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Laminar pressure-driven suspension flows are studied in the situation of neutrally

buoyant particles at finite Reynolds number. The numerical method is validated

for homogeneous particle distribution (no lateral migration across the channel): the

increase of particle slip velocities and particle stress with inertia and concentration is

in agreement with former works in the literature. In the case of a two-phase channel

flow with freely moving particles, migration towards the channel walls due to the

Segré-Silberberg effect is observed, leading to the development of a non-uniform

concentration profile in the wall-normal direction (the concentration peaks in the wall

region and tends towards zero in the channel core). The particle accumulation in the

region of highest shear favors the shear-induced particle interactions and agitation,

the profile of which appears to be correlated to the concentration profile. A 1D

model predicting particle agitation, based on the kinetic theory of granular flows

in the quenched state regime when Stokes number St = O(1) and from numerical

simulations when St < 1, fails to reproduce the agitation profile in the wall normal

direction. Instead, the existence of secondary flows is clearly evidenced by long

time simulations. These are composed of a succession of contra-rotating structures,

correlated with the development of concentration waves in the transverse direction.

The mechanism proposed to explain the onset of this transverse instability is based

on the development of a lift force induced by spanwise gradient of the axial veloc-

ity fluctuations. The establishment of the concentration profile in the wall-normal

direction therefore results from the combination of the mean flow Segré-Silberberg

induced migration, which tends to stratify the suspension and secondary flows which

tend to mix the particles over the channel cross section. C 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936402]

I. INTRODUCTION

The behavior of finite size non-Brownian particles suspended in a Newtonian fluid raises

many questions from non-Newtonian response4 to laminar-turbulent transition modulation.24 Such

effects are of prime importance in two-phase transport applications, separation, oil recovery, or

fracking processes. At vanishing particle Reynolds numbers, channel flows laden with neutrally

buoyant particles remain homogeneous, unless the concentration is high enough to cause shear-

induced migration (whether they are Brownian or not), towards the channel center.14,18,30 At finite

Reynolds numbers, the finite size particles migrate under dilute conditions in pressure-driven flows,

a phenomenon that was first observed by Ref. 35 in pipe flows. The single particle inertial effect

has been used in some applications like particle sorting and separation in microfluidic channel

flows (see the review of Ref. 11). Despite the small scales involved in these applications (chan-

nels with typical dimensions 100 µm and particles of diameter 10 µm), typical axial velocities of
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O(10–100 cm/s) yield high shear rates such that the channel Reynolds number Re is of O(10–100)

and the particle Reynolds number Rep is O(0.1–1). While the micro-hydrodynamic phenomena for

inertia-driven particle migration are well documented in dilute conditions, important issues related

to collective effects at moderate concentration remain unclear. This work addresses the behavior of

moderately concentrated suspensions of finite size particles in pressure-driven flow.

Early experiments of Ref. 35 showing preferential equilibrium positions of particles in pipe

flows have given rise to a number of studies on isolated spherical particles in both bounded and

unbounded shear flows. Theoretical predictions (at low but finite particle Reynolds number) have

shown that the particle radial equilibrium position in a Poiseuille flow results from a balance be-

tween inertial lift force induced by the interaction of the particle stresslet with the shear gradient

flow, and a wall-induced hydrodynamic repulsion.3,16,34,40 The equilibrium position moves towards

the tube wall when the Reynolds number and/or the particle radius are increasing. More recently,

the experimental study of Ref. 25 carried out in the range Rep = O(1–10) (where Rep = γa2/ν, γ

being the local shear rate experienced by a particle of radius a, and ν the fluid kinematic viscosity)

has shown that more complex mechanisms arise at intermediate particle Reynolds numbers, where

a second equilibrium position emerges closer to the tube centerline. Lift force intensity and particle

equilibrium position as a function of flow Reynolds number have been numerically investigated in

a pipe geometry37 and theoretically3,26 in both pipe and channel geometries. It was clearly demon-

strated that the lift force magnitude increases while the Reynolds number increases, and that it is

smaller in pipe than in channel geometry. At a given Reynolds number, it results in an equilibrium

position closer to the wall of a plane channel than of a cylindrical pipe. The existence of a second

equilibrium position in pipe geometry was shown to be due to finite size effect of particles.

In dilute conditions (0.1% concentration), particle pair interactions at finite inertia lead to the

structuring of particles in chain-like patterns that develop in the streamwise direction.23,37 The

characteristic separation length within this particle alignment, which occurs around the radial equi-

librium position, probably results from a combination of the narrow band of equilibrium position

and the development of reverse streamlines upstream and downstream of a particle at finite particle

Reynolds number. The separation length between these particles decreases as the particle Reynolds

number is increased, following the evolution of the distance between the nearest reverse streamline

and the leading particle.23

The rheological properties of a dilute unbounded sheared suspension at finite inertia have been

investigated, based upon theoretical calculations.19,38 Expressions of shear viscosity and normal

stress differences have been obtained to order O(φRe
3/2
p ), by dividing the velocity perturbation field

into an inner region around the particle where Stokes equations provide the leading order terms, and

an outer region where inertial effects are dominant. A shear-thickening behavior of the suspension

is observed, the shear viscosity being a growing function of the shear rate (or particle Reynolds

number) even in the infinitely dilute regime. Normal stress differences are finite, the first and second

differences being, respectively, negative and positive. In the limit of infinitely dilute suspension, the

effect of inertia therefore induces a non-Newtonian response.

The rheology at finite concentration is more complex to describe since it depends on the

suspension microstructure. The signature of the microstructural anisotropy is a deficit of particles in

the extensional quadrant, i.e., downstream side of a reference particle.8 Therefore, normal stresses

develop, leading to particle migration towards the low shear regions in curvilinear sheared flows.

It is shown that Stokesian suspensions develop heterogeneity under the influence of hydrodynamic

and non-hydrodynamic (like contact forces) interactions, with or without Brownian motion (this

subject being addressed among many other works by Refs. 29, 30, 36, and 41). Nevertheless,

the microstructural anisotropy and thus the normal stress differences increase with the particle

Reynolds number (as shown by the numerical simulations of Refs. 17 and 42). Consequently,

the particle shear-induced migration is expected to compete with the inertia-driven migration

(Segré-Silberberg effect) in a complex way.

The study of spatially developing suspension flow in pipe or channel geometry at finite

Reynolds number and moderate concentration has been poorly addressed. Combination of iner-

tial lift forces and finite concentration leads to collective motion and heterogeneity in the flow

cross section, which have been evidenced a few times in the literature. At finite concentration,



Ref. 15 has shown that in a laminar suspension flow in a pipe, established concentration profiles are

strongly dependent upon the particle Reynolds number, for Rep > 0.1, in both dilute or concentrated

regimes. Under these conditions, low Reynolds number shear-induced migration or suspension

balance models fail to reproduce their experimental data.

In channel flow geometry and at finite concentration, the wall-normal inertial migration will

induce a concentration gradient across the channel, since particles tend to migrate towards a single

equilibrium position close to the channel walls where the shear rate is the highest. It is then expected

that shear-induced particle interactions will lead to particle velocity fluctuations, and consequently

diffusion of particles towards the channel core (both the shear-induced velocity fluctuations and diffu-

sion being weakly dependent on the particle Reynolds number as shown by Ref. 42). At steady state

and for a statistically steady flow in the channel, a momentum balance in the wall normal direction

corresponds to a balance between the inertial lift force and the shear-induced stress flux, resulting in a

concentration profile, which is so far unexplored. In this work, we use numerical simulations based on

the Force Coupling Method (FCM) to study the development of a suspension flow, at finite Reynolds

number and moderate concentration. We show that the suspension exhibits unexpected flow features,

which clearly put into question the relevance of a one-dimensional momentum balance approach.

We start the paper in Section II by briefly explaining the force coupling method used for the

two-phase flow simulations and the tests used to validate the case of a single particle in shear flow

at finite particle Reynolds number. In Section III, we present a set of short time simulations at

finite concentration using Couette and Poiseuille configurations (wall-bounded flows). At short time

scales, the suspension homogeneity is relatively preserved due to small values of particle-fluid slip

velocities. Concentration gradients are therefore, negligible and the particle stress and slip velocity

profiles can be obtained in quasi-homogeneous conditions. By comparing the flow response in both

Couette and Poiseuille flows, we were able to analyze the effect of the linear or quadratic velocity

profile on the suspension flow properties. In Section IV, the pressure-driven suspension flow is

simulated for a long time and its transient evolution is carefully described and discussed. After par-

ticle migration towards the channel wall is completed, the suspension flow becomes stratified into

clear and particle-laden zones, resulting in concentration profile peaking near the wall. Assuming

the concentration profile is established and steady, a 1D model of particle fluctuating kinetic energy

in the wall-normal direction is derived and compared to the numerical predictions. It is shown

that such a model cannot reproduce the simulated concentration and agitation profiles in the wall

normal direction. The development of secondary flows at longer simulation times is shown to be

responsible of remixing the particles in the channel cross section. The origin of these secondary

flows is discussed and an interpretation is proposed based on inertia-driven mechanism.

All the simulations were performed with one particle-to-channel size ratio H/a = 32, where

H is the channel height, and a moderate concentration φb = [1%–5%]. Along this paper, φb refers

to the average volumetric solid fraction, in the computation domain, of a suspension simulated

numerically, and φ denotes local solid volume fraction or concentration in general. The channel

Reynolds number Re = 〈U〉 H/ν is in the range [1000–1400], which is large enough to promote the

evolution of the suspension structure, and just below the laminar-turbulent transition (〈U〉 stands

for the flow average velocity) which has been studied in a previous work recently published by the

same authors.20 The particle size and concentration were chosen such that the particles significantly

reduce the transition threshold of the suspension flow (see Ref. 24).

II. SIMULATION METHOD AND VALIDATION FOR A SINGLE PARTICLE

The numerical scheme has been presented in Ref. 20. Its main features are recalled in this

work for the sake of completeness. The numerical simulation of particle trajectories and suspension

flow field is based on the FCM (which is a multipole expansion of momentum source terms added

to the Navier-Stokes equations). Flow equations are dynamically coupled to Lagrangian tracking

of particles (see details in Refs. 27, 21, and 10). The fluid is assumed to fill the entire simulation

domain, including the volume occupied by the particles. The fluid velocity and pressure fields are

solutions of the mass and momentum conservation equations (Eqs. (1) and (2)),



∇ · u = 0, (1)

ρ
Du

Dt
= −∇p + µ∇2

u + f (x, t) . (2)

ρ and µ are, respectively, the density and dynamic viscosity. u represents the velocity vector.

The presence of the dispersed phase in the fluid is then represented by a body force distri-

bution f(x, t) written as a multipole expansion (Eq. (3)) where the first term is the monopole F
(n)

representing the force that the nth particle applies on the fluid (due to an external forcing or

particle-to-particle contact forces). The second term is the dipole G
(n) tensor. Its anti-symmetric part

is related to external torques applied on the particle. The symmetric part is set through an iterative

procedure to ensure that the strain-rate within the fluid volume occupied by the dispersed phase is

zero (enforcing solid body response),

fi(x, t) =

N
∑

n=1

F
(n)

i
∆

(

x − Y
(n)(t)
)

+ G
(n)

i j

∂

∂x j

∆
′
(

x − Y
(n)(t)
)

. (3)

Y
(n) is the nth particle center position. ∆(x − Y

(n)) and ∆′(x − Y
(n)), the spatial distributions

of the monopole and dipole forcing, respectively, are generated using finite size envelopes that are

adapted to the shape of the spherical particle. The particle translation and rotation velocities V
(n)

and Ω(n) are obtained from a local weighted average of the volumetric fluid velocity (respectively,

rotational velocity) field over the region occupied by the particle in (respectively, Eq. (5))

V
(n) =

∫
u(x, t)∆(x − Y

(n)) d3
x, (4)

Ω
(n) =

1

2

∫
[∇ × u(x, t)]∆′(x − Y

(n)) d3
x. (5)

Isotropic Gaussian envelopes are used for spherical particles. The respective width of these

Gaussian envelopes (σ and σ′) is set with respect to the particle radius in such a way that the

Stokes settling velocity and the hydrodynamic perturbation generated by a particle in a shear flow

are both accurately reproduced at low Reynolds numbers.21 This ensures, among other results, that

the particle velocity matches the Stokes settling velocity under low particulate Reynolds number

and captures the Faxén correction for the motion in a non-uniform flow.27 Particle trajectories are

then obtained from numerical integration of

dY
(n)

dt
= V

(n). (6)

The key point of this modeling approach is that it allows the calculation of the hydrodynamic

interactions with a moderate computational cost. In order to capture correctly the dynamics of dilute

suspension flows, four grid points per particle radius are usually used when the monopole force is

not zero, and in the case where only dipole forcing is relevant, three grid points per particle radius

are sufficient.

When the particle volume fraction reaches a few percent, pairwise short-range hydrodynamic

interactions and rigid body contact forces need to be accounted for. This is done by adding a

monopole term following Ref. 2, which prevents particles from overlapping. The repulsion contact

force between a pair of particles (α) and (β) is written as a function of the relative position vector

x
αβ = Y

(α) − Y
(β) and the distance rαβ =

�
x
αβ
�
. If rαβ < Rref (cut-off length scale of the repulsive

barrier), then the contact force acting on particle α due to particle β, scaled by Fref , reads

F
αβ
c =

Fref

2a


R2

ref
− rαβ2

R2
ref
− 4a2


2

x
αβ. (7)

Otherwise the contact force is zero. In the present simulations, the value of the scaling factor

Fref is chosen so that the number of overlapping particles is less than one percent of the total particle

number. The dynamics of the suspension flows shown in this work is not sensitive to the value of the

force scale in a rather large range of variation of Fref .



In the absence of external forces (no gravity effect for neutrally buoyant particles), the coupling

between the particles and the carrier flow occurs exclusively from the force dipole term which is

mainly related to the local flow strain rate. Accordingly, the method has been validated in finite

Reynolds number flow situations where the force dipole is the only contribution to hydrodynamic

interactions. Different tests have shown that the method is accurate under these conditions when the

average concentration φb < 20% and the particle Reynolds number Rep < 10.

A. Particle stresslet in a Couette flow

A first test consists in placing a freely rotating particle at the center of a Couette flow. The

computation domain is a cubic box of size (20a)3 where a is the particle radius. The mesh is

uniform in all directions. The mesh resolution is three grid points per particle radius (which is the

general recommendation for FCM dipole). The shear is imposed thanks to two walls moving with

equal velocities in opposite directions (no-slip boundary conditions on the walls and other boundary

conditions are periodic). Figure 1 shows the time evolution of the shear stresslet component scaled

by µγa3 for two particle Reynolds numbers Rep = γa2/ν = 10−5 and 1. The time is scaled with the

diffusion time t∗ = tν/a2 = tγ/Rep. The curves of the shear stresslet component plotted for both

Reynolds numbers collapse at small times t < 1. Then, each evolution converges to its specific value

under steady state. The characteristic time scale a2/ν corresponding to the diffusion of the velocity

perturbation due to the presence of the particle increases with Rep. This yields an increase of the

convergence time. Typically, dimensionless time required to reach the complete convergence of the

stresslet terms is around 2 for Stokes flow. When Rep varies from 10−5 to 1, this corresponds to 100

and 2000 time steps, respectively, to achieve convergence.

The stresslet terms were computed for particle Reynolds numbers up to 10. Results are in very

good agreement with those obtained by Ref. 28 from boundary fitted direct numerical simulations

(see Figure 2). The amplitude of normal stress differences N1 = G11 − G22 and N2 = G22 − G33 is

an increasing function of the particle Reynolds number. Therefore, it is suggesting that inertia

promotes the non-Newtonian character of sheared suspension flows. The agreement of our FCM

simulations is also good for those quantities.

B. Particle equilibrium position in a channel flow

The experiments of Ref. 35 highlighted the migration of neutrally buoyant spherical particles

towards equilibrium positions in laminar pipe flows. Their study showed that the equilibrium posi-

tion was located at 0.62R relatively to the tube center (where R is the tube radius) for Re < 30.

When the Reynolds number increases, the equilibrium position shifts towards the wall. The inertial

FIG. 1. Time evolution of the shear stresslet G12 (scaled by µ γ a3) of a particle in a pure shear flow. The time is normalized

by the diffusion time scale a2/ν (µ and ν being the fluid dynamic and kinematic viscosity). The solid and dashed lines

correspond to different flow inertia Rep= 1 and 10−5, respectively. The corresponding values obtained by the DNS of Ref. 28

are plotted as short horizontal lines. The blue plus and blue triangle symbols indicate the value of the stresslet after 100 time

steps.



FIG. 2. Dependence on the Reynolds number of the stresslet terms (scaled by µγa3) of a particle in a pure shear flow.

The squares are the FCM numerical results compared to the direct numerical simulations of Ref. 28 (triangles). Light gray,

darker gray, and black colors (online red, blue, and black) denote, respectively, the components G11−G22 (first normal stress

difference), G22−G33 (second normal stress difference), and G12−G12,0 (deviation of the shear component from its value in

Stokes flow G12,0= 10π/3).

migration was later explained by different theories that quantified the lift force responsible of the

particle cross-streamline motion. It will be discussed with further details in Section III.

The Segré-Silberberg effect is an appropriate test for the numerical method with a freely mov-

ing particle in channel flow. The test consists of initially introducing a particle in the flow, anywhere

except in the channel central plane which is an equilibrium position unstable though, and calculating

its trajectory in time within a wide range of Reynolds numbers [100–1500]. The time evolution of

the trajectories is displayed in Figure 3. In this figure, the particle is located at the beginning of the

simulation at a distance H/4 from the closest wall. Then, the particle migrates towards the channel

wall and reaches an equilibrium position. The larger the Reynolds number, the closer to the wall is

the equilibrium position. Moreover, the migration velocity is an increasing function of the Reynolds

number.

The evolution of the dimensionless particle equilibrium position 2yeq/H with the Reynolds

number is plotted in Figure 3. Most of the numerical results relative to this test are obtained with

the channel-to-particle size ratio H/a = 32 and with 3 grid points per particle radius. They are in

good agreement with the prediction of Ref. 3 (with a relative error lower than 1.5%). Note that

the situation of Rep < 1 (used in the work of Asmolov) corresponds to a channel Reynolds number

less than 350. The agreement of the numerical results with the theoretical prediction of Asmolov

suggests that, for the considered range of Reynolds numbers, the particle Reynolds number has

FIG. 3. Time evolution of the dimensionless lateral position of a single particle during the cross-streamline migration. The

time is scaled by a/v0
s where v0

s is the velocity at the initial migration stage. v0
s/(2Uma/H )= 1200Re0.535 is a good estimate

of the initial particle velocity, where Um is the flow velocity at the channel center. The particle reaches different equilibrium

positions at different Re ranging from 100 (bottom) to 1500 (top line). Inset: equilibrium lateral position and comparison

with Asmolov’s theoretical prediction (solid line).



small effect on the migration mechanism. Similar results obtained with smaller particles (H/a = 40)

and a spatial resolution of three points per particle radius did not reveal any influence on the particle

equilibrium position. Moreover, we tested the influence of the domain size and grid resolution on

the numerical results. Increasing the streamwise domain length from 28.8 to 57.6a (or equivalently

from 0.9H to 1.8H) did not lead to any significant modification on the particle migration velocity

or trajectory (at Re = 100 and 1500). When the grid resolution is increased from 3 to 4 grid points

per particle radius, the particle equilibrium position is slightly changed. The largest discrepancy is

observed at Re = 1500 where the distance between the channel wall and the particle center is 1.3%

larger for the finest mesh grid.

III. HOMOGENEOUS SUSPENSION FLOWS AT SHORT TIME SCALE

In order to analyze the macroscopic properties of a laminar homogeneous suspension flow in

a channel at finite Reynolds numbers, we performed short time simulations that ensure suspen-

sion homogeneity. An initial random draw of particle positions is set and statistics are computed

when stresslet components are converged. The simulation is stopped before lateral migration has

led to significant displacement of particles. Ensemble averages are taken over several tests run

at different random positions of the particles. However, the number of time iterations should be

carefully chosen. On one hand, the average quantities in the present simulations are representative

of a homogeneous suspension only when the number of time iterations n realized for each particle

distribution is smaller than the time needed for the particles to migrate. On another hand, n should

also insure the convergence of the second order terms (dipole) of the force coupling method (see

Figure 1). This type of simulation allows to uncouple the effect of particle Reynolds number and of

segregation due to particle inertial migration on the effective properties of the suspension flow.

Because particles undergo cross-streamline migration at finite Reynolds numbers, we were

constrained to fix the number of iterations to 100. In Figure 1, symbols indicate the value of the

shear stresslet terms reached after n = 100 time steps. With this choice of n, the stresslet is slightly

overestimated at Rep = 1 (around 1%) whereas the resulting error at Rep = 10−5 is negligible.

No-slip boundary conditions are imposed at the walls (y = 0 and 32a). Periodic boundary

conditions are imposed in the flow (x) and spanwise (z) directions. The channel size in these

directions is carefully chosen to limit the interaction of the particles with their images through the

periodic boundaries. The dimensions of the computational domain are (20a × 32a × 20a). In the

Couette flow configuration, the walls move in opposite directions. In Poiseuille flow configuration,

the flow is driven by a constant pressure-drop. In both cases, the average flow shear rate is noted

〈γ〉. The time step and the number of iterations are, respectively, set to 0.01〈γ〉−1 and 100. This

simulation time allows capturing fairly well the particle-flow interactions. Also it corresponds on

average to 4 and 7 particle encounters in the Couette flow for φb = 1% and 5%, respectively.

A. Flow parameters and statistical quantities

The parameters used for the homogeneous suspension flow simulations are summarized in Table I.

The macroscopic behavior of the suspension flow is characterized through two major quantities. First,

the stresslet terms obtained from the FCM are used to characterize the suspension rheology because

they are the main contribution to the suspension stress. Following Ref. 5, in the absence of any external

TABLE I. Parameters of simulated homogeneous suspension flows.

Configuration Re Rep Resim Rep,sim

Couette γH2/ν Re(a/H )2
2×10−3 2×10−6

1000 1

Poiseuille 〈U〉H/ν 3Re(a/H )2
1×10−3 3×10−6

500 1.5



torque applied on the rigid particles, the solid phase stress tensor of a suspension is obtained from the

integral of the stresslet, variation of particles momentum, and Reynolds stresses over the suspension

volume (first, second, and third terms on the right hand side of

Σ
(p)

i j
=

1

V

∑

∫
A0

1

2

!
σi jx j + σ jkxi

�
nkdA −

1

V

∑

∫
V0

ρ f ′i x jdV −
1

V

∫
ρu′iu

′

jdV, (8)

where V is the volume of the fluid domain containing particles of external surfaces A0 and volume

V0. nk is a unit vector normal to A0 pointing outwards. f ′
i

is the local particle acceleration relative

to the average value of the acceleration in V . It includes the non-hydrodynamic forces such as

interparticle forces occurring when particles are in contact. u′
i
is the particle-induced velocity pertur-

bation, and the calculation of the last contribution is straightforward. The suspension properties are

homogeneous in the flow and spanwise directions. However, the shear gradient and the walls induce

stress gradients in the wall-normal direction. Stresslet profiles in that direction will be therefore

investigated. To calculate the average stresslet contribution to the particle-induced stress, averages

are performed on slabs of volume V sl parallel to the walls, using the following summation:

Ssl
i j =

∑Nsl

n=1
ζ
(n)

sl
G

(n)

i j

V sl
. (9)

Nsl stands for the number of particles present in the slab weighted by the volumetric percentage

ζ
(n)

sl
of the particle (n) belonging to this slab.

The most telling example to illustrate the increase of the suspension stress due to the particles

is the suspension viscosity. It is well known that a collection of particles enhances the local shear

viscosity as a function of the solid volume fraction. For dilute suspensions of non-Brownian rigid

spheres under unconfined Stokes flow, the Einstein’s expression13 of the effective shear viscosity of

the suspension varies linearly with the concentration µeff = µ(1 +
5
2
φ) in the dilute regime, while

the extra term in the viscosity expression comes from the particle contribution. In Stokes flow,

the viscosity enhancement comes exclusively from the stresslet. In order to obtain the increase of

suspension viscosity due to inertia, the particulate contribution to the shear stress Ssl
12

is calculated

using the term G
(n)

12
obtained by FCM simulations at finite inertia. Scaling Ssl

12
by the fluid viscosity

µ and the local shear rate γsl leads directly to the increase of the suspension viscosity µeff due to the

stresslet contribution

µeff − µ

µ
=

Ssl
12

µ γsl
. (10)

Second, the Eulerian slip velocity profile of the solid phase with respect to the fluid phase is

defined by

us =


!
up −



Ux,z

��
χp

�
x,z


χp

�
x,z

, (11)

where χp is the solid phase indicator (equal to 1 if the Eulerian grid point is located inside the par-

ticle volume and to 0 otherwise). The brackets indicate the average in time and in the homogeneous

directions (x, z). Hence, the slip velocity is defined as the difference between the particle velocity

field defined as up(x) = V
(n) + (x − Y

(n)) ×Ω(n) if
�
x − Y

(n)
�
< a and 0 otherwise, and the average

suspension flow velocity


Ux,z

�
.

B. Plane Couette flow

The increase of the flow viscosity induced by the particles is displayed in Figure 4 at different

particle Reynolds numbers and concentration using Ssl
12
/(µγslφb). Compared to the case of an iso-

lated sphere, the simulations performed with the FCM account for wall effects and multi-body

hydrodynamic interactions. Results for small volume fraction (φb = 1%) are represented with

dashed and solid lines for Rep = 10−6 (which will be noted here Rep = 0) and Rep = 1, respectively.

Results for larger fraction (φb = 5%) are represented in Figure 4 by symbols.



FIG. 4. Particle contribution to the increase of the Couette flow viscosity. The thick dashed and solid lines correspond to

φb = 1% with Rep= 0 and Rep= 1, respectively. The cross and plus symbols correspond to φb = 5% with Rep= 0 and Rep= 1,

respectively. The two vertical thin solid lines are linearly extrapolated from the DNS simulation of a single particle in the

center of a Couette flow,28 at Rep= 0 and 1 from left to right. The horizontal thin lines define a distance of one particle radius

from the walls.

In the central region of the domain, the particle stresslet at φb = 1%,Rep = 0 almost matches

that for an isolate particle in unbounded Stokes flow (the relative difference is 2%). At φb = 5%

and Rep = 0, the multi-body hydrodynamic interactions add a quadratic term in the suspension

viscosity µeff = µ(1 +
5
2
φ + Kφ2), where K is a coefficient between 5 and 7.5 depending on the

local microstructure.5 The FCM results lead to K ≈ 5. One can note that the stresslet profiles are flat

in the center of the channel. Near the walls, the stress due to the rigidity constraint in the particle

volume is increased due to the interaction with the rigid wall, independently from the concentration,

and yields modification of the stress distribution on the particle surface (this holds true for a single

particle in a linear flow near a wall at small and finite Rep).
22

At Rep = 1, the stress is increased for both concentrations (φb = 1% and 5%) compared to the

case with negligible flow inertia, and the wall effect on the particle stress acts on a wider region. The

stresslet is found constant only in a narrow band in the channel core (12 < y/a < 18). Considering

the value of the stresslet only in that band, we find that at Rep = 1 the contribution of the stresslet

(divided by the concentration) is increased with respect to Rep = 0 by a factor of 1.036 and 1.023,

respectively, for the concentrations 1% and 5%. This increase falls in the range of other predictions

found in the recent literature although there are to some differences in the cases reported. Reference

32 found that in 2D (suspension of discs) the stresslet at Rep = 1 increases by 1.15 with respect

to the case Rep = 0 in a dilute suspension. Reference 38 predicted, by considering the total shear

stress, that the increase of viscosity is (µeff − µ)/µ = (2.5 + 0.6Re
3/2
p )φ in an unbounded dilute

sheared suspension flow laden with rigid spheres, leading to an increase of a factor 1.24 when

Rep is increased from 0 to 1, independently of the concentration. As for Ref. 17 who used the

Lattice-Boltzmann method to simulate a suspension flow in a plane Couette, they obtained a factor

1.2 at φb = 5% when Rep is increased from 0 to 0.1.

In pure shear flow, the torque-free particles are experiencing a constant shear rate that makes them

rotate in the spanwise direction. When inertia is neglected (Rep ≪ 1), the rotation rate is equal to the

mean flow vorticity,Ω0 = −γ/2. When flow inertia increases, the rotation rate deviates from the local

flow rotation rate and (Ω −Ω0)/γ scales with Re
3/2
p .19 In the presence of a wall, the velocity perturbation

is modified by the no-slip boundary condition. Thus, the particle exhibits a slip velocity which is similar

to a Faxén correction because of the symmetry breaking of the velocity on the particle surface (the slip

velocity is the highest when a particle is very close to the wall16). In the center of the Couette flow, this

interaction is symmetric and particles exhibit no slip in the flow direction.

Profiles of the slip velocity components in the flow and wall-normal directions are displayed in

Figure 5 only for Rep = 1. Results for Rep = 0 are not shown here because the slip is negligible in Stokes

flow, which was a posteriori checked. The different velocity components are scaled byγa whereγ is the

shear rate of the Couette flow. This figure shows that the particles lag the carrier fluid as the translational

slip velocities are positive in the bottom part of the domain (where the fluid velocity is negative) and



FIG. 5. Profiles of the solid phase slip velocity at Rep= 1 scaled by γa. (a) and (b) show the streamwise and wall-normal

components, respectively. The line style stands for the particle concentration (solid line for φb = 5%, dashed line for

φb = 1%). The plus and circle symbols are the analytical prediction of the wall-normal component obtained by Refs. 40

and 16, respectively. Filled square symbols correspond to the simulation with a single particle. Oscillations in the streamwise

slip profile at φb = 1% are due to the limited number of random particle realizations (1000). Grey (blue online) layers define

a distance of one particle radius from the walls.

are negative in the upper part (where the fluid velocity is positive). Note that all the slip components

are linear across the Couette gap, and they are almost equal suggesting an average slip motion angle of

−π/4. As for the multi-body hydrodynamic interactions, they seem to have weak impact in the range

of concentrations considered. Indeed the velocity profiles closely match the migration velocity of a

single particle when placed at different positions across the Couette gap (filled squares).

The hydrodynamic repulsion by the walls at finite inertia induces a finite lift force that drives

the neutrally buoyant particles towards the center. The theoretical predictions available in the liter-

ature on Couette flows with neutrally buoyant particles assume that the wall lies within the inner

region of the flow perturbation around the sphere,16,40 so that the dominant inertial contribution

comes from a regular perturbation of the Stokes solution. Thus, they are rather valid at small particle

Reynolds numbers, and seem to over-estimate the lift force at Rep = O(1) (open circles and plus

symbols in Figure 5(b)). When inertia becomes important at the particle scale, the leading order

inertial effects result from the outer expansion of the perturbation and the wall likely falls in the

outer region. The evaluation of these terms requires the solution of a singular perturbation prob-

lem which can be obtained using the matched asymptotic expansions technique (see, for instance,

Ref. 34 for Re = O(1–100) and Ref. 3 for Re = O(1–1000) in channel flow).

C. Pressure-driven channel flow

Similar simulations were carried on homogeneous suspensions subject to Poiseuille flow at

Re = 10−3 and Re = 500, with two different concentrations φb = 1% and 5%.



FIG. 6. Stresslet-shear rate diagram in Poiseuille flow. Square and plus symbols are, respectively, for Re= 500 and 10−3.

Dark and light gray (online blue and red) colors are for φb = 1% and 5%, respectively. The lines are obtained from linear

fitting for each case.

Let us first consider the particle contribution to the shear stress in the suspension. In a steady

Poiseuille flow, the profile of the shear stress is linear. Also the strain rate (∂U/∂ y) is linear across

the channel when the viscosity is constant. Figure 6 presents the plot of the stresslet contribution

to the shear stress (divided by the fluid viscosity) as a function of the local shear rate γsl. The

curves are linear for the four test cases considered here (linear interpolation in solid and dashed

lines). Therefore, the suspension response to the shear resembles to a Newtonian fluid up to Rep = 3

(maximum particle Reynolds number at Re = 500).

The slope of the stress-strain curves is clearly increased with the concentration. The increase

of the suspension viscosity (µeff − µ)/µφ can be calculated using this slope divided by the cross

section average shear rate, and not the local shear rate to avoid divergence near the channel center,

i.e.,


Ssl

12

�
y
/(µ〈γsl〉yφb), where 〈 〉y indicates the average across the channel height. These values

are reported in Table II. At low inertia and low concentration, the viscosity increase is close to the

Einstein’s limit, whereas it is slightly higher at φb = 5% due to hydrodynamic interactions. At finite

inertia, the viscosity increases slightly less than the value predicted in Ref. 38 (3.6 for Rep = 1.5),

as in the case of Couette flow.

Second, concerning the particle motion in the flow direction, whatever the flow regime, a

neutrally buoyant finite-size spherical particle placed in a quadratic flow lags the local flow. In

Stokes flow (Re ≪ 1), Faxén law relates the particle velocity to the force and torque and accounts

for the non-uniform flow velocity gradient at the particle scale. The slip velocity calculated from

Faxén law, without accounting for the presence of the channel walls, is equal to −4
3

Um(a/H)2 (where

Um is the velocity at the channel center). One can find, for example, in Ref. 16, the correction due

to the walls in Stokes flow which is dependent on particle position in the channel. Profiles of the

slip velocity in the flow direction, normalized by 2Uma/H (which is the average shear velocity at

the particle scale), are plotted in Figure 7(a). At Re = 10−3, the slip velocity is constant across the

channel width (except near the walls). At low Reynolds number, the profiles are close to the Faxén

TABLE II. Increase of the viscosity due to the combined effect of concen-

tration and inertia.

φb (%) Re

〈

Ssl
12

〉

y

µ〈γsl〉yφb

1 10−3 2.58

1 500 3.23

5 10−3 2.84

5 500 3.22



FIG. 7. (a) Slip and (b) migration velocity profiles in Poiseuille flow scaled by 2Um(a/H ). Solid and dashed lines are

for φb = 5% and 1%, respectively. Thick and thin lines are for Re= 500 and 10−3, respectively. The vertical line in (a) is

calculated from the Faxén law (4Um/3)(a/H )2, and the stars are from Ref. 16 at Re= 0. In (b), the filled squares obtained

using a single particle placed at different y positions at Re= 500. The open squares are the numerical results for Re= 133,

and the open triangles represent the prediction based on the matched asymptotic expansion (taken from Ref. 26 in channel

flow). Grey (blue online) layers define a distance of one particle radius from the walls.

estimate in the limit of unbounded parabolic flow, and to its extension to bounded channel flows as

written in Ref. 16. The small discrepancy between the FCM results and the theoretical predictions

is due to the accuracy of the numerical representation of the multipole expansion, where higher

order terms than the dipole are not accounted for. Terms like the quadrupole start to be important

when the gradient of the strain rate in the particle volume is not negligible (corresponding to larger

particle-to-channel size ratio). At Re = 500, the magnitude of the slip velocity of the particulate

phase increases. For both Stokes and inertial regimes, the streamwise slip velocity appears to be

independent of the concentration when φb < 5%.

The profiles of the cross-streamline migration velocity (normal to the channel walls) scaled by

2Uma/H are shown in Figure 7(b). Only half of the channel height is shown for clarity, knowing

that the profiles are perfectly symmetric. At negligible inertia, the migration velocity is vanish-

ingly small for both concentrations. Similarly to Couette flow, when fluid inertia is important, the

neutrally buoyant particles experience a lift force normal to the walls. The difference with a linear

shear flow is that, away from the wall, the lift force is induced by the interaction between the

stresslet and the curvature of the bulk velocity profile for finite particle Reynolds number. It is

directed towards the wall for particles located around the channel center, and away from it for the

particles close to the channel wall (Segré-Silberberg effect).

In order to validate the numerical computation of the migration velocity in the channel flow,

results obtained with a single particle located at different positions across the channel at Re = 133

(open squares in Figure 7(b)) are compared with the theoretical prediction (triangles) taken from

Ref. 26 at the same Re (i.e., Re = 200 in their paper). One can note that the FCM results agree



reasonably well with the theoretical prediction valid in the limit Re = O(10–1000). Also the loca-

tion of the equilibrium position, where the wall-normal velocity cancels, is correctly captured.

Deviation between numerical and theoretical values is observed only very close to the wall.

In Figure 7(b), the wall-normal velocity profiles obtained for φb = 1% and 5% at Re = 500 well

match that of a single particle at same Re (filled squares). The velocity of a single particle cancels at

a distance of 2.4a from the wall, in agreement with the theoretical prediction of Ref. 3. At φb = 1%,

the velocity cancels at the same position but at φb = 5%, the lateral migration velocity decreases

without reaching zero (thick solid line). In this case, hydrodynamic interactions between particles

are probably hindering the wall repulsion. Also the hydrodynamic interaction of two particles

almost touching the wall is probably not accurately calculated by the FCM.

IV. DEVELOPING TWO-PHASE FLOW

In this section, the long-time behavior of the suspension flow is analyzed, using the same

channel-to-particle aspect ratio (H/a = 32). The domain dimensions are (100 × 32 × 80)a3 and con-

tain 320 × 100 × 256 cubic cells. It is large enough to minimize the effect of particle interaction

through the periodic boundaries. Initially, the particles are randomly seeded in the domain corre-

sponding to a homogeneous distribution. Simulations with different solid fractions φb = [0.5%–5%]

and different Reynolds numbers Re = [1000–1400] are performed at constant average velocity by

adjusting the longitudinal pressure drop. The flow regime remains laminar at all times and no

transition to turbulence is observed.

A. Stratification of the suspension

Over time, the freely moving particles migrate towards the channel wall leading to a stratification

of the suspension, as illustrated in Figure 8. At φb = 1%, a single layer of particles forms near each

wall of the channel, very close to the equilibrium position of a single particle at the same Reynolds

FIG. 8. Particle positions in the channel at the initial stage of lateral inertial migration. x is the flow direction in both figures.

(a) At φb = 1% and t = 200H/〈U〉 particle trains are formed parallel to the streamlines indicated by the lines oriented

in the flow direction (from smaller towards larger x). Only the bottom half of the channel is shown. (b) At φb = 5% and

t = 70H/〈U〉, stratification of the two-phase flow is observed. The colors are related to the particle cross-stream position in

the channel gap.



number. Particle alignment in the flow direction is observed (see Figure 8(a)). This behavior is similar

to the formation of particle trains detected in pipe flows in the experiments of Ref. 25 and later in

the simulations of Ref. 37. The particle alignment depends on Rep according to Ref. 25 and is likely

due to hydrodynamic interactions of the finite-inertia particle-induced disturbance in the wall shear

flow. At φb = 2.5% and 5%, the suspension splits into three layers: the center of the channel becomes

depleted from particles while they migrate towards the walls due to Segré-Sielberberg effect. Wall

regions become concentrated while particle layers develop (Figure 8(b)).

The profiles of the solid volume fraction across the channel are displayed in Figure 9 after

the migration is completed (when t is approximately equal to 50H/ 〈U〉). These profiles corre-

spond to the volume fraction of particles averaged in space along the streamwise (x) and vorticity

direction (z), and in time over 15 time units (H/ 〈U〉). The peak of concentration is located at

approximately one particle radius from the channel wall. The local minimum next to the peak is

due to excluded volume effect (because of the finite size of the particles). The height of the peaks

and the level of the concentration in the depleted core zone are increasing function of the global

concentration. Note that even though there is enough room for all particles to be trapped at the

single particle equilibrium position (as it is the case at φb = 1%), most of the particles remain

freely suspended throughout the entire channel. The development of these profiles in the wall

normal direction suggests that the inertial migration of the particles is balanced by concentration

gradient and shear-induced particle diffusion oriented towards the channel center. The mass balance

equation applied on the solid phase, at steady state, leads to equilibrium between inertial migration

and shear-induced diffusion fluxes, the equilibrium being independent of the Reynolds number as

suggested by the concentration profiles in Figure 9(b). However the wall-normal particle migration

velocity estimated from homogeneous suspension simulations (Figure 7(b) extended to higher Re)

is orders of magnitude higher than the opposite shear-induced particle diffusion velocity based on

a low Reynolds number diffusion coefficient.2,12,42 This leads us to the conclusion that a simple

FIG. 9. Solid volume fraction profiles of a laminar channel flow after the particle migration towards the wall is completed.

(a) Re= 1400 and φb = 1 (thin line), 2.5 (dashed), and 5% (solid thick line). (b) φb = 5% and Re= 1400 (dashed-dotted),

1200 (light gray — green online), and 1000 (dark gray — blue online).



mass balance on the particulate phase is not sufficient to predict the particle concentration profiles

established in the channel flow.

B. Agitation of the particulate phase

Information on particle fluctuating motion is particularly interesting for particle-phase stress

prediction across the channel flow (this will be explained further in this section). Particle fluctuating

motion is not isotropic. Velocity fluctuations in the wall-normal and spanwise directions are very

close whereas streamwise component is larger than both by a factor close to 4. We call particle

agitation the isotropic part of particle velocity fluctuations taken here as 0.5(u′2p, y + u′2p,z). The bar

symbol denotes the time and phase average operation on the particles in the x and z directions,

i.e., ψp =


ψp χp

�
/


χp

�
=


ψp χp

�
/φ, where χp is the local solid volume fraction and



χp

�
= φ is

the average wall-normal dependent concentration. The explicit y dependence of φ is omitted in this

section for brevity.

The particle agitation profiles in the wall-normal direction are plotted in Figure 10(a) for

φb = 2.5% and 5% and Re = 1400. They peak at a distance from the wall slightly larger than

one particle diameter and decrease towards the channel center, following the trend of the concen-

tration profiles. The agitation profiles at φb = 5% seem, however, to be slightly dependent upon

flow Reynolds number (corresponding to Re = 1200 and Re = 1000, respectively). In the channel

center, the particle agitation and concentration are both non-zero. Therefore, it is suggested that the

diffusive flux term plays a non-negligible influence in the budget of the particle phase agitation. The

role of the diffusive flux was already pointed by Ref. 30 who first performed the simulation of (quasi

2D) concentrated suspension flows in a channel at zero Reynolds number. However, concentration

FIG. 10. Profiles of the dimensionless particle agitation T ∗=T /(γma)2. Black lines are results obtained from the simula-

tions. The thick and thin line styles refer to φb = 5% and 2.5%, respectively. In plot (a), solid, dashed, and dashed-dotted

lines are for Re= 1400,1200, and 1000, respectively. In plot (b), the dashed (blue online) lines correspond to Eq. (20) with

α ≈ 2000. The dotted (red online) lines result from a prediction based on pure shear flow prediction (Eq. (21)).



profiles of suspension channel flows at low Reynolds number are quite different since they peak at

the channel center,14,30 whereas the concentration profile peaks near the wall in the present case.

We examine now the transport equations of the momentum (in the wall-normal direction) and

agitation of the particle phase at steady state. The mean wall-normal component of particle velocity

being negligible, the momentum balance in that direction reduces to a balance between the diver-

gence of the particle normal stress and the lift force due to Segré-Silberberg effect (noted Fssy). The

momentum balance on the solid phase can be written following Eulerian two-phase formulation as

ρp
d

dy

(

φΣp, y y
)

+ φFssy = 0, (12)

where Σp = Pp − µp

(

∇Up + ∇
tUp

)

is the particle phase stress tensor, which can be split into two

contributions, namely, the particle phase pressure and the viscous shear stress. This is true in the

situation where the particle phase velocity field is divergence free. The incompressibility condition

is satisfied in the channel flow, thanks to the negligible particle mean motion in the wall-normal and

spanwise directions (which implies that ∇.
(

φUp

)

= 0 reduces to ∇.Up = 0).

The general form of this constitutive relation for the particle stress tensor is valid for both

non-Brownian Stokesian suspensions (see Ref. 30) and gas-solid suspensions,7 where Pp is the

granular pressure and µp the granular viscosity. In the frame of kinetic theory of granular flows (KT-

GFs) at large Stokes number, Pp and µp both result from a kinetic contribution (normal Reynolds

stress) and a collisional contribution (see Ref. 7). The granular pressure Pp is related to the particle

Reynolds stress, i.e., in average notation, Pp = ρpφT where T is the granular temperature equal to

one third of the mean particle fluctuating energy T = 1
3
Tii, where φTi j =

〈

u′
p, i

u′
p, j
χp

〉

.

In the present study, particle Reynolds and Stokes numbers are of the order of unity and

maximum solid volumetric fraction near the wall does not exceed 20%. The Stokes number, being

the ratio of particle relaxation to fluid flow characteristic time scale, is defined as St = γmτp =
2
9
ρp/ρ fRep, where γm is the average shear rate over the channel flow. An alternative definition

of the Stokes number would be St = 1
3
ρp/ρ fRep accounting for the added-mass effect (but this

would not lead to any significant variation for neutrally buoyant particles). In that regime (low

Reynolds and Stokes numbers and moderate concentration), particle soft collisions are induced by

the shear (T < (γa)2), corresponding to the so-called quenched state in KTGF as first introduced

by Ref. 39, and later extended by Ref. 31. In the KTGF formulation, granular viscosity is due to

particle agitation and can be calculated with collision integrals. An expression of particle phase

viscosity as a function of concentration can be deduced from the calculation of particle stress tensor

in homogeneous pure shear flow in the quenched state regime, following Ref. 39,

µp = µ fφ
2b(St), (13)

where b(St) = 64
35π

St3
!
1 + 9π

16
St−1

�
.

Although there is no simple analytical expression for Fss, y in Eq. (12), it is clearly the only

term that may allow at steady state a strong correlation between the concentration and the agitation

profiles of the particle phase. Indeed, in the limit of zero Reynolds number, this term would vanish

and Eq. (12) would naturally reduce to an inverse relation between these two variables.14,30

At steady state, the macroscopic balance of particle agitation T is

0 = −∇.Qp − Σp : ∇Up − εp. (14)

The first term of this equation is the divergence of the flux of fluctuating kinetic energy, which

is usually closed as a linear function of ∇T ,

Qp = −κp(φ)∇T , (15)

where κp is the conductivity, which in rarefied gas (i.e., dilute hard sphere systems) has the same

order of magnitude as particle phase viscosity, µp. Then, the conductivity is assumed to be propor-

tional to the granular viscosity (the pre-factor is the inverse of a Prandtl number) κp = αµp.

The second term of Eq. (14) is the production by the mean velocity gradient. The third one

is the dissipation term. Note that this term also includes the contribution of the fluctuation of the



power of Segré-Silberberg force. As the dispersed phase fraction and the Stokes number considered

here are moderate, we assume that the characteristic time scale of the dissipation rate is mainly

controlled by the drag rather than the collisions,

εp = 3ρpφλ(St)
T

τp
, (16)

where τp is the response time scale of the particles (τp =
1
3

ρp

µ f
a2). λ(St) is a function of Stokes

number exclusively, accounting for the contribution of shear-induced collisions to the agitation.

In homogeneous shear flow, λ(St) can be calculated from the equilibrium between the production

(second term of Eq. (14)) and dissipation (third term), the granular temperature given from the

quenched state theory,31,39

T∗ =
T

(γa)2
= φ f (St), (17)

where f (St) = 128
945π

St3
!
1 + 9π

16
St−1 + 9

2
St−2

�
. Consequently,

λ(St) =
1 + 9π

16
St−1

1 + 9π
16

St−1 + 9
2
St−2

. (18)

The particle agitation in the channel flow being mainly driven by the shear, we verify that the

quenched state closure laws ensure the observed level of T , assuming constant average shear rate

across the channel. When St = 1, Eq. (17) gives T∗ ≈
φ

π
≈ 0.31φ, which is a very close result to that

predicted by Lagrangian simulations of Ref. 1 at same Stokes (see also Ref. 31). However, when

St < 1, the prefactor f (St) in Eq. (17) provides much smaller values than those predicted by the

simulations. Based on FCM simulations, Ref. 42 has calculated the particle Reynolds stress normal

components in homogeneous concentrated sheared suspensions, at different concentrations and par-

ticle Reynolds number. Compared to shear flow at low Rep, particle agitation slightly decreases

as the particle Reynolds number increases. With neutrally buoyant particles at φ = 20%, they ob-

tained T∗ ≈ 0.24φ when Rep = 1 (St = 0.33), and T∗ ≈ 0.3φ when Rep < 10−2 (St ≈ 3 × 10−3). In

the limit of dilute suspension and zero Rep, Stokesian dynamics based on simulations from Ref. 12

gives T∗ ≈ 0.34φ. Instead Eq. (17) leads to T∗ ≈ 4 × 10−3φ when St = 0.2 and T∗ ≈ 2 × 10−3φ

when St = 10−2, which is two orders of magnitude smaller. Clearly, quenched state closure laws

(Eq. (13)) are not applicable when St < 1, mainly because it does not account for the hydrodynamic

interactions occurring during particle encounters.

As a consequence, given the range of Stokes and particle Reynolds number (0 < St,

Rep < O(1)) and particle phase fraction (0 < φ < 0.2) investigated in the channel flow, a good

approximation of particle phase viscosity in Eq. (19) will be µp = 4µ f φ
2 and λ(St) = 1 ensuring

that T∗ ≈ 0.3φ in pure shear flow case.

If we now write the macroscopic balance (Eq. (14)) in the wall-normal direction y, we obtain

d

dy
*
,κp(φ,St)

dT

dy
+
- + µp(φ,St)*,

dUp, y

dy
+
-

2

− 3ρpφλ(St)
T

τp
= 0. (19)

In this equation, the gradient of the particles velocity is the same as that of the fluid and is

known in the whole channel height since the flow is parabolic (except at one particle diameter from

the walls). In dimensionless form, Eq. (19) writes

d2T∗

dy∗2
−

27

32αǫ2

T∗

φ
= −

1

αǫ2
(1 − y∗)2. (20)

The star indicates dimensionless quantities such that y = y∗(H/2), T = T∗(γma)2 where Up, y =

U∗
f , y

(γma).

This model can be tested along the channel width y∗ when the calculated profile of the particle

concentration φ(y∗) is introduced in Eq. (20). Neglecting the diffusive term, the temperature profile



T∗(y∗) is given by

T∗ =
32

27
(1 − y∗)2φ(y∗). (21)

These profiles have been reported in Figure 10(b) at particle concentration of φb = 2.5% and

5%. It can be seen that for a given concentration, Eq. (21) does not reproduce well the shape of the

calculated temperature profiles neither the influence of particle concentration. The prediction can

be improved with the diffusive term but in order to match the two profiles at 5%, the coefficient α

between the viscosity and the conductivity must be taken equal to O(ǫ−2) ≈ 103, which is unreal-

istic. Even when this high ratio is considered, a unique set of parameters (µp, κp, λ) does not allow

capturing the evolution of the temperature profile for all bulk concentrations. As a conclusion, the

temperature profiles in the wall normal direction do not correspond to a steady developed profile

that can be described by the energy budget (Eq. (14)). The temperature and concentration profiles

in y-direction probably result from other contributions involving interactions in the vorticity direc-

tion (z). These interactions have been highlighted, thanks to longer simulation times, and they are

presented in Sec. IV C.

C. Secondary flows and interface instability

At φb = 5%, after the suspension has been segregated into particle-laden layers, and a central

fluid core, the separating boundary does not stay permanently parallel to the channel walls. Un-

expectedly, the development of wavy-like patterns for the particle concentration in the spanwise

direction is observed approximately 70 time units after the separation occurred. This pattern is

clearly illustrated in Figure 11(a), where the particle positions projected onto the (y, z) plane exhibit

the shape of the transverse concentration waves (Figure 13(b)). The order of magnitude of the

wavelength of this interface is half of the channel height. Note that the average velocity profile of

the suspension flow does not deviate from the Poiseuille flow profile (see Figure 11(c)).

Reference 9 demonstrated that when two stratified fluid layers of different rheological properties

are sheared, the interface experiences an instability in the vorticity direction. Considering the partic-

ular case of a plane Couette flow of two stratified fluids (Newtonian fluid and concentrated suspension

at very small Re), Ref. 9 has shown that the instability of the interface is due to a jump in the second

normal stress difference across the two layers. According to their analysis, a necessary condition for

the instability to develop is that the jump (N2N − N2nN) in the second normal stress difference be-

tween the Newtonian N2N and the non-Newtonian N2nN fluid at the interface be positive. The normal

stress difference of the Newtonian fluid being null (N2N = 0), the instability onset criterion reduces to

N2nN < 0. This configuration of two stratified layers of different rheological properties is comparable

to the present case of study, even though the shear is not constant along the channel height.

While the flow free of particles in the central region is Newtonian, the layers laden with

particles are likely non-Newtonian. The anisotropy of the normal stresses occurring in sheared

suspensions at finite Reynolds numbers has been reported in many studies (see Refs. 17, 32, and

42). Therefore, the particle-laden zones exhibit non-zero normal stress differences. The main contri-

butions to the second normal stress difference N2 are due to the stresslet components (Ssl
22
− Ssl

33
) and

to the transverse velocity fluctuations difference (v ′2 − w ′2) (second and third term of Eq. (8)). The

profiles of these contributions averaged over (x) and (z) are shown in Figure 12. Both the stresslet

and inertial contributions are almost zero in the region free of particles, and they are of same order

of magnitude in the particle-laden regions. These contributions sum up in the second normal stress

difference, which turns out to be positive. It is not surprising to find positive N2 in so far as the

particle Reynolds number is Rep = O(1) and the maximum concentration reached near the wall does

not exceed 20%. Reference 42 has shown that N2 is positive in this range of parameters, and that the

sign switch takes place at 20% ≤ φ ≤ 30%. Back to the definition of Ref. 9, the jump in the second

normal stress difference ∆N2 = (N2N − N2nN) is negative in the present case and does not meet their

criterion for the onset of the interface instability.

Reference 33 carried out simulations of non-inertial and non-homogeneous suspension flows

based on the suspension balance model of Ref. 30. Writing the transport equation of the streamwise



FIG. 11. Instability of the interface between the particle-laden and the particle-free zones. (a) Front view of the whole

channel. (b) Three clips (of thickness 2d) perpendicular to the streamwise direction. (c) Mixture velocity profile (solid line)

compared against the plane Poiseuille profile (plus symbols).

vorticity, these authors have shown that the second normal stress difference N2 (which is non-zero in

a concentrated suspension even in Stokes flow) generates secondary flows whenever the flow cross

section is not axisymmetric. In the particular case of a plane Poiseuille flow, an initially imposed

concentration gradient in the channel cross section triggers the occurrence of dune-like patterns

similar to those observed in the present work. The authors ascribe the origin of the secondary

circulating flows to spanwise gradients in the curvature of the flow stream-surfaces, which is not the

case since the flow is periodic in the spanwise direction.

The contour plot of the streamwise velocity fluctuations (averaged over x) is displayed in

Figure 13(a). It can be observed that in the zones laden with particles, the mixture flows with negative

velocity with respect to the average local Poiseuille flow whereas the fluid velocity in the depleted

zones is positive. This can be explained by momentum conservation arguments based upon suspension

effective viscosity fluctuations, where the more (respectively, less) viscous or concentrated regions



FIG. 12. Profiles of the contributions to the second normal stress difference scaled by the wall shear stress at Re= 1400

and t = 70H/〈U〉. Thick solid line: v′2−w′2. Thin solid line: Ssl
22
−Ssl

33
. Dashed line: prediction of Ssl

22
−Ssl

33
from the single

particle in unbounded pure shear flow considering local Rep and shear rate.

have smaller (respectively, larger) velocities when driven by the same pressure drop along the longi-

tudinal direction. The contours of the spanwise shear rate shown in Figure 13(a) reveal that particles

are submitted to a non-uniform shear field in the plane (x, z) parallel to the channel wall combined

with that of the streamwise plane (x, y), and therefore they migrate, in the (x, z) plane direction, from

faster flow regions to slower ones. It can be seen in this figure that the amplitude of variation of this

gradient fluctuation in a plane parallel to the walls is of the order of 1 over a distance z/a which is of

order of 15. This exactly compares with the variation of the mean streamwise velocity gradient in the

wall normal direction. The particle Reynolds number based on this spanwise shear rate varies between

0 and 2 in Figure 13(a). Therefore, the existence of an inertial lift force in the flow-spanwise plane,

from faster (unladen) to slower (particle laden) flow regions, can be thought of the driving force of

the instability. As the origin of the velocity gradient fluctuation ∂ (∂u′/∂z) /∂z is due to concentration

fluctuations in z direction, as ∂u′/∂z develops, the migration of particles from lower to higher velocity

gradient zones is increasing these concentration fluctuations and consequently ∂u′/∂z. Therefore,

the development of the spanwise instability is a self-sustained process (the character of spanwise

concentration fluctuation is reinforcing).

This is confirmed in Figure 13(b) where the contour plot of the streamwise flow vorticity is re-

ported. It is averaged in the streamwise direction and over time ([130–200]H/ 〈U〉) after the dune-like

patterns took place. In Figure13(c), thismap is superimposed toFigure 11(a) representing theprojected

positions of particles in the channel cross section. It can be seen that each individual dune pattern is

associated with a single pair of counter-rotating vortices, the size of which nearly fits that of the dune.

This figure clearly illustrates the feeding mechanism of the dune from both sides of it (which corre-

spond to the depleted zones). These secondary flows remix the particles in the channel cross section.

In turbulent flows, the development of secondary flows is known to originate from the anisotropy of

the Reynolds stress tensor in a pipe cross section (see, for instance, the recent work of Ref. 6). How-

ever, in the present case, their amplitude relatively to the bulk flow velocity is much smaller than in

turbulent flows. Here, the anisotropy of the Reynolds normal stress components arises from the local

concentration gradients, combined to localized forcing at the particle positions.

The wall normal migration induced by each pair of vortical structures is pointing to the oppo-

site direction of the Segré-Silberberg induced migration in the (x, y) plane. Therefore, the devel-

opment of a steady concentration profile along the channel height is resulting from an equilibrium

between Segré-Silberberg migration due to the interaction between the particles and the Poiseuille

flow on one hand, and on the other hand the same mechanism due to the development of concen-

tration waves in the spanwise plane (such as illustrated by the scheme of Figure 13(c)). Note that

according to such a mechanism, the development of both concentration and temperature profiles is

entirely governed by inertial effects.

The observation of these instabilities has never been reported and it is likely to be limited

in terms of concentration and particle Reynolds number. At φb = 1%, the particles form a single



FIG. 13. (a) Contours of the streamwise velocity fluctuations scaled by 〈U〉 followed by the spanwise velocity gradient

scaled by the average flow shear rate. (b) Contours of streamwise vorticity scaled by the average shear rate. All these contours

correspond to averages in the streamwise direction at the same time t = 200H/〈U〉 at Re= 1400. In (c), the secondary flows

are superposed with the particle front view of panel (a).

particle layer close to the wall. At 5%, the dune height is of the order of half the channel height.

Increasing the concentration of particles in the channel will tend to make the two wavy layers

interact and damp the concentration gradients in the wall normal direction. It is likely that above

10%–15% of particle concentration, such patterns are not visible and a more homogeneous profile

will be observed. Increasing the particle Reynolds number is also limited by the onset of turbulence

which occurs at Reynolds number close to 1600 with H/a = 32.20

V. CONCLUSION

We have studied the dynamics and migration of a suspension in a channel flow under laminar

regime. Finite-size neutrally buoyant particles were modeled by the force coupling method coupled

to direct numerical simulations at finite Reynolds numbers.

In the first part, we have analyzed homogeneous suspensions under plane Couette and Poiseuille

flow configurations. In Couette flow, the particle induced stress increases with the Reynolds number.

The effect of increasing the particulate concentration on the suspension stress is less important at

finite than at low Reynolds numbers. This can be explained by a reduction of the length scale of the

particle-induced flow perturbation when flow inertia is increased. The cross-stream and streamwise

slip velocities increase with the Reynolds number and they are of the same order of magnitude at



Rep = O(1). The main difference between the Couette and Poiseuille plane flows is that the particles

tend to migrate towards the center because of wall repulsion in a Couette flow and towards the walls

in the Poiseuille flow configuration.

In the second part, the developing two-phase flow structure in the channel is analyzed. First, the

particles migrate towards the channel walls due to the Segré-Silberberg effect. Then, the suspension

becomes stratified forming two concentrated layers close to the channel walls separated by a nearly

pure fluid region in the core of the channel. Concentration and agitation profiles in the wall-normal

direction are first analyzed through a steady two-phase flow model in which suspension transport

properties as a function of particle concentration are derived from the kinetic theory of granular

flows in the quenched state regime when St > 1 and from numerical simulations when St < 1. The

model clearly fails to reproduce the agitation profile in the wall normal direction, suggesting the

existence of secondary flows. This is confirmed by the simulations of flow dynamics at longer

times which show the development of a particle concentration wavy structure in the spanwise plane

(x, z). These structures are associated to counter-rotating vortices, which are thought to be driven

by a secondary migration due to inertial lift force in this plane from depleted (less viscous and

with higher velocity) zones towards laden (more viscous and with lower velocity) zones. In the

laden zones, the balance between the outward particle wall-normal flux raising from the second-

ary flows and the flux towards the wall induced by the mean flow shear gradient (mainly due to

Segré-Silberberg effect) leads to the establishment of the observed concentration and agitation pro-

files. Such a flow configuration is probably only observable in a narrow range of particle Reynolds

number and moderate concentration (<10%). To the best of our knowledge, we have reported the

first observations of such a peculiar suspension flow instability. Experimental evidences would be

highly desirable to confirm our findings.
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