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Abstract

Gelatinous zooplankton outbreaks have increased globally owing to a number of human-mediated factors, including food
web alterations and species introductions. The invasive ctenophore Mnemiopsis leidyi entered the Black Sea in the early
1980s. The invasion was followed by the Azov, Caspian, Baltic and North Seas, and, most recently, the Mediterranean Sea.
Previous studies identified two distinct invasion pathways of M. leidyi from its native range in the western Atlantic Ocean to
Eurasia. However, the source of newly established populations in the Mediterranean Sea remains unclear. Here we build
upon our previous study and investigate sequence variation in both mitochondrial (Cytochrome c Oxidase subunit I) and
nuclear (Internal Transcribed Spacer) markers in M. leidyi, encompassing five native and 11 introduced populations,
including four from the Mediterranean Sea. Extant genetic diversity in Mediterranean populations (n = 8, Na = 10) preclude
the occurrence of a severe genetic bottleneck or founder effects in the initial colonizing population. Our mitochondrial and
nuclear marker surveys revealed two possible pathways of introduction into Mediterranean Sea. In total, 17 haplotypes and
18 alleles were recovered from all surveyed populations. Haplotype and allelic diversity of Mediterranean populations were
comparable to populations from which they were likely drawn. The distribution of genetic diversity and pattern of genetic
differentiation suggest initial colonization of the Mediterranean from the Black-Azov Seas (pairwise FST = 0.001–0.028).
However, some haplotypes and alleles from the Mediterranean Sea were not detected from the well-sampled Black Sea,
although they were found in Gulf of Mexico populations that were also genetically similar to those in the Mediterranean Sea
(pairwise FST = 0.010–0.032), raising the possibility of multiple invasion sources. Multiple introductions from a combination
of Black Sea and native region sources could be facilitated by intense local and transcontinental shipping activity,
respectively.

Citation: Ghabooli S, Shiganova TA, Briski E, Piraino S, Fuentes V, et al. (2013) Invasion Pathway of the Ctenophore Mnemiopsis leidyi in the Mediterranean
Sea. PLoS ONE 8(11): e81067. doi:10.1371/journal.pone.0081067

Editor: Erik V. Thuesen, The Evergreen State College, United States of America

Received July 10, 2013; Accepted October 8, 2013; Published November 26, 2013

Copyright: � 2013 Ghabooli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported financially by NSERC Discovery Grants to MEC and HJM, and by a DFO Invasive Species Research Chair to HJM. The research
leading to these results has also received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) for the VECTORS and
COCONET projects, and the ENPI CBCMED EC Programme for the project MED-JELLYRISK. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ghabool@uwindsor.ca

Introduction

Introduction of non-indigenous species (NIS) beyond their

native range is considered a principal threat to marine ecosystems

worldwide [1]. The rate of such introductions accelerated in the

past few decades in conjunction with increased maritime shipping

and global trade [2–3]. Maritime traffic often involves use of

ballast water loaded in source ports and later discharged in

destination ports, resulting in mass transfer of organisms between

distant regions [4–6]. Species with planktonic life stages have a

high chance of interfacing with a shipping vector when ballast

water is loaded, and thus of being moved around the world to new

locations [7].

In recent years, gelatinous zooplankton outbreaks have raised

concerns regarding the health of aquatic ecosystems [8]. A number

of biological traits of gelatinous zooplankton may contribute to

global outbreaks by this group. For example, many gelatinous

zooplankton have a broad diet, high growth rate, high fecundity,

high regeneration, encystment, and even reverse development

potential [9–11], which enable them to overcome harsh conditions

associated with the transport vector (i.e. ballast tanks) and

successfully reach and establish in new environments [12–14].

The Mediterranean Sea has an enormously rich native

biodiversity, though it is also the world’s most invaded marine

ecosystem [15–16] and is considered at very high risk of future

invasions from ballast water discharges [17] and, especially, canal

connections [18–19]. A total of 986 NIS have been recorded in the

Mediterranean Sea, including 48 new species since 2011 [19]. The

eastern section of the Sea has accumulated a disproportionate

number of these NIS, principally due to Lessepsian invaders [18–

20] that colonized following opening of the Suez Canal with its

link to the Indian Ocean.
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Knowledge of the source and pathways of NIS introductions is

essential for developing management strategies to prevent

invasions. A focus on areas at high risk of biological invasions is

crucial and should be considered a management priority [17,21–

22]. In this paper, we explore the spread of the ctenophore

Mnemiopsis leidyi A. Agassiz 1865 to the Mediterranean Sea.

Mnemiopsis leidyi is native to the western Atlantic Ocean from

Massachusetts, USA to Argentina. The species is a simultaneous

hermaphrodite capable of self-fertilization, may reach maturity at

two weeks of age, and can release up to 10,000 eggs per day [23].

Over the past 30 years, the species spread across Europe in a

remarkable series of invasions, first entering the Black Sea (and

Azov Sea) in early 1980s [24], the eastern Mediterranean in early

1990s (mainly Aegean Sea where an established population was

not reported, [25–26]), followed by the Caspian Sea in 1999 [27].

Blooms of M. leidyi were reported throughout the Mediterra-

nean Sea in 2009, from eastern to western coastal areas [28–31].

Previous studies have addressed invasion pathways of M. leidyi

from its native region to Eurasia excepting the Mediterranean Sea

[32–33]. These studies suggested that M. leidyi was introduced to

Eurasia via at least two pathways. The first invasion occurred from

the Gulf of Mexico to the Black Sea, followed by secondary spread

to the Caspian Sea [32–33]. The second invasion was from the

northern distribution of this species in the western Atlantic

(possibly Narragansett Bay) to the Baltic and North Seas in

northern Europe [32–33]. However, the source of the M. leidyi

population in the Mediterranean Sea remains unclear. Several

possibilities can be envisaged. It is possible the species has spread

exclusively from the Black Sea [34] or other south Eurasian Seas

in currents or in discharged ballast water. Alternatively, the species

may have spread in discharged ballast water that originated in the

North or Baltic seas, from the western Atlantic Ocean, or via a

combination of the above pathways. To clarify the invasion

pathway(s) of this species into the Mediterranean Sea, here we

explore the population genetic structure of native and introduced

populations using both mitochondrial (Cytochrome c Oxidase

subunit I; COI) and nuclear ribosomal (Internal Transcribed

Spacer; ITS) genes.

Materials and Methods

Ethics Statement
No specific permits were required for the described field studies

in Eurasia, North America or South America. The species

collected is an invasive pest in Eurasia and is not protected

throughout its range. Sampling points did not include any

protected or private lands.

Sample Collection and DNA Extraction
A total of 286 M. leidyi individuals were sampled from five native

(Narragansett Bay, Massachusetts; York River, Virginia; More-

head, North Carolina; Tampa Bay, Florida; Peninsula Valdes

coast, Argentina) and 11 introduced populations (two from the

eastern Black Sea; Sea of Azov; north and south Caspian Sea;

Baltic Sea; Limfjorden Fjord, Denmark; and Spain, France, Italy

and Israel in the Mediterranean Sea). Individuals were preserved

separately in 95% ethanol prior to genetic analysis.

Genomic DNA was isolated from gelatinous lobe tissue of the

ctenophores using the automatic extraction protocol described by

Elphinstone et al. [35], and DNeasy Blood and Tissue Kit (Qiagen

Inc., ON, Canada). A fragment of the COI gene was amplified

using the species-specific primers (Ml-COIF: 59-

TGTCGCCCAAATTACTGTTTC-39 and Ml-COIR: 59-

TGACGGGGTAAACCTCATAAA-39). Primers were designed

in this study according to the available sequenced M. leidyi

mitochondrial genome (GenBank accession no: NC016117). The

universal primer pair, (ITS5F and ITS4R) [36] was used to

amplify the ITS-1, 5.8 S gene, and ITS-2. We conducted PCR

amplifications in a 40-mL reaction volume, with about 50 ng of

genomic DNA, 1 unit of Taq DNA Polymerase (QIAGEN), 1 x

PCR buffer, 2.5 mM of MgCl2, 0.2 mM of dNTPs, and 0.4 mM of

each primer. PCR was performed with an initial denaturing step at

95uC for 1 min, followed by 35 amplification cycles (95uC for 30 s,

50uC for 30 s, 72uC for 50 s), and a final elongation step at 72uC
for 7 min.

Sequencing and Cloning Protocol
We purified PCR products, which were then sequenced for both

COI and ITS markers with forward (Ml-COIF) and reverse

primers (ITS4R), respectively, using Big Dye terminator sequenc-

ing chemistry with an ABI 3130XL genetic analyzer (Applied

Biosystems). Sequences were inspected, manually edited, and

aligned using Codon Code Aligner 2.0 (Codon Code Corporation,

Dedham, MA). Sequence of alleles containing double nucleotide

calls (overlapping peaks) were cloned using Cloning and Ampli-

fication Kit (pSMART GC HK, Lucigen) according to Ghabooli

et al. [33].

MtDNA Analysis
We assessed diversity indices within populations, such as the

number of haplotypes (n), haplotype diversity (h) and nucleotide

diversity (p) [37] using DnaSP v5 [38]. We constructed

phylogenetic relationships among haplotypes using the neighbor-

joining algorithm in MEGA version 4 [39]. We used a fragment of

COI from a cydippid ctenophore, Pleurobrachia pileus (GenBank

accession no JF760211) as an outgroup. We generated a

parsimony network of haplotypes using TCS 1.0 [40].

Nuclear marker (ITS) Analysis
Using the protocol described above, we processed four new

populations from Mediterranean Sea (Spain, France, Italy and

Israel) as well as one more from the native range (MH from North

Carolina) in addition to our previously published dataset which

consisted of 190 individuals analyzed for ITS marker [33]. We

measured genetic diversity within populations with number of

alleles (Na), observed (Ho), and calculated expected heterozygosity

(He) using GENEPOP (online version http://genepop.curtin.edu.

au) and Arlequin version 3.1 [41]. We used the Markov chain

method to estimate the probability of significant deviation from

Hardy-Weinberg equilibrium using GENEPOP. We determined

genetic differentiation among populations from pairwise FST using

Arlequin.

To estimate the sufficiency of our sampling, we generated

rarefaction curves using ECOSIM and 5000 random iterations

[42] for both haplotypes and alleles found in native region, and the

Black-Azov and Mediterranean Seas. We estimated Chao-1

diversity [43] using SPADE software version 3.1 [44], based on

the number of rare haplotype/allele present in sampled popula-

tions.

Results

Analysis of a 656-bp fragment of COI obtained from 241

individuals resulted in 17 different haplotypes in surveyed

populations (GenBank accession nos KF435105–KF435121). In

total, we detected 29 variable sites (4.42%), 16 of which were

specific to the divergent haplotype Ml01 from Peninsula Valdes,

Argentina (2.43%). Ml03 and Ml09 were the most common

Phylogeography of Mnemiopsis leidyi
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haplotypes. We found haplotype Ml03 in all populations except in

Peninsula Valdes, while Ml09 was not recovered from Peninsula

Valdes, Limfjorden, or the Baltic Sea.

We found twelve different haplotypes in native populations, all

of which were present in introduced populations except for Ml01

from Peninsula Valdes, the single private haplotype at this site. We

detected a total of 16 haplotypes among the introduced

populations. Black-Azov Sea populations contained 11 haplotypes,

which was higher than in all other introduced regions. Mediter-

ranean Sea populations contained eight haplotypes, while those

from the Caspian and Baltic seas had four haplotypes each. Out of

eight haplotypes observed in the Mediterranean Sea, only Ml11

was not recovered from native populations in North America. Six

haplotypes including Ml11 were detected in Black-Azov Seas. Two

haplotypes from Mediterranean Sea populations were not found in

either the Black or Azov Sea, though they were present in the

native region, mainly in Florida and Morehead (Figure 1, Table 1).

The Black-Azov Seas shared six haplotypes with native

populations, while the other five haplotypes from this region were

either private for one population (Ml04, Ml05, Ml10, and Ml13) or

shared with France in Mediterranean Sea (Ml11). All four

haplotypes found in Caspian Sea populations were present in

both the Black Sea and North America. The Baltic Sea and

Limfjorden (Denmark) shared all of their haplotypes with the

native region, mainly Narragansett Bay, and only one haplotype

with other introduced populations (Figure 1, Table 1).

The introduced population (BL) from Black Sea contained the

highest number of haplotypes (n = 7) (Table 1). Among introduced

populations, those from Limfjorden and the south Caspian Sea

had the lowest number of haplotypes (n = 2 and 3, respectively).

Native populations from Morehead and Peninsula Valdes

exhibited the highest (n = 7) and lowest (n = 1) number of

haplotypes, respectively (Table 1).

Mean COI haplotype diversity (h) and nucleotide diversity (p) in

all introduced populations were 0.70460.059 and

0.002060.0003, respectively. Comparable values in Mediterra-

nean Sea populations were nearly identical, 0.70260.008 and

0.001960.0001, respectively. Native populations exhibited higher

values for each of these indices (h = 0.85060.043 and

p = 0.003860.0007, respectively). We excluded the non-diverse

individuals of Peninsula Valdes of South America from this

calculation.

The reconstructed phylogenetic relationship for the mtDNA

haplotypes supported three main groups. The first group consists

of the unique and highly divergent Ml01 haplotype restricted to

South America, whereas the second one includes haplotypes Ml02,

Ml07 and Ml08, which were common in northern areas of the

distribution range in North America and Europe (Narragansett

Figure 1. Haplotype distribution and frequency map for Mnemiopsis leidyi. Allele (inner circle for ITS) and haplotype (outer donut for COI)
distribution map of Mnemiopsis leidyi. Each color indicates a different allele/haplotype. Private alleles/haplotypes are highlighted in grey. Population
codes are described in Table 1.
doi:10.1371/journal.pone.0081067.g001
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Bay, Baltic Sea and Limfjorden). The rest of the haplotypes

formed the third group (Figure 2A). The complex parsimony

haplotype network was star-shaped for the third group, with Ml03

in the middle. There were one or a few mutation steps between

haplotypes, except for Ml01, which was separated from Ml03 by

19 mutation steps (Figure 2B).

Chao-1 COI haplotype richness estimates were moderately

higher than obtained values in Black-Azov Sea populations (15.2

vs. 11, respectively), indicating undersampling of these regions,

although the lower 95% confidence interval limit (11.7) was

marginally higher than observed diversity in the Black-Azov Seas

(Figure 3A). Chao-1 estimates for native region were also higher

than the observed diversity (16 vs. 12), with the lower 95%

confidence interval limit of 12.6 suggesting moderate under-

sampling of native region (Figure 3A). However, Chao-1 estimates

for the Mediterranean Sea were similar to the observed diversity

(8.1 vs. 8), with the lower 95% confidence interval limit of 8

suggesting sampling was sufficient (Figure 3A). The percentage of

singletons for the Chao analyses of the native region, Black-Azov

and Mediterranean Seas was 33, 45, and 13, respectively.

Analysis of the 619 bp DNA fragment comprising the complete

ITS1, 5.8 S rRNA and ITS2 regions obtained from 286

individuals of M. leidyi - including the 190 individuals analyzed

in our previous study [33] - resulted in 18 different alleles. We

found five new alleles (GenBank accession nos KF435100–

KF435104) in the Mediterranean Sea and Morehead (Figure 1)

which were not previously identified. Alleles N and O were the

most and least common, respectively. Alleles A and B were the

most common in all populations (Figure 1), consistent with the

previous survey of Ghabooli et al. [33].

We detected thirteen different alleles in native populations, all of

which were recovered from introduced populations, except for the

private allele G from Peninsula Valdes (Figure 1). Mediterranean

Sea populations had 10 alleles, eight of which were present in

native region. There was one private allele (O) in Haifa, Israel

(Figure 1). Only five of 10 alleles found in Mediterranean

populations were shared with Black-Azov Sea populations. In

total, we recovered seven alleles in the Black-Azov Seas, six of

which were also obtained from North America. Alleles C and J in

Baltic Sea, Limfjorden, and Narragansett Bay were not present in

Table 1. Population code, sample size (N), number of haplotypes (n), haplotype diversity (h), nucleotide diversity (p), number of
alleles (Na), observed (Ho) and expected (He) heterozygosity, and P-value for Hardy-Weinberg equilibrium (HWE) analysis; bold
numbers correspond to populations deviating significantly (P,0.05) from HWE.

ID Collection site Collection date mtDNA Internal Transcribed Spacer (ITS)

N n Haplotype Code h p N Na HO HE HWE P-,

Introduced

AZ Seaof Azov, Yasenskaya Bay 2006 20 5 Ml03–06, Ml09 0.679 0.0020 30 7 0.70 0.70 0.892

BL Black Sea, transect from
Blue Bay

2007 26 7 Ml03, Ml05, Ml09–10,
Ml12, Ml14–15

0.671 0.0019 20 6 0.55 0.76 0.002

BLA Black Sea, near Gelendzhik 2007 14 6 Ml03, Ml05, Ml09,
Ml11–13

0.791 0.0021 16 5 0.62 0.76 0.003

NC North Caspian Sea,
Makhachkala coast

2007 23 4 Ml03, Ml09, Ml14–15 0.636 0.0019 40 8 0.65 0.73 0.007

SC South Caspian Sea, Sari and
Noor coasts

2007 22 3 Ml03, Ml09, Ml14 0.680 0.0020 20 6 0.50 0.70 0.009

BA Baltic Sea, Kiel,
Germany

2007 16 4 Ml02–03, Ml07–08 0.642 0.0018 20 5 0.30 0.39 0.086

MD Limfjorden Fjord, Denmark 2011 4 3 Ml02–03, Ml07 0.833 0.0030 4 3 0.50 0.60 0.431

SP Dénia, Spain 2010 18 5 Ml03, Ml09, Ml15,
Ml16, Ml17

0.693 0.0019 26 8 0.54 0.72 0.000

FR Berre Lagoon, Marseille,
France

2010 16 4 Ml03, Ml09, Ml11, Ml15 0.700 0.0019 18 7 0.55 0.80 0.000

IT Ligurian Sea, Italy 2010 14 5 Ml03, Ml05, Ml09,
Ml15–16

0.703 0.0020 17 7 0.65 0.79 0.061

HF Haifa, Israel 2010 12 4 Ml03, Ml05, Ml09,
Ml14

0.712 0.0019 12 6 0.58 0.78 0.080

Native

NB Narragansett Bay, RI 2008 12 5 Ml02–03, Ml07–09 0.788 0.0037 14 5 0.50 0.47 0.568

YR York River, VI 2008 13 6 Ml02–03, Ml07,
Ml09, Ml12, Ml14

0.885 0.0043 14 4 0.57 0.45 0.733

MH Morehead, NC 2010 17 7 Ml02–03, Ml05, Ml09,
Ml12, Ml14, Ml16

0.853 0.0028 19 9 0.76 0.82 0.079

FL Tampa Bay, FL 2006 11 6 Ml02–03, Ml07, Ml09,
Ml15, Ml17

0.873 0.0042 11 5 0.63 0.76 0.554

PV Peninsula Valdes, Argentina 2009 3 1 Ml01 0.000 0.0000 5 1 0.00 0.00 0.000

Total 241 286

doi:10.1371/journal.pone.0081067.t001
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Mediterranean populations, consistent with Black, Azov and

Caspian Seas (Figure 1, Table 1, see Ghabooli et al. [33]).

The Chao-1 allele richness estimate for the Black-Azov Seas

(Chao-1 estimator = 8; lower 95% confidence interval = 7.1; allele

richness = 7) indicates reasonably comprehensive sampling of this

region (Figure 3B). For the native region, the estimated Chao-1

allele richness was 19.3, while the observed richness was 13,

indicating undersampling of this area (Figure 3B). For Mediter-

ranean Sea populations, the Chao-1 estimates were similar to the

observed diversity (10.2 vs. 10) with the lower 95% confidence

interval of 10 indicating sufficient sampling in this region

(Figure 3B). The percentage of singletons for the native region,

and Black-Azov and Mediterranean Seas was 38, 14, and 10,

respectively.

Mean observed heterozygosity (Ho) was lower in introduced

populations (0.5660.011) than in native ones (0.6260.12)

(Table 1). Pairwise FST values in Mediterranean populations

ranged from 0.011 to 0.033. All populations had highest FST

values with Peninsula Valdes, Argentina due to fixation of a

Figure 2. Phylogenetic analyses of Mnemiopsis leidyi. Phylogenetic and network relationship between the 17 haplotypes identified in the
alignment of COI (A) Neighbor joining phylogenetic tree based on nucleotide divergence calculated using Tamura-Nei model. (B) Network
relationships among haplotypes for native and introduced populations, inferred by statistical parsimony. Pie charts correspond to sampled
haplotypes described in Figure 1. The size of the charts corresponds to the frequency of the haplotype among all samples. Black circles indicate
missing haplotypes and each line represents a single mutation step. Colours show different locations for recovered haplotypes: green: native region,
blue: Northern Europe, red: Ponto-Caspian region, and yellow: Mediterranean Sea.
doi:10.1371/journal.pone.0081067.g002

Phylogeography of Mnemiopsis leidyi
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private and divergent allele in the South American population

(Table 2).

Introduced populations from the Mediterranean Sea had the

lowest FST values with those from the Black and Azov Seas

(FST = 0.001–0.028). However, Mediterranean Sea populations

were also very similar to those from the Gulf of Mexico (FL) and

North Carolina (MH) in the native region (FST = 0.010–0.032;

Table 2). Within the Mediterranean Sea, populations from Spain

and France had the lowest FST value (0.011), while those in Italy

and Israel were most divergent (FST = 0.033). Individuals from

Limfjorden, Denmark had the lowest FST with Baltic Sea

(FST = 0.015), and with Narragansett Bay (FST = 0.021) in the

native region (Table 2).

Discussion

In this study, we build upon our previous study to explore

genetic diversity, and determine the source(s) of, Mnemiopsis leidyi

populations in the Mediterranean Sea using both mitochondrial

(COI) and nuclear (ITS) markers. Our results support a multiple

source model, composed by at least two different introduction

pathways. One source of M. leidyi in the Mediterranean appears to

have originated from Black Sea, consistent with the view of Bolte

et al. [34] and with natural flows between the basins. However, we

propose a second possible invasion pathway, originating from

North America (Gulf of Mexico).

Genetic diversity and population differentiation
Introduced populations in the Mediterranean Sea exhibited

lower values of haplotype diversity (0.70260.008) and observed

heterozygosity (0.5860.05) relative to native ones (0.85060.043

and 0.6260.19, respectively). However, none of the Mediterra-

nean populations exhibited erosion of genetic diversity for either of

the analyzed markers relative to their putative source populations.

This pattern could be driven by repeated introductions from the

native range as well as from the adjacent Black Sea area, given

intense vector activity between these regions and the high diversity

of source populations [17], [45].

Two Mediterranean Sea populations (Spain and France)

exhibited deviation from Hardy-Weinberg equilibrium (Table 1).

Both populations exhibited lower than expected heterozygosity,

which can be explained by possible inbreeding and/or population

admixture (i.e. Wahlund effect) [33], [46]. We did not detect a

heterozygosity deficit in other newly analyzed populations in

Morehead and Limfjorden (Table 1).

Mediterranean populations had the lowest FST with populations

from the Black-Azov Seas (FST = 0.001–0.028). However, Medi-

terranean populations also exhibited low genetic differentiation

with those from Florida and Morehead (FST = 0.010–0.032) in the

native range. The highest genetic differentiation occurred among

introduced populations in Mediterranean or Black-Azov-Caspian

seas and those in the Baltic Sea and Limfjorden (Denmark),

ranging from 0.177 to 0.417 (Table 2). High genetic divergence

between introduced populations implies very low or lack of genetic

connectivity and gene flow among these locations, implying that

northern populations were not responsible for invasion of the

Mediterranean Sea. As well, initial reports of invasion of the

Mediterranean Sea occurred prior to those from the Baltic or

North Seas [25–26].

Our results suggest that the Black-Azov Seas are a likely source

of M. leidyi in the Mediterranean Sea, in accordance with Bolte et

al. [34]. It is important to note, however, that the presence of

similar alleles and haplotypes in the Mediterranean Sea and native

populations - specifically those in the Gulf of Mexico and North

Carolina - suggest a possible invasion pathway from North

America. Namely, two COI haplotypes (Ml16 and Ml17) found in

Mediterranean populations were not recovered from Black or

Caspian Seas, but were present in native populations (Figure 4A)

in North America (Florida and Morehead). Similarly, our ITS

survey revealed five new alleles for this species which were not

recovered from populations in Sea of Azov, Black or Caspian Seas

(Figure 4B). Although the absence of the above alleles/haplotypes

in Black and Caspian Seas populations may be explained by

insufficient sampling from these regions or by seasonal, variation

in frequency of genotypes/haplotypes, or other ecological and

Figure 3. Rarefaction curves and Chao-1 estimates for Medi-
terranean Sea and putative source populations. Sample-based
rarefaction curves of native populations (green line, 695% C.I.), Black-
Azov Seas (black line, 695% C.I.), and Mediterranean Sea (blue line,
695% C.I.) for (A) COI haplotypes and (B) ITS alleles found in surveyed
Mnemiopsis leidyi populations. Estimates of haplotype and allele
richness (Chao-1, 695% C.I.) are shown in each panel for native
populations (green bar), Black-Azov Seas (black bar), and Mediterranean
Sea (blue bar). Note the break in the y-axis scale.
doi:10.1371/journal.pone.0081067.g003

Phylogeography of Mnemiopsis leidyi
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evolutionary processes, the possibility of introduction of M. leidyi

from the native source region cannot be excluded. This conclusion

is supported by our Chao-1 diversity estimates and rarefaction

curves for native and Black-Azov Seas populations. These analyses

indicate that our sampling recovered most of the diversity present

in native and especially in the Black-Azov Seas and, therefore, the

Black Sea as a sole source seems less likely.

The Mediterranean Sea receives an enormous flow of global

shipping [16–17]. The tropical Western Atlantic Ocean is a source

of trade to the Mediterranean Sea, and places it at risk of future

invasions from discharged ballast water [17]. Moreover, high

shipping activity within the Mediterranean Sea itself poses

additional risk of translocation of M. leidyi and other NIS

throughout the basin [17].

Despite of M. leidyi’s dynamic invasion history, we observed

geographic structure with some haplotypes/alleles being restricted

to particular latitudes. The geographic distribution of genetic

diversity is clearly not random and appears to reflect adaptation to

specific biogeographic conditions. It is likely that this association is

not only due to vector directionality but also to ecological and

evolutionary processes [47]. The three haplotypes forming the

second group in the NJ tree are very common in the northern

Table 2. Population subdivision according to pairwise FST values.

AZ BL BLA NC SC BA LD SP FR IT HF NB YR MH FL

BL 0.008

BLA 0.004 0.019

NC 0.087 0.008 0.030

SC 0.074 0.005 0.023 0.017

BA 0.398 0.383 0.392 0.384 0.417

LD 0.248 0.182 0.203 0.200 0.199 0.015

SP 0.007 0.006 0.009 0.053 0.031 0.395 0.211

FR 0.028 0.002 0.007 0.049 0.035 0.374 0.177 0.011

IT 0.001 0.017 0.001 0.051 0.034 0.380 0.187 0.020 0.023

HF 0.005 0.016 0.013 0.058 0.040 0.397 0.192 0.023 0.026 0.033

NB 0.330 0.317 0.322 0.337 0.358 0.022 0.021 0.327 0.306 0.308 0.319

YR 0.350 0.319 0.263 0.321 0.363 0.469 0.411 0.370 0.316 0.337 0.341 0.437

MH 0.001 0.021 0.020 0.041 0.026 0.369 0.181 0.010 0.013 0.025 0.029 0.300 0.291

FL 0.008 0.037 0.028 0.015 0.005 0.408 0.190 0.015 0.013 0.024 0.032 0.335 0.324 0.036

PV 0.503 0.479 0.496 0.478 0.514 0.708 0.720 0.494 0.466 0.477 0.502 0.681 0.692 0.466 0.522

Significant differences are bolded. Population codes correspond to Table 1.
doi:10.1371/journal.pone.0081067.t002

Figure 4. Venn diagram illustrating shared haplotypes/alleles between regions. Venn diagram showing COI haplotypes (A) and ITS alleles
(B) sharing between Mediterranean and possible source populations from North America and Black-Azov Seas. Note that haplotype Ml01 and allele G
from South America are excluded.
doi:10.1371/journal.pone.0081067.g004
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region and less prevalent elsewhere (Figure 2A). The rest of the

haplotypes that form the star in the parsimony network are

distributed mainly in warmer waters and some were not found at

all in northern regions (Figure 2B). Shifts in haplotype/allele

frequencies are expected due to selection to local conditions. Some

haplotypes/alleles could become dominant in several generations

if they are strongly favored by selection or linked to regions

favored by selection [48–49].

Genetic differentiation among native populations was relatively

high (FST = 0.036–0.437), suggesting some structuring and limited

gene flow in the native region. The private haplotype Ml01 was

separated from other haplotypes by at least 15 mutation steps. All

other haplotypes had only one or a few mutation steps between

them. Pairwise genetic differentiation, parsimony network analysis,

and phylogenetic reconstruction of haplotypes demonstrate high

genetic divergence between South America and all other locations,

notwithstanding the paucity of samples available from the former

region. Long-term isolation of populations could explain the

observed divergence. Pleistocene glacial periods in the northern

hemisphere could drive high genetic divergence between South

America and North America, resulting in population fragmenta-

tion [50]. However, further studies and more comprehensive

sampling of the region, especially South and Central America,

could shed light on the degree of isolation between populations

along the western Atlantic coast. Our present, albeit very limited

analysis does not support an introduction pathway for M. leidyi

between South America and Eurasia.

Introduction pathways
Genetic analyses have revealed pathways of M. leidyi introduc-

tion into major Eurasia Seas [32–34]. M. leidyi entered the Black

Sea via ships’ ballast water from the Gulf of Mexico region. Spread

of M. leidyi into the Sea of Azov occurred via the natural

connection between these basins [26]. Secondary introduction into

Caspian Sea likely occurred through ballast water discharged by a

vessel after transiting the Volga-Don canal [51]. A second pathway

from a port in New England, possibly Narragansett Bay, was likely

responsible for the translocation of M. leidyi into the Baltic Sea,

with subsequent spread into the North Sea [32]. The Mediterra-

nean Sea was the most recent European basin invaded, with the

eastern portion of the basin colonized first. Water flow between

the Black and Mediterranean seas could account for this invasion,

with subsequent transfer within the latter accommodated by a

combination of ballast transfer and natural spread. Bolte et al. [34]

used six microsatellite data to suggest a Black Sea source of M.

leidyi in the Mediterranean Sea. However, in this study, genetic

differentiation of North American and Mediterranean Sea

populations was only slightly greater than that with populations

from the Black Sea (Table 2). In addition, there were more

haplotypes/alleles present in the Mediterranean Sea that were not

shared by Black-Azov populations than with those from the Gulf of

Mexico region (Table 1). Finally, there exists substantial ballast

water movement from the Gulf region to the Mediterranean Sea

[17]. Each of these lines of evidence supports the view that North

America could have been an additional source of the introduced

population in the Mediterranean Sea. The analysis of ITS and

COI data in this study are consistent with the hypothesis of

multiple introductions, with both native and Black Sea populations

serving as sources of M. leidyi in the Mediterranean Sea.
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