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In-line flow-induced vibrations of a
rotating cylinder

Rémi Bourguet1,† and David Lo Jacono1

1Institut de Mécanique des Fluides de Toulouse, CNRS, UPS and Université de Toulouse,
Toulouse, 31400, France

The flow-induced vibrations of an elastically mounted circular cylinder, free to
oscillate in the direction parallel to the current and subjected to a forced rotation
about its axis, are investigated by means of two- and three-dimensional numerical
simulations, at a Reynolds number equal to 100 based on the cylinder diameter
and inflow velocity. The cylinder is found to oscillate up to a rotation rate (ratio
between the cylinder surface and inflow velocities) close to 2 (first vibration region),
then the body and the flow are steady until a rotation rate close to 2.7 where a
second vibration region begins. Each vibration region is characterized by a specific
regime of response. In the first region, the vibration amplitude follows a bell-shaped
evolution as a function of the reduced velocity (inverse of the oscillator natural
frequency). The maximum vibration amplitudes, even though considerably augmented
by the rotation relative to the non-rotating body case, remain lower than 0.1 cylinder
diameters. Due to their trends as functions of the reduced velocity and to the fact
that they develop under a condition of wake-body synchronization or lock-in, the
responses of the rotating cylinder in this region are comparable to the vortex-induced
vibrations previously described in the absence of rotation. The symmetry breaking
due to the rotation is shown to directly impact the structure displacement and
fluid force frequency contents. In the second region, the vibration amplitude tends to
increase unboundedly with the reduced velocity. It may become very large, higher than
2.5 diameters in the parameter space under study. Such structural oscillations resemble
the galloping responses reported for non-axisymmetric bodies. They are accompanied
by a dramatic amplification of the fluid forces compared to the non-vibrating cylinder
case. It is shown that body oscillation and flow unsteadiness remain synchronized
and that a variety of wake topologies may be encountered in this vibration region.
The low-frequency, large-amplitude responses are associated with novel asymmetric
multi-vortex patterns, combining a pair and a triplet or a quartet of vortices per cycle.
The flow is found to undergo three-dimensional transition in the second vibration
region, with a limited influence on the system behaviour. It appears that the transition
occurs for a substantially lower rotation rate than for a rigidly mounted cylinder.
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1. Introduction

Flexible or flexibly mounted bodies with bluff cross-section and immersed in a
cross-current exhibit flow-induced vibrations (FIV). Such phenomena are omnipresent
in nature (e.g. oscillations of plants in wind or water streams) and are also
encountered in a myriad of civil, wind, offshore and nuclear engineering applications,
for instance, the vibrations of mooring lines and cables exposed to ocean currents. The
increased mean drag forces, the fatigue damage and possible failure of the structures
due to these vibrations have motivated a number of studies aiming at clarifying
the fundamental mechanisms of FIV, as collected in Blevins (1990), Naudascher &
Rockwell (1994) and Païdoussis, Price & de Langre (2010). The present work focuses
on the FIV of a flexibly mounted rigid circular cylinder subjected to a forced rotation.
This system may be regarded as a paradigm of symmetry breaking in fluid-structure
interaction, as further explicated in the following.

The unsteady fluid forces exerted on a bluff body due to vortex shedding in its wake
can result in structural oscillations. This type of FIV, referred to as vortex-induced
vibrations (VIV), has been extensively investigated through the canonical problem of
a non-rotating rigid circular cylinder forced or free to oscillate within a cross-flow
(Bishop & Hassan 1964; King, Prosser & Johns 1973; Griffin & Ramberg 1976;
Bearman 1984, 2011; Naudascher 1987; Ongoren & Rockwell 1988; Williamson
& Roshko 1988; Mittal & Tezduyar 1992; Hover, Techet & Triantafyllou 1998;
Carberry, Sheridan & Rockwell 2001; Cetiner & Rockwell 2001; Jeon & Gharib
2001; Okajima, Kosugi & Nakamura 2002; Sarpkaya 2004; Williamson & Govardhan
2004; Klamo, Leonard & Roshko 2006; Lucor & Triantafyllou 2008; Dahl et al. 2010;
Leontini, Lo Jacono & Thompson 2011; Cagney & Balabani 2013; Navrose & Mittal
2013; Konstantinidis 2014). A non-rotating circular cylinder is not susceptible to
movement-induced vibrations (MIV), which allows VIV to be examined independently
of this other type of FIV associated with aerodynamically unstable configurations
(e.g. Païdoussis et al. 2010). VIV of non-axisymmetric bodies potentially exposed to
MIV, for instance, a cylinder with a square or rectangular cross-section, have also
been analysed in several studies (Naudascher 1987; Obasaju, Ermshaus & Naudascher
1990; Okajima et al. 1999; Nemes et al. 2012; Zhao, Cheng & Zhou 2013). VIV
naturally appear both in the direction normal to the current (cross-flow direction) and
in the direction parallel to the current (in-line direction). They persist when the body
is free to move only in one direction. The typical amplitudes of these vibrations
are of the order of one body diameter in the cross-flow direction and one or more
orders of magnitude lower in the in-line direction. For a flexibly mounted rigid body,
VIV usually appear over a well-defined range of the reduced velocity, i.e. inverse of
the oscillator natural frequency non-dimensionalized by the inflow velocity and the
body diameter. In this range, vortex formation and body oscillation are synchronized:
cross-flow VIV generally occur at the vortex shedding frequency while in-line VIV
may develop at this frequency or twice this frequency depending on the symmetry of
the system, which determines the frequency ratio between the vortex shedding and
in-line fluid force fluctuation. The condition of wake-body synchronization is referred
to as lock-in. Under lock-in, the vortex formation frequency can depart from the
shedding frequency observed downstream of the stationary body (Strouhal frequency)
and the wake pattern can be considerably altered. The vibration frequency can also
shift away from the natural frequency (e.g. Williamson & Govardhan 2004).

Contrary to VIV, MIV do not involve a mechanism of lock-in between the body
oscillation and vortex formation. They are due to an aerodynamic instability where the
motion of the body tends to enhance the energy transfer from the flow to the structure,



leading to self-excited oscillations (Naudascher & Rockwell 1994; Païdoussis et al.

2010). The resulting low-frequency vibrations increase in amplitude unboundedly
with the reduced velocity and are generally referred to as galloping responses (Den
Hartog 1932; Parkinson & Smith 1964; Mukhopadhyay & Dugundji 1976; Nakamura
& Tomonari 1977). Such structural responses may occur in the in-line and cross-flow
directions (e.g. Abdel-Rohman 1992). Due to the absence of coupling with vortex
shedding, galloping oscillations can often be predicted through quasi-steady theory
(Parkinson & Smith 1964). However, for specific ranges of the structure properties,
VIV and galloping regions may sometimes overlap and novel vibration regimes
may emerge (Bearman et al. 1987; Corless & Parkinson 1988; Nemes et al. 2012;
Mannini, Marra & Bartoli 2014; Zhao et al. 2014a).

In the present study, the axial symmetry of the body geometry is preserved but
the cross-flow symmetry of the fluid-structure system is broken by applying a forced
rotation to the flexibly mounted circular cylinder. The impact of an imposed rotation
on the wake patterns and fluid forcing has been well documented in the case of a
rigidly mounted circular cylinder (Coutanceau & Ménard 1985; Badr et al. 1990;
Chew, Cheng & Luo 1995; Kang, Choi & Lee 1999; Stojković, Breuer & Durst
2002; Mittal & Kumar 2003; Pralits, Brandt & Giannetti 2010). Different flow
regimes have been identified depending on the rotation rate α, defined as the ratio
between the cylinder surface velocity and the oncoming flow velocity. In particular,
previous works have shown that the alternating vortex shedding associated with the
von Kármán instability vanishes above a rotation rate α ≈ 2. This phenomenon is
accompanied by the suppression of the periodic fluctuations of the fluid forces. The
flow three-dimensional transition scenario is dramatically modified by the forced
rotation (Mittal 2004; El Akoury et al. 2008; Meena et al. 2011). Compared to the
stationary cylinder case, a variety of new steady and unsteady three-dimensional wake
patterns has been evidenced in the rotation rate – Reynolds number (Re) parameter
space (Radi et al. 2013; Rao et al. 2013b, 2015). It was shown that the rotation
may cause three-dimensional transition down to Re ≈ 30, versus Re ≈ 190 in the
absence of actuation (Pralits, Giannetti & Brandt 2013; Rao et al. 2013a). In the
above mentioned studies and in the following, the Reynolds number is based on the
cylinder diameter and on the oncoming flow velocity.

The case of an elastically mounted circular cylinder, forced to rotate and free
to oscillate both in the in-line and cross-flow directions, has been the object of
a few studies. Zhao, Cheng & Lu (2014b) examined numerically the influence of
the imposed rotation on the VIV regime for α 6 1 and Re = 150. They reported
a substantial alteration of the flow and structural responses. More specifically, they
noted a significant increase of the maximum amplitudes of vibration, especially in the
in-line direction, and a switch of the in-line response frequency which is equal to the
vortex shedding frequency once the cylinder rotates, instead of twice the shedding
frequency for α = 0. In this range of low rotation rates, the in-line oscillation
amplitude remains however lower than one cylinder diameter and the vibrations of
the two degrees-of-freedom oscillator are comparable to the VIV developing in the
non-rotating case (lock-in condition, bell-shaped evolution of the response). Through
experiments and numerical simulations, Stansby & Rainey (2001) studied the impact
of higher rotation rates on the responses of the two degrees-of-freedom oscillator,
in the Reynolds number range 200–4700. For α ∈ [2, 5], the cylinder was shown to
exhibit large oscillations, with peak amplitudes sometimes higher than 10 diameters in
each direction. Free vibrations thus appear beyond the critical value of α associated
with vortex shedding suppression in the rigidly mounted cylinder case. Yogeswaran



& Mittal (2011) observed similar responses for α = 4.5 and Re = 200, on the basis of
numerical simulation results. These vibrations, characterized by amplitudes growing
continuously with reduced velocity and low frequencies, are comparable to the
galloping responses encountered for non-axisymmetric bodies, such as cylinders with
rectangular cross-sections. A large number of vortices may form during each vibration
cycle. These previous works indicate that responses analogous to VIV and galloping
oscillations may develop for the two degrees-of-freedom oscillator, depending on the
rotation rate. No systematic analyses of flow patterns and forcing have been reported
in the above studies for α > 1.

A simplification of the physical configuration was considered in a previous
numerical study by focusing on a single degree-of-freedom oscillator (Bourguet & Lo
Jacono 2014). In this prior work, a detailed investigation the system behaviour was
performed, in the rotation rate–reduced velocity parameter space, for an elastically
mounted rotating cylinder allowed to move in the cross-flow direction only, at
Re = 100. The cylinder exhibits free cross-flow oscillations from α = 0 up to a rotation
rate close to 4. In contrast to the observations made in the two degrees-of-freedom
configuration, the forced rotation was shown to have a very limited impact on the
single degree-of-freedom oscillator response in the low α range (α 6 1), as recently
corroborated by Zhao et al. (2014b) at Re = 150. At higher values of α, it was
found that the rotation induces an amplification of the cross-flow vibration which
may reach 1.9 diameters, i.e. three times the maximum amplitude in the non-rotating
case. Over the entire range of α, the vibration amplitude presents a bell-shaped trend
as a function of the reduced velocity and the free vibrations occur under a condition
of wake-body synchronization similar to the lock-in condition driving non-rotating
cylinder VIV. As a result, contrary to the two degrees-of-freedom configuration, no
galloping-like response was observed when the body was restrained to move in the
cross-flow direction. Novel asymmetric flow patterns were identified in the wake of
the rotating cylinder subjected to free cross-flow vibrations. It was also shown that
the flow tends to remain two-dimensional under transverse oscillation in a range of
α where the rotation causes three-dimensional transition when the body does not
vibrate.

The present work aims at extending the previous analysis concerning the single
degree-of-freedom oscillator (Bourguet & Lo Jacono 2014) by considering the case
where the flexibly mounted rotating cylinder is allowed to move in the in-line
direction, instead of the cross-flow direction. The possible appearance of galloping-like
oscillations in such configuration is under question. More generally, the impact of
the forced rotation on the circular cylinder in-line VIV and the alteration of the
interaction mechanisms previously described in the absence of actuation remain to
be explored. Prior works concerning non-rotating cylinders have emphasized that
an in-line oscillation may lead to a range of wake dynamics including periodic,
quasiperiodic and chaotic states (Perdikaris, Kaiktsis & Triantafyllou 2009; Leontini
et al. 2011; Tudball-Smith et al. 2012; Leontini, Lo Jacono & Thompson 2013). The
wake patterns occurring under the combination of forced rotation and free in-line
vibration still need to be investigated. Another element to clarify in this context
is the flow three-dimensional transition and its potential influence on the structural
responses. To address these aspects, the behaviour of the coupled flow–structure
system is examined by means of two- and three-dimensional numerical simulations,
over a wide range of rotation rates and reduced velocities. The Reynolds number is
chosen equal to 100 in reference to the previously mentioned work concerning the
cross-flow vibrations of a rotating cylinder.
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FIGURE 1. Sketch of the physical configuration.

The paper is organized as follows. The physical model and the numerical
method are presented in § 2. The cylinder responses are quantified in § 3. The
flow downstream of the flexibly mounted rotating cylinder is studied in § 4. The fluid
forces are analysed in § 5. The main findings of this work are summarized in § 6.

2. Formulation and numerical method

The physical configuration and its modelling are described in § 2.1. The numerical
method employed and its validation are presented in § 2.2.

2.1. Fluid-structure system

The physical system is similar to that considered in a previous work concerning the
flow-induced vibrations of a rotating cylinder (Bourguet & Lo Jacono 2014) except
that in the present study, the body is free to oscillate in the in-line direction instead
of the cross-flow direction. A sketch of the configuration is presented in figure 1.
The elastically mounted rigid cylinder has a circular cross-section. It is immersed in
a cross-flow which is parallel to the x axis and normal to the cylinder axis (z axis).
The flow is assumed to be incompressible. The Reynolds number based on the
oncoming flow velocity (U) and cylinder diameter (D), Re = ρf UD/µ, where ρf and
µ denote the fluid density and viscosity, respectively, is equal to 100, as in the above
mentioned study. At Re = 100, the flow remains two-dimensional over a wide region
of the parameter space investigated. The two-dimensional Navier–Stokes equations
are employed over the entire parameter space to predict the flow dynamics. In order
to study the flow three-dimensional transition at high rotation rates, and its potential
influence on the system behaviour, the three-dimensional Navier–Stokes equations are
also considered in selected points of the parameter space. In the three-dimensional
case, an aspect ratio of L/D = 10, where L is the cylinder length in the spanwise
direction (z axis), is selected as a reasonable balance between the wavelength of the
flow three-dimensional pattern (of the order of 1 − 2D) and the numerical cost.

The cylinder is fixed in the cross-flow direction (y axis) and free to oscillate in the
in-line direction (x axis). The structural stiffness, damping ratio and mass per unit
length are designated by k, ξ and ρc, respectively. In the following, all the physical



variables are non-dimensionalized by the cylinder diameter, the oncoming flow
velocity and the fluid density. The non-dimensional mass of the structure is defined
as m = ρc/ρf D

2. The actual ratio between the mass of the cylinder and the mass
of the displaced fluid is equal to 4m/π. The non-dimensional cylinder displacement,
velocity and acceleration are denoted by ζ , ζ̇ and ζ̈ , respectively. The in-line and
cross-flow force coefficients are defined as Cx = 2〈Fx〉/ρf DU2 and Cy = 2〈Fy〉/ρf DU2,
where Fx and Fy are the in-line and cross-flow dimensional sectional fluid forces, and
〈 〉 the span-averaging operator. 〈Fx〉 and 〈Fy〉 are thus equal to the integrals of the
pressure and viscous stress terms over the cylinder surface, normalized by its length.
In the two-dimensional case, 〈Fx〉= Fx and 〈Fy〉= Fy. The body dynamics is governed
by a forced second-order oscillator equation which can be expressed as follows, in
non-dimensional formulation:

ζ̈ +
4πξ

U⋆
ζ̇ +

(

2π

U⋆

)2

ζ =
Cx

2m
. (2.1)

U⋆ denotes the reduced velocity, U⋆ = 1/fn, where fn is the non-dimensional natural
frequency in vacuum, fn = D/2πU

√
k/ρc. As in the prior study concerning cross-flow

vibrations, the structural damping is set equal to zero (ξ = 0) to allow maximum
amplitude oscillations and m is set equal to 10.

The cylinder is subjected to a forced, counter-clockwise, steady rotation about its
axis. The imposed rotation is controlled by the rotation rate α = ΩD/2U, where Ω

is the angular velocity of the cylinder.
The behaviour of the system is explored in the (α, U⋆) parameter space. The

following set of rotation rates is investigated, α ∈ {0, 0.5, 1, 1.5, 2, 2.5, 2.625, 2.7,

2.75, 3, 3.25, 3.5}. This set includes the unsteady/steady flow transition for a rigidly
mounted rotating cylinder (α ≈ 1.8 at Re = 100 (Kang et al. 1999; Stojković et al.

2003)) but excludes the three-dimensional transition in this case, which was found
to occur for α ≈ 3.7 at Re = 100 (Pralits et al. 2013; Rao et al. 2013a; Bourguet
& Lo Jacono 2014). The flow three-dimensional transition may however appear at
lower rotation rates when the body oscillates in the in-line direction, as shown in the
present work. The reduced velocity ranges from 1 to 23.

2.2. Numerical simulation method

The numerical method employed is the same as in the prior study concerning
cross-flow vibrations (Bourguet & Lo Jacono 2014). Descriptions of the simulation
approach, boundary conditions and discretizations, as well as a detailed validation
were reported in this previous study. Only a brief summary of the method and some
additional validation results are presented here. The coupled flow–structure equations
are solved by the parallelized code Nektar, which is based on the spectral/hp element
method (Karniadakis & Sherwin 1999). A large rectangular computational domain is
considered (350D downstream and 250D in front, above and below the cylinder) in
order to avoid any spurious blockage effects due to domain size. A no-slip condition
is applied at the cylinder surface. Flow periodicity conditions are employed on the
side (spanwise) boundaries in the three-dimensional case.

The evolution of the time-averaged force coefficients as a function of the spectral
element polynomial order, for the cases of both a rigidly mounted cylinder for α = 3.5
(the largest rotation rate considered in this paper) and of a flexibly mounted cylinder
for (α, U⋆) = (3.5, 23) (i.e. in the region of maximum vibration amplitude, as shown
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FIGURE 2. Time-averaged (a,c) in-line and (b,d) cross-flow force coefficients as functions
of the polynomial order, in the cases of (a,b) a rigidly mounted rotating cylinder for
α = 3.5 and (c,d) a flexibly mounted cylinder for (α, U⋆) = (3.5, 23), at Re = 100.

in § 3), are plotted in figure 2. The imposed rotation cancels the vortex shedding in
the former case and the flow is steady, thus Cx = Cx and Cy = Cy, where denotes
time-averaged values. These plots show that an increase from order 4 to 5 has no
significant influence on the results. Hence, a polynomial order equal to 4 is selected.
For the three-dimensional simulations, 64 complex Fourier modes are employed in
the spanwise direction. Additional three-dimensional simulations in the area of the
parameter space where the flow is found to be three-dimensional show that doubling
the spanwise resolution (i.e. 128 Fourier modes) has only a negligible impact on the
results. For instance, less than 0.1 % of relative difference is noted for the vibration
amplitude in the region of maximum vibration amplitude ((α, U⋆) = (3.5, 23)).

All the simulations are initialized with the established periodic flow past a stationary
cylinder at Re = 100. Then the forced rotation is started and the body is released. The
analysis is based on time series of more than 40 oscillation cycles, collected after
convergence of the time-averaged and root mean square (RMS) values of the fluid
force coefficients and body displacement.

3. Structural responses

A description of the body responses is reported in this section. Focus is placed first
on the time-averaged displacement of the cylinder (§ 3.1) and then on its oscillatory
motion (§ 3.2).
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FIGURE 3. (Colour online) Time-averaged displacement as a function of the reduced
velocity for (a) α 6 2.5 and (b) α > 2.5. For each rotation rate, a dashed line indicates
the displacement associated with the time-averaged in-line force in the rigidly mounted
cylinder case. The three-dimensional simulation results are denoted by circled blue
symbols.

3.1. Time-averaged displacement

The time-averaged displacement of the body is plotted in figure 3 as a function
of the reduced velocity for each rotation rate. For more clarity in the presentation,
the results for α 6 2.5 and α > 2.5 are plotted separately. In this figure and in
the following, the two-dimensional simulation results are represented by uncircled
greyscale symbols. The three-dimensional simulation results are denoted by the same
marker shapes as the two-dimensional ones, but the symbols are circled and coloured
in blue. By considering the time-averaged form of the structure dynamics (2.1), the



time-averaged displacement of the cylinder can be expressed as ζ = U⋆2Cx/8π
2m. An

estimate of ζ , based on this expression and the value of Cx in the rigidly mounted
cylinder case, is indicated by a dashed line for each rotation rate in figure 3. Due
to the monotonic decrease of Cx as α increases (in the present range) in the rigidly
mounted cylinder configuration (Stojković et al. 2003; Bourguet & Lo Jacono 2014),
the estimated time-averaged displacement tends to decrease when α increases. In
spite of some minor deviations, as for instance around U⋆ = 6 for α = 1.5, the
actual values of ζ remain close to the estimates for α 6 2.625. In contrast, substantial
deviations appear for higher rotation rates, which denotes a significant alteration of the
time-averaged in-line force in this range of α when the cylinder is free to oscillate.
The fluid forces are examined in § 5. The two- and three-dimensional simulation
results are superimposed for α = 2.75 whereas some differences can be noted for
α > 3. The general trends identified via the two- and three-dimensional simulations
are comparable, however the observed differences suggest that the flow undergoes a
three-dimensional transition in the range of high rotation rates. This point is clarified
in the next section.

3.2. Free oscillatory motion

An overview of the maximum oscillation amplitude of the cylinder about its
time-averaged position is presented in figure 4(a), in the rotation rate–reduced velocity
domain. In this plot, and in the following, ˜ denotes the fluctuation about the time-
averaged value. A first observation of the oscillatory responses allows identification
of low-amplitude vibrations with bell-shaped evolutions as functions of U⋆ in the
lower range of α and, after a range of intermediate rotation rates where no oscillations
occur, a regime of large vibrations in the higher range of α. For a sufficiently high
value of the rotation rate, the vibration amplitude tends to increase unboundedly with
U⋆ and thus departs from the above mentioned bell-shaped behaviour. For a better
visualization of the two vibration regions appearing in the (α, U⋆) parameter space,
a global map indicating the areas where the body is found to oscillate is reported in
figure 4(b). A number of additional two-dimensional simulations have been performed
to locate the limits of the vibration regions. However, it should be mentioned that
these limits remain approximate since they are determined under two-dimensional
flow assumption. Furthermore, they may also be subjected to hysteresis phenomena
(Khalak & Williamson 1999; Prasanth & Mittal 2008). This map of the vibration
regions differs from the map reported in a previous work concerning the cross-flow
responses of a rotating cylinder (figure 6c in Bourguet & Lo Jacono 2014) where
the area characterized by oscillations larger than 0.05D was indicated. In the present
map, the vibration regions denote the areas of the parameter space where the cylinder
exhibits oscillations of any amplitudes. The area of the first vibration region where
the response amplitude is larger than 0.01D is enclosed by a dashed-dotted line.

The oscillations of the cylinder are periodic in all studied cases. The spectral
analysis of the structural response is based on the power spectral density (PSD) of
the time series of ζ . The following nomenclature is adopted to describe the frequency
content of the response. All the frequencies mentioned hereafter are non-dimensional.
The frequency associated with the largest peak of ζ PSD is referred to as the
dominant vibration frequency and denoted by f . The fundamental vibration frequency
(i.e. frequency of the first harmonic component) of ζ is denoted by fx. As discussed
in this section, the response of the rotating cylinder is generally dominated by its
fundamental frequency component (f = fx). In some rare cases, however, the second
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FIGURE 4. (Colour online) (a) Maximum amplitude of vibration and (b) vibration regions
(grey colour), as functions of the rotation rate and reduced velocity. In (b), a dashed-dotted
line encloses the area of the first vibration region where the maximum vibration amplitude
is larger than 0.01D; a dashed line represents the limit between the steady and unsteady
flow regimes in the rigidly mounted cylinder case; black dots denote the cases visualized
in figures 8–10 (two-dimensional results) while blue circles designate the cases presented
in figures 13 and 14 (three-dimensional results).

harmonic component may dominate (f = 2fx). In the following sections, unless
otherwise stated, the terms vibration frequency and response frequency refer to the
dominant vibration frequency. It is recalled that fn designates the oscillator natural
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FIGURE 5. (a) Maximum amplitude of vibration and (b) dominant vibration frequency
normalized by the oscillator natural frequency, as functions of the reduced velocity, for
α 6 2.5. In (b), a dashed line indicates the frequency of vortex shedding in the stationary
cylinder case (Strouhal frequency) normalized by the the oscillator natural frequency and
a dashed-dotted line indicates twice this frequency ratio.

frequency. The deviation between the dominant vibration frequency and the natural
frequency is quantified via the frequency ratio f ⋆ = f /fn.

The maximum amplitude of vibration is plotted as a function of U⋆, for α6 2.5 and
α > 2.5 in figures 5(a) and 6(a), respectively. The associated value of f ⋆ is reported
in figures 5(b) and 6(b).

Below the critical rotation rate associated with the cancellation of vortex shedding
in the rigidly mounted cylinder case (α ≈ 1.8 at Re = 100, the dashed line in
figure 4b), structural vibrations occur over the entire range of U⋆ investigated. The
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FIGURE 6. (Colour online) Same as figure 5, for α > 2.5. The three-dimensional
simulation results are denoted by circled blue symbols.

oscillation amplitude remains however very small in this range of α (ζ̃ < 0.01), except
around the peaks visible in figure 4(a), in the region identified by a dashed-dotted
line in figure 4(b). The persistence of some vibrations away from the interval of U⋆

associated with the peak amplitudes of response was reported for a rotating cylinder
free to vibrate in the cross-flow direction or in both directions for α < 1.8 (Bourguet
& Lo Jacono 2014; Zhao et al. 2014b) and it is generally observed for non-rotating
cylinders (e.g. Leontini, Thompson & Hourigan 2006; Prasanth & Mittal 2008).

In the absence of rotation (α = 0), the cylinder response peaks near U⋆ = 3, with
amplitudes close to 1.5 × 10−3D and dominant frequencies close to twice the Strouhal
frequency (dashed-dotted line in figure 5b). These vibrations correspond to the VIV
previously observed at higher Reynolds numbers for non-rotating circular cylinders



allowed to move in the in-line direction only (e.g. Okajima et al. 2002; Cagney &
Balabani 2013). The differences which can be noted in the shape and magnitude of the
present response compared to these prior works are expected due to the difference
in Reynolds number. The strong influence of Re on in-line VIV amplitude was
emphasized in a previous study concerning flexible cylinders (Bourguet, Karniadakis
& Triantafyllou 2011), and oscillation amplitudes comparable to those observed here
were reported by Prasanth & Mittal (2008) for a cylinder free to vibrate in both
directions at similar Re.

A small peak of vibration amplitude persists close to U⋆ = 3 when the cylinder is
subjected to a forced rotation at moderate values of α. However, larger oscillations
develop in a higher range of U⋆. The first vibration region extends beyond the above
mentioned critical rotation rate of α ≈ 1.8, since the cylinder exhibits significant
responses for α = 2. The bell-shaped trend of the response amplitudes occurring
around U⋆ = 6 for α 6 2 and the fact that these vibrations appear close to the
Strouhal frequency (dashed line in figure 5b) suggest that they are driven by a lock-in
mechanism at the vortex shedding frequency, instead of twice the shedding frequency
as in the non-rotating cylinder case. Such switch in the response dominant frequency
was previously noted for non-axisymmetric cross-sections (Naudascher 1987). It
relates to the alteration of the anti-symmetric nature of the wake and to the associated
modification of the in-line forcing frequency. The link between the body response, the
wake and the fluid forces is addressed in the next sections. Within this first vibration
region, the oscillations of the rotating cylinder may reach 0.06D approximately around
U⋆ = 6 for α = 1.5, which represents a considerable amplification compared to the
non-rotating body case. In a narrow range around U⋆ = 3 and for low rotation rates
(α 6 1), two vibration components of comparable spectral amplitudes appear at a
frequency close to the Strouhal frequency (fundamental component, fx) and at twice
this frequency (second harmonic component, 2fx). In this zone, the second harmonic
component may dominate the response. Except in this limited zone of the parameter
space, the cylinder oscillation remains close to sinusoidal. It is dominated by its
fundamental frequency, with very small higher harmonic contributions. No structural
oscillation occurs for α = 2.5 and α = 2.625.

Much larger oscillation amplitudes are encountered in the second vibration region
located in the higher range of α. For α = 2.7, the response is characterized by a
bell shape centred about U⋆ = 17. For α > 2.75, the cylinder starts vibrating around
U⋆ = 8 and the oscillation amplitude does not return to zero as U⋆ increases. In spite
of some undulations in its evolution, the amplitude globally increases with U⋆ and
it reaches more than 2.5 body diameters for (α, U⋆) = (3.5, 23). For a given reduced
velocity, the amplitude tends to increase with α in this second vibration region. It can
be noted that the bell shape of the response for α =2.7 is continuously prolongated for
α = 2.75 by a well-defined bump in the response curve around U⋆ = 17. It illustrates
the onset of the second oscillatory regime, at the lower edge of this vibration region.
In the second vibration region, the oscillation is still dominated by its fundamental
frequency component (and thus close to sinusoidal) but the fundamental frequency
is always much smaller than the Strouhal frequency (dashed line in figure 6b) and
lower than the oscillator natural frequency (f ⋆ < 1), in contrast with the response
frequencies identified in the first vibration region (figure 5b). The modulations of the
dominant vibration frequency are connected to the variability of the effective added
mass, as discussed in § 5. The responses occurring for α> 2.75 resemble the galloping
oscillations reported for non-axisymmetric bodies (e.g. Bearman et al. 1987; Nemes
et al. 2012). Such responses were previously observed for a rotating circular cylinder



free to oscillate in both the in-line and cross-flow directions (Stansby & Rainey 2001;
Yogeswaran & Mittal 2011) but not when the body was restrained to a single degree-
of-freedom in the cross-flow direction (Bourguet & Lo Jacono 2014). Due to their
evolution as functions of U⋆, the responses encountered in the second vibration region
are referred to as galloping-like oscillations in the following. It should however be
mentioned that these vibrations cannot be predicted through quasi-steady analysis, as
shown in appendix A.

The oscillatory responses obtained through two- and three-dimensional simulations
are identical at α = 2.75 and minor differences can be noted at higher rotation
rates (circled blue symbols in figure 6). The vibration amplitudes obtained through
three-dimensional simulation are slightly smaller. However, the impact of the flow
three-dimensionality on the response remains limited and, as also observed for the
time-averaged displacement, the trends identified on the basis of the two-dimensional
results are essentially confirmed by the three-dimensional ones.

The above analysis reveals the existence of two distinct vibration regions in the
(α, U⋆) parameter space. In the first vibration region, up to a rotation rate close
to 2, the cylinder exhibits low-amplitude vibrations with characteristics typical of
VIV regime (trend as a function of U⋆, frequency), and whose largest magnitudes
appear around U⋆ = 6. In the second vibration region, beyond α = 2.7 and U⋆ = 8
approximately, galloping-like responses of large amplitudes develop. No vibration
is observed between these two regions. The present results also indicate that the
flow three-dimensional transition occurs within the second vibration region. These
aspects are further studied in the next section which clarifies the properties of the
flow downstream of the freely vibrating body.

4. Flow physics

The occurrence of structural oscillations that resemble both VIV and galloping
responses, within two distinct regions of the parameter space under study, raises the
question of the synchronization between the oscillation of the rotating cylinder and
the flow unsteadiness in its wake. This point is addressed as a first step in § 4.1.
The independent effects of rotation and oscillation on the vortex shedding pattern
downstream of a circular cylinder have been well documented in the literature (e.g.
Williamson & Roshko 1988; Badr et al. 1990; Brika & Laneville 1993; Govardhan
& Williamson 2000; Stojković et al. 2002; Mittal & Kumar 2003; Carberry, Sheridan
& Rockwell 2005). In a recent work (Bourguet & Lo Jacono 2014), novel flow
patterns were observed in the wake of a rotating cylinder freely vibrating in the
cross-flow direction, such as, for instance, an asymmetric pattern composed of a
triplet of vortices and a single vortex shed per oscillation cycle (T+S pattern). The
flow structures developing in the present configuration, within each response region,
remain to be studied. They are examined as a second step in § 4.2, with special
attention paid to the appearance of new patterns. Finally, the three-dimensional
transition identified in the range of high rotation rates in the previous section is
investigated in § 4.3.

4.1. Wake-body synchronization

The frequency content of the flow is quantified via the PSD of the time series of
the cross-flow component of the flow velocity (v) at a point located at (x/D, y/D) =
(10, 0), i.e. 10D downstream of the cylinder position in quiescent fluid. The time
series of v is periodic in all studied cases. The PSD of v is plotted as a function of



the reduced velocity, for each rotation rate, in figure 7. The steady flow cases where
no vibration is observed (α = 2.5 and α = 2.625) are not considered here. At each
reduced velocity, the PSD is normalized by the magnitude of the largest peak. As
reported in § 3.2, the cylinder vibration is generally close to sinusoidal and dominated
by its fundamental frequency (f = fx), except for α = 0.5 around U⋆ = 3, where the
second harmonic component dominates (f = 2fx). In figure 7, the dominant frequency
of the cylinder vibration is denoted by a red triangle and the fundamental vibration
frequency, when it differs from the dominant frequency, is indicated by a blue cross
(U⋆ = 2.75 and U⋆ = 3 for α = 0.5, figure 7b). The dominant vibration frequency is
simply referred to as the vibration frequency or response frequency in the following.

Within the first vibration region (α 6 2), the PSD in figure 7(a–e) show that
for each rotation rate and reduced velocity, the vibration frequency coincides
with the fundamental frequency of the flow velocity or twice this frequency. The
bell-shaped structural responses occurring in this region (figure 5) thus develop
under a condition of wake-body synchronization or lock-in, which is the central
mechanism driving non-rotating cylinder VIV. This confirms the similarity between
the responses encountered in this area of the parameter space and VIV. It can be
noted that the very low-amplitude oscillations appearing away from the interval of
U⋆ associated with the peak amplitudes of response are also synchronized with the
wake, at a frequency close to the Strouhal frequency (or twice this frequency), as
previously observed for non-rotating cylinders (e.g. Prasanth & Mittal 2008). The
alteration of the wake anti-symmetry induced by the rotation is accompanied, within
the first vibration region, by a switch of the vibration frequency, generally equal to
the fundamental wake frequency for α > 0 versus twice this frequency for α = 0.
Dominant vibration components at twice the fundamental wake frequency may still
appear for α = 0.5, under vortex shedding patterns that remain close to, even though
not exactly, anti-symmetric. The wake patterns are analysed in more details in the
next subsection.

A striking phenomenon is that the condition of wake-body synchronization persists
in the second vibration region (α > 2.7, figure 7f –j), where the rotating cylinder
exhibits galloping-like responses (figure 6). Prior works have shown that galloping
oscillations do not generally involve such synchronization mechanism (e.g. Parkinson
& Smith 1964; Païdoussis et al. 2010). Synchronized states leading to steps in the
evolution of the response amplitude as a function of the reduced velocity were
previously reported over short intervals of U⋆ (Zhao et al. 2014a); they explain the
‘kinks’ identified in the galloping response curve by Bearman et al. (1987). These
observations however differ from the present results where the vibration frequency
is found to be equal to the fundamental wake frequency for all U⋆ in this range
of α. It is recalled that the term galloping-like is used in this paper in reference
to the trend of the response as a function of the reduced velocity (i.e. amplitude
increasing unboundedly with U⋆). The large-amplitude oscillations occurring in the
second vibration region are not driven by a quasi-steady mechanism (appendix A)
and appear to be systematically associated with wake-body synchronization.

The successive emergence of large higher harmonic contributions in the flow
velocity spectrum, as U⋆ increases within the second vibration region, suggests
that an increasing number of vortices are shed per oscillation cycle. This point is
examined in the following. The three-dimensional simulation results corroborate the
above mentioned findings.
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FIGURE 7. (Colour online) PSD of the cross-flow component of the flow velocity at
(x/D, y/D) = (10, 0) as a function of the reduced velocity for (a) α = 0, (b) α = 0.5, (c)
α = 1, (d) α = 1.5, (e) α = 2, (f ) α = 2.7, (g) α = 2.75, (h) α = 3, (i) α = 3.25, (j) α = 3.5.
For each reduced velocity, the PSD is normalized by the magnitude of the largest peak.
The colour levels range from 0 (white) to 1 (black). The dominant vibration frequency
of the cylinder (f ) is indicated by a red triangle and the fundamental vibration frequency
(fx), when it differs from the dominant frequency, is denoted by a blue cross.



(a)
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II

FIGURE 8. (Colour online) Instantaneous iso-contours of spanwise vorticity: (a) II pattern,
(α, U⋆) = (1.5, 1), ωz ∈ [−0.3, 0.3]; (b) D+ pattern, (α, U⋆) = (2.5, 1), ωz ∈ [−0.2, 0.2].
Positive/negative vorticity values are plotted in yellow/blue. A dashed line indicates the
vortices formed over one shedding cycle. Part of the computational domain is shown.

4.2. Wake patterns

The boundaries of the steady and unsteady flow areas of the (α, U⋆) domain coincide
with the limits of the two vibration regions identified in figure 4(b). A variety
of unsteady flow patterns are encountered in the parameter space under study. A
nomenclature based on the number of vortices shed per fundamental period of the
flow unsteadiness (based on the fundamental frequency of v at (x/D, y/D) = (10, 0))
is adopted to designate the different wake patterns. For instance, the II pattern
is associated with the formation of two vortices per cycle while the V pattern
corresponds to the formation of five vortices. Due to the condition of wake-body
synchronization identified in § 4.1, the present nomenclature indicates the number of
vortices shed per oscillation period, once the body vibrates, except for the low rotation
rates (e.g. α = 0 and some values of U⋆ for α = 0.5) where the cylinder may oscillate
at twice the fundamental frequency of the wake. In the present configuration where
body rotation results in asymmetric patterns and substantial deviations compared to
the patterns previously reported in the absence of rotation (Williamson & Roshko
1988), this nomenclature is preferred to the more usual approach based on the
identification of single vortices (S) and pairs (P) or triplets (T) of vortices. It may
appear as a simpler way to describe the vortical structures in the context of this study,
as the distinction between the 2S and P topologies, for example, may be subtle.

The different wake patterns are illustrated in figures 8–10 by instantaneous
iso-contours of spanwise vorticity, for selected values of the couple (α, U⋆) which
are designated by black dots in figure 4(b). In figures 8–10, a dashed line regroups
the vortices formed over one shedding cycle, the corresponding pattern is mentioned
and the in-line trajectory of the body centre is indicated by a segment.

When the cylinder does not vibrate (or exhibits vibrations of negligible amplitudes,
e.g. for U⋆ < 2), two wake patterns develop in the range of α investigated. For α < 1.8,
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FIGURE 9. (Colour online) Instantaneous iso-contours of spanwise vorticity: (a) II
pattern, (α, U⋆) = (1.5, 5.875), ωz ∈ [−0.3, 0.3]; (b) II pattern, (α, U⋆) = (3.25, 8), ωz ∈
[−0.25, 0.25]; (c) III pattern, (α, U⋆) = (3.25, 10.5), ωz ∈ [−0.3, 0.3]. Positive/negative
vorticity values are plotted in yellow/blue. A dashed line indicates the vortices formed
over one shedding cycle. The trajectory of the cylinder centre is indicated by a segment.
Part of the computational domain is shown.

the wake is characterized by the formation of two counter-rotating vortices per cycle
(II or 2S pattern), as in the stationary cylinder case (figure 8a). As also noted in
previous studies (e.g. Mittal & Kumar 2003), the rotation induces an asymmetry in
the strength of the positive and negative vortices, and an upward deviation of the
wake. Beyond α = 1.8, the wake of the non-vibrating cylinder is composed of two
elongated layers of vorticity of opposite signs and deflected upwards (figure 8b); the
flow is steady. In a prior work (Bourguet & Lo Jacono 2014) this pattern was named
D+, in reference to the positive value of the associated drag force, which becomes
negative at higher rotation rates.

The occurrence of free structural oscillations is accompanied by a local extension of
the unsteady flow region located in the lower range of α, up to α = 2 approximately
around U⋆ = 6. It is also associated with the appearance of a second unsteady flow
area, which corresponds to the second vibration zone in the higher range of α.

Within the first unsteady flow region (α 6 2), the wake is still characterized by the
II pattern once the body exhibits significant vibrations (figure 9a).



(a)

(b)

(c)

V

IV

VI

FIGURE 10. (Colour online) Instantaneous iso-contours of spanwise vorticity: (a) IV
pattern, (α, U⋆) = (3.5, 15), ωz ∈ [−0.2, 0.2]; (b) V pattern, (α, U⋆) = (2.75, 18), ωz ∈
[−0.2, 0.2]; (c) VI pattern, (α, U⋆) = (3, 23), ωz ∈ [−0.3, 0.3]. Positive/negative vorticity
values are plotted in yellow/blue. A dashed line indicates the vortices formed over one
shedding cycle. The trajectory of the cylinder centre is indicated by a segment. Part of
the computational domain is shown.

A detailed map of the wake patterns occurring in the second vibration region is
presented in figure 11. The cases visualized in figures 9 and 10 are indicated by
black dots. It is recalled that the limits of the different zones remain approximate.
The formation of two vortices per cycle is also observed in the second unsteady
flow region, as illustrated in figure 9(b). Within this second region, for α > 2.85
approximately, the number of vortices shed per oscillation period tends to increase
with U⋆ and up to six vortices may form beyond U⋆ = 20 (VI pattern, figure 10c).
The existence of these wake patterns and their location in the parameter space
are confirmed by the three-dimensional simulation results, especially beyond the
critical rotation rate associated with the flow three-dimensional transition, as shown
in § 4.3. By adopting the more usual nomenclature, the V and VI patterns may,
for instance, be referred to as T+P and Q+P, respectively (Q would designate a
quartet of vortices). These flow topologies did not appear in the wake of a rotating
cylinder freely oscillating in the cross-flow direction within a comparable parameter
space (Bourguet & Lo Jacono 2014). To the authors’ knowledge, such asymmetric
multi-vortex patterns were not previously reported.
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FIGURE 11. (Colour online) Wake pattern as a function of the rotation rate and reduced
velocity in the second vibration region. The limit of the unsteady flow region, which
coincides with the vibration region, is indicated by a plain line. Black dots denote the
cases considered in figures 9 and 10 (two-dimensional results) while blue circles designate
the cases presented in figures 13 and 14 (three-dimensional results).

Prior works concerning oscillating non-rotating cylinders have emphasized the close
connection between wake pattern selection and oscillation amplitude and frequency
(e.g. Williamson & Roshko 1988). The pattern selected in the present configuration
for each couple (α, U⋆) is indicated in the rotation rate-response amplitude–frequency
domain in figure 12(a) and the results obtained for all the rotation rates are gathered
in the response amplitude–frequency domain in figure 12(b). The first vibration region,
where the oscillation amplitude remains lower than 0.1D and which is characterized
by a single flow topology (II pattern) is not considered here. The analysis concerns
the second vibration region where five distinct patterns are encountered. Results
obtained from the additional two-dimensional simulations performed to determine
the maps in figures 4(b) and 11, as well as three-dimensional simulation results
(denoted by circled blue symbols) are included in figure 12(b). As a global trend,
also noted for a rotating cylinder oscillating in the cross-flow direction (Bourguet &
Lo Jacono 2014), the number of vortices shed per cycle tends to increase with the
vibration amplitude and as the frequency decreases. In some cases, a sudden change
in the response amplitude can be directly associated with an alteration of the wake
pattern, as, for instance, between (α, U⋆) = (2.75, 15.5) and (α, U⋆) = (2.75, 16)

where the amplitude increases from 0.4D to 1.3D, around f = 0.06, while the flow
topology switches between patterns II and V. However, it should be mentioned that
the transitions between successive patterns cannot be systematically related to the
undulations noted in the evolution of the vibration amplitude.

The next subsection focuses on the occurrence of the three-dimensional transition
in the flow past the freely oscillating rotating cylinder.

4.3. Three-dimensional transition

The impact of a forced rotation on the flow three-dimensional transition was
highlighted in previous studies concerning rigidly mounted cylinders (e.g. Mittal 2004;
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FIGURE 12. (Colour online) Wake pattern as a function of (a) the rotation rate, maximum
amplitude of vibration and vibration frequency and (b) the maximum amplitude of
vibration and vibration frequency for all the rotation rates α > 2.7. In (a), the colour
code used to indicate the type of wake pattern is the same as in figure 11. In (b), the
three-dimensional simulation results are denoted by circled blue symbols.

Radi et al. 2013). At Re = 100, the three-dimensional transition was found to appear
for α ≈ 3.7 in this case (Pralits et al. 2013; Rao et al. 2013a). It was also shown
that the flow may remain two-dimensional beyond this critical rotation rate when the
cylinder is subjected to transverse oscillations (Bourguet & Lo Jacono 2014). The
above mentioned critical value is larger than the maximum rotation rate considered in
the present work (α = 3.5). However, as reported in § 3 (e.g. figure 6), the structural
responses predicted by two- and three-dimensional simulations are identical for
α = 2.75 over a range of U⋆ values that encompasses the entire vibration window
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FIGURE 13. (Colour online) Instantaneous iso-surfaces of spanwise vorticity (three-
dimensional simulations, ωz = ±0.07): (a) II pattern, (α, U⋆) = (3.25, 8); (b) IV pattern,
(α, U⋆) = (3.5, 15); (c) VI pattern, (α, U⋆) = (3, 23). Positive/negative vorticity values
are plotted in yellow/blue. Dashed arrows indicate the vortices shed over one cycle. The
trajectory of the cylinder centre is indicated by a segment. Part of the computational
domain is shown.
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FIGURE 14. (Colour online) Same as figure 13 for the streamwise vorticity (ωx = ±0.01).

up to U⋆ = 23, but they systematically differ for α = 3. Therefore, the flow past the
cylinder oscillating in the in-line direction undergoes three-dimensional transition in
the second vibration region for a critical rotation rate located between 2.75 and 3,
i.e. substantially lower than in the absence of vibration. As a consequence, while the
onset of flow three-dimensionality is delayed under cross-flow oscillation, it tends
to occur earlier under in-line oscillation. The in-line motion causes large variations
of the instantaneous rotation rate and Reynolds number based on the instantaneous
flow velocity in the cylinder frame. During an oscillation cycle, the instantaneous
rotation rate and Reynolds number may reach the critical values associated with
the three-dimensional transition in the rigidly mounted cylinder configuration. This
aspect is briefly addressed in appendix B but it appears that the occurrence of the
three-dimensional transition in the vibrating cylinder case cannot be directly connected
to the flow behaviour in the rigidly mounted body configuration. The results reported
in the following do not aim at providing an extensive analysis of the transition
mechanisms. Instead, the objective is to present some of the principal features of
the three-dimensional flow within the parameter space under study and to clarify the
potential alteration of the wake patterns identified in § 4.2.

Visualizations of the three-dimensional flow in selected points of the second
vibration region (indicated by blue circles in figures 4b and 11) are presented in
figures 13 and 14, by means of instantaneous iso-surfaces of the spanwise and
streamwise vorticity components, respectively. In these plots, a segment indicates
the trajectory of the cylinder centre. As illustrated in these figures, the flow
three-dimensional transition is characterized by a regular spanwise undulation
particularly pronounced around the cylinder and in the near wake, and which tends
to vanish further downstream, where the spanwise vortex rows appear essentially
two-dimensional. Among all simulated cases, the spanwise wavelength of the



three-dimensional pattern is found to range between 1D and 1.7D, approximately.
A typical wavelength close to 1.7D was previously identified by means of direct
numerical simulation at the onset of the three-dimensional transition, for a rigidly
mounted rotating cylinder at Re = 100 (Bourguet & Lo Jacono 2014). Comparable
wavelengths were reported in this case on the basis of linear stability analyses (Pralits
et al. 2013; Rao et al. 2013a). In the present configuration, the spanwise wavelength
may exhibit significant variations for a given rotation rate, depending on the reduced
velocity. For instance, for α = 3, wavelengths approximately equal to 1.25D, 1.1D, 1D

and 1.7D are identified for U⋆ ∈ {9, 11, 15.5, 23}. It can be noted that the evolution
of the wavelength is not monotonic as a function of U⋆ and no evident connection
appears with the vibration amplitude and frequency. A comparable variability of the
spanwise wavelength is observed as a function of α, for a fixed value of U⋆.

Comparisons of the flow structures obtained through two- and three-dimensional
simulations for the same couples (α, U⋆) indicate that, across the entire parameter
space investigated, the slight spanwise modulations associated with the three-
dimensional transition do not significantly alter the shape of the wake patterns
reported in § 4.2, under two-dimensional flow assumption. The absence of substantial
impact of the three-dimensional transition on the wake patterns is illustrated in
figure 13 where the II, IV and VI patterns, previously depicted on the basis of
two-dimensional simulation results in figures 9(b), 10(a) and (c), respectively, can be
clearly identified. In this figure the spanwise vortices shed over one oscillation cycle
are indicated by dashed arrows. The three-dimensional nature of the flow has only a
limited influence on the structural responses: as shown in § 3, the vibration amplitudes
and frequencies obtained from the three-dimensional simulations performed beyond
the critical rotation rate remain close to those predicted under two-dimensional flow
assumption.

In order to complement the investigation of the flow–structure system behaviour
in each vibration region, an analysis of the forces exerted by the fluid on the
flexibly mounted rotating cylinder, including a quantification of the effect of the
three-dimensional transition, is presented in the next section.

5. Fluid forces

Statistical and spectral analyses of the fluid forces are reported in § 5.1. The phasing
mechanisms between force and displacement, and the effective added mass induced by
the fluid are examined in § 5.2, with an emphasis on the differences occurring between
the two vibration regions.

5.1. Statistics and spectral analysis

The time-averaged in-line and cross-flow force coefficients are plotted as functions
of the reduced velocity in figures 15 and 16. For each rotation rate, the values of
Cx and Cy in the rigidly mounted cylinder case are indicated by dashed lines. In the
absence of vibration, Cx decreases as α increases within the range investigated, as also
reported in previous works (Stojković et al. 2003; Bourguet & Lo Jacono 2014). The
global decrease of Cy as a function of α in the non-vibrating body case corresponds to
the Magnus effect (Prandtl 1925). The negative sign is due to the counter-clockwise
rotation. In agreement with prior studies concerning rigidly mounted cylinders (e.g.
Mittal & Kumar 2003), Cy differs from the prediction through potential flow theory
(Cy = −2πα) and exceeds the limit of 4π proposed by Prandtl (1925). Substantial
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FIGURE 15. (Colour online) Time-averaged in-line force coefficient as a function of the
reduced velocity. A dashed line indicates, for each rotation rate, the time-averaged force
coefficient in the rigidly mounted cylinder case. The three-dimensional simulation results
are denoted by circled blue symbols.

alterations of Cx and Cy can be observed when the cylinder oscillates compared to
the rigidly mounted body case (dashed lines in figures 15 and 16).

The deviation of Cx from its value in the rigidly mounted body case is plotted
as a function of the oscillation maximum amplitude in figure 17. For clarity, due
to the difference in the typical oscillation amplitudes, the results corresponding to
each vibration region are presented separately. A small reduction of Cx compared
to the stationary body value may occur in the range of low oscillation amplitudes
(e.g. for α = 1.5). However, except in this range and regardless of the type of wake
pattern, the structural oscillations are generally associated with an amplification of Cx.
As also shown in previous studies concerning non-rotating cylinders oscillating in
the cross-flow direction (Khalak & Williamson 1999; Carberry et al. 2005), Cx tends
to globally increase with the vibration amplitude. The deviation from the stationary
body case value may become very large in the second vibration region, and cause



2 4 6 8 10 12 14 16 18 20 22

–13

–12

–11

–10

–9

–8

–7

–6

–5

–4

–3

–2

–1

0

FIGURE 16. (Colour online) Same as figure 15 for the cross-flow force coefficient.

a substantial shift of the cylinder mean position (§ 3.1). For a given rotation rate and
comparable vibration amplitudes, some dispersion may appear in the values of Cx, for
instance, around 1.5D for α = 3.5. Such dispersion is expected since the amplification
of Cx is also connected to the vibration frequency, as reported in prior works (e.g.
Carberry et al. 2005). In the cross-flow direction, small negative deviations of Cy from
the stationary body case value can be noted within the first vibration region while the
second vibration region is globally characterized by positive deviations of much larger
magnitudes (figure 16).

The fluctuating parts of the fluid forces also exhibit considerable variations across
the parameter space as illustrated in figure 18, which represents, for each rotation
rate, the RMS values of the force coefficient fluctuations as functions of the reduced
velocity. These RMS values, equal to zero beyond α = 1.8 in the absence of body
oscillation due to the stationary nature of the flow, may reach high levels within
the second vibration region (α > 2.7). A separate monitoring of the pressure and
viscous components of the force fluctuation in the direction of motion (i.e. the in-line
direction) shows that the RMS value of the pressure contribution follows the behaviour
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of vibration, for (a) α6 2 and (b) α> 2.7. In (b), the three-dimensional simulation results
are denoted by circled blue symbols.

of the total force while the viscous part presents generally a much lower RMS value
and a smoother evolution as a function of U⋆. Such trends were previously observed
for a rotating cylinder free to vibrate in the cross-flow direction (Bourguet & Lo
Jacono 2014).

The three-dimensional simulation results are indicated by circled blue symbols
in figures 15–18. Beyond the critical rotation rate associated with the flow three-
dimensional transition (α > 3 in the results presented), the time-averaged value of
the in-line force coefficient and the RMS values of both force coefficient fluctuations
are found to be globally lower than those predicted under two-dimensional flow
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functions of the reduced velocity. The three-dimensional simulation results are denoted
by circled blue symbols.

assumption. Nonetheless, the main features reported above concerning the fluid
forcing, and especially the amplifications noted within the second vibration region,
are confirmed by these additional three-dimensional results.

The fluid forces are periodic in all studied cases, similarly to the structural
responses. The frequency content of the fluid force acting on the cylinder in the
direction of motion is quantified in figure 19, where the PSD of Cx time series is
plotted as a function of the reduced velocity, for each rotation rate. The PSD is
normalized by the magnitude of the largest peak. The fundamental frequency of the
wake is denoted by a blue square. It can be observed that the fundamental frequency
of the fluid forcing coincides with the fundamental frequency of the flow unsteadiness
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or twice this frequency. It is recalled that the condition of wake-body synchronization
is established in all studied cases (§ 4.1). Hence, the fluid forcing and the cylinder
response are also synchronized. More preciselly, the fundamental frequencies of Cx

and ζ are the same. The global switch in the force-to-wake fundamental frequency
ratio, from 2 to 1 between α = 0 and α > 0 cases, which is associated with the
asymmetry introduced by the imposed rotation and which was previously reported
for the structural response (§§ 3.2 and 4.1), is clearly visible in this figure. Such
frequency switch of the in-line force was also mentioned in prior studies concerning
rigidly mounted rotating cylinders (e.g. Mittal & Kumar 2003).

In previous work focusing on the free cross-flow vibrations of a rotating cylinder
(Bourguet & Lo Jacono 2014), fluid forcing was found to exhibit large higher
harmonic components. This phenomenon was connected to the variable inclination of
the flow velocity relative to the body frame due to the transverse displacement. Such
mechanism does not apply in the present configuration where the direction of motion
is aligned with the current, and it appears that the higher harmonic contributions
remain generally small in the force spectrum. Some substantial second harmonic
contributions may however be noted in a very narrow range of reduced velocities,
around U⋆ = 6, within the first vibration region (e.g. for α = 1.5). This feature can
be related to the force–displacement phasing as shown in the next subsection. In all
the cases, the cross-flow force is dominated by a single component peaking at the
fundamental wake frequency. The three-dimensional simulation results corroborate the
above observations concerning the spectral content of the fluid forces.

5.2. Force–displacement phasing and effective added mass

The mechanisms of phasing between the fluid forcing and the free in-line oscillation
of the rotating cylinder are analysed in the following. Due to their synchronization and
the coincidence of their fundamental frequencies, the periodic in-line displacement and
force coefficient may be expanded as follows:

ζ =
∞
∑

n=0

ζn sin(2πnfxt + φn) and Cx =
∞
∑

n=0

Cxn sin(2πnfxt + φxn), (5.1a,b)

where ζn and Cxn designate the spectral amplitudes while φn and φxn denote the
phase lags. Here, particular attention is paid to the phasing between the dominant
vibration component and the associated force component. Since the principal vibration
component may occur at f = fx or f = 2fx, the generic index nx is used to designate the
dominant vibration component of the cylinder (f = nxfx). Without loss of generality,
φnx

is selected equal to 0◦ so that the phase difference between the force component
associated with the main vibration component and this vibration component is equal
to φxnx

. If ζ and Cx verify the dynamics equation (2.1) in which the structural
damping is set to zero (ξ = 0), then (for nxfx 6= fn):

φxnx
= 0◦ or 180◦, (5.2)

and

4π
2f 2

n (1 − f ⋆2)ζnx
=

Cxnx

2m
cos(φxnx

), (5.3)

where, as previously defined, f ⋆ = f /fn = nxfx/fn. The two possible phasing states of
the system are thus: (i) the force and displacement are in phase (φxnx

= 0◦) and the



vibration frequency is lower than the natural frequency in vacuum (f ⋆ < 1); (ii) the
force and displacement are in antiphase (φxnx

= 180◦) and the vibration frequency is
larger than the natural frequency in vacuum (f ⋆ > 1). A phase jump occurs when the
vibration frequency passes through the value of the natural frequency. For f ⋆ = 1, the
force component associated with the main displacement component (Cxnx

) vanishes
since Cxnx

cos(φxnx
) = Cxnx

sin(φxnx
) = 0.

Previous works concerning non-rotating (Khalak & Williamson 1999; Leontini
et al. 2006; Dahl et al. 2010) and rotating (Bourguet & Lo Jacono 2014; Zhao et al.

2014a) cylinders, oscillating either in the cross-flow direction or in both directions,
have emphasized the possible existence of the two above phasing states. In the
present case of free in-line vibrations, the cylinder vibration frequency was found to
cross the oscillator natural frequency as U⋆ increases, for each rotation rate α 6 1.5
(figure 5b). As a result, both phasing states (φxnx

= 0◦ and φxnx
= 180◦) may be

encountered within the first vibration region. In contrast, the vibration frequency
remains lower than the natural frequency in the second vibration region (figure 6b),
which indicates that no phase jump occurs in this region and that the force and
displacement are in phase, regardless the value of U⋆. This behaviour is also verified
on the basis of the three-dimensional simulation results. The above observations are
confirmed in figure 20, where the phase difference φxnx

is plotted as a function of
the reduced velocity for each rotation rate (blue squares, left axis). An analogous
disappearance of the force–displacement phase jump was previously reported beyond
α = 2 for a rotating cylinder freely oscillating in the cross-flow direction (Bourguet &
Lo Jacono 2014). The phasing of the pressure and viscous parts of the in-line force
can be monitored separately. The phase difference between the nxth harmonics of
the pressure part of Cx and the displacement is generally close to φxnx

, with typical
deviations in the range 0◦ to −30◦. The viscous part exhibits larger deviations from
φxnx

. However, it is recalled that its contribution to Cx fluctuation remains usually
much smaller than the pressure part contribution.

On the basis of the above analysis, low magnitudes of the fundamental components
of Cx (Cx1) are expected near the phase difference jumps identified within the first
vibration region in figure 20 (nx = 1 for all the phase difference jumps in this figure).
Close to the jumps, the relative contributions of the higher harmonic components may
thus become significant in the force spectrum, for instance, near U⋆ = 6, for α = 0.5
and α = 1.5 (figure 19).

The vibration frequency and force–displacement phasing are closely connected to
the effective added mass coefficient, which can be defined as the ratio between the
effective added mass induced by the fluid force in phase with the cylinder acceleration
(ma) and the mass of the displaced fluid (mf ):

Cm =
ma

mf

= −
2

π

Cxζ̈

ζ̈ 2
with ma = −

〈Fx〉a
a2

and mf = ρf

πD2

4
, (5.4)

where a denotes the dimensional acceleration (a = ζ̈U2/D).
An effective added mass coefficient, involving the dominant component of the

response only (nxth harmonic), may be defined by removing all the other harmonic
contributions in (5.4):

Cnx

m =
Cxnx

cos(φxnx
)

2π
3f 2ζnx

. (5.5)
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FIGURE 20. (Colour online) Phase difference between the in-line force coefficient and
the cylinder displacement (left axis) and effective added mass coefficients (right axis), as
functions of the reduced velocity for (a) α = 0, (b) α = 0.5, (c) α = 1, (d) α = 1.5, (e)
α = 2, (f ) α = 2.7, (g) α = 2.75, (h) α = 3, (i) α = 3.25, (j) α = 3.5. The effective added
mass coefficient associated with the dominant harmonic of the response (Cnx

m defined in
(5.5)) and the effective added mass coefficient based on the total response (Cm defined in
(5.4)) are denoted by a black circle and a red dot, respectively.

For sinusoidal oscillations, Cnx
m is equal to Cm. The coefficient Cnx

m relates to the
vibration frequency as follows:

f ⋆ =
√

√

√

√

m

m +
π

4
Cnx

m

. (5.6)



For each rotation rate, Cnx
m is plotted as a function of the reduced velocity in figure 20

(black circles, right axis) and the values of Cm are also presented, for comparison
purpose (red dots, right axis). The three-dimensional simulation results (not reported in
this figure) confirm the trends described in the following. Due to the strong sinusoidal
nature of the structural responses, Cm remains generally close to Cnx

m . Some differences
may be noted for α = 0.5 near U⋆ = 3, where two vibration components of comparable
magnitudes emerge in the response spectrum. As previously observed for a rotating
cylinder oscillating in the cross-flow direction (Bourguet & Lo Jacono 2014), the
effective added mass coefficient substantially departs from the potential flow value
of 1. The global increase of the effective added mass coefficient with α identified
in this prior work is not observed here. The decreasing trend and the sign change
appearing within the first vibration region, for each α 6 1.5, when U⋆ increases, is
in agreement with the increasing trend of the vibration frequency, which crosses the
oscillator natural frequency (figure 5b). The positive value of the effective added mass
for α > 2 is associated with a vibration frequency that remains lower than the natural
frequency (f ⋆ < 1) and thus with the absence of jump of the force–displacement phase
difference in the second vibration region.

6. Conclusions

The flow-induced vibrations of a circular cylinder, free to oscillate in the in-line
direction and subjected to a forced rotation, have been investigated over a wide range
of rotation rates and reduced velocities, at a Reynolds number equal to 100. A joint
analysis of the structural responses, wake patterns and fluid forces was presented on
the basis of two- and three-dimensional simulation results. Free in-line oscillations
occur below the rotation rate associated with vortex shedding suppression in the
rigidly mounted cylinder case (α ≈ 1.8) but also beyond this critical value of α.
Two regions of vibrations have been identified in the (α, U⋆) parameter space, for
rotation rates lower than 2 and larger than 2.7 approximately, each one characterized
by a specific regime of response. Between the vibration regions, the steady wake
is composed of two elongated layers of spanwise vorticity of opposite signs (D+

pattern). The principal features of the two vibration regions are summarized hereafter.

First vibration region: VIV-like responses. From α = 0 up to a rotation rate close to
2, the cylinder is found to exhibit low-amplitude vibrations. For each rotation rate in
this zone, the oscillation amplitude follows a bell-shaped evolution as a function of
the reduced velocity. The maximum vibration amplitudes are observed around U⋆ = 6.
They reach 0.06D for α = 1.5, which represents a considerable amplification compared
to the non-rotating body case where a maximum vibration amplitude of 1.5 × 10−3D
is noted at Re = 100. Due to their trend as functions of U⋆ and to the fact that they
develop under a condition of wake-body synchronization or lock-in, the responses of
the rotating cylinder in this region are comparable to the VIV previously described
for non-rotating cylinders.

The typical wake pattern in this region consists of two counter-rotating vortices
shed per cycle. The alteration of the wake anti-symmetry induced by the rotation
is generally accompanied by a switch of the in-line fluid force and body oscillation
frequencies, which are equal to the fundamental frequency of the flow unsteadiness,
versus twice this frequency for α = 0. For a given rotation rate, both force–
displacement phasing states (i.e. in-line force and displacement in phase or in
antiphase) may be encountered in this area of the parameter space, depending on the
value of U⋆. The phase difference jumps associated with transitions between these



two states, when the vibration frequency crosses the oscillator natural frequency and
the effective added mass changes sign, may thus occur in the first vibration region.

Second vibration region: galloping-like responses. The lower limit of the second
vibration region lies close to α = 2.7. The vibrations appear around U⋆ = 8. Contrary
to the bell-shaped evolutions noted in the first vibration region, the amplitude of the
typical response observed in this second region tends to increase unboundedly with
U⋆. It may become very large, e.g. higher than 2.5D for (α, U⋆)= (3.5, 23). Therefore,
the structural oscillations developing in this area of the parameter space resemble
the galloping responses reported for non-axisymmetric bodies. These vibrations,
however, cannot be predicted through quasi-steady analysis. Galloping-like oscillations
were previously observed for a rotating circular cylinder free to move in both the
in-line and cross-flow directions but not when the body was restrained to a single
degree-of-freedom in the cross-flow direction. For a given reduced velocity, the
oscillation amplitude is found to increase with α.

As in the first vibration region, body oscillation and flow unsteadiness remain
synchronized across the entire response area. Such synchronization is not generally
expected for galloping oscillations. Here, the vibration frequency is shown to always
coincide with the fundamental frequency of the wake. The number of vortices
shed per cycle tends to globally increase with the vibration amplitude and with
the reduction of its frequency. Novel asymmetric multi-vortex patterns, combining
a pair and a triplet or a quartet of vortices per cycle, develop in this region. The
flow past the oscillating cylinder is found to undergo three-dimensional transition
for a critical rotation rate located between 2.75 and 3, i.e. lower than for a rigidly
mounted cylinder (α ≈ 3.7). The flow three-dimensional transition is characterized by
a regular spanwise undulation particularly pronounced around the body and in the
near wake, and which tends to vanish further downstream. The spanwise wavelength
of the three-dimensional pattern ranges between 1D and 1.7D approximately. It
should be mentioned that the three-dimensional nature of the flow has only a limited
influence on the system behaviour since the three-dimensional simulation results
beyond the critical rotation rate are close to those obtained under two-dimensional
flow assumption.

The fluid forces, which mainly peak at the vibration/wake frequency, are considerably
altered in this zone of large-amplitude oscillations, compared to the non-vibrating
body case. In particular, the time-averaged in-line force is substantially amplified and
this amplification is associated with a shift of the cylinder mean position. Within the
second vibration region, the force and displacement are shown to be in phase, i.e. no
phase difference jump occurs. This phenomenon is related to a vibration frequency
that remains lower than the oscillator natural frequency, and a positive value of the
effective added mass.
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Appendix A. Quasi-steady analysis

Additional results are presented in this appendix to clarify the possibility of
predicting through quasi-steady approach, the large-amplitude responses encountered
in the second vibration region identified in § 3.2. A series of two-dimensional
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simulations of the flow past a rotating cylinder subjected to a constant velocity
ζ̇ have been performed over a range of body velocities around ζ̇ = 0. The rotation
rate was set to a value of 3, for which the flexibly mounted cylinder is subjected to
galloping-like oscillations typical of the second vibration region.

The time-averaged in-line force coefficient obtained by these simulations is plotted
in figure 21 as a function of the body velocity. The flow is steady in all these
additional simulations and Cx = Cx. The in-line force decreases with the cylinder
velocity in the range investigated. These results obtained for a cylinder moving at
constant velocity thus suggest that the fluid force would tend to oppose any variation
of ζ̇ around ζ̇ = 0. Therefore, the cylinder responses identified when it is free to
oscillate are not expected based on the above quasi-steady analysis.

Appendix B. Complements on three-dimensional transition

Instantaneous rotation rate and Reynolds number, based on the instantaneous flow
velocity in the cylinder frame, can be defined respectively as follows:

αi =
α

1 − ζ̇
and Rei = Re

(

1 − ζ̇
)

. (B 1a,b)

The evolutions of αi and Rei over one oscillation cycle are plotted in figure 22 for four
selected points located in the second vibration region (three-dimensional simulation
results). In this plot, the limit between two- and three-dimensional flow determined
by Pralits et al. (2013) and Rao et al. (2013a) in the rigidly mounted cylinder
configuration is indicated by a dashed line. The vibrating body crosses this limit in
all selected cases. However, the flow which is found to be three-dimensional in the last
three cases (α > 3), remains two-dimensional in the first one (α = 2.75). In addition,
it can be noted that the excursion beyond this limit is longer for (α, U⋆) = (2.75, 9.5)
than for (α, U⋆) = (3.25, 8) whereas the flow is two-dimensional in the former case
and three-dimensional in the latter case. As a consequence, it appears that the two-
or three-dimensional nature of the flow past the vibrating rotating cylinder cannot be
anticipated from the results obtained in the rigidly mounted body configuration.
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