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subduction-related magma genesis 

 

ABSTRACT 

The Tonga fore arc preserves a complex history of subduction initiation, back-arc basin formation and 

arc volcanism which has extended from the Cretaceous to the present.  In this paper, we discuss the 

geochemistry of a Cretaceous basalt/dolerite/gabbro suite recovered in two dredges from the Tonga 

fore-arc at ~19°S.  The geochemistry of the Tonga fore-arc suite is unlike that of the uniformly 

depleted MORB basalts of the subducting Pacific plate and therefore is unlikely to be accreted Pacific 

Cretaceous crust. The  ~102Ma age obtained for one Tongan fore-arc dolerite is contemporaneous 

with a major phase of Cretaceous subduction-related volcanism, recorded both in detrital zircon age 

populations and associated volcanics from New Caledonia and New Zealand.  We believe the Tonga 

fore-arc basalts are a remnant of a hypothesized, once extensive Cretaceous back-arc basin, called the 

East New Caledonia Basin, which we propose existed from ~102 - 50 Ma.  The allochthonous Poya 

terrane of New Caledonia is geochemically very similar to the Tonga fore arc basalts and represents a 

younger (~84 – 55 Ma) remnant of the same basin.  Subduction-related Cretaceous volcanics from the 

SW Pacific, representing both arc and back-arc settings, all appear to have similar Zr/Nb values, 

suggesting a common mantle component in their petrogenesis. The Tonga fore arc basalts are also 

similar to fore arc basalts recovered from the the Izu-Bonin-Mariana fore arc, but unlike these basalts 

they are not associated with subduction intiation.  

1. Introduction 

Basement terranes exposed in modern fore-arcs have the potential to preserve the tectono-

magmatic record of long-lived subduction systems (Meffre et al., 2012; Stern et al., 2012).  Modern 

fore-arcs are widely believed to be modern analogues of many ophiolite rock assemblages, thus a 

better understanding of fore arc geology and tectonic history will contribute to a better understanding 

of not only ophiolite formation and their tectonic significance but also the overall global tectonic 

cycle (Stern et al., 2012). The SW Pacific is characterized by continental ridges, back arc basins and 
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remnant volcanic arcs formed by Mesozoic  subduction, Cretaceous rifting and Cenozoic subduction 

(Crawford et al., 2003; Sdrolias et al., 2003; Schellart et al., 2006; Bache et al., 2012).  The Tonga 

fore-arc, therefore, may preserve aspects of this complex evolutionary  history. Indeed, Meffre et al 

(2012) demonstrate via U-Pb dating of zircons that the Tonga fore arc is composed of a number of 

different components ranging in age from Cretaceous to the Pliocene.  A significant aspect of the data 

set presented by Meffre et al (2012) is a mid-Cretaceous age (~102Ma) from a dolerite recovered from 

the fore arc at ~19°S and ~6000m water depth.  In this paper, we present the geochemistry of rocks 

recovered along with this dolerite sample.  We suggest  that the geochemistry of these rocks reveals 

that they represent a coherent tholeiitic back-arc basin association similar to the Cretaceous aged 

allochthonous Poya terrane of New Caledonia.   We propose that both the Tonga fore-arc and Poya 

terrane tholeiitic rocks are possible remnants of a hypothesized once extensive Cretaceous back arc 

basin referred to as the East New Caledonia Basin (Eissen et al., 1998).   

 2. Geological Setting 

Tonga is recognised as a type example of an extension-dominanted non-accretionary 

convergent margin (Lonsdale, 1986; Tappin, 1994; Tappin et al., 1994; MacLeod, 1994; Clift et al., 

1998; Clift and MacLeod, 1999; Wright et al., 2000; Figure 1). The Tonga fore arc from 14° to 26° S 

may be subdivided latitudinally into three major blocks, based on morphology, structure, and 

sediment geometry(Tappin, 1994; Wright et al., 2000):  

(i) a northern block (north of ~18° 30’S, Figure 1) lies in the deepest water, and includes 

small islands formed by Tofua volcanic arc volcanoes that penetrate a relatively thin sedimentary 

section with no preferential regional dip;  

(ii) a central block (~18° 30’ to 22° S, Figure 1) is composed of numerous small islands with 

a sedimentary section dipping mainly towards the east, and the Tofua volcanic arc lying on the 

western margin of this part of the fore arc;  
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(iii) and a southern block (~22° to 26° S, Figure 1) is entirely submarine with shallow water 

depths, a sedimentary section dipping westward towards the Lau Basin, and the Tofua volcanic arc 

against the western margin of the forearc. 

During the 1996 voyage of the RV Melville rock samples were recovered by dredging of the 

Tonga forearc at  ~19°S, located within the central block (Figure 2; Table 1).  In this area, the fore-arc 

displays a typical  ‘equilibrium’ bathymetric profile and morphology resulting from tectonic erosion 

(Raitt et al., 1955; Lonsdale, 1986; Wright et al., 2000). A new seamount collision is developing north 

of the dredge locations as the Capricorn seamount enters the trench (Figure 2). Lonsdale (1986) and 

Clift et al. (1998) have suggested that in contrast to the rest of the trench which is dominanted by 

tectonic erosion, a small accretionary prism exists west of the Capricorn seamount. The trench axis 

here comprises a series of en echelon basins, developed as grabens on the subducting plate as it enters 

the trench. Locally, what is morphologically the trench axis is structurally the axis of a graben in the 

Pacific Plate, and the plate boundary is actually within the landward slope (Hilde, 1983; Bloomer and 

Fisher, 1987; Lonsdale, 1986).  

The landward trench slopes in this area are steep, with prominent structural highs in the 

middle and lower landward slopes. These structural highs commonly define the trench slope break at 

about 4000 m water depth and appear to be fault blocks (Wright et al., 2000). The fore-arc in this area 

is dominated by strong normal faulting, as evidenced by the many large, trench-parallel scarps, most 

of which must have accommodated large-scale subsidence of the fore arc and a gradual, regional tilt 

of fault blocks toward the trench axis (Wright et al., 2000). 

During the Boomerang Leg 8 cruise of the RV Melville (May to June 1996), four dredges 

were conducted on the Tonga fore arc at ~19°S (Figure 2, Table 1).  The dredges 99 and 100 

recovered basalts, dolerites and gabbros from ~6000-7000m water depth.  The basalts include aphyric 

to sparsely porphyritic glassy pillow fragments as well as more massive interior parts of pillow lavas. 

Glass has been completely replaced by secondary minerals due to seafloor weathering; however 

plagioclase and clinopyroxene microphenocrysts remain relatively unaltered.  Olivine when present is 
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mostly completely altered.  The dolerites are relatively fresh compared to the altered lavas.  The 

gabbroic rocks are relatively fresh, mostly isotropic equigranular gabbros with minor amounts of 

orthopyroxene.  A dolerite from dredge 100 (sample 100-1-40, Table 2) was found to contain 

interstitial zircons which gave a U-Pb crystallization age of 102.4 ± 4.5Ma (Meffre et al., 2012).  

Although it was only possible to date this single sample, we consider that the rocks recovered from 

dredges 99 and 100 are all most likely sampled from the same basement unit, both due to the close 

proximity of the two dredges and the geochemical coherence of the rocks taken as a group (as 

discussed below). 

3. Methods and Results 

Major, trace and isotope geochemistry for basalts, dolerites and gabbros recovered by dredges 

99 and 100 are presented in Table 2. Major elements and some trace elements were determined by xrf 

at the University of Tasmania while trace elements of selected samples were also determined by 

solution-ICP-Ms at the University of Tasmania using methods outlined in Falloon et al. (2007).  Sr, 

Nd and Pb isotopes were determined at the Helmholtz Centre for Ocean Research, Keil  using the 

methods outlined in Hoernle et al. (2011).  Although we present geochemical data for gabbros in 

dredge 99, this paper will focus on the geochemistry of the basalts and dolerites as they represent 

magmatic compositions as opposed to the cumulate gabbros.  

The loss of ignition (LOI) values for the analysed basalts and dolerites range from ~1-4 wt% 

(Table 2, Figure 3) and reflect their relatively fresh to slightly altered nature consistent with 

petrographic evidence for seafloor alteration.  The rocks all have relatively high MgO contents 

(mostly >6 wt%, Figure 4) and there is no correlation between elements susceptible to sea-floor 

alteration and LOI values (e.g., K2O, Figure 3).  Therefore ,geochemistry mostly likely reflects 

original magmatic compositions. 

 

The basalts and dolerites together are relatively primitive low-K tholeiitic magmas with MgO varying 

from 4-10 wt% (Figures 4-6; Table 2). Zr contents as determined by xrf vary from 32 to138 ppm in 
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the dolerites and basalts from dredges 99 amd 100 and correlate well with Zr contents determined by 

solution-ICP-Ms (Table 2). However a couple of dolerite samples (99-2-8 and 100-1-40, Table 2) 

have slightly lower Zr contents determined by solution-ICP-Ms and this could be due to incomplete 

dissolution of micro-zircons in these samples.  Because of this potential problem we only use Zr 

contents determined by xrf in this paper. Dolerites from dredge 99 are in general more depleted in 

incompatible elements compared to dolerites and basalts from dredge 100.  Dredge 99 dolerites have 

slightly lower (La/Sm)N values (0.54-0.56 versus 0.66-1.12) and Nb values (1.2-1.3 ppm versus 1.3-

7.5 ppm, as determined by xrf, Table 2).  As Zr contents in dredge 99 dolerites are similar dredge 100 

dolerites, this results in significantly higher Zr/Nb values in the dredge 99 dolerites (86-94 versus 13-

28).  One of the analysed dolerites from dredge 99 is problematic. Sample 99-2-8, compared to other 

dolerites from dredges 99 and 100, has significantly higher SiO2, CaO and lower MgO and Na2O 

contents (Figure 4). It also has high Sr contents (375 ppm as determined by solution-ICP-Ms, Table 2) 

high Sr/Nd values (Figure 5f) and  
87

Sr/
86

Sr isotopic values (0.704404, Table 2, Figure 9a). These 

features could potentially be explained by modification by post-magmatic alteration or alternatively 

they simply reflect a more evolved magma composition with a significant subduction related 

enrichment in Sr and 
87

Sr/
86

Sr values.  A subduction influence would also be consistent with the more 

depleted Nb contents and (La/Sm)N values. As the LOI values and petrography for sample 99-2-8 are 

not anomalous, we believe that the geochemistry of this sample has not been significantly modified 

from its original magmatic composition.  

An important geochemical feature of the dredge 99 and 100 rocks is that, although in general they 

have depleted light Rare Earth Element (LREE) patterns ((La/Sm)N <1, Figure 5), they show an 

almost continuous range in (La/Sm)N values from 0.54-1.12 (Figures 5, 6).  This feature is very 

similar to basalts reported from the Izu-Bonin-Mariana (IBM) fore-arc by Reagan et al. (2010), who 

referred to these distinctive basalts as fore-arc basalts (FAB). The IBM FAB are believed to be the 

result of mixing between melts derived from fertile and depleted mantle sources during the initial 

stages of subduction (Reagan et al., 2010).  Figures 4-6 show a close correspondence between the 

dredge 99 and 100 compositions and the IBM FAB.  Although the IBM FAB extend to more depleted 
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LREE compositions (Figure 6) and lower Ti/V values (Figure 7), the average IBM FAB composition 

closely matches the depleted compositions from dredge 100 when compared on a normalised 

abundance plot (Figure 8). Furthermore, the most enriched IBM FAB pattern is a close match to the 

enriched samples from dredge 100 (Figure 8).  The fact that there is not a complete overlap in 

compositions, we believe is mostly due to sampling bias in both the Tonga and IBM fore arcs. 

We believe these similarities in geochemistry have petrogenetic significance and henceforth, 

in this paper, we refer to the basalts and dolerites recovered from dredges 99 and 100 as a Tongan 

FAB suite.  

4. Discussion 

4.1. Cretaceous Pacific MORB 

A key question which needs to be addressed before further discussion on the tectonic 

significance of the recovered mid-Cretaceous Tonga FAB suite is whether it is possible that they 

represent accreted Pacific oceanic crust. This possibility is supported by the very similar major 

element chemistry of the Tonga FAB and Cretaceous Pacific crust, as both suites have low-K 

tholeiitic magma compositions (Figure 4).  In particular dolerites from dredge 99 have very similar 

(La/Sm)N values and Nb contents to the the Cretaceous Pacific Crust (Figure 5b, c).  However, we 

consider this possibility to be highly unlikely due (a) to the significant differences in geochemistry 

between the Tonga FAB suite and basaltic lavas of the subducting mid-Cretaceous Pacific crust in 

trace element and isotopic compositions and, (b) because of the nature of tectonic processes occurring 

at the non-accretionary Tonga Trench.  These points are discussed further below. 

Pacific crust currently being subducted at the Tonga Trench is of mid-Cretaceous age (95-110 

Ma; Seton et al., 2009).  It was formed at the paleo spreading centre now represented by the Osbourn 

Trough, which was active between ~118 Ma to ~86 Ma (Figure 1, Billen and Stock, 2000; 

Worthington et al., 2006; Castillo et al., 2009; Zhang et al., 2012).  Newly formed oceanic crust 

created at the Osbourn Trough spreading centre initially split the ancestral Manihiki/Hikurangi 

Plateau and subsequently separated the Manihiki and Hikurangi Plateaus.  Spreading at the Osbourn 
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Trough is believed to have ceased when the Hikurangi Plateau collided with the Chatham Rise paleo 

subduction system (Mortimer et al., 2006).   

The geochemical nature of the mid-Cretaceous Pacific basaltic  crust currently being 

subducted at the Tonga trench has been determined from a) dredged rocks recovered from the seaward 

slopes of the Tonga trench (Bloomer & Fisher, 1987) as well as along the seaward side (east) of the 

Tonga trench from prominent fault scarps near the top of the oceanic outer slope (Castillo et al., 2009) 

and b) from rocks recovered by dredging of the Osbourn Trough (Worthington et al., 2006) and 

drilling  into crust created by the Osbourn Trough paleo-spreading centre (Zhang et al., 2012).  

Together the geochemical data from these different localities gives a consistent picture of a relatively 

uniform N-MORB Pacific oceanic crust similar to that being created at the modern day East Pacific 

Rise spreading centres (Worthington et al., 2006; Zhang et al., 2012). 

Of particular significance for the purposes of this study is the observation of Castillo et al. 

(2009) that there appears to be a latitudinal variation in geochemical composition of the subducting 

Pacific crust.  This variation can be explained by the history of spreading and melt generation at the 

Osbourn Trough paleo-spreading centre (Castillo et al., 2009).  Initially, mantle-derived melts at the 

paleo-spreading centre were influenced by the relatively enriched mantle sources responsible for the 

creation of the ancestral Manihiki/Hikurangi plateau. As spreading progressed, the influence of this 

source diminished and mantle melts were predominantly derived from depleted asthenospheric mantle 

(Castillo et al., 2009).  However, despite the possible influence of the enriched mantle sources during 

the initial stages of spreading, most crust generated at the Osbourn Trough paleo-spreading centre is 

typical of that expected from melting of depleted MORB mantle sources (Worthington et al., 2006; 

Castillo et al., 2009; Zhang et al., 2012). For example, between 16° and 24°S the basalts recovered by 

Castillo et al. (2009) have (La/Sm)N values of between 0.45-0.63, which is similar to the range in 

values displayed by lavas recovered by drilling at IOPD site U1356 (0.40-0.72, Zhang et al., 2012). 

These two general features, overall depleted MORB geochemistry and latitudinal variation, allows us 

to demonstrate that several geochemical features of the Tonga Cretaceous FAB suite are distinctly 

different from the subducting depleted MORB of the mid-Cretaceous Pacific crust, and in particular, 
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are very different compared to Pacific crust sampled at the same ‘relative’ latitude (~19°S, see Figure 

7 and 9).  

For example, compared to the dated Tonga fore arc dolerite 100-1-40, the dredged Cretaceous 

Pacific crust lavas recovered close to Dr 100 at 19°S have lower (La/Sm)N values (0.62 vs 1.13, 

Figure 5, 6), and higher Ti/V values (39 vs 33, Figure 7) values.  Isotopic values are also very 

different, with the Pacific Cretaceous lavas having higher 
143

Nd/
144

Nd, 
206

Pb/
204

Pb and lower 

208
Pb/

204
Pb values (Figure 9).  As well, the Tonga FAB suite shows a significant range in Zr/Nb values 

not present in basalts sampled from the mid-Cretaceous Pacific crust.  As can be seen from Figure 5d, 

mid-Cretaceous Pacific crust has relatively uniform Zr/Nb values (26-74 overall but more restricted 

range of 40-60 in basalts from hole U1365E, Figure 5d). In contrast the dolerites and basalts from 

dredge 100 have uniformly lower Zr/Nb values (18-25, Figure 5d), whereas the dolerites from dredge 

99 have significantly higher Zr/Nb values (86-94, Figure 5d) compared to basalts sampled from the 

mid-Cretaceous Pacific crust (Figure 5d). Although we have not sampled intermediate compositions, 

we believe that the range in Zr/Nb values of the Tonga FAB suite is a continuous range which, as will 

be discussed below, has petrogenetic significance. 

As noted above, the Tonga Trench is regarded as an end-member example of a subduction 

system undergoing rapid convergence, slab roll-back and vigorous tectonic erosion (Lonsdale, 1986; 

Wright et al., 2000).  Tectonic accretion, therefore, is a very unlikely process for this subduction 

system.  Tectonic accretion, if it occurs, is believed to be a short-lived phenomenon due to seamount 

subduction and normal steady-state subduction processes.  As the Tonga FAB suite does not have 

OIB geochemistry, it is unlikely for them to have formed within intra-plate volcanoes accreted during 

seamount subduction.  During steady state subduction processes, the Pacific crust undergoes 

extension as it approaches the Tonga trench, developing well defined horst and graben structures 

(Lonsdale, 1986; Wright et al., 2000; Crawford et al., 2003).  During the process of subduction, these 

horst and graben structures form the floor of the Tonga trench, creating a narrow ‘axial gorge’. As a 

result, it is possible for a graben structure, which is entirely contained within the underthrusting 

Pacific crust to temporally form both the landward and seaward sides of the trench graben structure at 
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depths below the principal  thrust plane (Lonsdale, 1986).  At the latitude of ~19-20°S, this 

mechanism is the likely explanation for the recovery of N-MORB like basalts from depths >9000m 

(Bloomer & Fisher, 1987).  As the Tonga FAB suite was recovered at mid-slope  depths of ~6000m, it 

is very unlikely that they are the result of either accretion of seamounts or the subducting Pacific 

basaltic crust itself.  This conclusion is consistent with the strong geochemical differences between 

the Tonga FAB and the subducting Pacific crust as noted above. 

 4.2. Implications for SW Pacific tectonic evolution 

Having established that the Tongan FAB recovered by dredges 99 and 100 represent a 

basement suite of mid-Cretaceous –age, we proceed to discuss the tectonic significance of this suite. 

Two aspects of the Tongan FAB suite which are critical for its tectonic significance are: (a) the mid-

Cretaceous age of 102.5±4.5Ma (Meffre et al., 2012), and (b) its geochemistry compared to other 

Cretaceous volcanic rocks from the SW Pacific.   

Both New Caledonia and New Zealand contain fragments of east Gondwana crust of 

Cretaceous age (Cluzel et al., 1994; 2011, 2012; Tulloch et al., 2009).  In New Caledonia, major Late 

Cretaceous volcano-sedimentary units unconformably overlies older Permian-Mesozoic accreted 

basement terranes (“Formation a Charbon”; Cluzel et al., 2010, 2011, 2012).  Cluzel et al. (2011) 

demonstrate that detrital zircons from this sedimentary unit are of local provenance and record a 

history of Cretaceous magmatism between ~70-140Ma (Cluzel et al., 2011). Similar rocks with 

similar aged detrital zircons have also been reported from the West Norfolk Ridge to the north west of 

New Zealand (Mortimer et al., 2010) indicating a regional magmatic source.    

Figure 10 shows that the detrital zircons populations have a prominent peak at ~102Ma, 

exactly coincident with the age of Tongan FAB suite. This suggests that the Tongan FAB suite was 

potentially associated with the most active phase of Cretaceous magmatism along the east Gondwana 

margin.  Support for this relationship comes from the presence of Cretaceous arc volcanics of the 

same age from the Noumea Basin of New Caledonia (~103Ma, Nicholson et al., 2011) which are a 

typical calc-alkaline continental volcanic arc suite (Nicholson et al., 2011).  This age was obtained 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

from only one rhyolite flow unit and although Nicholson et al. (2011) were careful in only analysing 

zircons from fresh rhyolite flow units, as stated by Nicholson et al . (2011), there is still the potential 

that the age obtained was from an inherited zircon (Nicholson et al 2011).  However we consider the 

similarities in geochemistry between the Mt Camel Terrane (see below) and the Noumea Basin lavas 

as significant and supportive of the age obtained by Nicholson et al. (2011). 

Compared to the Tonga FAB suite, the Noumea Basin suite is more evolved (< 5 wt% MgO), 

has higher K2O (Figure 4), is significantly more enriched in incompatible high field strength elements 

such as Zr, Nb, P and Th (Figure 5) and shows LREE enriched REE patterns (Figure 6). The Noumea 

Basin lavas are also of the same age as Cretaceous lavas from the Mount Camel Terrane in Northland, 

New Zealand (~101-102Ma, Nicholson et al., 2008; Tulloch et al., 2009), which are remarkably 

similar to those from the  Noumea Basin (Figures 4-6) and to continental volcanic arc subduction-

related magmatic suites (Nicholson et al., 2008).   

In summary, therefore, we have evidence from the age of detrital zircon populations and the 

age of volcanics from New Caledonia to New Zealand of a wide-spread, robust, Cretaceous magmatic 

arc at ~102Ma associated with the Tonga FAB suite.  Most of the magmatic rocks in the south 

western Pacific of this age show the influence of subduction, however the absence of large well-

defined andesitic volcanic and volcaniclastic sequences has hindered Cretaceous tectonic 

reconstructions.  Despite these uncertainties the evidence presented in this study for a Cretaceous 

Tongan FAB suite representing a Cretaceous marginal basin related to the Cretaceous volcanic arc 

contrasts with the tectonic interpretations for the IBM Eocene FAB formed during subduction 

initiation. Interestingly the IBM fore arc also contains Mesozoic FAB-type tholeiitic basalts. These 

were first thought to be accreted seamounts (Johnston et al., 1991) but were subsequently re-

interpreted as part of a pre-existing marginal basin on their age and geochemistry (Ishizuka et al., 

2011).  These are older than those from Tonga (159 Ma, Ishizuka et al., 2011) and have Indian rather 

than Pacific isotopic affinities similar to other Mesozoic Basalts in the Philippine Sea Plate. We 

believe that the geochemical similiarities between the Tonga FAB and IBM FAB suites suggests that 

both suites were formed in a similar tectonic environment – that being a back-arc setting.  Our results 
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therefore support the arguments presented in Meffre et al. (2012) that FAB suites are most likely pre-

existing back-arc basin crust unrelated to subduction initiation. 

In support of a Cretaceous back-arc basin origin for the Tonga FAB suite is its very similar 

geochemistry compared to the Cretaceous Poya Terrane of New Caledonia.  The Poya Terrane of 

New Caledonia is an allochthonous marginal basin tholeiitic suite occurring as isolated fault bounded 

wedges beneath the New Caledonia Ophiolitic Nappe (Eissen et al., 1998; Cluzel et al., 2001).  The 

oldest reliable ages for the Poya Terrane come from associated radiolarian fauna, which give Upper 

Cretaceous ages of ~ 84 Ma (Cluzel et al., 2001).  The geochemistry of the Poya Terrane basalts is 

consistent with eruption in a back-arc basin setting (Eissen et al., 1998; Cluzel et al., 2001).  

Tholeiites of the Poya Terrane range in composition from ‘depleted’ to ‘enriched’ end-members 

(Cluzel et al., 2001).  Cluzel et al. (2001) referred to these end-members as BABB-type and P-MORB 

respectively.  As can be seen from Figures 4-9, there is a pronounced overlap in composition between 

the Tongan FAB suite and the Poya Terrrane tholeiites. Primitive mantle normalised element 

diagrams (Figure 8) show that the dated dolerite (100-1-40) from dredge 100 is a very close match to 

the undepleted MORB-type (Figure 8a), whereas more depleted tholeiites from dredge 100 (100-1-8, 

100-1-20) closely match the BABB-type end-member (Figure 8b).  Both the Poya Terrane and the 

Tonga FAB suite are very similar to the IBM FAB suite, which also varies from depleted to more 

enriched compositions (Reagan et al., 2010).  In terms of isotopic compositions the Poya Terrane 

tholeiites compared to the Tonga FAB extend to lower 
143

Nd/
144

Nd and higher 
87

Sr/
86

Sr values (Figure 

9a).  This observation could be due either to the limited sampling of the Tongan FAB, or alternatively  

more enriched mantle sources were present at the time of Poya Terrane magmatism . These 

observations suggest that the Tonga FAB suite and the Poya Terrane are remnants of the same 

Cretaceous back-arc basin which must have been active from at least 102-84Ma.  The older parts of 

this basin have evidently not been preserved during obduction of the Poya Terrane in Eocene times 

(Cluzel et al., 2001).  An additional important observation concerning all the Cretacous volcanics 

from the SW Pacific is that they all share the same low Zr/Nb values (Figure 5d).  The more depleted 

end-members from both the Poya and Tonga FAB extend to higher Zr/Nb, but the undepleted MORB-
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type lavas, which comprise the majority of lavas present in the Poya Terrane (Cluzel et al., 2001), 

have the same low Zr/Nb values as volcanic arc front lavas from the Noumea Basin and the Mt Camel 

Terrane.  This suggests that there was a common ‘asthenospheric’ mantle source component involved 

in both the arc and back-arc magmas during the middle Cretaceous. 

Our preferred tectonic scenario to explain the close geochemical relationships between the 

Poya Terrane and the Tonga FAB, their impressively overlapping ages, and potentially mantle 

sources, with ~102Ma volcanic arc lavas is based on that proposed by Eissen et al., (1998) for the 

Poya Terrane.  In the tectonic scenario proposed by Eissen et al., (1998), the Poya Terrane represents 

the western edge of a marginal basin called the East New Caledonia Basin (ENCB), which existed 

along the entire East Gondwana margin from at least 85Ma to 50Ma (Figure 11).  The results of this 

study suggest that the ENCB is as old as 102Ma and indeed extended to at least the position of the 

Tonga FAB suite (present day position ~19°S, Figure 2).  The fact that a potential remnant of the 

ENCB is present in the Tonga fore-arc suggests that subduction erosion since ~50Ma along the 

current active subduction system may have mostly destroyed the evidence for the presence of the 

ENCB and arc crust.  As suggested by Eissen et al., (1998), remnants  of the ENCB may be also be 

present in the basement of the Western Belt of the Vanuatu island arc and of Fiji.  The presence of the 

ENCB crust in the Tonga fore arc leads us to speculate that a significant amount of ‘oceanic’ crust 

present within back-arc basins formed post ~50Ma (South Fiji and Lau Basins) may potentially be 

remnants of the ENCB.  

5. Conclusions 

Dredged tholeiitic rocks from the Tonga forearc at ~19°S and ~6000m water depths have recovered a 

mid-Cretaceous aged (102Ma) fore arc basalt suite similar in composition to that reported from the  

IBM fore arc.  The Tongan FAB suite is a remnant of a back-arc basin associated with a continental 

volcanic arc of the same age, which potentially existed along the entire East Gondwana margin in 

Upper Albian times.   The Tonga FAB is geochemically almost identical to the allohcthonous Poya 

Terrane in New Caledonia.  The Poya Terrane has been proposed to represent oceanic crust of the 
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East New Caledonia Basin and our results suggest that this basin was present from 102-50Ma, before 

being ‘destroyed’ during tectonic processes associated with plate reorganizations in the Tertiary.  This 

study demonstrates that the Tonga fore arc not only preserves the history of subduction initiation 

(Meffre et al., 2012), but also a diverse range of basement terranes of differing ages from the entire 

history of the East Gondwana convergent margin in the SW Pacific. 
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Figure Captions 

 

 (web & print) Fig.1. Regional bathymetry of the SW Pacific showing the location of the Tonga fore 

arc and trench (bathymetry created using geomapapp; Ryan et al., 2008, http://www.geomapapp.org ).  

Yellow square outlines the area of Figure 2. Red polygons numbered 1 to 3 refer to the distinct 

structural blocks of the Tonga fore arc and trench as defined by Wright et al. (2000) (see text for 

discussion).  Bold text show the relative positons of geographical entities mentioned in the text as 

follows: NFB = Northern Lau Basin; VA = Vanuatu Arc; FJ = Fiji; HR = Hunter Ridge; NC (PT, NB) 

= New Caledonia and the Poya Terrane and Noumea Basin (for more detailed location of the Poya 

Terrane and Noumea Basin, the reader is referred to Nicholson et al., 2011); NR = Norfolk Ridge; 

SFB = South Fiji Basin; LR = Lau Ridge; LB = Lau Basin; TR = Tonga Ridge: NI (MtC) = 

Northland, North Island New Zealand and the Mount Carmel Terrane (for more detailed location of 

the Mt Camel Terrane the reader is referred to Nicholson et al., 2008); HP = Hikurangi Plateau; CR = 

Chatham Rise; LR = Loisville Ridge; OT = Osbourn Trough; MP = Manihiki Plateau(web & print)  

Fig.2. Bathymetric map (200-m contour interval) of the Tonga Trench and forearc, showing the 

location of dredges at ~19°S. Map was created from a 200-m Sea Beam 2000 grid (Boomerang 8), 

with portions of the trench axis filled in by Sea Beam data from Marathon 6 (Wright et al., 2000). 

Map projection is Mercator. (web & print) 

(web & print) Fig.3. Loss of Ignition (LOI) and K2O versus MgO for basalts and dolerites recovered 

by dredges 99 and 100. 

(web) Fig.4. Major elements (a) SiO2, (b) TiO2, (c) Al2O3, (d) FeO
T
, total iron as FeO, (e) CaO, (f) 

Na2O, (g) K2O,and (h) P2O5 wt% versus MgO wt% for dredged volcanic rocks from the Tonga fore 

arc at ~19°S. All analyses have been resumed to 100 wt% on an anhydrous basis. Plotted symbols are 

as follows: dredge 100, blue circles; dredge 99 blue inverted triangle; black circles, IBM FAB 

(Reagan et al., 2010); orange inverted triangles, Poya terrane BABB-like compositions, orange right 

pointing triangles, Poya terrane undepleted MORB-like compositions (Cameron, 1989; Eissen et al., 
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1998; Cluzel et al., 2001); red triangles, Osbourn Trough lavas (Zhang et al., 2012); red circles, 

Pacific Cretaceous crust (Castillo et al., 2009); forest green inverted triangle, Mount Camel terrane 

volcanics (Nicholson et al., 2008); green triangles, Noumea Basin volcanics (Nicholson et al., 2011). 

(print) Fig.4. Major elements (a) SiO2, (b) TiO2, (c) Al2O3, (d) FeO
T
, total iron as FeO, (e) CaO, (f) 

Na2O, (g) K2O,and (h) P2O5 wt% versus MgO wt% for dredged volcanic rocks from the Tonga fore 

arc at ~19°S. All analyses have been resumed to 100 wt% on an anhydrous basis. Plotted symbols are 

as follows: dredge 100, dark grey circles; dredge 99 dark grey inverted triangle; black circles, IBM 

FAB (Reagan et al., 2010); light grey inverted triangles, Poya terrane babb-like compositions, light 

grey right pointing triangles, Poya terrane undepleted morb-like compositions (Cameron, 1989; Eissen 

et al., 1998; Cluzel et al., 2001); open triangles, Osbourn Trough lavas (Zhang et al., 2012); open 

circles, Pacific Cretaceous crust (Castillo et al., 2009); black inverted triangle, Mount Camel terrane 

volcanics (Nicholson et al., 2008); black triangles, Noumea Basin volcanics (Nicholson et al., 2011). 

(web) Fig.5. Trace elements a) Zr ppm, c) Nb ppm, e) Y ppm, h) P2O5 wt% and trace element ratios 

values b) (La/Sm)N, d) Zr/Nb, f) Sr/Nd and g) Th/Nd x 100 versus TiO2 wt%.  Symbols as for Fig.4. 

except in a), c) and d) red squares are altered lavas dredged from the Osbourn Trough (Worthington et 

al., 2006). 

(print) Fig.5. Trace elements a) Zr ppm, c) Nb ppm, e) Y ppm, h) P2O5 wt% and trace element ratios 

values b) (La/Sm)N, d) Zr/Nb, f) Sr/Nd and g) Th/Nd x 100 versus TiO2 wt%.  Symbols as for Fig.4. 

except in a), c) and d) open squares are altered lavas dredged from the Osbourn Trough (Worthington 

et al., 2006). 

(web & print) Fig.6. Chondrite-normalized REE patterns for the Tonga FAB suite compared to a) 

Noumea Basin lavas, b) Mount Carmel Terrane lavas, c) Poya terrane undepleted MORB like lavas, 

d) Poya terrane BABB-like lavas, e) Pacific Cretaceous crust and f) IBM FAB suite.  Symbols and 

data sources as for Fig.4. Chondrite normalization values are from Taylor and Gorton (1977). 

(web & print) Fig.7. Ti/V values versus Zr ppm.  Symbols as for Fig.4 and Fig.5. ‘19°S’ is placed 

next to the composition of Pacific crust dredged at this latitude (Castillo et al., 2009). 
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(web) Fig.8. Primitive mantle normalized trace element abundance patterns of the Tonga FAB suite 

(blue circles)  compared to: a) the Poya terrane undepleted MORB-like lavas (thin black lines, Cluzel 

et al., 2001), and the most fertile IBM FAB composition (black circle, sample 975-R22, Reagan et al., 

2010); b) the Poya terrane BABB-like lavas (thin black lines, Cluzel et al., 2001), and the average 

IBM FAB composition (inverted black triangle, Reagan et al., 2010). Primitive mantle normalizing 

values from Sun and McDonough (1989). 

 (print) Fig.8. Primitive mantle normalized trace element abundance patterns of the Tonga FAB suite 

(grey circles)  compared to: a) the Poya terrane undepleted MORB-like lavas (thin black lines, Cluzel 

et al., 2001), and the most fertile IBM FAB composition (black circle, sample 975-R22, Reagan et al., 

2010); b) the Poya terrane BABB-like lavas (thin black lines, Cluzel et al., 2001), and the average 

IBM FAB composition (inverted black triangle, Reagan et al., 2010). Primitive mantle normalizing 

values from Sun and McDonough (1989).(web & print)  

Fig.9. The 
143

Nd/
144

Nd versus a) 
87

Sr/
86

Sr and b) 
206

Pb/
204

Pb isotopic compositions of the Tonga FAB 

compared to relevant magmatic suites.  Small black circles Pacific MORB glasses and gray circles 

Indian MORB glasses (Petrological Database of the Ocean Floor, www.petdb.org). Symbols as for 

Fig.4 and 5. ‘19°S’ is placed next to the composition of Pacific crust dredged at this latitude (Castillo 

et al., 2009). 

(web & print) Fig.10. Probability density diagram for the age of detrital zircons from the Late 

Cretaceous sandstones of New Caledonia restricted to the 70–140Ma (modified from Figure 4 of 

Cluzel et al., 2011). Vertical shaded bar is the age of and standard error on the U-Pb ziron age for 

dolerite sample 100-1-40 from dredge 100 on the Tonga fore arc (Meffre et al., 2012). 

(web & print) Fig.11. Schematic geodynamic reconstruction of New Caledonia and the SW Pacific 

around ~70 Ma (modified from Figure 5, Eissen et al., 1998). A = Australia; ENCB = East New 

Caledonia Basin; LHR = Lord Howe Rise;NC = New Caledonia; NCB = New Caledonia Basin; NLB; 

NR = Norfolk Ridge. 
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Table 1 
Dredge locations located at ~19°S which recovered rocks from the Tonga fore arc 
during the 1996 voyage of the RV Melville 
 

Dredge Latitude (°S) Longitude (°W) Depth 
range (m) 

Recovery/deck log 

D97 19°19.69 - 19° 
19.7 

173° 09.21 - 173° 
09.2 

 

5016 - 
4965 

~50-60 kg of volcaniclastic 
sandstones, siltstones, and 
sedimentary breccias 
 

D98 19° 15.19 - 19° 
15.02 

 

172° 56.29 – 172° 
57.34 

9371 - 
8194 

~80-90 kg of serpentinized 
ultramafics and relatively fresh 
dunite 
 

D99 19° 11.01 - 19° 
11.28 

172° 58.51 - 172° 
59.64 

 

7531 - 
6820 

~250-300 kg of gabbro, volcanic 
rocks and sediments 
 

D100 19° 03.61 - 19° 
03.67 

173° 02.50 - 173° 
03.42 

6345 - 
5695 

~ 150 kg of altered volcanics and 
sediments 
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Table 2 
Major (wt%) trace element (ppm) and Sr-Nd-Pb isotope compositions of igneous rocks 
recovered by dredging of the Tonga fore arc. 

Samp
le no. 

99-
2-8 

99-
2-
10 

99-
1-3 

99-
1-4 

99-
1-6 

99-
1-
26 

99-
1-
33 

99-
2-1 

100-
1-19 

100-
1-20 

100
-1-8 

100-
1-21 

100-
1-32 

100-
1-39 

100-
1-40 

Type
a
 D D G G G G G G B B B B B D D 

                
SiO2 

54.7
1 

51.
95 

50.
54 

48.
63 

47.
59 

50.
75 

51.
04 

50.
31 

50.4
7 

49.8
3 

50.
75 

50.0
5 

50.3
5 

50.0
1 

51.3
4 

TiO2 1.75 
1.9
0 

0.3
5 

0.2
6 

0.2
5 

0.3
5 

0.2
8 

0.2
3 0.71 0.71 

1.0
9 0.90 0.95 1.49 2.05 

Al2O3 
14.3

1 
14.
91 

16.
91 

17.
60 

14.
42 

17.
63 

17.
11 

20.
10 

16.4
0 

16.2
9 

15.
22 

16.6
8 

17.3
8 

14.3
1 

14.3
5 

FeO
b
 

11.4
4 

12.
24 

4.6
6 

5.7
8 

7.6
0 

4.4
1 

6.0
9 

5.0
5 8.34 8.31 

10.
00 8.57 8.94 

10.4
9 

11.6
8 

MnO 0.42 
0.4
1 

0.1
0 

0.1
2 

0.1
5 

0.1
0 

0.1
4 

0.1
0 0.20 0.27 

0.2
6 0.15 0.14 0.19 0.20 

MgO 3.93 
6.6
7 

9.5
6 

11.
18 

15.
57 

8.7
3 

9.5
7 

8.4
0 8.59 8.79 

7.9
6 8.29 7.79 9.98 6.40 

CaO 
12.9

7 
7.5
0 

16.
15 

14.
67 

13.
24 

16.
15 

13.
91 

13.
39 

12.3
2 

12.9
2 

10.
74 

11.5
6 

10.7
7 

10.2
8 9.50 

Na2O 0.29 
4.0
6 

1.7
0 

1.6
6 

1.1
7 

1.8
4 

1.8
0 

2.2
8 2.67 2.43 

3.4
1 3.17 2.96 2.94 3.92 

K2O 0.02 
0.2
2 

0.0
2 

0.0
9 

0.0
1 

0.0
3 

0.0
5 

0.1
6 0.26 0.38 

0.4
7 0.55 0.61 0.16 0.32 

P2O5 0.15 
0.1
5 

0.0
1 

0.0
1 

0.0
1 

0.0
1 

0.0
1 

0.0
0 0.04 0.08 

0.1
0 0.08 0.09 0.16 0.25 

LOI
c
 2.94 

3.0
9 

1.0
9 

3.3
6 

4.2
5 

1.1
9 

1.0
6 

3.7
5 2.14 2.52 

2.3
5 3.56 4.28 2.30 1.55 

                

Total
d
 

99.5
1 

99.
94 

99.
1 

99.
6 

99.
85 

99.
98 

99.
09 

10
0.4 

100.
03 

100.
26 

100
.10 

99.8
6 

100.
03 

99.9
8 

99.9
0 

                

xrf 
               Rb <1 <1 1 1 1 1 1 1 4.2 5 9.9 10.3 5.8 1.1 3.3 

Ba <4 13 4 4 4 4 4 <4 19 18 12 9 27 20 35 

Nb 1.2 1.3 1 1 1 1 1 <1 1.5 1.3 3.2 3.7 2.4 5 7.5 

La 5 5 4 2 3 2 2 <2 4 3 4 3 3 6 10 

Ce 10 14 4 4 4 4 4 <4 <4 4 10 8 4 12 22 

Sr 319 114 
10
6 

13
2 74 116 133 

19
0 98 87 92 114 115 120 154 

Nd 11 12 4 2 2 2 2 <2 4 6 7 9 5 13 15 

Zr 113 113 7 5 5 6 4 4 32 33 59 51 52 94 138 

Y 41 42 9.3 6.9 6.2 9 7 5 20 21 28 22 26 32 40 

V 471 360 
19
3 

14
3 

12
9 186 160 

12
7 258 265 314 242 306 307 363 

Sc 34 39 50 35 34 49 45 36 42 44 48 39 46 35 42 

Cr 6 24 
17
1 

86
8 

10
39 164 72 92 487 486 375 463 516 378 8 

Ni 16 30 97 
21
3 

38
6 91 52 79 100 102 96 142 124 202 27 

                

                

Samp
le no. 

99-
2-8 

99-
2-
10 

99-
1-3 

99-
1-4 

99-
1-6 

99-
1-
26 

99-
1-
33 

99-
2-1 

100-
1-19 

100-
1-20 

100
-1-8 

100-
1-21 

100-
1-32 

100-
1-39 

100-
1-40 

Type
a
 D D G G G G G G B B B B B D D 
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icp-
ms 

               
La 3.70 

3.6
9 

    

0.1
7 

  
1.72 

2.7
1 

  
4.79 8.38 

Ce 
11.9

8 
11.
62 

    

0.5
7 

  
3.65 

7.0
6 

  

12.5
0 

20.6
7 

Pr 2.07 
2.0
1 

    

0.1
4 

  
0.69 

1.1
3 

  
1.89 2.95 

Nd 
11.3

2 
11.
63 

    

0.9
5 

  
3.95 

5.9
7 

  

10.4
1 

15.2
3 

Sm 4.00 
4.1
2 

    

0.4
8 

  
1.57 

2.1
2 

  
3.32 4.53 

Eu 1.46 
1.4
7 

    

0.3
1 

  
0.63 

0.8
2 

  
1.15 1.61 

Gd 5.44 
5.6
4 

    

0.8
4 

  
2.24 

3.0
4 

  
4.31 5.63 

Tb 0.95 
1.0
6 

    

0.1
7 

  
0.43 

0.5
9 

  
0.80 1.03 

Dy 6.28 
6.6
8 

    

1.1
4 

  
2.97 

3.7
7 

  
5.09 6.42 

Ho 1.34 
1.4
8 

    

0.2
5 

  
0.67 

0.8
6 

  
1.09 1.38 

Er 3.98 
4.1
6 

    

0.7
3 

  
1.90 

2.5
0 

  
3.09 3.84 

Tm 0.58 
0.6
3 

    

0.1
1 

      
0.47 0.57 

Yb 4.08 
4.0
1 

    

0.6
7 

  
1.92 

2.4
6 

  
3.02 3.67 

Lu 0.57 
0.6
0 

    

0.1
0 

  
0.30 

0.3
8 

  
0.44 0.54 

Sc 32 40 
    

51 
      

38 45 

V 470 387 
    

161 
      

297 361 

Cr 5 22 
    

66 
      

363 9 

Co 22 40 
    

39 
      

56 46 

Ni 11 28 
    

53 
      

184 25 

Cu 9 19 
    

11 
      

68 46 

Zn 122 194 
    

32 
      

87 113 

Rb 0.21 
2.1
7 

    

0.5
4 

      
1.58 2.92 

Sr 375 116 
    

133 
      

118 155 

Y 37.4 
39.
0 

    
6.1 

      
29.2 35.9 

Zr 91.8 
106
.9 

    
3.9 

  
30.9 

56.
7 

  
92.8 

117.
4 

Nb 1.24 
1.4
6 

    

0.0
1 

  
1.18 

2.6
1 

  
5.21 8.61 

Cs 
0.00

2 
     

<0.
01 

  

0.14
5 

0.3
32 

    Ba 3 16 
    

1 
  

17 11 
  

17 33 

Hf 2.71 
2.8
2 

    

0.1
9 

  
0.92 

1.5
5 

  
2.38 2.89 

Ta 0.16 
0.1
2 

    

0.0
0 

      
0.35 0.56 

Pb 1.50 
0.5
5 

    

<0.
05 

  
0.17 

0.9
9 

  
0.28 1.03 

Th 0.15 
0.1
3 

    

<0.
01 

  
0.08 

0.1
7 

  
0.31 0.52 

Samp
le no. 

99-
2-8 

99-
2-
10 

99-
1-3 

99-
1-4 

99-
1-6 

99-
1-
26 

99-
1-
33 

99-
2-1 

100-
1-19 

100-
1-20 

100
-1-8 

100-
1-21 

100-
1-32 

100-
1-39 

100-
1-40 

Type
a
 D D G G G G G G B B B B B D D 

U 0.09 0.0
    

<0.
  

0.10 0.1
  

0.35 0.32 
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8 00 1 
87

Sr/
86

Sr 
0.70
4404 

             

0.70
2794 

143
Nd/

144
Nd 

0.51
3084 

             

0.51
3066 

206
Pb/

204
Pb 

18.6
85 

             

18.8
86 

207
Pb/

204
Pb 

15.5
20 

             

15.5
38 

208
Pb/

204
Pb 

38.2
09 

             

38.3
51 

 

a igneous rock type: G, gabbro; D, dolerite; B, basalt 
b total iron calculated as FeO 
c LOI, loss on ignition 
d total refers to original analysis sum; major elements have been recalculated to a 
total of 100% on an anhydrous basis 
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Highlights 

 

 The geochemistry of a Cretaceous Tongan fore-arc basalt (FAB) suite is reported 

 The Tonga FAB suite is very similar to the Poya Terrane basalts of New Caledonia  

 Similar geochemistry to IBM FAB but not associated with subducution initiation 

 Possibly a remnant of the hypothesized back-arc East New Caledonia Basin 


