosm experiment  

This sections focuses on the measurements of bioturbation carried out during the mescosm 

experiment: the interpretation of these findings will be improved once the macrofauna 

(section 3.1.2) and bio-irrigation data become available. Due to time-constrains, in this 

experiment, bioturbation was quantified using time-lapse set-up (section 2.1.1), but no whole 

liner assessments were made. 

The main finding is that all stressors appeared to change bioturbation significantly, 

individually and in combination (fig. 35). Both high salinity and hypoxia, individually and in 

combination, reduced mean bioturbation intensity significantly (generalised least squares 

model fit allowing for heterogeneous variances between treatments, p<0.06), even in the tidal 

treatment (fig.35a). This finding suggests that the fauna was significantly less active in all 

treatments in relation to the controls, indicating the occurrence of physiological stress.  

This result was also observed in the depth of bioturbation, which was significantly shallower 

in the hypoxic, high salinity and mixed treatments, than in the controls (fig.35b, generalised 

least squares model fit allowing for heterogeneous variances between treatments, p<0.08). It 

is noteworthy, however, that in the tidal treatment, the mean of burrowing depth was similar 

to the controls (fig.35b), and the variance increased. This finding is consistent with 

observations, during the exposures, of fauna occurring at the surface of the sediments during 

the mixed water phase of the tidal cycle, and re-burying during the control water phase (see 

section 2.1.2).  

These findings confirm that hypoxia and high salinity, associated with formation water, can 

cause significant physiological impact on burrowing fauna. But more importantly perhaps, 

they highlight the importance of tidal and hydrodynamic conditions in general, in modulating 

the impacts of plumes associated with the release of formation water, as found in QICS 

project, in relation to high CO2 plumes. This flushing of the brine plume may thus confer 

macrofauna organisms with a daily window during which recovery from stress responses may 

occur, as illustrated by the difference in bioturbation depth between the mixed and the tidal 

treatments (fig. 35b). However, the significant decrease in bioturbation intensity (fig.35a) 

suggests that some physiological costs are nevertheless ongoing, and thus that impairment of 

bioturbation may occur during longer exposures. 
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The analysis of community and respiration data (ongoing, section 2.1.1. and 2.1.2) will 

greatly add to the interpretation of these findings.  

 

 

Figure 35: Estimates of bioturbation during the formation water experiment. (a) Biodiffusion coefficient; and (b) 

bioturbation depth. 

 

With regard to the relation of bioturbation to biogeochemistry, as with the high CO2 

experiment, we plotted the similarity between systems (Figure 36) considering both elements 

(i.e. bioturbation and nutrient fluxes (section 3.5.2.2), but not ammonia oxidation, as that was 

measured in cores where we did not measure bioturbation). We found that once bioturbation 

and biogeochemistry were considered together, the effect of the experimental treatments on 

the systems was clear (fig.36), with distance to the controls increasing from single to multi-

stressor systems, and the tidal system showing the greatest departure overall (figure 36). As 

before, the effect of the stressors is also visible on a reduction of the natural variability of 

parameters observed in the controls (one control system in figure 36 is omitted, showing the 

Control High Salinity Hypoxia Mixed Tidal

1
3

5
7

treatment

b
io

d
if
fu

s
io

n
 c

o
e
ff

ic
ie

n
t 

(c
m

2
y
r

1
)

Control High Salinity Hypoxia Mixed Tidal

0
.0

0
.5

1
.0

1
.5

2
.0

treatment

m
a
x
im

u
m

 p
e
n
e
tr

a
ti
o
n
 d

e
p
th

 (
c
m

)

Control High Salinity Hypoxia Mixed Tidal

0
2
0

4
0

6
0

8
0

treatment

b
io

tu
rb

a
ti
o
n
 a

c
ti
v
it
y
(%

)

(a) 

(b) 



ECO2 project number: 265847 

 

 

Deliverable 4.1: Potential impact of CCS leakage on marine communities 

WP4; lead beneficiary: Plymouth Marine Laboratory 
 

 

68 

 

greatest distance overall to the others). This effect is also generally seen as negative, as 

variability within natural systems is typically expected to be an insurance against variable 

environments. 

 

 
Figure 36: Non-metric multidimensional scaling (nMDS) plot where formation water liners are represented with the 

distance between them indicating the overall dissimilarity (Euclidean distance), calculated on the (normalized) bioturbation 

and nutrient flux measurements together. One control system has been removed, which exhibited the highest distance to all 

other points, to highlight the forcing of the experimental treatments. 

 

3.7 Planktonic communities 
 

All data on planktonic communities came from the Panarea natural seep sites. 

The outcomes obtained from different temporal and spatial sampling strategies (long 

transect–PACO2, short transect-LB and Basiluzzo area) indicate that the effect of CO2 seeps 

on the prokaryotic dynamics in the water column varies widely. Microbial abundances 

displayed higher variability than those previously observed (Karuza et al. 2012). Generally, 

CO2 seeps were associated with low PCP (Prokaryotic Carbon Production) and low turnover 

rates of heterotrophic prokaryotic community. On the contrary, from what was observed 

during the PaCO2 cruise, mobilisation processes (prokaryotes exoenzymatic activities) seem 

to be stimulated by gas leakage.  
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Viral dynamics (production and decay), investigated only during PACO2 cruise, were more 

intense at the control site (st. P0) relatively to the vent area, and were more pronounced at the 

surface level where also minor acidification was detected. Viral abundance did not 

significantly differ between the control site and the vent. Higher burst size (BS) in the control 

site (BS=37) relative to the CO2-vent (BS always <12) indicates minor yield of lytic infection 

in the vent field. The fraction of lysogens in the seep area was up to 60% higher than in the 

control station (<15%) (Figure 37). 

 

The impact of CO2 on the abundance and diversity of phytoplankton community was 

investigated to increase our capability to predict marine ecosystem response to potential CO2 

leakage. Undetermined nanoflagellates were generally the most abundant group, while 

dinoflagellates were the main taxonomic group in terms of biodiversity. Only in October 

2012 and May 2013, near the Basiluzzo island, the community showed a higher number of 

taxa and a higher biodiversity in relation to the other campaigns and to the other investigated 

points, with dinoflagellates, diatoms and coccolithophores well represented. From these 

preliminary results, natural CO2 emissions in this area do not seem to have any clear 

influence on phytoplankton community, and community structure appeared, alternatively, to 

reflect  seasonal variability. 

 

As with phytoplankton, preliminary results do not show any significant impact of the CO2 

seeps on the microzooplankton community, and the differences noted seem linked mainly to 
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Figure 37: Virus-prokaryote interaction along the PaCO2 

transect: a) Virus-to-Prokaryote Ratio (VPR); time-course 

experiment to estimate viral production at surface (b) and 

bottom (c) layers of the station P23 where gas emission was 

observed. Maximum viral production is evidenced with red 

arrow. Different dynamics due to different latent periods can be 

observed. 
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seasonal variations. Tintinnids and heterotrophic dinoflagellates were the most abundant 

organisms in this group, followed by Micrometazoans (mainly copepod nauplii). Aloricate 

ciliates never reached high values. Foraminifera, Radiolaria and Acantharia were scarce in all 

stations. In total, 22 genera and 55 species of microzooplankton were identified. Among 

tintinnids, the most representative species were Eutintinnus tubulosus, Salpingella decurtata, 

Dadayiella ganymedes and Dictyocysta mitra (Figure 38). Protoperidinium and Diplopsalis 

were the most representative genera among heterotrophic dinoflagellates. The community of 

naked ciliates was dominated by Strombidiidae and Strobilidiidae. 

 

Figure 38: Photos of the most representative species of tintinnids: Eutintinnus tubulosus (a), Salpingella decurtata (b), 

Dadayiella ganymedes (c) and Dictyocysta mitra (d). (Scale bar = 50 µm).  
 

4. Recommendations 
 

 There are currently very few studies published which have exposed whole benthic 

communities to elevated levels of CO2. In order to appreciate the full range of 

responses observed across different benthic habitats and communities, more of these 

large exposure experiments need to be conducted on a greater variety of benthic 

systems.  

 

 Experiments need to incorporate more realistic exposure scenarios. The vast majority 

of CO2 exposure studies conducted to date have used continuous levels of CO2 

exposure. However, results from both models and observations have shown that, due 

a b c d 
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to local hydrodynamics such as tides and currents, and seasonality, benthic systems 

will most likely be exposed to CO2 levels which can fluctuate and pulse with time. 

This periodic exposure to high CO2 could have very different effects on marine 

organisms and communities and needs to be more adequately characterized. 

 

 The ECO2 project was the first (and currently only) to run an experiment to simulate 

exposure to high salinity, low oxygen formation water. Given the strong impacts seen 

in this experiment and the likelihood that CCS activities could displace formation 

water into the marine environment, more of these experiments are urgently needed. 

Here too, the modulating effects of hydrodynamics and seasonality need to be 

adequately characterized. 

 

 The majority of data on high CO2 impacts currently available have come from 

experiments that increase the CO2 content of the overlying water. Whilst this 

approach is appropriate for stuying the effects of a dense, CO2 enriched plume, it does 

not adequately replicate the effects of CO2 migrating up through the sediment and 

interacting with the pore waters. A recent controlled, sub-seabed, CO2-releaase 

experiment (the QICS project) has been successfully conducted (Blackford et al., 

2014) and more such experiments are urgently needed. 
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Annex I:  In situ methods used in fields surveys at the Panarea site 
(Section 2.2, Table II) 
 

 

Several in-situ-measuring devices were deployed at the investigated Basiluzzo sedimentary 

sites to geochemically characterize the respective habitats. In addition, the divers thoroughly 

documented each site by video and photography. 

Timelapse Camera 

The gas flow was monitored for several hours during each deployment with the timelapse 

technique using a Canon EOS D600. These recordings are currently being evaluated by 

HYDRA. Observations made by the divers under water indicate the potential for considerable 

differences in seepage intensity during the day that may be caused by wave action, tides or 

changing currents.  

 

SEAGUARD Recording Current Meter 

As during last year’s field trip, a SEAGUARD recording current meter (AADI, Norway) was 

used to monitor current speed and direction, temperature, salinity/conductivity, pressure, 

turbidity and oxygen concentrations within the water column. 

 

Microsensor Profiler 

A microsensor profiler for sediments was equipped with sensors for pH (de Beer et al. 1997) 

and Microelectrodes Inc., USA], O2 (Revsbech and Ward 1983), CO2 (Microelectrodes Inc., 

USA), ORP (oxidation reduction potential; a Pt wire, exposed tip is 50 µm thick and 0.5 mm 

long), T (Pt100; UST Umweltsensortechnik GmbH, Geschwenda, Germany), H2 (Unisense, 

Denmark) and H2S (Jeroschwski et al. 1996). It was deployed at all three sedimentary 

sampling sites. In addition to the recording of high-resolution profiles in the sediment, the 

unit was also used to assess the spatial heterogeneity of the water column. 
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RBR Sensors 

RBR sensors (RBR-Datalogger XR-420 D; RBR, Ottawa, Canada, www.rbr-global.com) are 

loggers for pH, O2, ORP and pressure (tides), here measuring at 2 cm from the sediment 

surface. Out of 6 loggers, 5 functioned well and revealed strong dynamics of O2, pH and ORP 

that were perfectly synchronous to tides. Seepage occurred mainly at low tide, during which 

anoxic, acidic and reduced substances are emitted into the water column. The reductant could 

be either H2S, H2 or Fe
2+

. 

Gas sampling 
The goal was to determine the overall gas composition and to verify again that no methane 

and no sulfide are emitted at the investigated sites. Sampling and analyses were done in 

cooperation with Dr. S. Beaubien (UniRoma1, Italy) and Dr. F. Italiano (INGV Palermo, 

Italy). Gas samples were taken at the CO2-impacted sites. Sampling was done by holding an 

exetainer upside down over the seep until it was filled. During surfacing the exetainer had a 

syringe needle stuck through the septum for the pressure release. The needle was pulled out 

shortly before surfacing with the samples. The exetainer content was transferred into metal 

containers on board and analysis was done at UniRoma1 (Italy). From sub-samples out of 2 

gas collecting tubes analysis of H2S were done immediately on board directly after sampling 

(UniRoma1, Italy). The concentration of H2S was <1ppm. The sampling for the extended 

analysis was done with funnels into gas collecting tubes. The containers were closed when 

full with gas and surfaced without any pressure compensation. The analysis were done INGV 

Palermo (Italy) and revealed a CO2 content of ~97-99% at both sites as well as a CH4 content 

of <0.001%. 

Bacteria abundance and community structure 
Natural sediment samples for analyzing bacterial communities were obtained by using 

segmented push cores (0-2 cm intervals, maximum length up to 15 cm) and sterile Sarstedt 

tubes (for scooping 0-2 cm surface sediment). Samples were either directly frozen at -20°C 

for DNA analyses, or were fixed in 4% formaldehyde/seawater for cell counts. Prokaryotic 

total abundance can be obtained using Acridine Orange (Boetius et al. 1996). We determined 

the bacterial community structure both by automated ribosomal intergenic spacer analysis 

(ARISA; for methodological details see e.g. Böer et al. 2009) and by 454 massively parallel 
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tag sequencing (MPTS; for methodological details see e.g. Gobet et al. 2012). Additional 

samples were taken for fluorescence in situ hybridization (FISH). These samples were fixed 

for 3-12 h at 4°C in 4% formaldehyde/seawater. The samples were then washed twice with 

1×PBS (phosphate buffered saline; pH 7.4) to remove the fixative before being stored at -

20°C in a 1:1 mixture of 1×PBS and EtOH (molecular grade). Once in MPI laboratories the 

samples were processed with specific probes for Bacteria and Archaea as described by Ishii et 

al. (2004). 

Meiofauna abundance and community structure 
At each site five replicate meiofauna samples were taken with plastic cores that were precut 

in 2 cm slices and taped, and which had an inner diameter of 5 cm (equivalent to 19.6 cm²). 

After retrieval the cores were sliced, where possible to 10 cm depth, and stored on a 4% 

formaldehyde-seawater solution. Meiofaunal organisms were retrieved from the sediments 

after rinsing the sediments with tap water over a 1mm and a 32 µm mesh sieve, and decanting 

the 32 µm fraction for 3 times. All meiofaunal organisms were identified to higher taxon 

level under a Leica MZ 12.5 stereomicroscope (8 - 100x magnification), and where possible 

50 nematodes per sediment layer were identified at UGent to species level under a compound 

microscope (1000× magnification). 

Macrofauna abundance and community structure 
At each site five replicate macrofaunal samples were taken with plexiglass tubes with an 

inner diameter of 6.4 cm (equivalent to 32.17 cm²). The upper 10 cm of the sediment was 

stored on a 4% formaldehyde-seawater solution. Afterwards, samples were sieved on a 1 mm 

sieve and macrofaunal organisms were identified to species level where possible (UGent). 

Enzymatic activities 
The task was to investigate the microbial extracellular enzyme activity in the surface 

sediment at all three sedimentary sampling sites. At each site, 4 samples of the surface 

sediment were obtained. The top 2-3 cm of the sediment were scooped into sterile 50 mL-

Sarstedt tubes. In addition, 3 water samples were taken with 50 mL-syringes approx. 10 cm 

above the sediment surface to set up the experiments. For each site, 3 of the 4 sampling tubes 

were chosen to set up the essays, while the fourth one was immediately stored at -20°C 

(backup and for calibration purposes). In total, 4 different substrates were used to set up the 
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essays, i.e. β-glucoside (β-glucosidase), N-acetyl-glucosamine (chitobiase), Leucine 

(Leucine-aminopeptidase) and Fluorescein diacetate (esterase). Dublicates were set up in 

sterile 15 mL-Sarstedt tubes with each substrate by mixing each time 3 mL sediment and 3 

mL filter-sterile seawater with 120 µL of the substrate stock solutions (final concentrations 

100 µM for all, except 500 µM for Leucine). Essays were mixed well before and inbetween 

incubation at in situ temperature (16-19°C). Sampling was done after 0.5 h and 1.5 h by 

taking off 1 mL of the supernatant and directly transferring it to -20°C (storage in cryo-vials). 

Vials are kept dark until analyses in the MPI home laboratories. The protocol is a modified 

version of the one described by Boetius & Lochte (1994). 

Seagrass survey 
The main objectives were to assess the leaf area index, to investigate bacterial and meiofauna 

community composition, and to determine the presence/absence as well as abundance of 

epibionts. 

Leaf Area Index (LAI). For the assessment of the LAI, the seagrass rhizomes were counted in 

an area of 0.25 m². At least three counts were conducted per site. From each counted area, ten 

rhizomes were sampled including the leafs. All leafs were scanned on land in Panarea. In the 

HYDRA laboratory, the leaf area will be assessed and the LAI will be calculated. 

Seagrass Biology: Bacteria. At each site, seagrass leaves were sampled at three different 

spots. For one sample, 10 outermost leaves were randomly chosen, ripped off and transferred 

into one sterile plastic bag. Back in the field laboratories, at first the leaf dimensions (length 

× width) were measured. The top 5 cm of each leaf were cut off and preserved for DNA 

analyses and cell counts. Three of the 10 leafs were fixed at 4°C in 14.5 mL 4% 

formaldehyde/seawater. Two of the 10 leafs were frozen (-20°C) as is in sterile 15 mL-

Sarstedt tubes (backup). For DNA analyses, the rest of the leafs were each wetted with 1 mL 

1 × TE-buffer (molecular grade; Promega Corporation, Madison, WI) before being scraped 

on both sites with a sterile scalpel. The detached material was then transferred via pipetting 

(autoclaved tips) into autoclaved plastic vials and stored at -20°C. 

In addition to the leaf sampling, the divers also collected seawater samples above and 

between the seagrass leafs for each of the three different spots per site. For this purpose, 50 
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mL-syringes were filled and brought back to the field laboratory. Sub-samples were taken for 

pH measurements and nutrient analyses, DIC and TA. 

 

Seagrass Biology: Meiofauna 

At each site, six replicate samples were collected from the natural sea grass beds. The divers 

collected around 12 to 18 leafs per sample by placing a plastic bag over the leafs and gently 

cutting of the leafs at the base before closing the bags with elastic bands. The remaining 

shoots were cut off from the rhizomes and gently transferred into separate plastic bags, with a 

minimal of transfer through the water column. On land, both leaf and shoot samples were 

poured on a 32µm sieve to eliminate the water. The material collected on the 32 µm sieve 

was stored on a 4% formaldehyde-seawater solution. Back at the lab (UGent), the samples 

were poured on a 1 mm and 32 µm sieve and the meiofauna and nematodes in the 32 µm 

fraction are currently being studied in a similar way as is done for the organisms inhabiting 

the sediment. In order to standardize the meiofaunal densities, seagrass leaf surfaces were 

calculated with the software program ImageJ before they were burned to determine the ash-

free dry weight. As for the shoots, their volume was measured by means of submersion, 

before they were burned to determine their ash-free dry weights. 

Seagrass Biology: Epibionts 

 A thorough assessment of the epibionts was done in the laboratories of HYDRA. For the 

epibiont samples, the leaves of one rhizome were grabbed at the lowest part and cut off. The 

leaf bundle was put into one plastic bag. All leaves from one sample were scanned with high 

resolution on each side for later analysis. The samples were then fixed in 4% 

formaldehyde/seawater. 

Sediment Geochemistry 

From the segmented push cores (0-2 cm intervals, maximum length up to 15 cm) several 

samples were preserved for analyses of methane concentration, porosity, TOC (total organic 

carbon) and CPE (chloroplastic pigment equivalents), granulometry, TN, TOC and TOM. For 

methane concentration, 5 mL of sediment were added to 10 mL 2.5% NaOH in glass vials, 

mixed, stored upside down at 4°C and then analysed with gas chromatography. For porosity, 

3-4 mL of each sediment horizon were stored at 4°C in 5 mL-syringes, the porosity was 

calculatete from weight/volume ratio. For CPE, a 5 mL-syringe was inserted into the core, 

d) 
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thereby preserving the natural vertical structure of the sediment. Each syringe was wrapped in 

aluminum foil and stored at -20°C. CPE analyzed as described in Böer et al. (2008). Grain 

size distribution was measured using a Coulter Counter LS 100TM Particle Size Analyser. 

The 0.06–1000 mm sediment fractions were expressed in volume percentage (vol%) and 

classified according to Wentworth (1922). For total sedimentary organic carbon (TOC) and 

nitrogen (TN), samples were lyophilized, homogenized and acidified with 1% HCl and the 

contents were measured using a Flash EA 1112+ Mas 200 elemental analyzer (detection limit 

of 0.01%). Total organic matter or ash-free dried weight is determined as the mass loss 

observed upon the combustion of the dried sample (48h at 60°C) at 500°C for 2h. 

Pore-water Geochemistry 
To investigate how pH, DIC (dissolved inorganic carbon), TA (total alkalinity), nutrients 

(NH4
+
, PO4

3-
, NO2

-
, NO3

-
/NO2

-
, Si), sulfide concentrations, Fe/Mn concentrations change 

with depth at the investigated sites, pore-water samples were obtained with the help of the 

TUBO device and by using Rhizons MOM (19.21.21F, mean pore size 0.15 µm; Rhizosphere 

Research Products, Wageningen, Netherlands) attached to 10 mL-syringes (Fig. 4a,b). In 

principle, the TUBO device was pushed into the sediment and then emptied. At each depth, 2 

Rhizons were inserted into the sediment at opposite locations. To allow direct comparison 

with the bacterial samples (0-2 cm intervals), Rhizons were inserted at 1, 3, 5, 7 and 9 cm 

depth. At each of the investigated sedimentary sites 3 replicate pore-water profiles were 

taken. Dissolved silicate was photmetrically measured according to Grasshoff et al. (1983). 

NH4
+
, PO4

3-
, NO2

-
, NO3

-
 were spectrophotometrically measured with a continuous-flow 

analyzer (Bran & Lübbe GmbH, Nordestedt, Germany) using a variant of the method of 

Grasshoff et al. (1983). 

Measurements of pH were directly done in the field laboratory with a pH 96 by WTW (WTW 

Wissenschaftlich-Technische Werkstätten GmbH, Weilheim, Germany) and an InLab Semi-

Micro electrode by Mettler Toledo (Gießen, Germany). pH was determined at ambient 

temperature and values will have to be adjusted to in situ conditions later. Calibration was 

done with conventional buffer solutions by Mettler Toledo (pH 4.00 and 7.00).  
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For DIC and TA, 2 mL pore-water were filled headspace-free into glass vials and stored at 

4°C. DIC and TA were assessed via flow injection analysis (Hall and Aller, 1992) and two-

point tritaion (Edmond 1970), respectively. 

Sulfide samples were fixed in plastic vials pre-filled with 0.5 mL 2% ZnAc before being 

stored at 4°C. In addition to the TUBO-Rhizon strategy, further samples were obtained by 

using syringes attached to a pore-water lance. The 10 mL-syringes had been pre-filled with 2 

mL 2% ZnAc to allow for direct fixation of pore waters under water. Samples were obtained 

from 5 cm and 10 cm below the sediment surface. In the field laboratory, these samples were 

transferred to 15 mL-Sarstedt tubes and stored at 4°C. Analyses were done in the MPI home 

laboratories according to procedure described by Cline (1969). To be able to determine 

Fe/Mn concentrations in the recovered pore waters, samples were fixed in plastic vials pre-

filled with 0.2 mL 1M HCl before being stored at 4°C. Fe and Mn concentrations were 

assessed by atomic absorption spectrometry. 

Seawater microbiology and geochemistry 
In order to obtain background information with regard to benthic bacterial community 

composition and geochemistry, a 5 L-Niskin bottle was used to sample seawater at a height of 

approx. 30 cm above each of the sedimentary sampling areas. Sub-samples for pH, nutrients 

concentrations, as well as DIC and TA (but with addition of HgCl2) were processed the same 

way as pore-water samples. Samples for measuring CH4 concentration were filled into 

evacuated and pre-weighed glass containers that contained 2-3 NaOH pellets. Samples for 

sulfide concentration was fixed in 15 mL-Sarstedt tubes pre-filled with 2 mL 2% ZnAc at 

4°C. 

To investigate the bacterial community composition, seawater samples were filtered and 

filters were stored at -20°C for subsequent DNA analyses in the MPI home laboratories. With 

the help of a portable vacuum pump, 500 mL of seawater were passed through a 0.2 µm 

GTTP-filter (Merck Millipore, Billerica, MA). A cellulose nitrate filter (0.45 µm; Sartorius, 

Göttingen, Germany) was used as support filter. Filtrations were repeated at least three times 

(i.e. finally at least 2 L of seawater had been filtered per site). Part of the seawater was fixed 

with filter-sterile formaldehyde (final concentration of 1%) over night at 4°C in sterile 50 

mL-Sarstedt tubes. Finally, 15 mL were filtered through a 0.2 µm GTTP-filter (Merck 
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Millipore), while using a 0.45 µm cellulose nitrate filter (Sartorius) as support filter. 

Filtrations were repeated 5 times to obtain in total 6 replicate filters (stored at -20°C). These 

samples were used for counting bacterial cell numbers by DAPI-staining and fluorescence in 

situ hybridization. 
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Annex II:  Dissolved oxygen,  alkalinity, phosphate, nitrate+nitrite,  
ammonia, manganese (II) , iron (II), DIC, ΩAr and ΩCa pore water 
profiles, from the mesocosm formation water experiment (Section 
3.5.2) 

 

A ) Control 

 

B ) Hypersaline 

 

C ) Mixed 
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Figure A1: Oxygen profiles. Oxygen concentration in micromolar (µM) forsediment pore water in cores exposed in 

treatments waters for 1 week: control (A), hypersaline  (B), hypoxic +hypersaline (C), hypoxic (D) and  tidal  (E) water. 

Sediment depth is given in mm. 
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Figure A2: Vertical distributions of pH, redox potential, alkalinity, phosphate, nitrate+nitrite,  ammonia, manganese (II) , 

iron (II), DIC, Ar and Ca in the sediment pore waters for control (A), hypersaline  (B), hypoxic +hypersaline (C), hypoxic 

(D) and  tidal  (E) water. Sediment depth is given in cm. 
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