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Abstract 

 

The Gawib pluton (Damara Belt, Namibia) consists of two main intrusive rock types; magnesian, 

calc-alkaline, mostly metaluminous hornblende- and titanite-bearing granodiorites and 

magnesian to ferroan, metaluminous to slightly peraluminous calc-alkaline granites. Uranium-Pb 

zircon data obtained on the granodiorites gave concordant ages of 548.5±5.6 Ma indicating that 

the pluton belongs to the early syn-orogenic magmatism in the Damara orogen. Major and trace 

element variations indicate that fractional crystallization was the major rock-forming mechanism 

for the granodiorites. In the absence of high-precision geochronological data, the granites may 

represent more advanced fractionation products of the granodiorites although distinct Ba-Sr-Rb 

relationships preclude a direct derivation of the granites from the exposed granodiorites. If the 

granites originated by extensive fractional crystallization from similar granodiorites, they can only 

be derived from high-Ba, high-Sr, low-Rb granodiorites. Crustal contamination was also 

important in the petrogenesis of both rock types (granodiorites:  Nd(init.): -7 to -13; 87Sr/86Sr(init.): 

0.708-0.713; granites:  Nd(init): -14 to -18; 87Sr/86Sr(init.): 0.712-0.726). In contrast to the 

granodiorites, the granites show more radiogenic 87Sr/86Sr ratios and less radiogenic  Nd values 

indicating different contaminants for both rock types.  Nd vs. MgO relationships imply some 

genetic link to isotopically unevolved quartz diorites similar to those observed at the Palmental 

complex. This pluton, however, is located c. 80 km NE from the Gawib pluton and probably 

cannot be viewed as the direct source of the Gawib granodiorites. If such a relationship is 

allowed, the granodiorites must be viewed as hybrid rocks containing a juvenile component 

because they were derived from unevolved quartz diorites by fractional crystallization. In 

addition, AFC processe have also played a role implying that the granodiorites contain also a 

reprocessed crustal component. Alternatively, comparison with experimentally derived melts 

imply that the granodiorites are generated by dehydration melting of a mafic, amphibole-bearing 

lower crustal source. Chemical parameters of the granodiorites compared to experimental 

results indicate high temperatures of c. 1040oC. Zirconium saturation temperatures obtained on 
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the most primitive samples gave c. 830oC whereas apatite saturation temperatures obtained on 

the same samples give temperatures of c. 960-980oC; the latter seems to be a more reliable 

temperature estimate. Interpretation of geochemical and isotope data from the complex suggest 

that the early synorogenic Pan-African igneous activity in this part of the Damara Belt was a 

high-temperature intra-crustal event. In contrast to igneous processes along active continental 

margins that produce also intermediate plutons with calc-alkaline affinities, this igneous event 

was not a major crust-forming episode and the granodiorites represent mostly reprocessed 

crustal material. 

 

Keywords: Pan-African, Damara belt, granodiorite-granite, partial melting, Sr-Nd-Pb isotopes, U-

Pb zircon chronology 

 

1. Introduction 

 

Continental crust has an estimated granodioritic composition and is vertically stratified from a 

less evolved, mafic lower crust to a more evolved, felsic upper crust (Rudnick and Fountain, 

1995). A key question, central to understanding the evolution of continental crust, concerns the 

origin of intermediate to silicic magmatic rocks that dominate the upper crust. There is general 

agreement that intermediate magmas form either by differentiation of primary, mantle-derived 

magmas during cooling and crystallization (e.g. Gill, 1981; Grove and Kinzler 1986; Musselwhite 

et al., 1989; Rogers and Hawkesworth, 1989) or by partial melting of older crustal rocks (e.g. 

Atherton and Petford, 1993; Tepper et al., 1993; Wolf and Wyllie, 1994; Rapp and Watson, 

1995; Petford and Atherton, 1996; Chappell and White, 2001). These processes can occur 

together to generate magmas of hybrid origin through assimilation and mixing (e.g. De Paolo, 

1981). Evidence for crustal assimilation and mixing of melts from different sources is common in 

a wide range of tectonic settings (Grove et al., 1988, 1997; Musselwhite et al., 1989). 
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In the Proterozoic Damara orogen of Namibia, Sr, Nd, Pb and O isotope data allow 

distinction of several different granite suites. These suites include (i) synorogenic S-type granites 

that originated by partial melting of upper crustal metasedimentary rocks (Haack et al., 1982; 

Hawkeswort et al., 1986; McDermott et al., 1996; Jung et al. 2000, 2001), (ii) synorogenic 

granites that were derived by melting of meta-igneous Proterozoic basement rocks 

(Hawkesworth et al., 1986; McDermott et al., 1996, Jung et al., 2003) and (iii) late-orogenic A-

type granites; some of them represent mixtures between moderately depleted meta-igneous 

source rocks and a component from the lithospheric mantle (Jung et al., 1998; McDermott et al. 

2000). In addition, melting of mafic lower crust yielded early synorogenic quartz diorites to 

granodiorites (van de Flierd et al., 2003; Jung et al., 2002; 2009). In this study, new LA-ICP-MS 

U-Pb zircon data and major and trace elements as well as Nd, Sr and Pb isotopes of the 

granodiorites and granites of the Gawib pluton (Namibia) are interpreted to constrain their 

sources, melting conditions and the role of AFC processes. This small-scale pluton most likely 

belongs to the synorogenic granites derived by melting of meta-igneous Proterozoic basement 

rocks mentioned above.

 

2. Geological setting and petrography 

 

The Damara orogen of Namibia represents a deeply eroded section through a Pan African 

mobile belt. It can be divided into the north-south extending Kaoko belt and the northeast-

southwest trending intracontinental Damara belt (Miller, 1983, 2008; Fig. 1). This intracontinental 

branch has been subdivided into a Northern Zone (NZ), a Central Zone (CZ) and a Southern 

Zone (SZ) based on stratigraphy, metamorphic grade, structure and geochronology (Miller, 

1983, 2008). The Central Zone (75.000 km²) is characterized by a large number of intrusions (96 

% granites, 4 % diorites, tonalites and granodiorites) in which the majority intruded between c. 

570 and 460 Ma (Miller, 1983; 2008). Pre-Damara basement gneisses with radiometric ages 

ranging from 2.0 Ga to 1.2 Ga are covered by the Neoproterozoic Nosib Group which can be 
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divided into the Etusis Formation (quartzose sandstones and arkoses) and the Khan Formation 

(quartzites, schists and calc-silicate rocks). These formations are overlain by the 

metasedimentary Swakop Group which can be divided into the Rössing Formation (marble, 

quartzite, conglomerate and schists), the Chuos Formation (metamorphosed glaciogenic 

diamictites, banded iron-stones, marble, quartzite), the Karibib Formation (marble, schists and 

calc-silicate rocks) and the Kuiseb Formation (Al-rich metapelites, carbonates, calc-silicate 

rocks, quartzites and conglomerates). 

Puhan (1983) determined temperatures of 555 to 645°C and pressures of 3 ± 1 kbar on 

impure marbles for the peak of metamorphism in the Central Zone. Similar conditions (c. 570 - 

650°C) have been determined through O-isotope analysis on metasedimentary rocks and 

orthogneisses (Hoernes and Hoffer, 1979). More recent work indicated higher temperatures 

ranging from 700 to 750 °C at pressures between 4 and 6 kbar (Masberg et al., 1992; Jung, 

2000; Jung and Mezger 2002). High-grade metamorphism in the Central Zone occurred between 

540 and 500 Ma (Jung, 2000; Jung and Hellebrand, 2006; Jung et al., 2009). In the south-east, 

the Okahandja Lineament Zone separates the Central Zone from the Southern Zone (Fig.1). In 

the Southern Zone, regional metamorphism is characterized by a Barrovian-type sequence with 

a general increase in the metamorphic grade from south to north, with pressures up to 8 kbar at 

maximum temperatures of 600oC. Intrusion of large volumes of granitic rocks are absent even in 

the highest grade zone. 

The foliated granodioritic to granitic Gawib pluton forms a teardrop-like intrusion and has 

a dimension of approximately 120 km² (Fig. 2; Miller, 2008). It is located in the transition zone 

between the SZ and the southern CZ in which the latter is mainly characterized by basement 

rocks, high-grade metasedimentary rocks and syn-orogenic granites (Fig. 2). The pluton consists 

mainly of grey granodiorites with plagioclase, quartz, alkali feldspar (microcline and orthoclase), 

hornblende and biotite in decreasing abundance. The pluton is transected by reddish to light-

grey granitic dikes consisting of alkali feldspar (microcline and orthoclase), quartz, plagioclase 

and biotite. Accessory phases include titanite, apatite, zircon, secondary muscovite and ore 
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minerals, most likely magnetite but chemical analyses are not available. Plagioclase is unzoned 

and shows polysynthetic twinning. Alkali feldspar shows microcline twinning with partly perthitic 

exsolution. Hornblende form euhedral to subhedral crystals often associated with aggregates of 

titanite and ore minerals. Sericitization of feldspar and chloritization of biotite is rarely observed. 

Quartz and feldspar show 120° grain boundaries suggesting static annealing at moderate high 

temperatures. 

 

3. Analytical techniques 

 

Zircon separates for U-Pb dating were prepared by sieving the samples through a 100-250 mesh 

fraction, followed by purification by magnetic separation. Subsequently, the mineral fractions 

were separated by methylene iodide and handpicking, which produced high-purity separates. 

The separated zircons were fitted into epoxy resin for U-Pb measurements via a LA-ICP-MS 

(laser ablation inductive coupled plasma mass spectrometer) from type UP193HE, Element 2. 

Details on the analytical protocol are given in Jung et al. (2012). 

Whole rock powders were prepared using a jaw crusher, a rod mill and an agate mortar. 

Major and trace elements (except for REE) were measured on fused lithium-tetraborate glass 

beads using standard XRF technique at the Universität Hamburg using a PanAnalytical 

MagixPro X-ray fluorescence spectrometer. Rare earth elements of some samples (“M” 

samples) were carried out by ICP-AES techniques at the Universität Marburg following 

separation of the matrix elements by ion exchange (Heinrichs and Hermann, 1990). Loss on 

ignition (LOI) was determined gravimetrically after heating the samples at 1,000°C for 3 h 

(Lechler and Desilets, 1983). Trace elements abundances of other samples (“GW” samples) 

were measured by Actlabs via a Perkin Sciex ELAN ICP-MS. Accuracy was controlled by 

repeated measurements against international and in-house standards and the results are in 

good agreement with the recommended values.  
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For the Rb-Sr and Sm-Nd whole rock isotope analyses, the samples were digested in 

concentrated HF-HNO3 in 3-ml screw-top Teflon vials inside Krogh-style Teflon bombs at 200°C 

for 2 days. After the complete dissolution, the samples were dried down and redissolved in 2.5 N 

HCl. Strontium and REE were separated by using standard cation exchange columns with a 

Dowex  AG 50 W-X 12 resin using 2.5 N HCl for Sr and  6 N HCl for the REE. Neodymium was 

separated from the other REE by using HDEHP-coated Teflon columns and 0.12 N HCl for Nd. 

Isotope analyses were carried out at the Institut für Mineralogie (Universität Münster) using 

thermal ionization mass spectrometry with a Finnigan Triton MC-TIMS operating in the static 

mode. Neodymium was run on Re double filaments. Neodymium isotopes were normalized to 

146Nd/144Nd = 0.7219. The total procedural blank for Nd was <40 pg and is considered to be 

negligible. Repeated measurements of the La Jolla Nd standard gave 143Nd/144Nd = 0.511859 ± 

0.00007 (2σ; n = 10). Strontium was run on W single filaments. The reproducibility of the Sr 

standard (NBS 987) is 87Sr/86Sr = 0.710213 ± 0.000007 (2σ; n = 10) and the fractionation was 

corrected to 86Sr/87Sr = 0.1194. Uncertainties in the 87Sr/86Sr and 143Nd/144Nd are reported in the 

last two digits. 

Between 40 and 50 mg of high-purity K-feldspar separates were washed with a mixture 

of 3:1 HCl/HNO3 to remove surface contamination and were subsequently rinsed twice with 

ultrapure water. Then the separates were leached two times in a mixture of concentrated 

HF/HNO3, resulting in a weight loss of c. 60%. Thereafter the feldspars were dissolved in 

concentrated HF and after evaporation redissolved in 2.5 N HCl and 1 N HBr and loaded onto 

100 µl Teflon microcolumns filled with Dowex AG 1 X 8 (100-200 mesh) anion exchange resin. 

Lead was extracted and purified (in a second column pass) using conventional HBr/HCl 

techniques and was loaded onto Re single filaments following the H3PO4-silica gel method of 

Cameron et al. (1969) using the silica recipe of Gerstenberger and Haase (1997). Lead isotope 

analyses were carried out on a VG Sector 54 MC-TIMS (Münster) and a Finnigan MAT 262 MC-

TIMS (GEOMAR) and were corrected for mass fractionation by 0.11% per amu on both 

instruments. 
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4. Geochronology 

 

Table 1 gives U-Pb data for zircon from the Gawib pluton and Fig. 3 shows U-Pb ages for the 

different zircon fractions from granodiorite sample M 89. The zircon grains with sizes between 80 

and 350 µm often exhibit concentric zonation patterns likely indicating a magmatic origin for 

these grains. Several grains yielded a concordant U-Pb age of 548.5 ± 5.6 Ma which is 

considered to represent the intrusion age (Fig. 3a). Some other analyses are discordant and, 

when forced through zero, give an upper intercept of 537 ± 25 Ma (Fig. 3b). These anaylses 

have likely undergone recent Pb loss. Other fractions yielded a concordant U-Pb age of 1935 ± 

11 Ma that could be interpreted as the age of the underlying basement (Fig. 3c). This view is 

consistent with the interpretation of a number of discordant data points yielding an upper 

intercept of 1961 ± 29 Ma and a lower intercept of 545 ± 20 Ma (Fig. 3d). One zircon analyses 

yielded an U-Pb age of 2786 ± 17 Ma (Table 1) representing the oldest U-Pb zircon age 

measured so far in igneous rocks from the Damara orogen. We interpret this grain as an 

inherited grain from the underlying basement. 

 

5. Geochemistry 

 

5.1. Major- and trace elements 

 

The Gawib granodiorites have SiO2 concentrations between 63.6 wt.% and 66.8 wt.% (Table 2). 

They are metaluminous with A.S.I. (alumina saturation index) values ranging from 0.88 to 1.00 

and have moderate high TiO2 (0.30-0.83 wt.%), MgO (0.8-1.9 wt.%), Fe2O3 total (3.1-6.0 wt.%) 

and Al2O3 contents (14.0-16.5 wt.%). Contents of CaO (2.9-4.6 wt.%), Na2O (3.1-4.7 wt.%) and 

K2O abundances (2.7-4.1 wt.%) are similar to other granodiorites from the Damara orogen with 

similar SiO2 contents (Fig. 4). The Ba and Sr contents of the granodiorites are high (Ba: 601-
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1319 ppm; Sr: 560-939 ppm) whereas Rb contents are only moderately high (Rb: 107-212 ppm) 

(Fig. 5). Consequently, Rb/Sr ratios (0.13-0.33), Sr/Ba ratios (0.64-1.16) and Rb/Ba ratios (0.09-

0.27) are low. The granodiorites are enriched in REE with total REE abundances ranging from 

165 to 400 ppm (Table 2). Rare earth element (REE) distributions show an enrichment of LREE 

for the granodiorites with LaN/SmN ratios ranging from 3.7 to 5.8. Heavy Rare Earth Element 

abundances are also enriched with GdN/YbN ratios between 1.8 and 3.1 (Fig. 6). 

The granites have higher SiO2 contents between 70.7 and 76.0 wt.% and are weakly 

peraluminous (ASI: 1.00-1.05). Relative to the granodiorites, the granites have lower 

abundances of TiO2 (0.05-0.1 wt.%), MgO (0.1-0.4 wt.%), Fe2O3 (total) (0.6-1.7 wt.%) and Al2O3 

(12.8-14.5 wt.%). The granites have CaO contents between 0.7 and 2.1 wt.%, Na2O contents 

between 3.0 and 3.6 wt.% and K2O contents between 4.1 and 5.9 wt.% (Fig. 4). For the granites, 

there is considerable overlap in Ba and Rb abundances (146-1108 ppm Ba and 157-281 ppm 

Rb). Strontium abundances are lower relative to the granodiorites (84-523 ppm) (Fig. 5). Rb/Sr 

and Rb/Ba ratios increase with increasing SiO2 and therefore the granites have higher Rb/Sr and 

Rb/Ba ratios than the granodiorites (Rb/Sr: 0.3-3.3; Rb/Ba: 0.2-1.9). Sr/Ba ratios are broadly 

similar to the lowest values observed in the granodiorites (Sr/Ba: 0.5-0.7). The granites have 

lower total REE contents than the granodiorites between 40 and 91 ppm (Table 2). They are 

also enriched in LREE (LaN/SmN: 5.1-6.2) whereas some samples show depletion of MREE 

and/or enrichment in HREE leading to variable GdN/YbN ratios between of 0.8 and 2.1 (Fig. 6). 

 

5.2. Nd, Sr and Pb isotopes 

 

The results of the Sr, Nd and Pb isotope analyses are reported in Table 3. The most primitive 

granodiorites have an unradiogenic Nd isotopic composition with initial  Nd values of c. – 8 and 

moderately radiogenic initial 87Sr/86Sr ratios of 0.708-0.709 (Fig. 7). The most evolved 

granodiorite has an initial  Nd value of -13 and a Sr isotope composition of 0.713. For the 

granites, initial  Nd values are more unradiogenic with  Nd values ranging from -18 to -14 and 
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87Sr/86Sr ratios of 0.712-0.726 (Fig. 7).  The 206Pb/204Pb and 207Pb/204Pb ratios (Fig. 8) of the 

granodiorites and granites range from 17.45 to 17.92 and 15.56 to 15.68, respectively (Table 3). 

The 208Pb/204Pb ratios range from 38.00 to 38.71. In 207Pb/204Pb vs. 206Pb/204Pb space and 

208Pb/204Pb vs. 206Pb/204Pb space, both suites plot above the Pb evolution curve of Stacey and 

Kramers (1975) (Fig. 8) indicating derivation from a source with a higher U/Pb and Th/Pb ratio 

than the reference source. 

 

6. Discussion 

 

6.1. Fractional crystallization and AFC processes 

 

A general fractional crystallization trend is indicated by decreasing TiO2, MgO, FeO, CaO, Al2O3, 

P2O5, V, Ni, Cr, Sc, Sr, Ba and Y, Nb, Ta, Hf, Zr, Th (not shown) concentrations and increasing 

Na2O, K2O, Pb, Rb (and U) concentrations with increasing SiO2 (Fig. 4 and 5). These trends can 

be interpreted to indicate fractionation of amphibole, plagioclase, Fe-Ti-oxides, apatite and 

zircon. It seems also reasonable to assume that in granitoid systems feldspars would be the 

most important minerals in any fractionation scheme, and the size of the negative Eu anomaly 

(expressed as Eu/Eu*) together with low Sr concentrations would be a measure of the degree of 

feldspar fractionation. The most primitive granodiorites have negligible negative Eu anomalies 

which are unrelated to the Sr concentration. Others have lower Sr abundances and more 

pronounced negative Eu anomalies although the correlation is poor. For the granodiorites, La 

and Y abundances together with TiO2 decrease with decreasing MgO suggesting modification of 

these parameters during fractional crystallization. Depletion of LREE and HREE during fractional 

crystallization is compatible with fractionation of mineral phases e.g. amphibole or titanite which 

may concentrate LREE and HREE (e.g. Jung and Hellebrand, 2007). In addition, apatite which 

may prefer LREE may have contributed to the decrease in LREE which is also compatible with 

the decrease in P2O5 with increasing SiO2.  
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 Among the granites, a positive correlation between Eu anomaly and Sr concentration 

suggest removal of plagioclase during fractionation. The most primitive granite has a slightly 

positive Eu anomaly and the highest Sr concentration indicating some accumulation of 

plagioclase (Fig. 9a). To explain the decrease in LREE and HREE, the diminishing Eu anomaly 

and the ocurrence of a concave-upward REE pattern at low total REE contents, a complex 

fractionating mineral assemblage must be envisaged which may has included apatite, titanite 

and hornblende. Fractionation of hornblende is also compatible with petrographic observations 

and Sr-Rb variations (see below). Strontium-Rb variations can be used to place semi-

quantitative constraints on the fractionated mineral assemblage (Fig. 9b) and were calculated 

using a Rayleigh fractionation model. Application of this model suggests that the fractionation 

assemblage consists of hornblende (ca. 20 wt. %), plagioclase (ca. 70 wt.%) and K-feldspar (ca. 

10 wt.%) in the case of the granodiorites. For the granites, fractionation may involve plagioclase 

(ca. 65 wt.%) and  K-feldspar (ca. 35 wt.%). Obviously, fractionation of biotite was not important 

which is also consistent with the increase in Rb with increasing SiO2.  

 For the granodiorites, some major and trace elements show variations that can probably 

not attributed to fractional crystallization processes alone. It is possible that rocks similar to 

coeval quartz diorites from nearby complexes are parental to the granodiorites although the 

Gawib pluton lack those mafic rocks. Variations in Al2O3, K2O or TiO2 (Fig. 4) or Ba, Rb, Sr and 

Ni (Fig. 5) imply that a range of possible quartz diorites may exist at depth and that these 

variations are related to heterogeneity of the sources. Similarly, for the granodiorites alteration 

seems not to have played a major role and AFC processes (see below) as a major cause of this 

variation can be ruled out because major element and some trace element abundances (except 

Sr and Ba) observed in the granodiorites are already similar to average continental crust.  

 Strontium, Nd and Pb isotope compositions are heterogeneous and before considering 

the origin of the granodiorites and granites in detail it is necessary to investigate the likely 

reasons for this isotope heterogeneity. Initial 87Sr/86Sr ratios and  Nd values show systematic 

behavior with respect to major element chemistry in which initial 87Sr/86Sr ratios (not shown) 
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 Nd values decrease with decreasing MgO concentration (Fig. 10). 

Similarly, the granodiorites show a range of Nd model ages from 1.5 to 2.5 Ga which are unlikely 

to result from source heterogeneity. It is more likely that this range of Nd model ages is the result 

of assimilation of pre-existing ancient lower crust. These features indicate that during crystal 

fractionation processes linked to assimilation of country rock material substantially modified the 

isotopic composition. Processes of crustal assimilation can be illustrated by using radiogenic 

isotope systems with different properties (i.e. Sr and Nd). The composition of the granodiorites 

and granites and different Damara country rocks (a basement gneiss collected in the vicinity of 

the Gawib pluton, Pre-Pan African Proterozoic basement from the Kaokoveld and 

metasedimentary rocks from the Khan and Etusis formation; McDermott and Hawkesworth, 

1990; Jung 2005; Seth et al., 2002) are shown in a diagram of 87Sr/86Sr vs.  Nd (Fig. 11). As a 

simplification, it can be suggested that such lithologies are the most fusible parts of a crustal 

segment and thus are most likely involved in any assimilation scenario. A potential parental 

granodiorite should have high Sr contents (700 - 900 ppm; Fig. 5), high Nd contents (c. 40 - 50 

ppm; Table 2) and a comparatively unradiogenic Sr and Nd isotopic composition. From Fig. 11 it 

can be seen that for the majority of the granodiorites the negative correlation between Sr and Nd 

isotope composition is best monitored by using a sample from the Proterozoic basement from 

the Kaokoveld (Seth et al., 2002) as the contaminant. The amount of assimilation can be 

estimated to be 30% in which the value of r (r=ratio of assimilation to fractionation) was set at 

0.6. Using higher values of r results in higher F values (F=fraction of melt remaining) greater 

than 0.85, implying assimilation of only a small fraction of crustal material. In contrast to previous 

estimates about the ratio of mass assimilated to mass fractionated (r < 1; DePaolo, 1981) higher 

values of r (r > 2; Reiners et al., 1995) especially in the early stages may be possible. High 

values of r further imply that assimilation took place at high temperatures and hence at deeper 

levels within the crust. However, r values greater than 1 cannot be successfully applied to the 

AFC model of DePaolo (1981).  
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The AFC model applied to the granodiorites does not reproduce the isotope composition 

of the granites. The granites are distinctly more radiogenic in 87Sr/86Sr and this increase in Sr 

isotope composition requires some interaction either with rocks similar to the basement gneiss 

collected nearby or with overlying metasedimentary rocks (Fig. 11). The Pb isotope composition 

is particularly susceptible to extreme changes during AFC as a result of the high concentration of 

Pb in metasedimentary crustal rocks relative to mafic or intermediate rocks and small 

compositional differences in the contaminant can be responsible for significant changes in Pb 

isotope composition. Unfortunately, Pb isotope data are not available from basement gneisses. It 

is interesting that for the granodiorites 206Pb/204Pb isotope compositions are positively correlated 

with Nd isotope compositions indicating that increasing contamination is accompanied by 

decreasing  Nd, increasing 87Sr/86Sr but decreasing 206Pb/204Pb ratios (Fig.12). The latter 

implies involvement of a lower crustal contaminant with a low U/Pb ratio. For the granites, the 

opposite is observed; decreasing  Nd is accompanied by increasing 206Pb/204Pb ratios. This 

suggests that AFC processes that modified the isotope composition of the granites involved an 

endmember with low MgO, high SiO2, comparatively unradiogenic Nd but radiogenic Sr isotope 

compositions and radiogenic 206Pb/204Pb ratios (Fig. 12). This inferred contaminant must have a 

high μ and a high κ value. Such rocks constitute potentially the underlying pre-Damara 

basement of the Central Zone of the Damara orogen (Jung et al., 2003) or metasedimentary 

rocks derived from the basement (McDermott and Hawkesworth, 1990). 

 

6.2. Partial melting processes and possible sources of the granodiorites and granites 

 

The generation of mafic to intermediate magmas (quartz diorites, granodiorites) is widely 

accepted as an important component in studies concerned with crustal growth and intermediate 

magmas forming sometimes voluminous plutonic complexes are an important component of 

many orogenic belts. As a general feature in these arc-related belts, mafic magmas may come 

directly from the mantle and may be interpreted to serve as heat sources to melt crustal material 
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(e.g., Holden et al. 1987). On the other hand, mafic magmas may undergo pure crystal 

fractionation to yield more evolved magma, negating the need for crustal contributions to 

produce felsic magma (Sisson et al. 1996 ; Coleman and Glazner 1997; Ratajeski et al. 2001; 

Wenner and Coleman 2004). In the former case, no new continental crust is formed; in the latter, 

the more evolved magmas are new additions to the continental crust. Between these two 

endmembers are intermediate processes whereby juvenile mafic magma can produce 

intermediate to felsic magmas through a combination of crystal fractionation, assimilation of 

continental crust, and hybridizing with more silicic melts (e.g., DePaolo 1981; Reid et al. 1983; 

Kistler et al. 1986 ; Frost and Mahood 1987; Barbarin, 2005; Dorais et al. 1990 among many 

others). The Mesozoic arc-related plutons of the western US may serve as a general example; 

here, models involve either simple two-component mixing of a depleted mantle component with 

an old metasediment component to produce ‘‘evolved’’ whole rock isotopic compositions or 

involve mafic magmas formed by melting of an enriched subcontinental lithospheric mantle 

followed by pure crystal fractionation. Many of the mafic to intermediate rocks in the Sierra 

Nevada batholith represent juvenile additions to the crust at the time of emplacement (Coleman 

et al., 1992; Coleman and Glazner, 1997), however Nelson et al. (2013) have shown that 

assimilation of aged continental crust into a mantle-derived precursor is also a viable process to 

generate mafic to intermediate magmas.  The granodiorites are associated with low-silica 

(dioritic) and high- silica (granitic) rocks that are the same age (Coleman et al., 1995; Ratajeski 

et al., 2001), and all of these rock types may share a genetic origin (Frost and Mahood, 1987).  

 The Gawib pluton from the Damara orogen in Namibia has an intermediate composition 

similar to granodiorites found in the Sierra Nevada batholith (Figs. 4, 5, 6 and 13). Intermediate 

plutonic rocks from the Sierra Nevada batholith are of particular importance here because one 

component, the Tuolumne igneous suite served as a key example in defining magnesian calc-

alkaline rocks (Bateman and Chappell, 1979; Frost et al. 2001). The overall situation found in the 

Sierra Nevada batholith with an areal extent of ca. 32000 km2 is similar to what is observed in 

the area of the Gawib pluton although the area around the Gawib pluton is considerably smaller 
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(ca. 1600 km2) even when the coeval quartz diorites are included. Here, the granodiorites are 

associated with granites and the coeval quartz diorites form the Goas, Okongava and Palmental 

areas (Jung et al., 2002; unpubl.) can be viewed as the more mafic endmembers. In the 

following we will discuss first the possibility that the Gawib granodiorites have a similar derivation 

to arc-related granodiorites such as those found in the Sierra Nevada batholith. Figures 4 and 5 

indicate that the Gawib granodiorites have a major and trace element composition similar to 

granodiorites from the Sierra Nevada batholith. However, Sr-SiO2 relationships indicate that 

there are two types of quartz diorites; high-Sr diorites with > 600 ppm Sr and low-Sr diorites with 

< 600 ppm Sr (Fig. 5). It is important to note that the high-Sr quartz diorites are confined to the 

Palmental complex (Jung unpubl., Fig. 2) whereas diorites from the Goas and Okongava areas 

constitute the low-Sr diorites. Similarly, Fig. 9a and 10 also imply that if some quartz diorites are 

parental to the Gawib granodiorites, it must be the Palmental diorites but not the Goas and 

Okongava diorites. More importantly, in the Palmental complex, some quartz diorites have 

comparatively radiogenic Nd ( Nd: ≈ -3) and unradiogenic Sr (87Sr/86Sr: ≈ 0.706) isotope 

composition whereas the Goas and Okongava quartz diorites have strongly evolved isotope 

compositions ( Nd: ≈ -9 to -15; 87Sr/86Sr: ≈ 0.709-0.712).  Thus, although the quartz diorites in 

the central Damara orogen are not spatially associated with the Gawib granodiorites, some 

samples from the Palmental complex have the appropriate composition to be parental to the 

Gawib granodiorites. In this case, the Palmental quartz diorites and the Gawib granodiorites 

would be connected by a common AFC process in which the parental quartz diorites were 

derived from an aged lithospheric mantle. In this case, the lithospheric mantle gained its 

enrichment in Sr and Nd isotope composition either through source contamination or mantle 

metasomatism. The quartz diorites would then represent juvenile additions to the continental 

crust but the granodiorites have a hybrid origin containing both, new crustal material and 

reprocessed crustal rocks. 

 Although the AFC model presented above seems to be a plausible scenario to explain 

the elemental and isotopic composition of the Gawib granodiorites, some points require 
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consideration. First, the idea that some of the Plamental quartz diorites are parental to the 

granodiorites can be questioned because such rocks are not known from the Gawib pluton and 

the Palmental complex is situated ca. 80 km away from the Gawib pluton. Second, an arc-

related scenario comparable to the Sierra Nevada batholith, although compatible with the new 

U-Pb zircon ages, is probably unlikely due to the limited occurrence of intermediate plutonic 

rocks in the area and the small scale of the Gawib pluton. It is therefore also possible that the 

granodiorites are primary melts generated by melting of mafic lower crust. Many plutonic 

complexes containing igneous rocks more mafic than granite are generated through partial 

melting of pre-existing meta-igneous rocks and some of these melts are high K-granodiorites, 

granites and tonalites. Roberts and Clemens (1993) argued that, because of their low K2O 

concentrations, common metabasaltic sources can generally be considered as unsuitable 

sources. However, early experimental investigations (Helz, 1976) indicated that these high-K (> 

3 wt. % K2O at 65 wt. % SiO2) magmas can only be derived by melting of hydrous, high-K calc-

alkaline mafic to intermediate metamorphic rocks in the crust. Subsequent experimental studies 

have shown that the nature of experiment (fluid-present vs. fluid-absent) also strongly influences 

the composition of the melt and residuum during partial melting of basaltic composition at mid- to 

lower crustal pressures (Beard and Lofgren, 1991; Wolf and Wyllie, 1994; Rapp and Watson, 

1995). Depending on bulk composition, fluid-absent partial melting of amphibolite yields 10-60% 

melt at temperatures of 900-1100oC whereas fluid-present partial melting yields similar amounts 

of melt at lower temperatures between 850-900oC. Melt compositions are different in which 

liquids produced by fluid-absent melting are more mafic (quartz-dioritic to granodioritic and 

tonalitic) whereas liquids produced by fluid-present melting are rich in SiO2 and Al2O3 but low in 

FeO and MgO (i.e. granitic).  

The most mafic granodiorites of the Gawib pluton have chemical features that typify 

partial melts of basaltic rocks. They have intermediate SiO2 and high Al2O3 contents and high 

LREE concentrations and moderate low HREE concentrations. Na2O/K2O ratios are > 1. The 

majority of the granodiorites have high Sr and Ba abundances and negligible negative Eu 
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anomalies suggesting that the source was feldspar-free or feldspar was melted to a large extend 

during generation of the parental granodiorites. The lack of HREE and Y depletion indicates a 

garnet-absent source. The most mafic granodiorites of the Gawib pluton have K2O > 2.0 wt. %, 

MgO < 2 wt. %, CaO > 2.5 wt. %, FeOtotal > 3 wt. % and TiO2 < 1.0 wt. %. These features are 

monitored by high temperature melting experiments (c. 1000oC) using common amphibolites as 

the starting material (Beard and Lofgren, 1991, Wolf and Wyllie, 1994, Rapp and Watson, 1995). 

It has been argued that entrainment of peritectic phases may yield magmas more mafic than 

granite (Clemens et al., 2011; Clemens and Stevens, 2012). In this paper, we presented also 

data from coeval nearby quartz diorites although the Gawib complex lack such rocks. Major and 

trace element evidence suggest that such quartz diorites may be the parental melts and both 

rock types are connected through fractional crystallization processes although the linear 

relationships in major and trace element abundances can also be produced by entrainment of 

peritectic phases. From experimental studies and phase petrology, partial melting of 

amphibolites or mafic granulites yields clinopyroxene, orthopyroxene and garnet as peritectic 

phases; however, none of these minerals occur in the quartz diorites or granodiorites. In 

addition, HREE systematics rule out a significant contribution of garnet or clinopyroxene during 

melting. Finally, entrainment of peritectic phases must result in considerable scatter in Nd-Sr 

space and would not yield linearly correlated Sr-Nd isotope data which are more compatible with 

AFC processes. 

Based on a comparison with melting experiments using TiO2 as the most incompatible 

major element (Fig. 14a), the most primitive granodiorites from the Gawib pluton plot either in 

the field of experimental melts generated by “wet“ melting of metabasaltic sources (Beard and 

Lofgren, 1991) or in the field of melts derived by fluid-absent melting of amphibolite sources 

(Rapp and Watson, 1995). In the case of the Gawib granodiorites, fluid-present melting can be 

considered as an implausible process to generate mobile granodioritic magmas because the 

Al2O3 contents are too high and FeO and MgO are too low relative to the Gawib granodiorites. 

Melts derived by fluid-absent melting of amphibolites (Beard and Lofgren, 1991) seem to have 
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higher TiO2 abundances at a given SiO2 content (Fig. 14a). In a similar approach, Rapp and 

Watson (1995) used various meta-basaltic sources to generate intermediate magmas through 

fluid-absent melting. Notably, they used an alkali basaltic source rock enriched in TiO2 and K2O 

that yielded high-K2O magmas (> 2 wt. % K2O at 65 wt. % SiO2) with appropriate TiO2 contents 

(ca. 1 wt. % TiO2 at 65 wt. % SiO2). It is important to note, that the generation of intermediate 

magmas with slightly elevated TiO2 contents is independent of the TiO2 content of the source 

material since both, the source materials from Rapp and Watson (1995) and Beard and Lofgren 

(1991) had similar TiO2 contents of 0.72 - 2.06 wt% and 0.60 - 1.74 wt%, respectively. Similarly, 

the match between experimental melts and the Gawib granodiorites in Al2O3, FeO and MgO is 

good. The alkali basaltic source rock used by Rapp and Watson (1995), however, has a more 

differentiated composition relative to the other tholeiitic sources with lower CaO contents, hence 

the match between experimental melts and the Gawib granodiorites in terms of CaO 

abundances is poor. A comparison of FeO (ca. 6 wt. %), MgO (ca. 2 wt. %) and TiO2 (ca. 0.8 wt. 

%) abundances between experimental melts and the Gawib granodiorites suggest temperatures 

between 900 and 1100oC (Fig. 14b). Constraints on the melting temperature can also be 

obtained by plotting chemical parameters of experimental melts against their experimental 

temperature and by comparing these chemical parameters with those of the most primitive 

granodiorites. Accepting that the source is broadly similar to those used in the dehydration 

melting experiments of Rapp and Watson (1995), the most primitive granodiorites have 

Mg+Fe+Ti values (in cation percentages) of c. 0.13 indicating a temperature of c. 1040 +30/-

15oC (Fig. 15). Similarly, these samples have Al/(Mg+Fe) ratios of c. 1.3 (not shown here) which 

point to temperatures of c. 1070oC. Although there is probably a relatively large uncertainty with 

this approach, high temperatures are indicated. 

The temperature at which a mafic melt separated from its source may be estimated from 

its P2O5 concentration, using the apatite solubility expression of Harrison and Watson (1984). 

This approach assumes that the melt formed in equilibrium with residual apatite and has not 

undergone subsequent modification by processes related to fractional crystallization or 
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assimilation. The first requirement may be satisfied during melting, especially at low degrees of 

melting, but the second requirement is more difficult to evaluate. However, the most mafic quartz 

diorites have the most primitive isotopic composition indicating less modification by AFC 

processes. For these samples P2O5 concentrations are between 0.32-0.35 wt%, indicating 

temperatures of between 960 and 980oC, only slightly lower to those given by the experimental 

investigations. On the other hand, application of the Zr saturation temperature equation (Watson 

and Harrison, 1983) indicates a lower temperature of c. 830oC most likely as a result of early 

zircon fractionation. 

At pressures of 10 to 15 kbar calc-alkaline liquids coexist with garnet under both vapor-

saturated and -undersaturated conditions (Huang and Wyllie, 1986; Rutter and Wyllie, 1988; 

Caroll and Wyllie, 1990). None of the granodiorites shows significant HREE depletion (i.e YbN < 

10) predicted for melts that equilibrated with residual garnet suggesting that they formed 

alternatively under lower pressures, with less garnet in the residuum or garnet was melted to a 

large extent during formation of the melts. In any case, the moderate high temperatures required 

for amphibolite melting restrict this process to the deep crust in which temperatures cannot have 

exceeded 1100oC at 10-15 kbar which is the thermal stability limit of amphibole in basalt (Green 

et al., 2010). 

In summary, the source rock of the granodiorites is most likely a high-grade 

metamorphic, medium-K basaltic rock that was melted at moderate high temperatures and 

pressures in the lower crust. Constraints derived from interpretation of experimental evidence 

(Beard and Lofgren, 1991; Wolf and Wyllie, 1994; Rapp and Watson, 1995) imply that fluid-

absent melting of basaltic material within the lower crust at high temperatures can produce 

significant volumes of intrusive intermediate partial melts, particular in regions with high heat 

flow.  

 

6.3 A tentative model for the generation of early syn-orogenic granodiorites  
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The Damara orogeny included a c. 100 Ma period from 570-480 Ma in which high-T 

granites intruded the mid-crustal region more or less continuously and on a province-wide scale. 

For the syn-orogenic granites, the time of intrusion coincides with a first period of high-

temperature metamorphism at 540 Ma (c. 700-750oC at 5-6 kbar; Jung and Mezger, 2001; 

2003). Such thermal events at mid-crustal regions must be accompanied by even higher 

temperatures in the lower crust of probably 900-1000oC along a very high geothermal gradient 

(e.g. Harley, 1998; Brown, 2007; Kelsey, 2008). They almost certainly require a considerable 

amount of convective heat from the mantle. Numerical thermal modelling also suggests that 

large-scale crustal melting requires unusually high heat flow (e.g. Petford and Gallagher, 2001; 

Annen and Sparks, 2002; Dufek and Bergantz, 2005). One feasible explanation to account for 

the high temperatures at mid crustal levels early in the tectono-metamorphic history could be 

that the crust contained a high proportion of melt (e.g. in a MASH zone) as a result of intra- and 

under-plated voluminous mantle melt providing additional heat to melt the crust at mid crustal 

conditions. Current models indicate that voluminous mantle-derived magmatism contribute both 

heat and source material in the generation of large-volume felsic magmas in all tectonic 

environments (e.g. Annen et al., 2006). It is argued that most intermediate to felsic magmas form 

within, and are extracted from, long-lived crystallizing mush zones periodically fed by mantle-

derived magmas. All of these models are based on the MASH hypothesis (melting, assimilation, 

storage, homogenization; Hildreth and Moorbath, 1988) in which long-lived crystal-melt mush 

domains are produced when mantle derived mafic underplated and intraplated magmas mix 

with, and assimilate, local crustal components producing crystal-rich mush chambers that 

undergo dynamic homogenization as well as periodic magma recharge (Hildreth and Moorbath, 

1988). A model that also incorporates aspects of the MASH hypothesis is that of granite 

formation in deep crust ‘hot zones’ (Annen et al., 2006). This model was developed to explain 

the genesis of subduction-related felsic magmas, but may also applicable to other tectonic 

settings where high-T granites occur. According to this model, a relatively high rate of basaltic 

intraplating can lead to a situation where each successive intrusion adds more heat to the lower 
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crust than is conducted away. Annen et al. (2006) predicted that within this emerging ‘hot zone’, 

ambient temperatures may eventually exceed the solidus temperature of both the basalt and the 

country rock. Under such conditions, the country rock may partially melt, whereas the basaltic 

sills will retain a residual melt fraction. This situation favors the generation of mafic to 

intermediate magmas with hybrid isotope compositions. Interpretation of geochemical and 

isotope data from the rather small-scale complex suggest that the Pan-African igneous activity in 

this part of the Damara Belt was not a major crust-forming episode and most rock types 

represent reprocessed crustal material. The thermal anomaly that acounts for high-temperature 

melting in the lower crust and subsequent high-temperature/low-pressure regional 

metamorphism is likely rooted in the lithospheric upper mantle. 

 

7. Conclusions 

 

Rocks from the c. 550 Ma-old Gawib pluton are metaluminous, calc-alkaline, magnesian 

rocks (Frost and Frost, 2008) in the compositional range of granodiorite to granite. They are 

enriched in HFSE, Y and REE in which the samples with the lowest SiO2 have the highest 

contents of Zr, Nb, Y and LREE. Neodymium and Sr isotope compositions are evolved and Pb 

isotopes are radiogenic plotting above average Pb growth curves. Although the Gawib 

granodiorites share many similarities to modern arc-type plutonic rocks (i.e. the Sierra Nevada 

Batholith), Sr, Nd and Pb isotope systematics are unlike granitic rocks unmodified by AFC 

processes found in modern continental arcs. A potential genetic link to the coeval isotopically 

unevolved Palmental quartz diorites located further to the NE is possible, however, if such a 

genetic link is precluded it is likely that the compositional geochemical and isotope variation of 

the Gawib granodiorites reflects variable degrees of partial melting of an ancient mafic source at 

crustal levels. In addition, isotope data imply some modification through limited assimilation of 

older crust. The range of Nd model ages between 1.5 - 2.5 Ga also indicates involvement of an 

ancient crustal component.  
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As pointed out by Frost and Frost (2008), magnesian intermediate to felsic magmas with 

FeO/(FeO+MgO) < 0.78 at SiO2 contents ranging from 65-70 wt.% SiO2 (the range of the Gawib 

granodiorites) form granitoids that range in composition from calcic to alkali-calcic, 

metaluminous or peraluminous granodiorite to granite. All these features are shown by the 

Gawib granodiorites. Frost and Frost (2008) have shown that magnesian granites typically form 

in arcs and ‘post-collisional’ environments. The important point is that intermediate igneous 

rocks in the lower crust in arc settings may be generated by remelting of previously underplated 

mafic intrusions. They obtain their magnesian signature because the sources are magnesian 

(Ratajeski et al., 2005; Nelson et al., 2013) and they undergo differentiation under oxidizing (and 

probably wet) conditions (Frost and Frost 2008). Intrusion and stagnation of primitive basaltic 

magmas in deep crustal levels may produce fractionated hydrous magmas which may be 

represented by some isotopically unevolved quartz diorites of the Plamental complex. If no 

interaction with older crustal rocks occurs during fractionation, the intermediate rocks may have 

isotope systematics similar to their unevolved mafic sources. On the other hand, combined 

assimilation-fractional crystallization processes may create hybrid rocks with evolved isotope 

compostions. On the other hand, remelting of mafic intrusions that intruded much earlier than the 

Pan-African igneous event yield hydrous mafic magmas with strongly evolved isotope 

systematics; this situation may apply for the Goas and Okongava diorites and, if the connection 

of the Palmental diorites with the Gawib granodiorites is precluded, also for the intermediate 

rocks from the Gawib pluton. The latter point makes a derivation of the Gawib granodiorites by 

reprocessed mafic crustal material very attractive. The major and trace element data obtained 

on the granites are compatible with a derivation from high-Sr, high-Ba, low-Rb granodiorites 

through fractional crystallization. In addition, initial  Nd values and initial 87Sr/86Sr ratios indicate 

that assimilation of lower crustal rocks was also important for the granites. 
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Figure captions 

 

Fig.1. Generalized geological map showing the study area within the Central Zone of the 

Damara orogen, Namibia. Abbreviations in inset: KZ: Kaoko Zone, NP: Northern Platform, NZ: 

Northern Zone, nCZ: northern central Zone, sCZ: southern Central Zone, SZ: Southern Zone, 

SMZ: Southern Margin Zone. Isograd map (Hartmann et al., 1983) gives the distribution of 

regional metamorphic isograds within the southern and central Damara orogen. Isograds: (1) 

biotite-in, (2) garnet-in, (3) staurolite-in, (4) kyanite-in, (5) cordierite-in, (6) andalusite <---> 

sillimanite, (7) sillimanite-in according to staurolite-breakdown, (8) partial melting due to: 

muscovite + plagioclase + quartz + H2O <---> melt + sillimanite, (9) K-feldspar + cordierite-in, 

(10) partial melting due to: biotite + K-feldspar  + plagioclase + quartz + cordierite <---> melt + 

garnet. W: Walvisbay, S: Swakopmund, Wh: Windhoek. 

 

Fig. 2. Geological sketch map of the Gawib area and surroundings. Note the occurrence of the 

Palmental complex and other quartz diorite intrusions of the same age (Goas and Okongava; 

Jung et al., 2002) and the vicinity of numerous basement complexes and the Okahandja 

lineament (OL). 

 

Fig. 3. U/Pb concordia diagram showing U-Pb zircon analyses from granodiorites (Gawib 

pluton). 

 

Fig. 4. Major element plots for granodiorites and granites. Grey circles are analyses from Goas-

Okongava (Jung et al., 2002) and Palmental (Jung et al. unpubl.). Fields for analyses from the 

Sierra Nevada batholith are indicated. For locations see Fig. 2. 
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Fig. 5. Selected trace element plots for granodiorites and granites. Grey circles are analyses 

from Goas-Okongava (Jung et al., 2002) and Palmental (Jung et al. unpubl.). Fields for analyses 

from the Sierra Nevada batholith are indicated. For locations see Fig. 2. 

 

Fig. 6. Chondrite-normalized rare earth element plots for granodiorites and granites. 

Normalization factors according to Boynton (1984). Indicated are representative samples with 

lowest and highest REE abundances from each rock type. A field for analyses from the Sierra 

Nevada batholith is indicated. 

  

Fig. 7. Initial Nd vs. initial 
87Sr/86Sr diagram for granodiorites and granites. Grey circles are 

analyses from Goas-Okongava (Jung et al., 2002) and Palmental (Jung et al. unpubl.). For 

locations see Fig. 2. Field for mafic rocks from the Sierra Nevada Batholith is from Wenner and 

Coleman (2004), Nelson et al. (2013) and references therein. 

 

Fig. 8. Plot of (a) 207Pb/204Pb and (b) 208Pb/204Pb vs 206Pb/204Pb isotope ratios of leached K-

feldspar from granodiorites and granites. The curve represents the average Pb growth curve 

according to Stacey and Kramers (1975). Tick marks represent 250 Ma intervals. Grey circles 

are analyses from Goas-Okongava (Jung et al., 2002) and Palmental (Jung et al. unpubl.). For 

locations see Fig. 2. Analyses of metasedimentary rocks are form McDermott and Hawkesworth 

(1990). 

 

Fig. 9 (a). Plot of Eu/Eu* (as a measure of the negative Eu anomaly) vs. Sr concentrations. (b) 

Rb-Sr variation among the granodiorites and granites to show effects of fractional crystallization 

processes. Mineral vectors calculated according to partition coefficients compiled in Rollinson 

(1993). For discussion see text. 
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Fig. 10. Plot of MgO vs. 206Pb/204Pb and initial Nd vs. 206Pb/204Pb. Note a possible genetic 

relationship of the granodiorites to unexposed quartz diorites similar to the Palmental quartz 

diorites. For locations see Fig. 2. 

 

Fig. 11. Plot of 87Sr/86Sr vs.  Nd for granodiorites and granites and a possible calculated AFC 

curve. This calculation uses a hypothetical basement rock with 200 ppm Sr (87Sr/86Sr: 0.74) and 

25 ppm Nd ( Nd: -30). The starting granodiorite has 900 ppm Sr (87Sr/86Sr: 0.7068) and 50 ppm 

Nd ( Nd: -6.5) similar to the most primitive granodiorite samples. Bulk KD´s (Sr) and (Nd) were 

0.5 with a r-value (ratio of assimilation to fractionation) of 0.6. The field of Kaokoveld gneisses is 

compiled from data of Seth et al. (2002) and the field of basement-derived granites from the 

Damara orogen is from Jung et al. (2003). Data for metasedimentary rocks are from McDermott 

and Hawkesworth (1990). Grey circles are analyses from Goas-Okongava (Jung et al., 2002) 

and Palmental (Jung et al. unpubl.). For locations see Fig. 2. 

 

Fig. 12.  Nd (inital) vs. 206Pb/204Pb for granodiorites and granites from the Gawib pluton. Also 

shown are analyses from other quartz diorites (Palmental, Goas-Okongava; Jung unpubl. And 

Jung et al., 2002) and a field for basement-derived granites from the Damara orogen (Jung et 

al., 2003). Note a possible genetic relationship of the granodiorites to unexposed quartz diorites 

similar to the Palmental quartz diorites. For further discussion see text. 

 

Fig. 13. Primitive mantle-normalized multi element diagram showing the similarity between the 

Gawib granodiorite and arc-related intermediate magmas from the Sierra Nevada Batholith. Note 

the typical geochemical features such as negative anomalies in Nb, P and Ti (e.g. Nelson et al., 

2013) and a positive Pb anomaly. For discussion see text. 

 

Fig. 14. Plot of (a) TiO2 vs. SiO2 and (b) TiO2 vs. temperature for granodiorites and experimental 

investigations. Note that the composition of the granodiorites is likely reproduced by high-
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temperature melting of some sources reported by Rapp and Watson (1995). Grey circles in (a) 

are analyses from Goas-Okongava (Jung et al., 2002) and Palmental (Jung et al. unpubl.). For 

locations see Fig. 2. wm = wet melting, dm =  dehydration melting. 

 

Fig. 15. Plot of Fe+Mg+Ti values (in cation mole percentages) vs. experimental temperature 

using experiments of Rapp and Watson (1995). A possible melting temperature of c. 1040oC 

(plus uncertainty) for the most primitive granodiorites from the Gawib pluton with Fe+Mg+Ti = 

0.13 is indicated. 
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Table 1. U-Pb zircon data from granodiorite sample M 89 (Gawib pluton, Damara orogen, Namibia) 

 
              Analysis Isotope ratios: 

    

Ages: 

     no 

             

 

206
Pb/ ±2σ 

207
Pb/ ±2σ 

207
Pb/ ±2σ Rho 

206
Pb/ ±2σ 

207
Pb/ ±2σ 

207
Pb/ ±2σ 

 

238
U 

 

235
U 

 

206
Pb 

  

238
U 

 

235
U 

 

206
Pb 

 
              

 

Archaean zircon (c. 2.7 Ga) 

         
              Z56 0.542 0.023 14.569 0.686 0.1950 0.004 0.89 2791 95 2788 45 2785 35 

              

 

Proterozoic zircon (c. 1.9 Ga), concordant 

       
              Z1 0.345 0.024 5.580 0.420 0.117 0.004 0.91 1912 114 1913 65 1914 56 

Z2 0.354 0.017 5.413 0.334 0.111 0.004 0.78 1955 81 1887 53 1813 70 

Z15-1 0.351 0.017 5.809 0.306 0.120 0.003 0.90 1939 79 1948 46 1957 42 

Z15-2 0.347 0.011 5.754 0.227 0.120 0.003 0.80 1922 52 1940 34 1958 43 

Z19 0.350 0.012 5.732 0.234 0.119 0.002 0.87 1932 59 1936 35 1940 36 

Z24 0.350 0.011 5.586 0.195 0.116 0.002 0.88 1936 52 1914 30 1890 30 

Z64-1 0.349 0.015 5.661 0.254 0.118 0.001 0.96 1930 72 1925 39 1921 21 

Z68 0.356 0.015 5.870 0.265 0.120 0.002 0.94 1964 72 1957 39 1949 27 

Z78-1 0.358 0.016 6.102 0.300 0.124 0.002 0.94 1972 78 1991 43 2010 31 

Z80-1 0.354 0.013 6.193 0.246 0.127 0.002 0.93 1954 62 2003 35 2055 26 

Z86 0.362 0.022 6.060 0.382 0.121 0.002 0.97 1991 105 1984 55 1977 28 

Z90 0.348 0.021 5.672 0.351 0.118 0.002 0.97 1923 99 1927 53 1932 29 

              

 

Proterozoic zircon (c. 1.9 Ga), discordant 

       
              Z11 0.218 0.009 3.269 0.160 0.109 0.003 0.86 1272 49 1474 38 1778 46 

Z16 0.229 0.007 3.653 0.121 0.116 0.002 0.90 1328 36 1561 27 1894 26 

Z39 0.322 0.007 5.100 0.117 0.115 0.001 0.89 1798 32 1836 20 1880 19 

Z40-1 0.311 0.005 4.977 0.081 0.116 0.001 0.90 1746 22 1816 14 1897 13 

Z57 0.218 0.010 3.401 0.174 0.113 0.002 0.92 1273 55 1505 40 1848 36 

Z69-1 0.178 0.013 2.726 0.210 0.111 0.003 0.96 1055 71 1336 57 1819 41 

Z71 0.324 0.013 5.204 0.229 0.116 0.002 0.94 1810 65 1853 38 1902 28 

Z81 0.279 0.010 4.620 0.180 0.120 0.002 0.93 1587 51 1753 33 1957 25 

Z77 0.275 0.010 4.593 0.190 0.121 0.002 0.92 1567 53 1748 34 1972 28 

Z35-1 0.248 0.005 3.726 0.089 0.109 0.001 0.85 1428 26 1577 19 1783 23 

              

 

Pan-African zircon (c. 550 Ma), concordant 

       
              Z14-1 0.090 0.003 0.723 0.030 0.059 0.001 0.86 553 19 553 18 549 46 

Z22-2 0.089 0.003 0.714 0.025 0.058 0.001 0.88 547 16 547 15 546 36 

Z27 0.091 0.003 0.738 0.029 0.059 0.001 0.91 560 19 561 17 565 35 

Z32 0.087 0.003 0.709 0.032 0.059 0.002 0.75 541 18 544 19 559 66 

Z36 0.090 0.001 0.734 0.013 0.059 0.001 0.79 558 8 559 8 561 24 

Z43 0.090 0.003 0.728 0.028 0.058 0.001 0.95 557 20 555 17 548 26 

Z48 0.089 0.003 0.727 0.033 0.059 0.002 0.78 551 19 555 20 570 62 

Z67 0.089 0.004 0.718 0.032 0.058 0.001 0.90 552 22 549 19 540 43 

Z83 0.086 0.003 0.689 0.027 0.058 0.001 0.93 534 18 532 16 523 30 

Z84-1 0.087 0.003 0.700 0.029 0.058 0.001 0.92 539 20 539 17 540 35 
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Z88-2 0.086 0.005 0.691 0.045 0.058 0.002 0.91 534 30 533 27 528 60 

Z45-1 0.087 0.003 0.706 0.029 0.059 0.001 0.90 537 19 542 17 565 38 

              
 

Pan-African zircon (c. 550 Ma), discordant 

       
              Z4 0.045 0.005 0.342 0.038 0.055 0.002 0.92 282 28 299 28 428 93 

Z46-1 0.070 0.003 0.554 0.026 0.058 0.002 0.82 435 16 448 17 517 59 

Z50-2 0.073 0.003 0.577 0.023 0.058 0.001 0.90 451 16 463 15 520 38 

Z65 0.056 0.003 0.448 0.023 0.058 0.001 0.89 348 15 376 16 548 52 

Z70 0.069 0.003 0.569 0.025 0.060 0.001 0.92 431 17 457 16 592 38 

Z79-2 0.044 0.002 0.323 0.014 0.054 0.001 0.88 275 10 284 11 356 47 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Table 2: Major and trace element composition of country rock gneiss, granodiorites (GD) and 

granite (G) from the Gawib pluton. LOI: Loss on ignition, n.d.: not determined. 

  

              Sample 09/ 09/ 09/ 09/ 02/ 02/ 02/ M97 M88 M99 M91 M94 M89 

 

GW01 GW02 GW05 GW07 GW01 GW02 GW03 

      Rock type Gneiss GD GD GD GD GD GD GD GD GD GD GD GD 

              SiO2 61.05 69.89 65.74 64.97 67.26 65.20 64.53 63.20 63.70 64.59 64.62 65.52 65.67 

TiO2 0.96 0.37 0.64 0.55 0.43 0.52 0.67 0.59 0.81 0.46 0.83 0.83 0.68 

Al2O3 15.62 15.15 14.97 16.01 14.69 15.24 15.92 15.73 15.09 16.48 14.98 14.27 15.08 

Fe2O3 7.17 3.24 5.26 4.48 3.75 4.57 5.91 5.09 6.04 3.74 4.90 5.45 5.20 

MnO 0.09 0.09 0.11 0.11 0.08 0.10 0.11 0.12 0.18 0.10 0.15 0.17 0.14 

MgO 1.66 0.82 1.71 1.15 1.12 1.42 1.89 1.62 1.65 1.02 1.41 1.49 1.33 

CaO 1.85 2.87 3.75 3.75 3.04 3.34 4.10 4.57 4.00 3.69 4.16 3.88 3.65 

Na2O 2.88 3.93 3.13 3.83 3.18 3.41 3.15 3.34 3.30 4.00 3.68 3.33 3.29 

K2O 7.23 3.28 3.95 3.18 4.69 4.38 4.13 3.06 2.70 3.66 3.07 3.20 2.93 

P2O5 0.30 0.17 0.25 0.24 0.17 0.19 0.29 0.32 0.35 0.17 0.32 0.33 0.27 

LOI 1.38 0.54 1.00 0.79 1.00 0.92 0.80 0.79 0.63 0.40 0.52 0.65 0.64 

SUM 100.2 100.4 100.5 99.06 99.41 99.29 101.5 98.33 98.45 98.31 98.64 99.12 98.88 

              Ba 2219 736 764 960 720 911 996 914 672 1319 761 886 921 

Co 10 4 9 7 6 9 14 13 3 6 4 10 8 

Cr 36 8 17 7 2 13 19 n.d. 10 3 4 11 11 

Cu 0 13 8 10 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Ga 16 13 14 17 20 22 19 21 21 21 21 18 19 

Nb 20 16 23 28 21 26 27 15 37 20 40 38 32 

Ni 13 

 

6 5 

  

17 

 

20 17 12 16 16 

Pb 37 23 28 22 24 28 28 15 20 43 23 31 24 

Rb 313 140 173 144 192 198 212 125 113 121 124 137 107 

Sc 17 4 18 9 2 7 14 9 10 3 15 11 9 

Sr 151 671 560 734 631 756 642 693 716 939 748 713 741 

Th 19 18.9 24.7 18.0 34.7 25.4 27.4 14 31 24 39 30 25 

U 30.2 4.3 4.9 4.5 8.1 6.0 4.6 4.6 3 3 4 4 7 
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V 77 35 82 58 24 24 29 26 46 28 47 46 39 

Y 29 21 30 33 57 75 86 65 50 50 63 70 47 

Zn 88 49 59 59 50 58 72 70 110 67 86 93 87 

Zr 360 170 234 219 190 222 298 190 320 197 332 328 288 

Hf n.d. 4.4 6.4 5.5 4.8 5.7 7.4 n.d. n.d. n.d. n.d. n.d. n.d. 

Ta n.d. 1.4 2.0 2.5 1.8 1.8 2.1 n.d. n.d. n.d. n.d. n.d. n.d. 

La 73.7 43.1 62.1 57.1 48.8 57.8 76.1 50.3 95.4 56.6 94 64 75.1 

Ce 149 81.3 120 111 94 110 139 98.1 178 106 197 126 143 

Pr 16.1 8.66 12.9 12.5 10.0 11.7 14.3 n.d. n.d. n.d. n.d. n.d. n.d. 

Nd 58.6 31.2 46.3 45.7 35.2 41.3 49.8 42.4 65.9 38.1 67.9 45.4 52.9 

Sm 10.3 5.50 8.50 8.90 6.20 7.10 8.20 8.53 13.4 8.48 14.4 9.87 10.8 

Eu 1.50 1.30 1.68 1.99 1.26 1.42 1.69 1.66 3.06 1.62 2.63 1.66 2.49 

Gd 7.80 4.20 6.30 7.10 4.50 5.30 6.10 5.68 9.9 5.15 9.59 7.12 8.33 

Tb 1.1 0.6 0.9 1.0 0.6 0.7 0.8 n.d. n.d. n.d. n.d. n.d. n.d. 

Dy 5.9 3.3 5.1 5.6 3.6 3.9 4.4 4.42 7.14 3.50 6.68 5.52 6.8 

Ho 1.1 0.6 1.0 1.0 0.7 0.7 0.8 n.d. n.d. n.d. n.d. n.d. n.d. 

Er 3.1 1.9 2.8 3.1 2.0 2.1 2.3 2.0 3.8 1.7 4.1 3.3 3.8 

Tm 0.46 0.28 0.42 0.47 0.3 0.32 0.34 n.d. n.d. n.d. n.d. n.d. n.d. 

Yb 3.0 1.9 2.8 3.2 2.0 2.1 2.2 1.5 3.2 1.5 3.0 2.8 2.9 

Lu 0.51 0.32 0.45 0.52 0.35 0.36 0.35 0.22 0.54 0.24 0.46 0.40 0.42 

 

 

 

Table 2. (cont.) 

          

            

            Sample M87 M98 M95 M90 M96 M92 M93 09/ 09/ 09/ 02/ 

        

GW03 GW04 GW06 GW04 

Rock type GD GD GD GD GD G G G G G G 

            SiO2 65.69 66.80 66.83 67.29 67.77 74.15 74.62 72.54 76.07 74.25 70.73 

TiO2 0.48 0.34 0.60 0.41 0.37 0.05 0.07 0.14 0.08 0.09 0.24 

Al2O3 16.47 15.95 13.93 15.65 14.98 13.76 13.49 14.33 12.87 13.82 14.46 
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Fe2O3 3.87 3.08 5.26 3.33 3.08 0.60 0.79 1.21 0.89 1.00 1.69 

MnO 0.10 0.11 0.14 0.09 0.09 0.02 0.02 0.03 0.02 0.03 0.05 

MgO 1.06 0.99 1.33 0.93 0.81 0.08 0.11 0.40 0.15 0.19 0.61 

CaO 3.56 3.28 3.56 3.38 3.21 0.98 1.13 1.75 0.74 1.55 2.06 

Na2O 3.96 3.53 3.33 3.81 4.06 2.98 3.36 3.46 2.99 3.28 3.56 

K2O 3.49 3.83 2.83 3.32 2.74 5.69 4.81 4.90 5.86 5.19 4.08 

P2O5 0.18 0.13 0.24 0.17 0.14 0.04 0.02 0.06 0.03 0.04 0.10 

LOI 0.64 1.12 0.19 0.53 0.78 0.78 0.95 1.09 0.74 0.71 0.66 

SUM 99.50 99.16 98.24 98.91 98.03 99.13 99.37 99.91 100.4 100.2 98.24 

            Ba 1207 1080 732 1093 601 146 327 914 359 617 1108 

Co 3 6 5 3 3 6 1 1 1 2 3 

Cr n.d. 3 9 1 n.d. 3 3 7 5 4 3 

Cu n.d. n.d. n.d. n.d. n.d. n.d. n.d. 4 2 11 n.d. 

Ga 20 18 19 22 14 14 11 14 13 12 14 

Nb 22 24 26 18 16 10 9 9 11 8 9 

Ni 

 

16 3 18 

   

2 2 2 20 

Pb 21 33 23 20 26 71 57 28 19 37 51 

Rb 123 176 118 120 122 281 225 157 177 175 178 

Sc 3 6 12 8 4 8 2 4 4 10 9 

Sr 902 818 714 853 697 84 200 453 259 332 523 

Th 12 26 22 16 16 15 17 6.0 19.0 13.5 8.2 

U 3 6 4 8 4 7 9 2.1 4.0 3.6 2.5 

V 24 25 35 24 21 27 16 19 21 10 15 

Y 35 24 58 28 34 11 7 10 8 6 15 

Zn 67 126 86 65 59 7 3 10 7 13 29 

Zr 206 170 244 178 167 45 50 75 44 59 93 

Hf n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2.2 2.4 2.0 2.4 

Ta n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.6 1.0 0.5 0.5 

La 57.6 53.8 70 49.1 41.6 29.5 n.d. 22.2 9.9 11.3 21.4 

Ce 109 98.8 130 83.5 77.5 69.8 n.d. 40.7 16.8 20.9 39.1 

Pr n.d. n.d. n.d. n.d. n.d. n.d. n.d. 4.24 1.65 2.17 4.08 

Nd 39.0 35.0 48.2 33.3 26.3 30.8 n.d. 14.8 5.60 7.70 14.4 

Sm 7.94 7.24 10.5 7.1 6.04 6.66 n.d. 2.6 1.00 1.40 2.50 

Eu 1.7 1.42 2.29 1.43 1.29 1.13 n.d. 0.75 0.28 0.50 0.95 
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Gd 6.04 4.94 7.71 4.39 4.56 4.92 n.d. 1.9 0.80 1.10 1.80 

Tb n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.3 0.13 0.16 0.20 

Dy 4.00 4.10 5.25 4.26 3.73 4.24 n.d. 1.5 0.80 0.90 1.20 

Ho n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.3 0.18 0.20 0.25 

Er 2.0 2.1 2.9 2.3 2.0 2.0 n.d. 0.8 0.50 0.60 0.70 

Tm n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.12 0.09 0.10 0.10 

Yb 1.7 2.2 2.3 1.6 1.6 1.7 n.d. 0.8 0.80 0.80 0.70 

Lu 0.26 0.34 0.40 0.20 0.25 0.24 n.d. 0.15 0.16 0.16 0.13 
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Table 3. Rb-Sr. Sm-Nd whole rock data and Pb-isotope ratios obtained on acid-leached K-feldspar from granodiorites and granites from the Gawib 

pluton. 

Analytical methods are described in Appendix A. 87Rb/86Sr and 147Sm/144Nd are calculated from ICP-MS data. Calculation of εNd values is relative 

to CHUR 

according to Jacobsen and Wasserburg (1980). Nd model age (TDM) calculation is according to Michard et al. (1985). (m): measured. 

(i): initial 

  
               

  

87Sr/ error 87Rb/ 87Sr/ 143Nd/ error 147Sm/ 143Nd/  Nd (i) T(DM) 206Pb/ 207Pb/ 208Pb/ 

  

86Sr(m) 

 

86Sr 86Sr(i.) 144Nd(m.) 

 

144Nd 144Nd(i.) 

  

204Pb 204Pb 204Pb 

               09/GW01 Gneiss 0.822527 0.000003 6.00 0.775483 0.511200 0.000003 0.106 0.510817 -21.7 2.5 n.d. n.d. n.d. 

09/GW02 GD 0.717917 0.000003 0.60 0.713182 0.511757 0.000002 0.107 0.511373 -10.9 1.8 n.d. n.d. n.d. 

09/GW05 GD 0.717209 0.000003 0.89 0.710198 0.511858 0.000003 0.111 0.511458 -9.2 1.7 n.d. n.d. n.d. 

09/GW07 GD 0.716636 0.000003 0.57 0.712183 0.511847 0.000002 0.118 0.511423 -9.9 1.8 n.d. n.d. n.d. 

02/GW01 GD 0.715127 0.000007 0.88 0.708556 0.511928 0.000012 0.106 0.511544 -7.5 1.6 n.d. n.d. n.d. 

02/GW02 GD 0.713956 0.000008 0.76 0.708300 0.511930 0.000012 0.104 0.511555 -7.3 1.5 17.89 15.60 38.51 

02/GW03 GD 0.716930 0.000008 0.96 0.709799 0.511871 0.000012 0.100 0.511512 -8.1 1.5 17.69 15.61 38.35 

M97 GD 0.715252 0.000008 0.52 0.711357 0.511749 0.000012 0.122 0.511311 -12.1 2.1 17.71 15.58 38.12 

M88 GD 0.715915 0.000006 0.46 0.712507 0.511808 0.000012 0.123 0.511365 -11.0 2.0 n.d. n.d. n.d. 

M99 GD 0.715183 0.000008 0.37 0.712309 0.511814 0.000012 0.135 0.511329 -11.7 2.3 17.63 15.59 38.20 

M91 GD 0.716351 0.000009 0.48 0.712673 0.511814 0.000012 0.128 0.511352 -11.3 2.1 n.d. n.d. n.d. 

M94 GD 0.717029 0.000007 0.56 0.712803 0.511797 0.000012 0.131 0.511323 -11.8 2.2 17.48 15.61 38.24 

M89 GD 0.715932 0.000008 0.42 0.712771 0.511821 0.000012 0.123 0.511376 -10.8 2.0 17.45 15.56 38.07 

M87 GD 0.715576 0.000003 0.39 0.712481 0.511793 0.000012 0.123 0.511349 -11.3 2.0 17.53 15.58 38.14 

M98 GD 0.714589 0.000003 0.62 0.709706 0.511906 0.000012 0.125 0.511455 -9.3 1.9 n.d. n.d. n.d. 

M95 GD 0.716368 0.000009 0.48 0.712644 0.511816 0.000012 0.132 0.511341 -11.5 2.2 n.d. n.d. n.d. 

M90 GD 0.715846 0.000003 0.41 0.712653 0.511765 0.000012 0.129 0.511300 -12.3 2.2 n.d. n.d. n.d. 

M96 GD 0.717426 0.000003 0.51 0.713453 0.511752 0.000012 0.139 0.511252 -13.2 2.5 n.d. n.d. n.d. 

M92 G 0.801664 0.000009 9.68 0.725742 0.511596 0.000012 0.106 0.511214 -14.0 2.0 17.56 15.55 38.00 

M93 G 0.744749 0.000003 3.26 0.719216 0.511602 0.000012 0.106 0.511220 -13.9 2.0 n.d. n.d. n.d. 

09/GW03 G 0.727221 0.000003 1.00 0.719355 0.511401 0.000002 0.106 0.511018 -17.8 2.2 n.d. n.d. n.d. 

09/GW04 G 0.727841 0.000003 1.98 0.712331 0.511626 0.000002 0.108 0.511237 -13.5 2.0 17.49 15.63 38.12 
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09/GW06 G 0.728585 0.000002 1.53 0.716622 0.511569 0.000003 0.110 0.511173 -14.8 2.1 17.92 15.68 38.71 

02/GW04 G 0.728883 0.000008 0.99 0.721533 0.511438 0.000012 0.105 0.511060 -17.0 2.2 17.82 15.65 38.38 
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Highlights 

 

Geochemical data from high-T granodiorites and granites imply lower crustal amphibolite melting. 

New U-Pb zircon ages imply syn-orogenic intrusion 

New Sr-Nd-Pb isotope data imply ancient crustal sources and constrain AFC processes  


