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H I G H L I G H T S

� 3D fully resolved simulations of the
flow through a packed bed of cylin-
ders.

� Satisfactory accuracy at high solid
fraction without any hydrodynamic
radius calibration.

� Effect of bed microstructure (particle
shape, polydispersity) on pressure
drop.

� Discussion and comparison with
existing pressure drop correlations.
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a b s t r a c t

Fully resolved simulations of the flow through a fixed bed of pellets are performed to better understand
the effect of the local microstructure on the energy loss, i.e., pressure drop through the bed. Both mono-
disperse and poly-disperse systems as well as spherical and cylindrical pellets (solid particles) are
investigated. Using a DEM-DLM/FD simulation method inspired by “Wachs, A. (2009). A DEM-DLM/FD
method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric
particles in a Newtonian fluid with collisions. Comput. Fluids 38(8), 1608–1628” and implemented here
in a Finite Volume context with second order reconstruction of the particle boundary as in “Rahmani, M.,
Wachs, A. (2014). Free falling and rising of spherical and angular particles. Phys. Fluids 26, 083301”, we
evidence that the computed solution converges nicely with mesh refinement and provide guidelines on
the grid size to guarantee a satisfactory level of accuracy. Based on these trustworthy simulation results,
we investigate the impact of the particle shape as well as the degree of poly-dispersity in the system on
the pressure drop over the fixed bed in the viscous regime. Unprecedented simulation results on the
flow through a bed of poly-disperse cylinders indicate that the correlation for poly-disperse spheres
suggested in “Van der Hoef, M.A., Beetstra, R., Kuipers, J.A.M. (2005). Lattice-Boltzmann simulations of
low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability
and drag force. J. Fluid Mech. 528, 233–254” may still be valid for cylinders of moderate aspect ratio.

1. Introduction

Most catalytic refining and petrochemical reactions are operated
with fixed bed reactors. In these reactors, catalyst pellets are generally
randomly stacked in a large cylindrical vessel and the reactants,
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usually gas and liquid, are flowing through the bed to react inside the
catalyst pellets. Catalyst pellets are made of a porous support onto
which are deposited active materials (noble metals, sulphides, etc.).
They are typically from 0.2 to 5 mm in size with spherical, cylindrical
or more complex shapes (tri-lobic or quadri-lobic extrudates). Overall
pellet activity depends on support (pore size distribution, physico-
chemical properties like acidity) and also on active phase properties
(dispersion, amount of metals, size of crystallites, depth of penetration
in the support, etc.).

Traditional trends in the chemical industry have always been
towards more economical processes, that is more active, longer
lasting catalysts in combination with more efficient processes. More
efficient processes can be designed based on a better comprehension
of the physics ruling reactor performances in terms of chemical but
also thermal and mechanical (pressure drop) responses. A finer
representation of the catalytic process allows smaller over-designs
and a better integrationwith other equipment (including resistance to
pollutants, etc.). Thus, catalyst development has been more and more
concerned with the acquisition of accurate knowledge that can be up-
scaled to industrial design, thus requiring better reactors and better
analytical techniques.

Designing a new catalyst requires the ability to manufacture
numerous small batches of catalyst prototype and assess their
performances on simulated or real feedstocks. Assessing the catalyst
performance is performed in pilot units at pressure and temperature
similar to those of the industry for thermodynamic reasons. Histori-
cally, pilot unit reactor technology has been chosen to match that of
the industrial processes: the idea is that keeping the same technology
should make the physics unchanged and thus result in a straightfor-
ward up-scaling. Development cost and delays can be reduced if the
amount of prototype catalyst to be tested is reduced. Fixed bed pilot
unit sizes have thus been decreasing steadily over the years: from
units requiring a few litres of catalyst in the 80s to a current range of
0.1–50ml reactor volume.

Size reduction, or down-scaling of pilot unit has been a major
challenge in the recent years. Sie (1991) proposed a comprehen-
sive review on the subject. Major down-scaling issues are change
in mass transfer from fluid to catalyst pellets, change in overall
reactor hydrodynamic (axial dispersion).

Universally, up-scaling is based on the conservation of the
“residence time” in the reactor or its inverse, the LHSV (Liquid Hourly
Space Velocity) defined as the flow-rate of feedstock divided by the
catalyst volume (expressed in 1/h). LHSV can be rewritten as the ratio
of the superficial velocity to the length of reactors. Industrial reactors
are typically 5–30m long. Such length is not compatible with a
laboratory environment: velocities in the pilot units are 10 to 100
times slower than in industrial plants (Sie, 1991). This decrease in
velocities has been shown to have a significant negative effect on
external mass transfer rate, that is the ability of the reactor to supply
the catalyst with reactants. A comprehensive review on mass transfer
has been written by Dudukovic et al. (2002). Another consequence of
velocity reduction is a drastic change in flow patterns and especially a
decrease in the wetted area of catalyst pellets. Solutions proposed in
the 90s have been to operate in upflow (bubble flow mode) or to fill
up the porosity with fine inert powder that promotes full wetting
(Sie, 1991).

Another drawback of size reduction is the potential loss of the
plug-flow behaviour. In industrial fixed bed reactors, molecules
exit the reactor in the same order as they enter: this is ideal plug-
flow. In small size reactors, the residence time distribution is not
ideal: some molecules stay longer than the average, some mole-
cules stay shorter. A common explanation is related to the
increased importance of wall effects: near the reactor walls, the
overall bed porosity is significantly higher than in the centre of the
reactor leading to bypass flows of reactants in a region of a typical
width of 2–3 diameters (Giese et al., 1998). As the reactor diameter

decreases, while keeping the catalyst pellets unchanged, the wall
effect gains in relative intensity. Small deviation from ideality can
be described using a dispersive plug-flow model, in which a
dispersion term is used to represent all the non-ideality. A review
on dispersion has been proposed by Delgado (2006). Dispersive
behaviour means that contact time with catalyst pellets depends
on each path in the reactor: conversion is not identical on all paths
so that the apparent reactor performance is an average of the
activity on each path. For very high conversion reactions, assess-
ment of catalyst activity or even target performance may not be
achieved. The higher the conversion, the more plug-flow the
reactor should be (Gierman, 1988). As in small scale fixed beds,
dispersion depends on the ratio of reactor length to particle
diameter (Delgado, 2006; Sie, 1991), plug flow behaviour can be
achieved by filling up the space between catalyst pellets by fine
inert powder (Sie, 1991).

Interestingly, it has been observed that at very low tube to
particle diameter ratio (below 7–10), dispersion is smaller than for
larger (in the sense higher tube to particle diameter ratio) reactors
(Knox and Parcher, 1969). This is known as the Knox Parcher effect.
For small reactors, there is no porosity difference near the wall and
the centre: the pellets packing structure becomes quite uniform.
Theoretical statistical considerations (Dagan, 1989) indicate also
that a minimum bed height of about 15 particle diameters is
required for dispersive plug-flow model to be valid. Below this
length, the theory indicates that random effects should predomi-
nate. Recently, we proved using direct numerical simulation (DNS)
of reactive flow in a box containing 8 cylinders (Rolland, 2013) that
orientation and position of catalyst pellets could change signifi-
cantly the apparent reactor performance. Further size reduction
requires to rethink traditional chemical engineering fixed bed
design rules and to investigate local effects, namely the interaction
at pellet scale of pellet position and orientation (random) with
flow and reactant transport.

Computing the detailed kinematics of the flow through a
porous media is not an easy task for the two following primary
reasons:

(1) the domain geometry is quite intricate which leads to issues in
generating the mesh of the computational fluid domain, and

(2) creating the geometry, i.e., the assembly of pellets (solid
particles), itself, is not straightforward.

For the latter, one common option in the literature is to
perform a dynamic granular simulation of the filling stage, i.e.,
as particles are poured into the container, all particle–particle and
particle–wall collisions are calculated. This type of method is not
only efficient in the sense that it supplies a realistic assembly of
particles but also mimics the filling process and hence allows one
to investigate the influence of the type of filling process on the
final microstructure of the assembly of particles (porosity, tortu-
osity, local defects, etc.). Among the various computational meth-
ods available to simulate granular dynamics (Event-Driven
method, Non-Smooth Contact Dynamics, Discrete Element, etc.),
the Discrete Element Method (DEM) (Cundall and Strack, 1979) is
likely to be the most commonly used, with hundreds of publica-
tions in the international literature every year. DEM is concep-
tually simple and easy to implement for spherical particles, and
has been shown to yield physically sensible results. Its extension to
non-spherical and angular particles is however more complicated
in relation to the determination of the network of contacts. It is
primarily a geometric problem. Fortunately, various collision
detection techniques have been devised to account for non-
smooth shapes (see, e.g., Kodamn et al., 2010 for a review of these
techniques), and among them the one suggested by our group and
based on the use of a Gilbert–Johnson–Keerthi (GJK) algorithm for



the geometric detection of the contact points (Wachs et al., 2012).
Our numerical code, Grains3D, has been validated in assorted
granular flow configurations and in particular enables one to fill a
container with any kind of convex shapes (Wachs et al., 2012;
Dorai et al., 2012a).

For the former, there are essentially two main options to
proceed: (i) creating a boundary fitted unstructured mesh and
solving the fluid problem in the fluid domain only, with no slip
boundary conditions at the particle surface or (ii) employing a
regular simple structured mesh and account for the presence of
the fixed particles treated as obstacles by forcing the fluid velocity
to locally be zero. Solution (i) constitutes the traditional way of
examining this type of flow (Atmakidis and Kenig, 2012; Combest
et al., 2012; Dixon et al., 2010), its advantage being the ability to
refine the mesh wherever necessary (e.g., the boundary layer close
to the particle surface) while it requires to generate a new mesh
anytime the microstructure changes (which can be a tedious
process and might necessitate a very sophisticated meshing tool).
Solution (ii) belongs to the class of non-boundary fitted methods
like Immersed Boundary (IBM) (Peskin, 1977; Uhlmann, 2005),
lattice-Boltzmann (LBM) with bounce-back collision rule at parti-
cle boundary (Van der Hoef et al., 2005; Hill et al., 2001a, 2001b;
Graf von der Schulenburg and Johns, 2011), Distributed Lagrange
Multiplier/Fictitious Domain (DLM/FDM) (Glowinski et al., 1999;
Yu and Shao, 2007; Wachs, 2009, 2011), or Force Coupling (FCM)
(Climent and Maxey, 2003), to name the most popular ones only.
Each of the four aforementioned methods (IBM, LBM, DLM/FDM,
FCM) has been applied with reasonable success to a variety of flow
configurations (including both fixed and moving solid particles).
Here, we use PeliGRIFF (Parallel Efficient LIbrary for GRains In Fluid
Flow), the DLM/FDM based parallel flow solver developed in our
group (Wachs, 2009, 2011). We shall evidence later in the paper
that the combination of Grains3D and PeliGRIFF is an appropriate
computational strategy to compute the flow and the pressure drop
in a packed bed of cylinders.

The rest of the paper is organized as follows. Section 2 gives a
short presentation of our two numerical tools together with
validations of our DLM/FDM on low porosity problems with
spheres. Then, we analyse in Section 3 the flow through a loosely
packed bed of cylinders. In particular, we assess the effect of size
distribution on the pressure drop through the bed and discuss the
validity of the extension of the correlation of Van der Hoef et al.
(2005), Beetstra et al. (2007) and Sarkar et al. (2009) proposed for
spheres to cylinders for the estimation of the pressure drop.
Finally, we sum up in Section 4 our results and list the perspectives
on the present study.

Remark. To avoid any misunderstanding, all dimensional quan-
tities are denoted throughout the rest of the paper with a super-
script “n”.

2. Numerical model

For the sake of clarity, we shortly present below the numerical
methods we employ to simulate the flow through the packed bed
of cylinders. We use two different solvers: the former enables us to
construct the pack of solid particles and the latter computes the
flow through the packed bed. For a more detailed presentation of
these two numerical tools, the reader is referred to the publica-
tions cited in the two following sub-sections.

2.1. Granular solver

Creating a packed bed of solid particles in not an easy task,
especially for non-spherical particles. Besides, even for spheres, it
is far from being entirely straightforward. There are essentially

two options: (i) using a classical Monte Carlo procedure to
distribute the spheres in the domain until the desired compacity
is reached, or (ii) performing an actual dynamic granular simula-
tion under controlled conditions of the pouring process of the
particles in the domain and letting the system relax to rest. We
chose the latter option for two primary reasons: (i) it is much
more versatile in the sense that it can be extended to non-
spherical shapes and (ii) it is physically more sensible since it
models an actual granular flow.

Our granular solver is based on the Discrete Element Method
(DEM) (Cundall and Strack, 1979) and a soft-sphere collision
model. The soft-sphere collision model implies to allow the rigid
particles to slightly overlap as they touch and to use a geometric
measure (usually a distance) of the overlap to calculate the contact
forces. The contact force model considered in all our simulations is
very standard: its mechanical analog is a Hookean spring and a
dashpot in the normal direction and a dashpot and a Coulomb
frictional element that limits the force to its Coulomb upper
bound in the tangential direction (Wachs et al., 2012). Other more
sophisticated alternatives exist (see, e.g., Dviugys and Peters, 2001
for a comprehensive overview). Each collision between two nearby
particles is numerically integrated over time, leading to time steps
much smaller than the physical contact time. DEM is not limited to
binary collisions and collisions between multiple particles are
addressed without any particular trouble.

The motion of the granular material is determined by applying
Newton's second law to each particle iA 〈0;N�1〉, where N is the
total number of particles. Since particles are rigid, their velocity
vector vn satisfies vn ¼Unþωn4Rn, where Un, ωn and Rn denote
the translational velocity vector, the angular velocity vector and
the position vector with respect to the center of mass, respectively.
This decomposition classically leads to a force equation for Un and
a torque equation for ωn. The complete set of equations to be
considered is the following one:

Mn

i
dUn

i

dtn
¼ Fn
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Jni
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i stand for the mass, inertia tensor, center of
mass position and angular position of particle i, respectively. Fn

i
and Mn

i are the sum of all forces and torques applied on particle i,
respectively. In our study, only gravity and contact forces act on a
particle; thus Fn

i and Mn

i can be further decomposed as
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where gn is the gravity acceleration vector, Rn

j a vector pointing
from the center of mass of particle i to the contact point with
particle j and Fn

ij the contact force vector.
In our code, Grains3D, we use a sophisticated collision detec-

tion strategy based on a Gilbert–Johnson–Keerthi (GJK) distance
algorithm (Gilbert et al., 1988; Van den Bergen, 1999) that enables
us to examine any kind of combination of convex particle shapes
and sizes (as illustrated in Fig. 1 where various convex shapes are
packed in a cylindrical container). For a detailed description of



Grains3D, the reader is referred to Wachs et al. (2012). Here, we
apply Grains3D to a polydisperse set of 3D cylindrical particles.

2.2. Flow solver around the fixed particles

The DLM/FD method used in our code PeliGRIFF implies to use a
cartesian structured mesh of constant grid size, to solve the fluid
conservation equations everywhere in the domain and to force the
rigid body motion (motionless in the particular case of the application
treated in this paper) in the regions (filled of fictitious fluid) occupied
by the particles (Glowinski et al., 1999; Yu and Shao, 2007; Wachs,
2009, 2011). Assorted variants at the discrete level have been
suggested in the literature. Here, we combine the DLM/FDM with a
Finite Volume/Staggered Grid discretization scheme for the fluid
equations, an implicit solution of the resulting DLM/FD saddle-point
problem by a Uzawa algorithm, a collocation-point method to
discretize the particles on the fluid mesh and a second-order
interpolation on the fluid velocity at the particle boundary
(Rahmani and Wachs, 2014). Further detail can be found in Wachs
et al. (2015).

Even in steady situations, the flow solution is obtained as the
steady state of a time evolving problem. The solving algorithm is of
the operator-splitting type and comprises two stages as follows,
where governing equations are written in a dimensionless form:

(1) A classical L2-projection scheme for the solution of the Navier-
Stokes problem: find unþ1=2 and pnþ1 such that

~u�un

Δt
� 1
2Re

∇2unþ1=2 ¼ �∇pnþ1þ 1
2 Re

∇2un;

�1
2
ð3un �∇un�un�1 � ∇un�1Þ�αλn; ð7Þ

∇2ψ ¼ 1
Δt

∇ � ~u; ∂ψ
∂n

¼ 0 on ∂Ω; ð8Þ

unþ1=2 ¼ ~u�Δt∇ψ ;

pnþ1 ¼ pnþψ� Δt
2Re

∇2ψ : ð9Þ

(2) A fictitious domain problem: find unþ1 and λnþ1 such that

unþ1�unþ1=2

Δt
þλnþ1 ¼ αλn; ð10Þ

unþ1 ¼ 0 in PðtÞ: ð11Þ

where u, ~u, p, λ, ψ and Δt denote the dimensionless fluid velocity
vector, non-divergence-free predicted fluid velocity vector, fluid
pressure, DLM/FD Lagrange multiplier to relax the constraint (11),
pseudo-pressure field and time step, respectively. Ω and ∂Ω
represent the flow domain and its boundary, respectively, and P
(t) the region occupied by the particles. αA ½0 : 1� enables one to
add explicit direct forcing at the velocity prediction step (7).
Setting α¼1 significantly improves the coupling between sub-
problems (1) and (2) and allows for larger time steps Δt. In
practice, all computations are performed with α¼1 (see Wachs
et al., 2015 for more detail). Finally, Re stands for the Reynolds
number and reads

Re¼
ρn

f U
n

c L
n

c

ηn
ð12Þ

where ρn

f , U
n

c , L
n

c and η
n are the fluid density, characteristic velocity,

characteristic length and fluid viscosity, respectively. In the case of
the flow through a fixed bed of particles, obvious choices for Un

c
and Lnc are the fluid inlet velocity and the equivalent particle
diameter, but other choices are also conceivable.

Our objective is to examine the flow through a fixed bed of
cylinders at a low but finite Reynolds number (laminar and steady
regime). However, simulating this type of flow at a low porosity (less
than 0.5) with a reasonably good accuracy still represents a challen-
ging problem for non-boundary fitted methods like IBM, LBM, DLM/
FDM or FCM. Hence, we first validate our method by comparing our
computed results with analytical exact solutions and other numerical
data from the literature on problems involving spheres. In partic-
ular, we evidence that our method, unlike other works using IBM or
LBM, does not require any hydrodynamic radius calibration and
provides satisfactory solutions with the actual (geometric) particle

Fig. 1. Packing of different shapes in a cylindrical container with Grains3D. (a) Sphere, (b) cylinder, (c) cube and (d) tetrahedron.



radius. This allows us to then extend our study to cylinders and
simply use their actual geometric features (diameter and height).

2.3. Validation of the method on the flow through a periodic array of
spheres: Stokes and inertial regimes, structured and random arrays

The DLM/FDM has already been validated in numerous flow
configurations in the past literature (Glowinski et al., 1999; Yu and
Shao, 2007; Wachs, 2009, 2011) but very often in dilute regimes.
As the solid volume fraction increases, the accuracy of the
computed solution deteriorates and predictions show a large
discrepancy unless an adequate remedy is devised. In most IBM
and LBM works, the hydrodynamic radius is adjusted such that the
numerical method properly predicts the hydrodynamic force
experienced by a spherical particle in a dilute regime. The
calibrated or effective hydrodynamic radius (slightly larger than
the actual geometric radius in LBM, Van der Hoef et al., 2005; Hill
et al., 2001a,b; Ladd and Verberg, 2001; while slightly lower in
IBM, Höfler and Schwarzer, 2000; Breugem, 2012) is then used as
well in more concentrated and/or inertial regimes. Though this
calibration procedure has permitted to supply valuable informa-
tion on the flow through structured and random array of spheres,
it is still somehow questionable, in the sense that it is not clear
what is the motivation to perform this calibration, except to
correct an intrinsic drawback of the numerical method. Recently,
Deen et al. (2012) have suggested another fully resolved numerical
method that provides satisfactory results up to high solid volume
fraction (low porosity) that does not rely on any calibration
procedure of the hydrodynamic radius. In our code PeliGRIFF, we
follow the same guideline and hence highlight below that using a
second-order outwards-oriented interpolation (as in a Q2 quad-
ratic finite element) instead of a classical multi-linear one of the
fluid velocity at the particle boundary allows us to supply accurate
results, though we consider the actual radius. A set of DLM/FD
points and the two types of interpolation (multi-linear and
quadratic) are illustrated in Fig. 2 in 2D for a circular cylinder.

The first test case is the flow through an infinite structured
simple cubic array of spheres at Re¼ 0. This problem is a very
appropriate candidate to validate our code since it possesses an
exact analytical solution derived in Zick and Homsy (1982) up to
the maximum structured packing ϕmax ¼ π=6C0:524, where
ϕ¼ 1�ϵ is the solid volume fraction and ϵ the porosity. In our
simulations, the system is modelled as follows: a single sphere is
set at the center of a cubic computational domain with periodic
boundary conditions in all 3 directions. A pressure drop is imposed
in one of the 3 directions, e.g. x, and the resulting flow rate Qn is
measured. Following Zick and Homsy (1982), the relation between
the mean velocity Vn and the imposed pressure drop ΔPn involves

a drag coefficient K and is defined as follows:

ΔPn

Ln
¼ 9
2
ηn

an2ϕKV
n ð13Þ

where Ln and an denote the cube edge length and sphere radius,
respectively, and Vn ¼ Qn=Ln2. Zick and Homsy (1982) supply the
analytical evolution of K as a function of ϕ. We plot in Fig. 3(a) the
solution computed by PeliGRIFF for a 40�40�40 mesh and a
dimensionless time step Δt ¼ 0:01. This plot evidences a very
satisfactory agreement with the analytical solution in Zick and
Homsy (1982) up to ϕmax, the maximum error being less than
3%. We further examine the accuracy of our computed solution in
Fig. 3(b) by plotting its convergence as a function of Np, the number of
DLM/FD points on the particle diameter (that varies as 1=h, h being
the grid size). This plot leads to the three following comments:

(1) for all ϕ, we get a clean and nice spatial convergence,
(2) generally the solution converges as Nα

p with αA ½1 : 1:5�, which is
deemed to be satisfactory for a second-order accurate scheme for
a fluid flow without particles and a non-boundary fitted treat-
ment of the particles. And again, we point out that no effective
hydrodynamic radius or calibration procedure is employed. The
radius of the sphere in our simulations is simply its geometric
radius,

(3) for the same Np, the error e between the computed solution and
the analytical one increases with the solid volume fraction ϕ,
which implies that a much higher resolution is required for dense
particulate systems, e.g. a packed bed, than for dilute ones.

The second test case is similar except that the layout of spheres is
random. This problem has been studied in Van der Hoef et al. (2005)
and Hill et al. (2001a) with a LBM in viscous regime (Reo0:2). Our
simulations are performed for ðRe;Np;ΔtÞ ¼ ð0:01;16;0:01Þ. For each
ϕwe generate five random layouts of particles and the mean velocity
V is then averaged over these five configurations. The resulting flow
field is illustrated in Fig. 4(a) for ϕ¼0.524. As for a structured array of
spheres, we compute the mean drag coefficient on each sphere K and
compare our values with the predictions in Van der Hoef et al. (2005)
and Hill et al. (2001a). The agreement with the LBM predictions is
very good, as shown in Fig. 4(b), and our computed solution
converges linearly with Np, i.e. as OðN�1

p Þ (not presented here for
the sake of conciseness). The same ϕ dependence is observed in the
convergence plots: dense systems requires a finer mesh than dilute
ones for the same accuracy.

Our third and last test case is the flow through a semi-infinite
structured array of spheres at ðRe;ϕÞ ¼ ð18;π=6Þ. The objective is to
evidence that PeliGRIFF not only supplies accurate solutions in a
Stokes flow but also in finite Re ones, i.e., regimes in which inertia is
non-negligible. This test case is well documented in Kanarska et al.

Fig. 2. DLM/FD points on the staggered grid for a 2D circular cylinder: (a) the set of interior and boundary points and (b) in blue the 4-point multi-linear interpolation stencil
and in red the 9-point Q2 outwards-oriented quadratic interpolation stencil for the x velocity component. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)



(2011), it consists of a structured bed of 12 particles laid out as 3�
2� 2 in the ðx; y; zÞ frame. Periodic boundary conditions in the y and z
directions model the semi-infinite configuration. The computational
domain is bounded by entry and exit zones in the x direction (the
direction of the flow). These two zones span one particle diameter dn

such that the total computational domain dimensions are 4dn � 2dn

�2dn. At the inlet boundary, a constant velocity field ðUn;0;0Þ is
imposed while classical outflow boundary conditions with a reference
constant pressure (set to 0 for convenience purposes) are applied at
the exit plane. Different computations with an increasing Np are
performed: 8, 16, 20, 24, 32, 48, 64, 96, 128, 160 (the largest Np value,
i.e. 160, implies a mesh comprising 640� 320� 320C65 million of
cells and ran on 128 cores of a supercomputer). Fig. 5(a) illustrates the
flow field in the xz symmetry plane while Fig. 5(b) plots the
convergence of the computed solution with mesh refinement. The
solution converges as N�1:65

p and the error is less than 4% from
Np¼32 (note that the error is computed with the Richardson
extrapolation to infinite Np as the reference solution). The friction
coefficient Λ is defined as in Kanarska et al. (2011):

Λ¼ΔPn

Ln
ð1�ϕÞ3dn2

ϕ2ηnUn
ð14Þ

Its value computed by PeliGRIFF is Λ¼182, in line with the numerical
prediction of Kanarska et al. (2011) and the assorted correlations
considered therein.

3. Results

3.1. Assessment of the accuracy of the computed solution for the case
of a random array of cylinders

Prior to examining the flow through a packed bed of cylinders, we
first assess the accuracy of the computed solution in such a config-
uration. Though we thoroughly studied it in the case of spheres, there
is no certainty that the rule in terms of number of points per diameter
derived for spheres is still valid for cylinders. In fact, cylinders exhibit
sharp edges and hence the flow field is tougher to capture in a proper
way. For the sake of clarity, let us introduce the height Hn to diameter
dn ratio ar ¼Hn=dn of a cylinder.

Thus, we first consider a small bed made of 20 mono-disperse
cylinders with ar¼1.875 (dimensionally Hn ¼ 3 mm and dn ¼
1:6 mm) in a computational domain with the following boundary
conditions (see Fig. 6(a)):

� periodic boundary conditions in the transverse (horizontal)
directions to the main flow,

� a uniform inlet (upward oriented) velocity at the bottom wall,
� free outflow at the top wall (reference pressure set to 0 and

homogeneous Neumann boundary conditions for all velocity
components).

The computational domain dimensions are 11:25dn � 3:75dn �
3:75dn (dimensionally 18 mm� 6 mm� 6 mm) and the bottom

Fig. 3. Comparison of PeliGRIFF results with the analytical solution of Zick and Homsy for the case of the flow through an infinite structured cubic-centered array of spheres
at Re¼ 0: (a) evolution of the drag coefficient K as a function of the solid volume fraction ϕ and (b) convergence of the computed solution as a function of the number of
points per particle diameter Np for increasing solid volume fraction ϕ.
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Fig. 4. Stokes flow through a random array of spheres: (a) porous media structure and flow field at ϕ¼ 0:524 (front half domain: dimensionless velocity vectors, behind half
domain: particles layout, cut plane: contours of dimensionless velocity magnitude, from 0 (blue) to maximum (red)) and (b) mean drag coefficient K on a sphere, comparison
with other works of the literature. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)



of the packed bed is located at 2:5dn (dimensionally 4 mm) from
the inlet bottom wall. The bed of 20 cylinders is the result of a
dynamic granular simulation similar to the one employed in
Section 3.2. The approximate value of ϕ is 0.6. In all simulations,
the particulate Reynolds number Re is set to 0.43. As for spheres
in Section 2.3, different computations with an increasing number
of points per cylinder diameter Np: 24, 32, 40, 48, 56, 64, 72, are
performed. The last case Np¼72 corresponds to a computational
domain composed of 270� 270� 810C60 million of cells and
run on 128 cores of a supercomputer. Once again, we look at the
convergence of the friction coefficent Λ as a function of Np.
Obtained results are plotted in Fig. 6(b) and highlight a conver-
gence in N�1:15

p , i.e., slightly better than linear. The convergence
rate for cylinders is less than the one for spheres, as expected,
since the problem is geometrically stiffer. However, convergence is
achieved. Also, Fig. 6(b) reveals that a larger number Np is required
for cylinders than for spheres for an equivalent accuracy. The
outcome is clear: not only the solution converges slower for
cylinders than spheres but the magnitude of the error is larger
for the same Np. Computing the flow through a packed bed of
cylinders requires an approximately 50% finer mesh than for a
packed bed of spheres for an equivalent accuracy, which translates
into 1:53C4�fold more cells, i.e., a 4 folds larger computing cost.

From Np¼40, the error is less than 4% and in the following all
presented results are obtained with a Np¼40 mesh.

3.2. Effect of size distribution on the pressure drop through a bed
of poly-disperse cylinders

Our final goal is to examine the flow through a packed bed of
poly-disperse cylinders. The configuration is similar to the one
adopted in Section 3.1 but the bed height is larger. In fact, the
computational domain height is fixed to 48 mm with entry and
exit lengths of 4 mm, thus the bed itself is approximately 40 mm
high in all the cases. We consider three classes of cylinders of
diameter 1.6 mm and increasing length 2 mm, 3 mm and 4 mm,
called L2, L3 and L4 respectively. Two poly-disperse distributions
centered on L3 are selected: L234-25/50/25 and L234-40/20/40
that comprise 25% of L2, 50% of L3 and 25% of L4, and 40% of L2,
20% of L3 and 40% of L4, respectively. For comparison purposes, we
perform additional simulations in the following configurations:

� mono-disperse beds of cylinders L2, L3 and L4,
� mono-disperse beds of spheres of equivalent diameter to L2, L3

and L4 (equivalent diameter meaning here that spheres have

Fig. 5. Flow though a semi-infinite structured array of spheres at Re¼ 18: (a) flow field (streamwise velocity component, in m=s) and (b) convergence of the computed
solution as a function of the number of points per particle diameter Np.

Fig. 6. A small bed of mono-disperse cylinders to assess the accuracy of the computed solution: (a) domain and boundary conditions (note: transparent particles are periodic
particles) and, (b) convergence of the computed solution as a function of the number of points per cylinder diameter Np.



the same volume as corresponding cylinders), called S2, S3 and
S4 respectively,

� poly-disperse beds of spheres S2, S3 and S4 with similar
distribution.

For each configuration, we run three simulations with varying
microstructure. To do so, the bed of pellets is created by randomly
seeding them at the top of the domain and letting them settle
under gravity and contact until a motionless packed bed is
obtained. These granular dynamics simulations are performed
with the soft-sphere DEM code Grains3D (Wachs et al., 2012),
which is also employed as the collision algorithm in freely moving
particles simulations (Wachs, 2009, 2011). This enables us to
calculate a meaningful mean value of the pressure drop (Van der
Hoef et al., 2005) as well as to estimate the variability of the flow
associated to the local microstructure of the bed of pellets.
Grains3D has been validated for cylinders of small ar in Wachs
et al. (2012) and additional comparisons with Leva and Grummer
(1947) for similar ar as here but in a walled domain (tube) instead
of a bi-periodic one have shown reasonable agreement (see Dorai
et al., 2012b; Dorai, 2014 for more detail about the analysis of the
microstructure of packed beds of cylinders).

Fig. 7 illustrates the microstructure of the mono-disperse and poly-
disperse beds of cylindrical pellets. In our simulations, the bed height
to pellet length ratio varies from 10 to 20. This is rather small and inlet
and outlet length effects are non-negligible in the pressure drop
calculation. Besides, it is rather hard to determine in a reliable way the
actual height of the bed (see the free surface of particles in Fig. 7) and
hence the corresponding porosity. Therefore, the method adopted to
extract the pressure drop across the bed from our simulation results is
the following: we consider a sub-domain in the vertical direction in
the core of the bed that corresponds to discarding approximately one
pellet length both at the entry and exit of the bed. The local porosity in
this sub-domain is numerically computed using the fluid mesh and
subdividing cells that are sliced by a pellet boundary into sub-cells.
From 4 sub-divisions, we verified on known solutions, e.g., a single
cylinder in a box, that this method provides porosity estimates with
less than 0.1% error, which is deemed to be very satisfactory.

Further examining the microstructure, we compute the mean
orientation of cylinders in the packed beds. Since cylinders have an

aspect ratio ar larger than 1 and are packed by settling under gravity,
they have a tendency to align their axis with the xy horizontal plane.
Indeed, the average angle θxy of cylinders' axis with the xy horizontal
plane is around 25�301 in all the cases investigated here (including
mono and poly-disperse beds). For mono-disperse beds, we note that
the larger ar, the lower θxy, as expected. Since the domain is bi-periodic,
the orientation in the xy horizontal plane, measured as the angle
between the cylinders' axis projected in the xy horizontal plane and
either the x or y direction, is evenly distributed. It is important to
emphasize the particular microstructure of our beds since it has an
impact on the pressure drop. However, including the effect of themean
orientation of the cylinders is beyond the scope of this paper, as
constructing packed beds of cylindrical particles with a controlled
microstructure (both porosity and orientation) remains a daunting task.

In all simulations, inlet velocity Un and fluid viscosity ηn are
adjusted such that the corresponding particulate Reynolds number
is approximately ReC0:4. Hence, all simulations are performed in
the Stokes (viscous) regime. Using Np¼40 leads to a mesh that
comprises 150�150�1200¼27 million of cells. Jobs are run on
64 cores on a supercomputer. The dimensionless time step is set to
0.005. Simulations are run using a transient algorithm from a
quiescent initial state until a steady state is reached. The average
computing time is around 3 days.

3.2.1. Ergun's correlation in Stokes regimes for mono-disperse pellets
The most classical and widely employed relation giving the

pressure drop over a bed as a function of the inlet velocity Un, local
porosity ϵ, particle diameter dn, fluid viscosity ηn and density ρn

f
has been suggested by Ergun (1952) that reads

ΔPn

Ln
¼ A

ηnð1�ϵÞ2Un

dn2ϵ3
þB

ρn

f ð1�ϵÞUn2

dnϵ3
ð15Þ

A and B are two constants determined from an experimental data
fitting procedure. Ergun suggested 150 and 1.75, respectively for a
bed of mono-disperse spheres. In Stokes (viscous) regimes
(Reo1), the latter term in the right-hand-side of (15), i.e. the
inertial contribution, can be dropped. Besides, it is generally
admitted (see, e.g., Nemec and Levec, 2005 among many others)
that (15) under-predicts the pressure drop in Stokes regimes and

Fig. 7. Packed beds of cylinders: (a) blue particles L2, (b) grey particles L3, (c) yellow particles L4, (d) L234-25/50/25 distribution and (e) L234-40/20/40 distribution
(transparent particles¼periodic particles). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)



Carman (1937) suggested A¼180 as a better match. In the present
work, we focus on the viscous regime since ReC0:4 in our
simulations. Computed dimensionless pressure drops Γ defined
as ðΔPn=LnÞ=ðηnUn=dn2Þ are plotted in Fig. 8 as a function of the
porosity ϵ for the 9 PeliGRIFF simulations (3 different microstruc-
tures for each Si, iA 〈2;4〉) together with Ergun's and Carman's
correlations. For each spherical particle diameter Si, both the
3 values related to different microstructure and the mean porosity
– mean Γ are shown. Overall, mean values exhibit a much better
agreement with Carman's correlation than with Ergun's, as
expected in a viscous regime. Interestingly, in the small system
we considered (especially in the direction transverse to the flow
which spans a few particle diameters only), the variability of the
microstructure is rather noticeable and its impact on the pressure
drops significantly in relation to the ϵ dependence of Ergun's
relation. In other words, small variations of the local porosity of
the bed lead to large variations of the pressure drop in a loosely
packed bed. Fig. 8 indicates that for the same system, relative
variations of ϵ around its mean value up to 1.5% results in almost
10% similar relative variations for the dimensionless pressure drop
Γ. This remarkably emphasizes the local microstructure effects in
small scale bed of particles, even for spherical and mono-disperse
shapes. Based on average values, the fully resolved predictions of
PeliGRIFF of the pressure drop through the bed are 3% less than
Carman's correlation, which confirms that Carman'scorrelation
supplies a reliable and reasonably good estimate of the pressure
drop in the viscous regime, while conversely we confirm that
Ergun's markedly under-predicts it, as already suggested in the

literature (Hill et al., 2001b; Nemec and Levec, 2005). Fitting our
results provide AC175.

We now consider beds of mono-disperse cylinders with constant
diameter and 3 different lengths L2, L3 and L4. Previous works in the
literature (Niven, 2002; Nemec and Levec, 2005) advocated to modify
the classical Ergun's correlation for non-spherical particles by introdu-
cing the following additional parameters:

� the particle sphericity φp defined as

φp ¼
An

es

An

p
¼ 36πVn2

p

An3
p

 !1=3

ð16Þ

where An

es, A
n

p and Vn

p denote the surface area of the equivalent
volume sphere, the surface area of the particle and the particle
volume, respectively.

� the diameter of the arbitrarily shaped particle dn

p defined as

dn

p ¼
6Vn

p

An

p

ð17Þ

� the equivalent volume sphere diameter dn

es defined as

dn

es ¼
6Vn

p

An

es
¼ 6Vn

p

π

 !1=3

¼ dn

p

φp
ð18Þ

� a φp-dependent Ergun constant AðφpÞ

Thus, the modified Ergun's correlation in the viscous regime for
non-spherical particles reads (Nemec and Levec, 2005):

ΔPn

Ln
¼ AðφpÞ

ηnð1�ϵÞ2Un

dn2
p ϵ3

ð19Þ

In Nemec and Levec (2005), the authors suggest the following
relation for cylinders:

AðφpÞ ¼
150

φ3=2
p

ð20Þ

based on a fitting procedure on a rather limited number of
experimental data in a laminar-inertial regime 1oReo1000. It
is also worth observing that though reasonably good, (20) is up to
10% off from the experimental data for certain cylinder aspect ratio
(see Nemec and Levec, 2005, Fig. 2(a)). In Fig. 9(a), the dimension-
less pressure drop computed by PeliGRIFF for the three classes of
cylinders L2, L3 and L4 together with the Ergun's correlation
modified for cylinders suggested in Nemec and Levec (2005) is
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Fig. 8. Comparison of Γ ¼ ðΔPn=LnÞ=ðηnUndn2Þ obtained by PeliGRIFF for a bed of
mono-disperse spheres as a function of the porosity ϵ with Ergun's and Carman's
correlations.

Fig. 9. Pressure drop through a bed of mono-disperse cylinders of varying aspect ratio: (a) Γ ¼ ðΔPn=LnÞ=ðηnUndn2
es Þ as a function of the porosity ϵ, comparison between results

computed with PeliGRIFF and the modified Ergun's correlation in the viscous regime and (b) variation of constant A as a function of the sphericity φp, correlation fitted using
results computed with PeliGRIFF and the one suggested in Nemec and Levec (2005).



plotted. A generally satisfactory agreement is obtained with the
maximum difference being of the order of 6% for the highest
aspect ratio ar¼2.5, as evidenced in Table 1. We also tried to fit our
results in terms of variation of the constant A with the sphericity
φp. In the viscous regime, our results suggest a 5=4 power law
variation rather than a 3=2 one, as shown in Fig. 9(b), but this
should be considered with care as additional simulations would be
suited to confirm this result.

As for spheres, we observe relative deviations around the mean
pressure drop value up to 10% due to the different local micro-
structure resulting from the 3 runs for each class of cylinder. Once
again, we confirm that reproducibility of pressure drop estimate
(measurement in experiments vs calculation in numerical simula-
tion) is hard to guarantee, or said differently can lead up to 20%
(710%) change between the lowest and highest values. However,
we expected that reproducibility for cylinders would be even
worse than for spheres, in relation to their ability to orientate
themselves in the bed whereas the isotropy of spheres prevents
them from affecting too much the porosity and microstructure of
the bed (Nemec and Levec, 2005). We believe that our analysis
may be partly biased here by the rather small transverse dimen-
sions of our computational domain (though an additional simula-
tion for a twice larger bi-periodic domain in the L3 case, shown in
Fig. 9(a) as a plain green diamond and labelled L3-2A, has yielded
a pressure drop within the aforementioned range of scattering). In
fact, computed results are markedly more scattered as the ratio
between the sphere diameter or cylinder length to the domain
transverse length decreases, as evidenced in Fig. 8 for S4 and Fig. 9
(a) for L4 (blue results). Finally, we analyze the impact of the
particle shape on the dimensionless pressure drop Γ in Table 2. As
expected, the difference between spheres and cylinders increases
with the cylinder aspect ratio ar. From eΓ ðL; SÞ, we get the total
effect of the particle shape on Γ, as a combination of particles
orientation and porosity in the bed. However, it is beneficial to the
understanding how the flow through a bed of cylindrical particles
differs from the one through a bed of spheres to sort out the effect
of porosity from the effect of shape and orientation only, at
equivalent porosity. eΓðL; SðϵL ÞÞ represents a measure of the effect
of particle shape and orientation only, as it compares Γ for each
class of cylinders with Γ obtained for a bed of spheres at the same
porosity ϵ, extrapolated from the results computed with PeliGRIFF
for spheres. Interestingly, for a low aspect ratio ar¼1.25, the
resulting porosity is the major factor that affects Γ, while from
ar¼1.875 the effect of shape and orientation of cylinders and the
resulting porosity acts in opposite ways and the former partly
compensates the latter (þ10.7% vs �24.1%). It is likely that for
even higher aspect ratio ar, the effect of particle shape and
orientation will prevail, but this should be verified first.

3.2.2. Extension to poly-disperse pellets
We now report on the results computed for beds of poly-

disperse particles. In Van der Hoef et al. (2005) and Beetstra et al.
(2007), the authors suggest a correction to the average hydro-
dynamic force exerted by the fluid on a class of spherical particles

of diameter di in a bed of poly-disperse spheres. Following Van der
Hoef et al. (2005), the relation between the total dimensional
Fn

f �4s and dimensionless F hydrodynamic force exerted by the
fluid on a sphere of diameter d reads:

F ¼ ð1�ϕÞFn

f �4s

3πηndnUn
ð21Þ

From a simple balance of force in the domain of volume Vn

containing N particles: VnðΔPn=LnÞ ¼NFn

f �4s, we get the relation
between F and ΔPn=Ln:

F ¼ 1�ϕ
ϕ

dn2

18ηnUn

ΔPn

Ln
ð22Þ

In other words, from (13), F is nothing else than ð1�ϕÞK . For a bed
of poly-disperse spheres, Van der Hoef et al. (2005) and Beetstra
et al. (2007) suggested the following correlation obtained by
fitting a large number of LBM simulations for the dimensionless
hydrodynamic force Fi acting on the class of spheres of diameter di:

Fiðϕ;ReiÞ ¼ ðð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i ÞFðϕ; 〈Re〉Þ ð23Þ
where Fðϕ; 〈Re〉Þ is the dimensionless hydrodynamic force for a
bed of mono-disperse spheres of diameter di at the same global
volume fraction ϕ and equivalent Reynolds number 〈Re〉. Since we
are interested in the viscous regime here, we drop the Re
dependence. In (23), yi ¼ dn

i =〈d
n
〉 where 〈dn

〉 is the Sauter diameter
classically defined as

〈dn
〉¼
Pc

i ¼ 0 Nid
n3
iPc

i ¼ 0 Nid
n2
i

ð24Þ

where c denotes the number of classes of spheres. (23) can be
translated in terms of pressure drop ΔPn=Ln once again starting from
the balance of force in the domain for a bed of poly-disperse spheres:

Vn
ΔPn

poly

Ln
¼
Xc
i ¼ 0

NiF
n

f �4s;i ¼
Xc
i ¼ 0

Ni
3πηndn

i U
n

1�ϕ
FiðϕÞ ð25Þ

Introducing the volume of sphere of diameter dn

i as Vn

p;i ¼ πdn3
i =6 and

the volume fraction of class i as ϕi ¼NiV
n

p;i=V
n, we get

ΔPn

poly

Ln
¼
Xc
i ¼ 0

18ηnUnϕ

ð1�ϕÞdn2
i

ϕi

ϕ
FiðϕÞ ð26Þ

Using (23) and xi ¼ϕi=ϕ, we get

ΔPn

poly

Ln
¼
Xc
i ¼ 0

18ηnUnϕ

ð1�ϕÞdn2
i

xiðð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i ÞFðϕÞ ð27Þ

Finally, we have

ΔPn

poly

Ln
¼
Xc
i ¼ 0

xiðð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i Þ
ΔPn

i

Ln
ðϕÞ ð28Þ

ΔPn

i

Ln
ðϕÞ ¼ 18ηnUnϕ

ð1�ϕÞdn2
i

FðϕÞ ð29Þ

where ΔPn

i =L
nðϕÞ corresponds to the pressure drop through a bed

of mono-disperse spheres of diameter di and volume fraction ϕ.
We compare in Table 3 the values of ðΔPn

polyL
nÞ=ðηnUn〈dn

〉2Þ for the

Table 1
Dimensionless mean pressure drop across a bed of mono-disperse cylinders
for the three classes considered L2, L3, L4 and comparison with the mo-
dified Ergun correlation suggested in Nemec and Levec (2005), where eΓðPel;
ErgÞ ¼ 100jΓPel �ΓErg j=ΓErg .

Type ar φp ϵ ΓPel ΓErg eΓ ðPel; ErgÞ

L2 1.25 0.8689 0.391 1092 1147 þ4.8
L3 1.875 0.8389 0.412 933 969 þ3.7
L4 2.5 0.8046 0.434 767 818 þ6.2

Table 2
Dimensionless mean pressure drop across a bed of mono-disperse particles: effect
of particle shape from spheres to cylinders, where eΘði; jÞ ¼ 100ðΘi �Θj Þ=Θj .

Class ϵSi ϵL eϵðL; SÞ ΓPel;S ΓPel;L eΓ ðL; SÞ ΓPel;SðϵL Þ eΓðL; SðϵL ÞÞ

2 0.386 0.391 1.3 1126 1092 �3.0 1085 þ0.6
3 0.392 0.412 5.1 1090 933 �14.4 865 þ7.3
4 0.397 0.434 9.3 1010 767 �24.1 685 þ10.7



two different beds S234-25/50/25 and S234-40/20/40 computed
by PeliGRIFF to the reconstructed values based on mono-disperse
computed ones ðΔPn

i L
nÞ=ðηnUn〈dn

〉2Þ extrapolated to ϕpoly (using
(15) with A¼175 and B¼0) and (28). Discrepancies amount to
�2.1% and �0.3%, respectively, which is deemed to be very
satisfactory. In fact, we get a very good agreement with the work
of Van der Hoef et al. (2005), Beetstra et al. (2007), Sarkar et al.
(2009) and confirm that their correlation is reliable for our 3-disperse
bed (in Van der Hoef et al., 2005; Beetstra et al., 2007, the validity of the
proposed correlation is verified for bi-disperse systems while in Sarkar
et al., 2009 it is shown to be valid even for a log-normal and Gaussian
size distribution).

In Table 4, we gather our computed results for poly-disperse
cylinders. Similarly to beds of mono-disperse pellets, poly-disperse
cylinders exhibit higher pressure drops than their spherical counter-
parts. To the best of our knowledge, there does not exist in the
literature any correlation for the dimensionless hydrodynamic force
and equivalently dimensionless pressure drop for a bed of poly-
disperse cylinders. This drove us to test the validity of the correlation
of Van der Hoef and co-authors when applied to cylinders. To be more
specific, we use (28) in which ðΔPn

i =L
nÞðϕÞ is the value of the pressure

drop for the class of cylinder Li obtained by our code extrapolated to
ϕpoly and 〈dn

〉 (using (15) with A¼ 150=φ5=4
p and B¼0) and the

function ð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i is calculated using the
equivalent volume sphere diameter dn

es;i from (18). In other words,
the weights of ðΔPn

i =L
nÞðϕÞ for cylinders L2, L3 and L4 are the same as

the ones for the corresponding equivalent volume spheres S2, S3 and
S4, respectively. Surprisingly, using this rather coarse approximation
(since ð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i does not account for any
orientation effect or particle sphericity φp) yields reasonably good
agreement with less than 4% discrepancy in both cases.

Finally, the variability of the dimensionless pressure drop
associated to the different microstructures of the bed in the
3 simulations for each poly-disperse beds is of the same order as
for mono-disperse beds, i.e. a maximum of 710% around the
mean value. This statement holds both for spheres and cylinders.
And once again, we would like to underline that this rather

constant variability in our simulations may be partly biased by
the small transverse dimensions of our computational domain.

4. Discussion and perspectives

We have performed fully resolved simulations of the flow
through a packed bed of mono and poly-disperse pellets in the
viscous regime. We considered both spheres and cylinders. The
results on beds made of mono- and poly-disperse cylinders are, to
the best of our knowledge, new computational results. The set of
computed results enabled us to investigate the global effect of the
microstructure of the bed on flow kinematics and pressure drop.

From a computational standpoint, fully resolved simulations of
this type of system provide insight into the heart of the flow, with
detailed information on local velocity, hydrodynamic forces exerted
on individual particles, and so on, but are extremely demanding in
terms of computing resources. We have highlighted that accurate
and reliable solutions can be obtained while a fine enough mesh is
used to discretize the particles. For cylinders, we have shownwith an
adequate mesh convergence analysis that at least 40 points or cells
are necessary over the cylinder diameter at a high volume fraction as
the one encountered in a loosely packed bed. This leads to meshes
generally comprising a few tens of millions of cells, at least. And
hence a numerical tool that scales decently on large supercomputers
on up to a few hundreds of cores is suitable.

From an industrial standpoint, we confirm that micro reactors
(with classical reactor diameter spanning a few pellet diameters
only) have a tendency to be subject to high variability in terms of
pressure drop, up to 710% around the mean value. In our
simulations, variability did not change much from spheres to
cylinders, though it is reported in the literature (see, e.g., Nemec
and Levec, 2005) that it should be higher for cylinders in relation
to their ability to orientate themselves in the bed. Though this
statement is intuitively correct, we did not find any strong
evidence supporting it in our computed results. However, we
emphasize once again that the limited transverse dimensions of

Table 3
Dimensionless mean pressure drop across a bed of poly-disperse spheres for the two poly-disperse beds considered S234-25/50/25 and S234-40/20/40 and comparison with
the correlation suggested in Van der Hoef et al. (2005) and Beetstra et al. (2007), where eΓ ðPel;VdHÞ ¼ 100ðΓPel �ΓVdH Þ=ΓVdH .

Type ΓPel ϕpoly 〈d〉 yiA 〈2:4〉 xiA 〈2:4〉 ΓVdH eΓ ðPel;VdHÞ

S234-25/50/25 1149 0.6139 0.002272 0.868 0.167 1174 �2.15
0.995
1.092

0.501
0.332

S234-40/20/40 1147 0.6127 0.002278 0.865 0.267 1152 �0.3
0.992
1.088

0.201
0.532

Table 4
Dimensionless mean pressure drop across a bed of poly-disperse cylinders for the two poly-disperse beds considered L234-25/50/25 and L234-40/20/40 and comparison
with the correlation suggested in Van der Hoef et al. (2005) and Beetstra et al. (2007) for spheres in which 〈d〉 and the function ð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i is evaluated
with equivalent sphere diameters (i.e. with the same weighting as for S234), where eΓ ðPel;VdHÞ ¼ 100ðΓPel �ΓVdH Þ=ΓVdH .

Type ΓPel ϕpoly 〈d〉 yiA 〈2:4〉 xiA 〈2:4〉 ΓVdH eΓ ðPel;VdHÞ

L234-25/50/25 1199 0.5785 0.002272 0.868 0.167 1248 þ3.9
0.995
1.092

0.501
0.332

L234-40/20/40 1371 0.5847 0.002278 0.865 0.267 1337 �2.5
0.992
1.088

0.201
0.532



our system may affect this observation. In general, the micro-
structure of our beds of cylinders is characterized by a preferred
alignment of cylinders with the plane perpendicular to gravity,
and hence all our simulations are performed for a realistic (as our
packing process is similar to a real filling of a process engineering
catalytic reactor) but specific microstructure. Including explicitly
the orientation of the cylinders in the pressure drop correlation is
a challenge beyond the scope of this work.

We examined the effect of poly-dispersity both for spheres and
cylinders. We remind the reader that in the case of cylinders, the
poly-dispersity is created with cylinders of constant diameter but
variable length, in an attempt to model realistic process engineering
catalytic reactors (in which pellets are produced by extrusion and
thus have a constant diameter). However, in our poly-disperse
systems, the aspect ratio of the different classes of cylinders is also
affected. The considered poly-dispersity hence represents a particular
case (examining systems of poly-disperse cylinders of constant
aspect ratio may have led to slightly different observations). For the
same mass of pellets, cylinders lead to lower pressure drop through
the bed essentially because the porosity of the bed of cylinders is
larger. And this effect increases as the aspect ratio of the cylinder
increases. However, at equivalent porosity, cylinders do dissipate
more energy, as one would intuitively expect from their non-smooth
shape. We verified, in the viscous regime only, that the correlation
proposed by Van der Hoef et al. (2005), Beetstra et al. (2007) and
Sarkar et al. (2009) is indeed rather reliable on our 3-disperse beds of
spheres. We also examined how valid their correlation would be for
poly-disperse cylinders and get unexpectedly good agreement. These
are preliminary results only as the number of simulations performed
is quite limited so far but it provides plausible clues that the
functional form of the correlation ð1�ϕÞyiþϕy2i þ0:064ð1�ϕÞy3i
works quite well for other shapes than spheres, at least at high solid
volume fraction. This could potentially have important consequences
for the design of catalytic fixed bed reactors.

Future work is two-fold. From a physical standpoint, we will
perform additional simulations to provide a pressure drop correlation
for beds of poly-disperse cylinders inspired by Van der Hoef et al.
(2005), Beetstra et al. (2007) and Sarkar et al. (2009), investigate more
quantitatively howmuch the periodic length of the domain affects our
results, add the effect of the reactor wall (localized high porosity) in an
attempt to model realistic micro-reactors and examine the local effects
of the microstructure (cylinder orientation) on velocity distribution
and pressure drop. We have recently extended the simulation
capabilities of our granular code Grains3D towards non-convex pellet
shape using a glued convex approach (this work will soon be
published in a separate paper). Once coupled to our fluid solver
PeliGRIFF (and this should be rather straightforward as our DLM/FDM
is not sensitive to convexity or concavity), being able to deal with non-
convex shapes will enable us to look at the flow through a packed bed
of multi-lobed extrudates and cylinders with holes, which have been
getting rather popular in catalytic processes over the last decade.
However, the more complex the shape, the finer the mesh, which puts
more pressure on computational efficiency and requires even larger
computing resources. From a numerical development of the fluid
model standpoint, the next stage is to implement additional
advection-diffusion-reaction conservation equations for the chemical
species and address the impact of the coupling between hydrody-
namics and chemical reactions on the overall conversion efficiency of
the micro-reactor.
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