

High-resolution profiles of N₂O performed during Meteor cruise M91 in December 2012

4 high-resolution N_2O profiles in top 10 meters at different distance to the coast.

Shallow N₂O gradients exist. Strongest gradient observed on the shelf (->bias of factor 1.5). They correspond to shallow stratification, that was not completely eroded the night before.

Major fraction of Peruvian waters shows favourable conditions for N₂O gradient

Conclusions

Open questions

- Significant shallow N₂O gradients exist off Peru.
- Effect: Emission estimates are biased high.

Suggested cause:

Shallow stratification fails to be eroded for at least one night. Such condition is met in majority of Peruvian waters.

- Gradient seems strongest where expected impact on emission estimates is largest: at high N₂O concentrations near the coast.
- More shallow profiles needed to:
 - verify assumed cause of N₂O gradients,
 - quantify the bias on total emission estimates.
- How much do surfactants reduce outgassing in addition?
- How to measure N₂O underway at <1m and 12 kts?
- How do ultra-high N₂O profiles continue to the surface?

References Calleja, M. Ll., Duarte, C. M., Vaquer-Sunyer, R., Agusti, S., and Herndl, G. J. (2013): Prevalence of strong vertical CO₂ and O₂ variability in the top meters of the ocean, Global Biogeochem. Cycles, 27, 941-949, doi: 10.1002/bgc.20081 ----- Kock, A., Schafstall, J., Dengler, M., Brandt, P., and Bange. H.W. (2012): Sea-to-air and diapycnal nitrous oxide fluxes in the eastern tropical North Atlantic Ocean, Biogeosciences, 9, 957-964 ----- Naqvi, S.W.A., Bange, H.W., Farías, L., Monteiro, P.M.S., Scranton, M.I., and Zhang, J. (2010): Marine hypoxia/anoxia as a source of CH₄ and N₂O, Biogeosciences, 7, 2159-2190, doi:10.5194/bg-7-2159-2010 ----- Nevison, C.D., Lueker, T.J., , and Weiss, R.F. (2004): Quantifying the nitrous oxide source from coastal upweling, Global Biogeochem. Cycles, 18, GB1018, doi:10.1029/2003GB002110 ---- Soloviev, A., Edson, J., McGillis, W., Schluessel, P., and Wanninkhof, R. (2002): Fine thermohaline structure and gas-exchange in the near-surface layer of the ocean during GasEx-98, in: Donelan, M.A., Drennan, W.M., Saltzman, E.S., and Wanninkhof, R. (eds.): Gas transfer at water surfaces, AGU Geophysical Monograph Series 127, Washington D.C., 181-185 -----

Acknowledgments This study was supported by the German Federal Ministry of Education and Research through the joint project SOPRAN (Surface Processes in the Anthropocene) under grant no. SOPRAN II FKZ 03F0611A. The friendly support of all crew members of research vessel METEOR during cruise M91 is highly appreciated. Perticular thanks to the bravehearts who sampled N₂O during long hours in the dinghy drifting in the waves, sacrificing their health.