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1 Introduction

Nacre  (the  pearly  internal  layer of  seashells)  is  a  natural 

nanocomposite  currently  studied  for  the  design  of  new 

organic/inorganic  hybrid  materials  by  mimicking 

biomineralization  processes. It  is  a  bioceramic  formed  at 

ambient  temperature  and  pressure  [1]  which  displays  an 

exceptional high  strength,  stiffness  and  toughness  [2]  to 

weight ratio, as well as a natural biocompatibility with human 

bones [3]. 

These  exceptional  properties are  generally  ascribed  to its 

highly ordered layered microstructure [4,5] described as a

“brick and mortar” arrangement [6] where (Fig. 1): the bricks  

(97% in  weight) refer  to flat  crystals  of  calcium carbonate 

(CaCO3)  in the crystalline form of aragonite (thickness less 

than  500 nm);  and the  mortar (3% in weight)  refers  to  an 

“intercrystalline” thin network (about 40 nm) of a biological

organic adhesive composed of silk-fibroin-like proteins and β-

chitin [1-3]. In addition (Fig. 1c), each aragonite platelet

consists  of  nanosized  crystals  of  CaCO3 surrounded  by  a 

water-soluble “intracrystalline” organic phase organised as a

foam with very thin walls and closed porosity [7,8,9]. Thus, 

the platelet  is  itself  a  nanograin-reinforced  organic  matrix 

composite. 

The aim of this paper is to understand some of the fracture

mechanisms induced by friction as  evidenced in  a  previous 

study [9]. First, spherical nanoindentation will enable to assess 

the elastic properties of each component of sheet nacre –  i.e 

aragonite  platelet and  intercrystalline organic  phases  –  by 

using either an experimental way or a numerical identification 

from  a  structural  model.  For  this  purpose,  AFM  analysis 

(Atomic  Force  Microscopy)  is  a  suitable  tool  for 

characterizing and modelling the multiscale structure of nacre.

Then, two structural models will be proposed for describing 

the respective structure of sheet nacre and that of the platelet. 

Finally, two Finite Elements models – devoted respectively to 

quasi-static and dynamic loads – will be considered in order to 

support a new friction-induced fracture mechanism. 

Figure 1: a) Schematic cross section of the friction surface.

Multiscale structure of sheet nacre: b)aragonite platelets are  

surrounded by an “intercrystalline” organic matrix. c) Each  

platelet is constituted by nanosized CaCO3  crystals (or

nanograins) surrounded by an “intracrystalline” organic  

phase.

2 Experimental

2.1 Samples 

Samples are made of sheet nacre extracted from giant  oyster 

Pinctada maxima [9]. They are polished more or less parallel 



to the aragonite platelets (Ra = 14.5  ± 0.6 nm). The average 

size of the initial  nanograins as determined by AFM image 

analysis  (Fig.  10)  is  38  ± 21nm.  The  thickness  of  the 

“intracrystalline” matrix is about 4 nm. 

2.2 Nanoindentation

The mechanical properties of samples are obtained with a

NHT nanoindenter manufactured by  CSM Instruments.  It  is 

composed of two elements: an instrumented nanoindenter and 

an optical microscope (enlargements,  ×50 and ×1000). These 

elements are linked with an electromechanical positioning

system  (X,Y),  which  allows  a  relocation  of  the  sample 

between the indenter and the microscope within a precision of 

0.5µm. The vertical displacement and loading resolutions are, 

respectively,  0.03  nm  and  1  µN.  The  compliance  of  the 

apparatus is 0.25 nm.mN
-1
. A 5 µm radius spherical diamond

indenter  is  used  (Ei =  1141  GPa,  νi = 0.07).  Due  to  the 

specificities of material, the standard methods of analysis - i.e 

Oliver &  Pharr  [10],  Field  &  Swain  [11]  -  are  not  really 

suitable for determining the real  Young’s modulus.  Thus, a 

Hertzian  analytical solution  is  fitted  onto  the  experimental 

curves  in  order  to  determine the Young’s  modulus and the 

yield stress. A minimum of 30 indentations is carried out for 

each test.  

2.3 Tribological tests

We  used  a  pin-on-disc  tribotester manufactured  by  CSM 

Instruments. The tests are carried out at ambient air and room 

temperature in dry conditions by repeated friction of a 3.5 mm 

square shaped pin of nacre against the surface of a polished 

disc of nacre (∅ 44 mm). The normal load varies from 1 to 6 

N corresponding to a mean contact pressure of 0.1 to 0.5 MPa. 

The speed  and the  distance of  sliding  are  respectively  10 

mm.s
-1
 and 100 m. 

2.4 AFM & Image Analysis 

Topography is assessed by using an Atomic Force Microscope 

Dimension  3000 connected  to  an  electronic  controller: 

Nanoscope IIIa manufactured by Digital Instruments (USA). 

Its spatial and vertical resolutions are lower than 1 nm and the 

field depth in-between 100 nm and 100 µm. The micrographs 

were achieved in high resolution (512×512 pixels) by using an 

intermittent contact mode (TappingMode) which minimizes 

the interactions between the probe and the surface during the 

acquisition and largely enhances the resolution compared to 

the  contact-mode  [12].  A  Phase  Detection  Imaging (PDI) 

provides the phase contrast maps which improve the detection

of  the particles  edges during the images analysis  [13]. The 

silicon nitride probe is displaying a tip rounding lower than 10 

nm.  The  work  frequency,  the  stiffness  and  the  cantilever 

amplitude are respectively: 270 kHz, 42 Nm
-1
 and 25nm. 

According  to the size  of  the images (between 0.25 and  25 

µm
2
), the scanning rate is varied from 1 to 2.4 µms

-1
. 

The size, the shape and the volume fraction of biocrystals

nanograins were determined, from the  phase contrast maps, 

with a specific algorithm integrated in the SPM data analysis 

software  Scanning  Probe  Image  Processor by  Image  

Metrology. Analysis was made from cumulated measurements 

of at least 5,000 particles (images of 0.25 – 1µm
2
).

3 Results and Discussion

3.1 Tribological Tests

In dry friction, the friction coefficient is rather high (µ=0.45),

The wear coefficients K of the pin and the disc are reported in 

the table 1. They clearly reveal an important dissymmetry: the

wear of the pin is negligible compared to the one of the disc. 

For that reason, we will be able to consider a rigid pin in the 

following numerical simulation.

Pin Disc

K (µg.m
-1
.N

-1
) 1.418 32.602

Table 1: Wear coefficients K

Figure 2 shows a typical AFM view of the friction track after 

100 m of sliding.  After cleaning, it is observed that the worn 

surface of  the  disc  is  strongly  degraded  by  parallel  cracks 

which follow the structure of sheet nacre.

Figure 2: Typical AFM view (20× 20 µm
2
) and topographic  

profile of the friction track

The morphology of these parallel cracks reveals two sorts of 

typical edge lines :

• On the one hand (Fig. 3), the crack is cut clear. The damage 

mechanism is  clearly a  brittle fracture  around the aragonite 

platelets  which  involves  the  fracturing  inside  the 

“intercrystalline” organic  matrix  at  the  interface  between 

adjacent platelets. 



Figure 3:Typical AFM views of the morphology of the edge  

line in the case of the brittle fracture

• On the other hand (Fig. 4), the crack edges are rough and 

strongly disturbed. The damage is a kind of crumbling of the 

aragonite  platelets.  In  this  case,  the fracture  is  supposed to 

occur  inside  the  aragonite  platelets  itself  and  involves  the 

fracturing of the “intracrystalline” organic matrix.

Figure 4: Typical AFM views of the morphology of the edge  

line in the case of crumbling

A thorough analysis  of  the  various fracture  mechanisms of 

sheet  nacre,  reported  in  the  literature  [2,4,5,14-22],  reveals 

that  they  necessarily  involve  the  “intercrystalline” organic 

matrix because it contributes to the energy absorption during 

crack  propagation. Fragmentation  of  the  aragonite  platelets 

has  never  been  reported in  the  literature. However,  this 

damage  is one  of  the  main  events  observed  in  tribological 

testing [9]. Hence,  the  strength of  the bonding  at 

organic/inorganic interface appears to play an important role 

in  the  fracture mechanisms of nacre  and  thus  in  the  wear 

mechanisms [18].

A Finite Elements Analysis should enable to understand this 

particular  fracture  mechanism  induced  by  friction. The 

required mechanical parameters of nacre’s components –  i.e 

the aragonite platelet and the “intercrystalline” organic phase 

– are determined by nanoindentation.  

3.2 Nanoindentation of aragonite platelets

Figure 5 shows the load-depth curves  obtained with a  5µm 

radius indenter for 2 mN maximal load.  The curves reveal a 

purely  elastic behaviour of  the  aragonite  platelets. As  the 

curves are slightly disturbed, the standard analysis methods - 

like Oliver & Pharr or Field & Swain -  are not really suitable. 

Hence, a  Hertzian  contact analytical solution was fitted onto 

the  experimental curves  in  order  to  determine the Young’s 

modulus (Fig. 6). The average value identified from the whole 

tests is : E = 62.49 ± 17.16 GPa.

Figure 5 : Experimental load-depth curves performed on  

aragonite platelets at low loads

Figure 6: Typical load-depth curve and numerical Hertzian  

model allowing the identification of elastic mechanical  

properties of aragonite platelets 

Figure 7 shows the load-depth curves obtained for 10 mN

maximal load. At this load, a dissipative component is clearly 

observed under the load-depth curves. As shown in the insert 

(Fig.  7),  the dissipative component corresponds to a plastic 

deformation  involving  piling-up  phenomena. The  previous 

Hertzian model  enables  to  extract  the  limit  of  the  elastic 

domain –  i.e the compressive yield stress (about  σy = 2 – 3 

GPa); 

In  the  tests  where  the  load  was  pushed  up  to  20  mN,  the 

contribution  of  the  “intercrystalline” matrix  was  observed 

because the penetration depth becomes higher  than 400nm. 

The  Young’s  modulus  decreased  from  62.5  to  54.4  GPa, 

corresponding to the Young’s modulus of sheet nacre – i.e.



aragonite platelets + intercrystalline organic phase (E = 54.42 

± 1.73 GPa).  

 

Figure 7: Experimental load-depth curves performed on  

aragonite platelets at high load. Insert: spherical imprints  

after tests. 

3.3 Properties of the intercrystalline organic matrix  

Knowing the mechanical properties of the aragonite platelets 

(62.5  GPa) and  the  nacre (54.4  GPa),  the  mechanical 

properties of  the  “intercrystalline” organic  phase  could  be 

drawn from a structural model. According to Rousseau et al.

[7,8],  the  Pinctada maxima sheet  nacre  does  not  present 

mineral bridges between the platelets. The  “intercrystalline” 

matrix is continuous. 

Hence, in first  approximation (Fig.  8),  it  can be considered 

that  the  spherical  nanoindentation  at  high  loads  gives  the 

transversal Young’s modulus (ET) of a stacking of layers made 

up of pure matrix and reinforced layers (mineral and organic). 

Figure 8: Illustration of the model used for identifying elastic  

properties of the intercrystalline matrix (dark grey) vs. those

of the platelet (light grey) 

This transversal Young’s modulus is given by the relation [23] 

: 
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where Ef, and Em are respectively the Young’s modulus of the 

aragonite platelets and the  “intercrystalline” organic matrix. 

Vf is the volume fraction of the platelets, considering nacre as 

a composite of platelets and “intercrystalline” organic matrix.

This relation provides a good approximation of the Young’s 

modulus  of the  matrix  (Em)  as  a  function  of  Ef and  ET,  

determined  by  nanoindentation  respectively  using  low  and 

high loads. 

Results  show  that  the  “intercrystalline” organic  matrix 

Young’s  modulus  is  10  times  lower  than  the  one  of  the 

aragonite platelets (Table 2). 

ET (GPa) Ef (GPa) Vf Em (GPa)

54.424 62.489 0.97 6.308

Table 2: Identified Young’s modulus of the intercrystalline  

organic matrix 

Knowing  the  mechanical  properties  of  the  constitutive 

components of sheet nacre, a Finite Elements Model is now

used to  illustrate  the specific fracture  processes  induced by 

friction. 

3.4 Numerical simulations

Many attempts have been conducted, in the last past years, to 

simulate the mechanical behaviour of sheet nacre [4, 24-27]. 

One of  the  major  conclusions,  deduced  from  those 

simulations, is that the fracture of the sample usually occurs 

inside of the biological “intercrystalline” organic matrix as

reported for example by Ji et al. [4]. 

But, according to the knowledge of the authors, the structure

is only subjected to quasi-static monotonic loading in tension 

in  all  those  simulations.  From  a  preliminary  look  at  the 

identified component  elastic  properties  reported in  Table  3, 

the mechanical  properties  of  the  aragonite  platelet  [A]  are 

higher than  the  one  of  the  biological  “intercrystalline” 

organic matrix [M].

E (GPa) σy (GPa) ν εmax

[A] 62.5 2 0.2 1%

[M] 6.3 0.116 0.3 10%

Table 3:  Identified mechanical properties

Comparison of material properties leads to conclude that, in 

quasi-static  traction  tests, high shear  region  and  crack 

propagation may only be located inside of the organic matrix. 

However, tribological tests have shown that the main fracture 

phenomenon occurs inside of the aragonite platelet. The main 

difference between the tribological test and quasi-static tests 

(tension, compression, bending…) is the presence of repeated 

shocks  induced  by  dynamic  effects. The  aim  of  the  two 

numerical  models  presented below is  to  show the effect  of 

these shocks on the localization of the fracture.



3.4.1 Numerical models used for FEM simulations

The first  numerical  model is used to simulate a quasi-static 

compression test and the second one to simulate the impact of 

a rigid body on a sheet nacre specimen. The Abaqus Explicit 

FEM code [28] is used to solve both problems. Figure 9 shows 

the  main characteristics  of  the  models  used  for  simulation. 

The inclination angle of 8°  between the impactor trajectory 

and the platelets has been evaluated using the AFM facility. 

Material  mechanical  properties used in both simulations are 

compiled in Table 3. From one model to the other one, only 

the boundary conditions linked to the rigid impactor vary.

Figure 9: Model used for numerical simulation

In  order to  simulate  the  fracture  inside  both  materials,  a 

ductile  damage law is  used in  this  simulation based on the 

maximal  strain  values  (εmax
)  reported  in  Table  3.  For  the 

aragonite  platelet,  the  plastic  deformation  is  probably 

controlled  by  the  “intracrystalline” organic  matrix 

surrounding  the  CaCO3 grains  (fig  10). Therefore,  the 

maximal  strain  value  of  the  platelet  is  estimated  from  the 

volume  fraction  of  the  organic  matrix  within  the  platelet, 

estimated  by  AFM  image  analysis  (about  12%  in  2D 

corresponding to 4.2% in 3D).  

Figure 10: Typical AFM views of the polished surface of an  

aragonite platelet observed in tapping-mode: topographic (a)  

and phase contrast maps revealing the nanosized grains of  

CaCO3 surrounded by the intracrystalline organic matrix .

Within  this  approach,  when the ductile  damage criterion is 

reached, the corresponding element is considered completely 

damaged, and is removed from the FE model using the erosion 

algorithm of the Abaqus code. In both numerical simulations, 

the rigid impactor is moved with a prescribed velocity of 10 

mm.s
-1

– corresponding to the relative tribological test

velocity. Contact is assumed to be frictionless. 

3.4.2 Quasi-static compression test

In this first application, the initial contact length between the 

aragonite platelet and the rigid impactor is 50 nm – i.e. 10% of 

the  total platelet height.  An  initial  velocity equal to  the 

impactor velocity has been applied on all nodes of the platelet 

in order to suppress the shock component at the beginning of 

the  simulation.  The  velocity  direction  is  parallel  to  the 

aragonite  platelets  arrangement.  Figure 11 shows  the von  

Mises contourplot for a total displacement  d = 30 nm of the 

rigid impactor. 

 

Figure 11: Results for the quasi-static compression test

Numerical  results  show  that  the  “intercrystalline” organic 

matrix is completely fractured, as reported by other authors 

[4]  using  quasi-static  traction  or  bending  tests,  while  the 

aragonite platelet  remains  intact  after  deformation  and 

becomes free. Fracture lines within the nacre sheet are clearly

represented by the use of the erosion algorithm coupled with 

the damage law.

3.4.3 Dynamic impact test

In this second application, the initial contact length between 

the aragonite platelet  and the impactor is also 50 nm. This 

approach is similar to one used in a previous work for the

numerical  simulation  of  a  machining  process  proposed  by 

Pantalé et al. [29]. The main difference is that the workpiece 

is built with a composite material. Figure 12 shows the von  

Mises stress contourplot for a total horizontal displacement d 

= 125 nm of the impactor after the first contact.



Figure 12: Numerical results for the impact test

Numerical results show some highly concentrated stresses in 

the vicinity of the contact zone between the impactor and the 

platelet  as  reported in  machining  operations. As  a  main 

consequence of dynamic effects, and the presence of repeated 

shocks,  the  fracture zone reported  in  Figure  12  is  totally 

different from the one reported in Figure 11. Major part of the 

fracture  is  now  located  inside  of  the  aragonite  platelet,  in 

accordance with experimental observations using tribological 

tests.  Stresses distribution, reported in Figure 12,  show that 

during the impact, the ratio between the equivalent stress and 

the  yield  stress  ( yσσ ),  inside  the  biological 

“intercrystalline” organic matrix, is lower than the one inside 

of the platelet.

Therefore, fracture propagation inside the organic matrix is

limited  (intercrystalline).  Different  simulations  have  shown 

that the ratio between the number of fractured elements inside 

of the platelet and inside of the organic matrix increases when 

the  height of  the  contact  zone  decreases  –  i.e when  the 

shearing depth decreases. This usually occurs in tribological 

tests.

3.5 Mechanical properties of the components of the

aragonite platelets

Although  many  works  were  carried  out  to elucidate  the 

mechanical  behaviour  of  nacre  [2,  4,  5,  14-22,  24-27],  no 

approach has  been  made  to  link  it  to  the  nanomechanical 

properties  of  the  elemental  components  constituting  the 

aragonite  platelets  –  i.e  biocrystals  and  “intracrystalline”  

organic phase. 

Previous results showed that nanoindentation provides a good 

estimation  of  the  aragonite  platelets  mechanical  properties 

whereas  tribological  testing  enables  the  assessment  of  their 

nanostructure by considering the morphology of the fracture 

edge line (Fig. 13). 

Figure 13: Typical AFM views of crumbled edge lines

(successive enlargements) showing the structure of the  

aragonite platelets. 

As  shown  in  fig.  10 –  structure  before  sliding  –  and  the 

various enlargements (Fig. 13) achieved on the edge of the

crack after platelets crumbling, the platelets can be considered 

like  a CaCO3  nanoparticles-reinforced  organic  composite 

material, where the volume fraction of each component can be 

assessed by AFM image analysis. 

Figure 10 confirms that the structure of the “intracrystalline” 

matrix is continuous around the nanograins [7,8]. Hence, one 

can consider the platelets like a composite material where

mineral nanoballs  are  drowned  into  a  continuous  organic 

matrix. Each phase being homogeneous, the elastic properties 

of  this  composite  can  be  determined  by  the  Mori-Tanaka 

model [30] given by the following relations : 
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Where  Vr is  the volume fraction of nanograins.  Details and 

complete hypotheses are available in [31]. 



An  hypothesis  about  the  Poisson’s  ratio  of  the 

“intracrystalline” organic phase is considered in this work (ν 
= 0.29). From the identified mechanical properties of the

platelets,  the  numerical  simulation  of  the  above  model 

provides  respectively  the  Young’s  modulus  of  the 

“intracrystalline” organic  matrix  and the Poisson’s ratio of 

the nanograins (Table 4). 

E (GPa) ν (GPa)

Platelet 62.5 0.2

Aragonite nanograin 96 
a)

0.17

Intracrystalline

organic matrix
3.6 0.29

a)
 assessed by Berkovich nanoindentation 

Table 4: Identification of the mechanical properties of the  

aragonite platelets components (i.e. aragonite grains and  

intracrystalline organic matrix) 

These results show that the “intracrystalline” organic matrix 

is almost 2 times less rigid than the “intercrystalline” organic

matrix (Table 2). These results should enable to explain the 

elastoplastic behaviour of the aragonite platelets observed in 

nanoindentation.

4 Conclusions 

The  aim  of  this  work  was to  understand the  fracture 

mechanisms induced by friction with an approach combining 

tribological  tests,  experimental  charac-terization  and 

numerical  simulation  for  quasi-static  and  dynamic loads. 

Results show that : 

• Spherical nanoindentation provides a good approximation of 

the  platelets  mechanical  properties  whereas  tribological 

testing enables to study their nanostructure –  i.e shape, size 

and  arrangement  of  aragonite  nanograins  within  the 

biocrystal;

• From raw results of nanoindentation, the identification of the 

mechanical properties of the aragonite platelets components is 

possible by using various “multiscale” structural models. This 

way, the identified elastic properties of the “intracrystalline” 

organic matrix was found to be about 2 times lower than that 

of the “intercrystalline” one. This explains the purely elastic 

behaviour of the platelet at low loads;

.• The  comparison  of  Finite  Elements  models  built 

respectively  for  quasi-static  and  dynamic loads  provides 

enlightenment on the fracture mechanism induced by friction. 

It shows that this latter is  linked to dynamic effects,  which 

have  a  significant  influence  on  performances  and  fracture 

location.
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