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[1] Photosynthesis by phytoplankton in sunlit surface
waters transforms inorganic carbon and nutrients into
organic matter, a portion of which is subsequently
transported vertically through the water column by the
process known as the biological carbon pump (BCP). The
BCP sustains the steep vertical gradient in total dissolved
carbon, thereby contributing to net carbon sequestration.
Any changes in the vertical transportation of the organic
matter as a result of future climate variations will directly
affect surface ocean carbon dioxide (CO2) concentrations,
and subsequently influence oceanic uptake of atmospheric
CO2 and climate. Here we present results of experiments
designed to investigate the potential effects of ocean
acidification and warming on the BCP. These perturbation
experiments were carried out in enclosures (3,000 L
volume) in a controlled mesocosm facility that mimicked
future pCO2 (∼900 ppmv) and temperature (3°C higher
than ambient ) condi t ions . The elevated CO2 and
temperature treatments disproportionately enhanced the
ratio of dissolved organic carbon (DOC) production to
particulate organic carbon (POC) production, whereas the
total organic carbon (TOC) production remained relatively
constant under all conditions tested. A greater partitioning
of organic carbon into the DOC pool indicated a shift in the
organic carbon flow from the particulate to dissolved
forms, which may affect the major pathways involved in
organic carbon export and sequestration under future ocean
conditions. Citation: Kim, J.‐M., K. Lee, K. Shin, E. J. Yang,
A. Engel, D. M. Karl, and H.‐C. Kim (2011), Shifts in biogenic car-
bon flow from particulate to dissolved forms under high carbon
dioxide and warm ocean conditions, Geophys. Res. Lett., 38,
L08612, doi:10.1029/2011GL047346.

1. Introduction

[2] The oceanic biological carbon pump (BCP) is one of
the key natural processes that regulate carbon dioxide (CO2)
levels in the atmosphere [Archer et al., 2000]. The net
production of organic matter by photosynthetic organisms in

surface waters results in a corresponding decrease in the
surface partial pressure of CO2 (pCO2), and in the vertical
concentration gradient of dissolved inorganic carbon, which
acts as a driving force for the flux of CO2 from the atmo-
sphere into the ocean [Emerson et al., 1997; Laws et al.,
2000; Lee, 2001]. Whereas primary production includes
both dissolved and particulate organic carbon (DOC and
POC respectively), only POC leads to rapid and efficient
carbon export to the deep ocean when it is associated with
sinking biogenic inorganic particles, including those con-
taining ballast minerals (e.g., silicate and carbonate)
[Margalef, 1978; Armstrong et al., 2001; Klaas and Archer,
2002]. In contrast, newly produced dissolved organic matter
in surface waters is mostly recycled by bacteria back into
dissolved inorganic forms. Some refractory dissolved
organic matter is known to be exported to the ocean interior
by vertical mixing only in oceanic regions where winter
overturning ventilates the deep ocean layers [Carlson et al.,
1994; Ducklow et al., 1995]. Finally, a small percentage of
DOC may be sequestered for centuries to millennia in
recalcitrant DOC molecules [Jiao et al., 2010]. Therefore,
the overall efficiency of the BCP is largely controlled by the
export of particulate organic matter.
[3] It is currently not possible to predict how the func-

tioning of the BCP is likely to evolve in coming centuries,
because our current knowledge of how marine ecological
systems will respond to emerging global environmental
perturbations (i.e., ocean acidification and warming) is far
from perfect. Most information to date has been derived
from modeling experiments [Intergovernmental Panel on
Climate Change (IPCC), 2007]. We report here the use of
a controlled mesocosm facility to directly investigate the
effect of pCO2 concentration and the combined effects of
pCO2 concentration and elevated temperature on the pro-
duction of organic matter, in both particulate and dissolved
forms.

2. Materials and Methods

[4] Experimental settings: the manipulative experiment
utilized large volume (3,000 L)mesocosm enclosures, andwas
carried out over 20 days in the coastal waters of Korea (34.6°N
and 128.5°E) from 21 November 2008 to 11 December 2008.
The experiment included acidification (∼900 ppmv CO2/
ambient temperature) and greenhouse (∼900 ppmv CO2/∼3°C
warmer than ambient temperature) treatments to simulate
likely future oceanic conditions and a contemporary ocean
control (∼400 ppmvCO2/ambient temperature). The simulated
CO2 (∼900 ppmv) and temperature (∼3°C warmer than
ambient) values chosen are close to the conditions predicted
for the year 2100, based on model projections under the A2

1School of Environmental Science and Engineering, Pohang
University of Science and Technology, Pohang, South Korea.

2South Sea Institute, Korea Ocean Research and Development
Institute, Jangmok, South Korea.

3Korea Polar Research Institute, Korea Ocean Research and
Development Institute, Incheon, South Korea.

4Alfred Wegener Institute for Polar and Marine Research,
Bremerhaven, Germany.

5School of Ocean and Earth Science and Technology, University of
Hawaii, Honolulu, Hawaii, USA.

Copyright 2011 by the American Geophysical Union.
0094‐8276/11/2011GL047346

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L08612, doi:10.1029/2011GL047346, 2011

L08612 1 of 5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/33664787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1029/2011GL047346


Scenario of the Intergovernmental Panel on Climate Change
Special Report on Emissions Scenarios [IPCC, 2007].
[5] The target seawater pCO2 levels were achieved in the

enclosures by mixing CO2‐saturated seawater with ambient
seawater that had been passed through a 100 mm pore size
filter to remove large zooplankton (Figure S1a of the
auxiliary material).1 The 3°C elevation in seawater temper-
ature in the greenhouse treatments was achieved within 7 h by
circulating warm water (∼10°C warmer than ambient)
through a 30 m length of carbon tubing wrapped around the
lower parts of three pillar‐type seawater mixers; the elevated
seawater temperature was maintained throughout the exper-
iment (Figure S1b). When the seawater pCO2 concentration
in an enclosure reached the target value, the atmospheric
pCO2 levels were maintained at the target value by continu-
ous addition to the enclosure atmosphere of air containing the
appropriate pCO2 concentration. On day 0, identical quanti-
ties of nutrients were added to each enclosure to initiate a
phytoplankton bloom. Following addition the nutrient con-
centrations in each enclosure at day 1 were ∼33 mM nitrate

(DIN), ∼2.5 mM phosphate (DIP), and ∼50 mM silicate. To
enhance the homogeneity of biogenic particles and solutes
we gently mixed the enclosure seawater for 20 min prior to
daily sampling, using bubble‐mediated mixers. This mixing
procedure resulted in the biogenic particles (particulate
organic matter) being evenly distributed throughout the
enclosure. The mesocosm facility and its performance over a
range of experimental conditions have been described in
detail elsewhere [Kim et al., 2008].

3. Results and Discussion

[6] The key parameters in the present experiment are the
production of DOC and POC and the DOC:POC production
ratio. At the time of sampling, biogenic particles (measured
as POC) could be either in suspension or settled on the
bottom of the enclosures, and the relative proportions of
suspended and settled particles should be the same in each
enclosure. The settled proportion of POC was estimated as
the difference between the biological utilization of dissolved
inorganic carbon (DIC = [CO2(aq)] + [HCO3

−] + [CO3
2−])

and the corresponding production of suspended total organic
carbon (TOC = POC + DOC). The biological utilization of
DIC in each enclosure was indirectly calculated from the
total consumption of DIN multiplied by a DIC to DIN ratio
of 6.6 [Redfield et al., 1963]. In this calculation, we did not
use measured DIC data because the data collected during the
latter half of the experimental period were not reliable due to
malfunctioning of our analytical apparatus. The POC settled
at the bottom of each enclosure was estimated to account for
13 ± 6% of the total POC production, with no significant
variations among the test enclosures (Figure S2). Although
our bubble‐mediated mixing procedure efficiently sus-
pended most biogenic particles, some degree of particle loss
was inevitable due to particle adhesion to the inner surfaces
of the enclosures. The total POC production values for all
enclosures were scaled up by including the loss of POC.
[7] The upward trend in the net production of TOC was

stoichiometrically related to the downward trend in the
concentrations of added nutrients (Figures 1a and S3). In
all enclosures the concentrations of nitrate and phosphate
rapidly decreased from day 0 to days 13–15 (Figure S3),
while the production of TOC reached maximum levels
(160 ± 20 mmol kg−1) at days 17–18, then dropped slightly
(Figure 1a). It is not clear what caused the slight decrease
in TOC concentration without the concomitant increase in
nutrient concentrations from day 17 to day 20. The maxi-
mum TOC values in the treatment (acidification and
greenhouse) and control enclosures were not significantly
different, which is not surprising given that the same
quantities of nutrients were added to all enclosures.
[8] In contrast to the similar levels of TOC production

among the treatment and control enclosures, production of
DOC was highest in the greenhouse enclosures, intermediate
in the acidification enclosures, and lowest in the control
enclosures. During the nutrient replete period (days 6–13),
DOC production was more rapid in the treatment enclosures
than in the control enclosures. As a result, more DOC
accumulated in the treatment enclosures, although the dif-
ferences in DOC production among all enclosures were
marginal. However, during the nutrient depletion period
(days 14–20) the differences in DOC production among
enclosures were statistically significant (ANOVA, p < 0.05).

Figure 1. (a) Net production (mmol kg−1) of total organic
carbon (DTOC = TOCday–n − TOCref) and (b) particulate
organic carbon (DPOC = POCday–n − POCref) in the control
(green; ∼400 ppmv CO2/ambient temperature), acidification
(blue; ∼900 ppmv CO2/ambient temperature), and green-
house (red; ∼900 ppmv CO2/∼3°C warmer than ambient
temperature) enclosures during the study period. TOCref

and POCref are defined as the mean values of total and par-
ticulate organic carbon production from day 0 to day 8,
respectively. The color shading represents one standard
deviation (1s) from the mean (colored symbols and lines)
of the replicate enclosures. Beginning on day 14 the dis-
solved inorganic nutrient concentrations were undetectable.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL047346.
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In particular, the DOC production values in the acidification
and greenhouse enclosures were 20% and 35% higher,
respectively, than in the control enclosures (Figure 2a).
More importantly, the DOC components of TOC production
in the acidification and greenhouse enclosures were 20% to
40% higher, respectively, than in the control enclosures
(Figure 2b). The disproportionate enhancement of DOC
production in the treatment enclosures was concomitant
with a reduction in POC production (Figure 1b), which is
consistent with the TOC production remaining similar in the
treatment and control enclosures (Figure 1a). Thus, the data
suggest that the greater the contribution of DOC to TOC, the
smaller the POC production.
[9] The observed differences in DOC production between

the treatment and control enclosures likely stem from one or
more of the following mechanisms: extracellular release by
phytoplankton; release and excretion by grazers; grazing or
viral lysis; and transformation of POC to DOC by bacteria
or chemical hydrolysis [Carlson, 2002]. Of these DOC
production pathways, DOC excretion by grazers, whereby
POC is transformed to DOC by sloppy feeding, egestion
and excretion is the most likely [Strom et al., 1997]. In all
enclosures, heterotrophic dinoflagellates (∼90% of the total
carbon biomass of microzooplankton) fed largely on dia-
toms including Skeletonema costatum, Chaetoceros spp.

and Eucampia zodiacus [Kim et al., 2010]. Among these
major prey species, only S. costatum showed a significant
positive growth response to increased pCO2 (ANOVA, p <
0.05), consistent with the previous findings [Kim et al., 2006].
As a result, the grazing rate during the TOC production
period (days 8–16) was significantly higher in the treatment
enclosures (acidification and greenhouse) than in the control
enclosures (Figure S4) [Kim et al., 2010], suggesting that
more DOC was produced in the treatment enclosures than in
the controls. This mechanism, however, cannot explain why
DOC production was higher in the greenhouse enclosures
than in the acidification enclosures, because the grazing rate
was higher in the latter.
[10] Extracellular release by phytoplankton is another pos-

sible mechanism of DOC accumulation, and would explain
the greater DOC production in the greenhouse enclosures
than in the acidification enclosures, since extracellular release
is directly associated with photosynthetic activity of phyto-
plankton [Fogg, 1983; Karl et al., 1998]. This process is
especially common during nutrient‐depleted growth con-
ditions where phytoplankton exude DOC to the environ-
ment to lower the energy costs associated with storing
surplus compounds [Fogg, 1966;Wood and Van Valen, 1990].
DOC can also be passively released to the environment due to
the concentration gradient across the cell membrane [Fogg,
1966; Bjørnsen, 1988]. Our observation of an upward trend
in the DOC concentration in all enclosures (days 4–17)
exactly coincided with the upward trend in POC production,
with no lag period (Figures 2a and 1b), providing strong
evidence of cellular carbon overflow. Previous studies have
indicated that elevated CO2 could enhance the extracellular
release of DOC [Engel, 2002; Engel et al., 2004; Riebesell
et al., 2007], because higher rates of photosynthesis result in
increases in the amount of surplus carbohydrates. In addition,
direct DOC excretion by some phytoplankton species may
be temperature dependent under conditions favorable for
photosynthesis (e.g., 15–30°C). [Berman and Holm‐Hansen,
1974; Verity, 1981; Zlotnik and Dubinsky, 1989]. Extracellu-
lar release of photosynthetic products was enhanced in
warm ocean conditions [Morán et al., 2006; Wohlers et al.,
2009; Engel et al., 2011]. This could explain the difference
in DOC production under acidification and greenhouse
conditions.
[11] We also evaluated the extent of bacterial lysis, another

trophic interaction that may contribute to the observed dif-
ferences in DOC production. A recent study showed that
increased cell‐specific activity of extracellular enzymes at
high CO2 levels leads to higher solubilization of POC
[Piontek et al., 2010]. Because the enclosures were sealed at
the bottom, all POC was trapped within the enclosures. This
mesocosm design did not provide an escape for sinking par-
ticles as would have happened under natural in situ condi-
tions. Therefore, some of the trapped POC particles could be
transformed into DOC by bacteria, thereby contributing to
DOC production in both the treatment and control enclosures.
However, this process alone is probably not adequate to
explain the differences in DOC production between the treat-
ment and control enclosures because there was no significant
difference in bacterial abundance among the enclosures (treat-
ments and control) (Figure S5).
[12] The present study indicates that, in all enclosures

(regardless of treatment), the molar ratio of TOC to TON
production (comparable to that of DIC to DIN drawdown)

Figure 2. (a) Net production (mmol kg−1) of dissolved
organic carbon (DDOC = DOCday–n − DOCref) and (b) per-
centage ratio (% = DOCday–n/TOCday–20 × 100) of daily net
dissolved organic carbon production (DOCday–n) to maxi-
mum total organic carbon production (measured at day 20;
TOCday–20) in the control (green), acidification (blue), and
greenhouse (red) enclosures during the study period. DOCref

is defined as the mean value of dissolved organic carbon
from day 0 to day 8. The color shading represents one stan-
dard deviation (1s) from the mean (colored symbols and
lines) of the replicate enclosures.
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was insensitive to increasing pCO2 concentration and was
close to the Redfield ratio of ∼6.6 (Figure 3). Our results do
not agree with those of a previous study [Riebesell et al.,
2007], in which the ratio of DIC to DIN drawdown
increased with increasing pCO2 concentration and was
greater than the Redfield ratio (Figure 3). The results obtained
by Riebesell et al. [2007] indicate excess DIC consumption
per unit DIN utilization in high pCO2 oceans, in line with a
strengthening of the biological pump in high pCO2 oceans.
Our study, by contrast, found no increase in the ratio of TOC
to TON production with increasing pCO2 concentration. This
discrepancy may be explained by species‐specific responses
to increased temperature and CO2 concentration; however,
the exact cause of this apparent discrepancy is currently
unknown. Additional experiments in a range of oceanic
regions are needed to resolve this key issue.

4. Conclusions

[13] Our results show that elevated seawater pCO2 con-
centration and temperature stimulated two main processes
responsible for enhancing DOC production (release and
excretion by grazers and the extracellular release by phy-
toplankton). An increase in the DOC:POC production ratio
(with similar levels of TOC production under all test con-
ditions) implies a shift in the organic carbon flow; that is,
net POC production decreased while net DOC production
increased. Although the lability of DOC produced under
elevated CO2 and temperature conditions was not deter-
mined in our experiment, the resulting excess DOC pro-
duction will probably remain in the upper ocean for
extended periods, during which time some fractions may be
transformed into dissolved inorganic carbon via microbial
degradation. Both a reduction in the vertical flux of POC
and a release of CO2 from the labile fraction of DOC may
act to increase the CO2 concentration in surface waters,
thereby decreasing (or delaying) the net flux of CO2 from
the atmosphere. As a result, excess DOC production may act

as a positive feedback to increase the atmospheric CO2.
However, the extent to which our results can be extrapolated
to likely future oceanic conditions (i.e., elevated pCO2 and
temperature) can only be fully assessed as more experi-
mental data become available.

[14] Acknowledgments. This work was supported by Mid‐career
Researcher Program (2009‐0084756) funded by the Korea National
Research Foundation of Ministry of Education, Science and Technology.
Partial support was also provided by the Korea Meteorological Administra-
tion Research and Development Program under Grant RACS_2010‐1006
and by Ministry of Land, Transport and Maritime Affairs (PM55980).
DMK was supported by the U.S. National Science Foundation (EF‐
0424599) and the Gordon and Betty Moore Foundation. We thank two
anonymous reviewers and the editor, Peter Strutton, for improving the qual-
ity of this paper.
[15] The Editor thanks one anonymous reviewer for their assistance in

evaluating this paper.

References
Archer, D. E., G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert,

M. Tobis, and R. Jacob (2000), Atmospheric pCO2 sensitivity to the
biological pump in the ocean, Global Biogeochem. Cycles, 14(4),
1219–1230, doi:10.1029/1999GB001216.

Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham
(2001), A new, mechanistic model for organic carbon fluxes in the ocean
based on the quantitative association of POC with ballast minerals, Deep
Sea Res., Part II, 49, 219–236, doi:10.1016/S0967-0645(01)00101-1.

Berman, T., and O. Holm‐Hansen (1974), Release of photoassimilated car-
bon as dissolved organic matter by marine phytoplankton, Mar. Biol.
Berlin, 28, 305–310, doi:10.1007/BF00388498.

Bjørnsen, P. K. (1988), Phytoplankton exudation of organic matter: Why
do healthy cells do it?, Limnol. Oceanogr., 33, 151–154, doi:10.4319/
lo.1988.33.1.0151.

Carlson, C. A. (2002), Production and removal processes, in Biogeochem-
istry of Marine Dissolved Organic Matter, edited by D. A. Hansell and
C. A. Carlson, pp. 91–151, Academic, San Diego, Calif., doi:10.1016/
B978-012323841-2/50006-3.

Carlson, C. A., H. W. Ducklow, and A. F. Michaels (1994), Annual flux of
dissolved organic carbon from the euphotic zone in the northwestern Sar-
gasso Sea, Nature, 371, 405–408, doi:10.1038/371405a0.

Ducklow, H. W., C. A. Carlson, N. R. Bates, A. H. Knap, and A. F.
Michaels (1995), Dissolved organic carbon as a component of the biolog-
ical pump in the North Atlantic Ocean, Philos. Trans. R. Soc. London,
Ser. B, 348, 161–167, doi:10.1098/rstb.1995.0058.

Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas, and M. Landry (1997),
Experimental determination of the organic carbon flux from open‐ocean
surface waters, Nature, 389, 951–954, doi:10.1038/40111.

Engel, A. (2002), Direct relationship between CO2 uptake and transparent
exopolymer particles production in natural phytoplankton, J. Plankton
Res., 24, 49–53, doi:10.1093/plankt/24.1.49.

Engel, A., B. Delille, S. Jacquet, U. Riebesell, E. Rochelle‐Newall,
A. Terbrüggen, and I. Zondervan (2004), Transparent exopolymer parti-
cles and dissolved organic carbon production by Emiliania huxleyi
exposed to different CO2 concentrations: A mesocosm experiment,
Aquat. Microb. Ecol., 34, 93–104, doi:10.3354/ame034093.

Engel, A., N. Händel, J. Wohlers, M. Lunau, H.‐P. Grossart, U. Sommer,
and U. Riebesell (2011), Effects of sea surface warming on the produc-
tion and composition of dissolved organic matter during phytoplankton
blooms: Results from a mesocosm study, J. Plankton Res., 33, 357–372,
doi:10.1093/plankt/fbq122.

Fogg, G. E. (1966), The extracellular products of algae, Oceanogr. Mar.
Biol. Annu. Rev., 4, 195–212.

Fogg, G. E. (1983), The ecological significance of extracellular products of
phytoplankton photosynthesis, Bot. Mar., 26, 3–14, doi:10.1515/
botm.1983.26.1.3.

Intergovernmental Panel on Climate Change (IPCC) (2007), Climate
Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press,
Cambridge, New York.

Jiao, N., et al. (2010), Microbial production of recalcitrant dissolved
organic matter: Long‐term carbon storage in the global ocean, Nat.
Rev. Microbiol., 8, 593–599, doi:10.1038/nrmicro2386.

Karl, D. M., D. V. Hebel, K. Björkman, and R. M. Letelier (1998), The role
of dissolved organic matter release in the productivity of the oligotrophic

Figure 3. Ratios of TOC to TON increment in the control
(filled circle), acidification (filled square), and greenhouse
(filled triangle) enclosures. Error bars represents one stan-
dard deviation (1s) from the mean of the replicate enclo-
sures. The solid line represents the mean ratio of TOC to
TON increment measured under the three different treat-
ments used in this study. The red dotted and dashed lines
indicate the ratios of DIC to DIN drawdown at 700 ppmv
and 1050 ppmv, respectively [Riebesell et al., 2007].

KIM ET AL.: THE ENHANCED DOC PRODUCTION IN A FUTURE OCEAN L08612L08612

4 of 5



North Pacific Ocean, Limnol. Oceanogr., 43, 1270–1286, doi:10.4319/
lo.1998.43.6.1270.

Kim, J.‐M., K. Lee, K. Shin, J.‐H. Kang, H.‐W. Lee, M. Kim, P.‐G. Jang,
and M.‐C. Jang (2006), The effect of seawater CO2 concentration on
growth of a natural phytoplankton assemblage in a controlled mesocosm
experiment, Limnol. Oceanogr., 51, 1629–1636, doi:10.4319/lo.2006.51.4.
1629.

Kim, J.‐M., K. Shin, K. Lee, and B.‐K. Park (2008), In situ ecosystem‐
based carbon dioxide perturbation experiments: Design and perfor-
mance evaluation of a mesocosm facility, Limnol. Oceanogr. Methods,
6, 208–217.

Kim, J.‐M., et al. (2010), Enhanced production of oceanic dimethylsulfide
resulting from CO2‐induced grazing activity in a high CO2 world,
Environ. Sci. Technol., 44, 8140–8143, doi:10.1021/es102028k.

Klaas, C., and D. E. Archer (2002), Association of sinking organic matter
with various types of mineral ballast in the deep sea: Implications for the
rain ratio, Global Biogeochem. Cycles, 16(4), 1116, doi:10.1029/
2001GB001765.

Laws, E. A., P. G. Falkowski, W. O. Smith, H. Ducklow, and J. J.
McCarthy (2000), Temperature effects on export production in the open
ocean, Global Biogeochem. Cycles, 14(4), 1231–1246, doi:10.1029/
1999GB001229.

Lee, K. (2001), Global net community production estimated from the
annual cycle of surface water total dissolved inorganic carbon, Limnol.
Oceanogr., 46, 1287–1297, doi:10.4319/lo.2001.46.6.1287.

Margalef, R. (1978), Life‐forms of phytoplankton as survival alternatives
in an unstable environment, Oceanol. Acta, 1, 493–509.

Morán, X. A. G., M. Sebastián, C. Pedrós‐Alió, and M. Estrada (2006),
Response of Southern Ocean phytoplankton and bacterioplankton pro-
duction to short‐term experimental warming, Limnol. Oceanogr., 51,
1791–1800, doi:10.4319/lo.2006.51.4.1791.

Piontek, J., M. Lunau, N. Händel, C. Borchard, M. Wurst, and A. Engel
(2010), Acidification increases microbial polysaccharide degradation in
the ocean, Biogeosciences, 7, 1615–1624, doi:10.5194/bg-7-1615-2010.

Redfield, A. C., B. H. Ketchum, and F. A. Richard (1963), The influence
of organisms on the composition of seawater, in The Sea, vol. 2, The

Composition of Sea Water: Comparative and Descriptive Oceanography,
edited by M. N. Hill, pp. 26–77, Wiley Intersci., Hoboken, N. J.

Riebesell, U., et al. (2007), Enhanced biological carbon consumption in a
high CO2 ocean, Nature, 450, 545–548, doi:10.1038/nature06267.

Strom, S. L., R. Benner, S. Ziegler, andM. J. Dagg (1997), Planktonic grazers
are a potentially important source of marine dissolved organic carbon,
Limnol. Oceanogr., 42, 1364–1374, doi:10.4319/lo.1997.42.6.1364.

Verity, P. G. (1981), Effects of temperature, irradiance and daylength on
the marine diatom Leptocylindrus danicus Cleve. II. Excretion, J. Exp.
Mar. Biol. Ecol., 55, 159–169, doi:10.1016/0022-0981(81)90109-X.

Wohlers, J., A. Engel, E. Zöllner, P. Breithaupt, K. Jürgens, H.‐G. Hoppe,
U. Sommer, and U. Riebesell (2009), Changes in biogenic carbon flow
in response to sea surface warming, Proc. Natl. Acad. Sci. U. S. A., 106,
7067–7072, doi:10.1073/pnas.0812743106.

Wood, A. M., and L. M. Van Valen (1990), Paradox lost? On the release of
energy‐rich compounds by phytoplankton, Mar. Microb. Food Webs, 4,
103–116.

Zlotnik, I., and Z. Dubinsky (1989), The effect of light and temperature on
DOC excretion by phytoplankton, Limnol. Oceanogr., 34, 831–839,
doi:10.4319/lo.1989.34.5.0831.

A. Engel, Alfred Wegener Institute for Polar and Marine Research, Am
Handelshafen 12, D‐27570 Bremerhaven, Germany.
D. M. Karl, School of Ocean and Earth Science and Technology,

University of Hawaii, 1000 Pope Rd., Honolulu, HI 96822, USA.
H.‐C. Kim, J.‐M. Kim, and K. Lee (Corresponding author), School of

Environmental Science and Engineering, Pohang University of Science
and Technology, San‐31, Hyoja‐dong, Nam‐gu, Pohang 790‐784, South
Korea. (ktl@postech.ac.kr)
K. Shin, South Sea Institute, Korea Ocean Research and Development

Institute, Jangmok 656‐830, South Korea.
E. J. Yang, Korea Polar Research Institute, Korea Ocean Research and

Development Institute, Songdo Techno Park, Incheon 406‐840, South
Korea.

KIM ET AL.: THE ENHANCED DOC PRODUCTION IN A FUTURE OCEAN L08612L08612

5 of 5



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


