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Abstract— Regarding Prognostics and Health Management 
(PHM), the stakes lie in system-level prognostics or even the 
prognostics of systems of systems, as decisions are usually 
made at system or platform level. In this paper, a method, 
which takes into account both the system redundancy and the 
adaptation of operational modes in degraded functioning, is 
proposed and formalized. This method makes the system-level 
prognostics more relevant. The main feature of the method is 
to re-compute the components Remaining Useful Life (𝑹𝑹𝑹) 
using the degradation rate associated to the future operating 
mode(s) due to system reconfiguration. This results in an 
improvement of both the System 𝑹𝑹𝑹 (𝑺𝑹𝑹𝑹) and the 
components 𝑹𝑹𝑹. The proposed method is applied on a 
simplified aircraft bleed valve system to illustrate its 
effectiveness. This method is primarily destined to aeronautic 
systems, which are usually resilient. It has not been tested 
whether or not it could be useful in other fields. 
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INTRODUCTION 

Aircraft Operability is a critical aspect for airlines, 
especially nowadays as the traffic is getting more and more 
congested on airports and the time windows allowed for 
taking-off are tighter. In this scope, aircraft manufacturers 
tend to improve aircraft operational reliability by 
implementing more predictive maintenance on their aircraft, 
through services for instance, in order to reduce 
unscheduled maintenance. Instead of replacing a device at a 
planned date (scheduled maintenance) or when it is faulty 
(corrective maintenance), predictive maintenance consists in 
monitoring the health rate of each individual component (or  
system) and predict its future states by taking into account 
future missions in order to replace it just before a failure 
occurs. This is the main purpose of Prognostics and Health 
Management (PHM) [1 – 4]. 

In this scope, one needs to estimate and predict the health 
state of an aircraft system component by component. The 

Remaining Useful Life (𝑅𝑅𝑅) is one of the classical 
prognostics output that can be computed for a component [5 
– 9]. In order to assess the impact on operability, the 
component fault is not the correct indicator. Indeed, the 
operability is only impacted by the loss of an important 
function, thus the Remaining Useful Life at system level 
(𝑆𝑅𝑅𝑅) is a more relevant indicator.  Nevertheless, even 
though it would be the right level to deal with, computing 
the 𝑆𝑅𝑅𝑅 is still a challenge.  

Several factors explain this difficulty. First, assessing the 
prognostics of all critical components in a system is not 
always trivial. Second, components interact in the system 
and modeling these interactions can become a very complex 
task. Finally, systems have different operating modes that 
are not always easy to take into account. For instance, 
aeronautical systems are resilient to component faults thanks 
to material redundancy. By duplicating the components 
performing a task, several faults of the same type of 
component are necessary to cause a system failure. But 
material redundancy is costly in terms of weight as it 
requires doubling or tripling the number of components. 
Another way is to adapt the operating mode to the number 
of remaining items, soliciting more and more the 
components as there are fewer items to perform the task. 
Therefore, simply computing the 𝑆𝑅𝑅𝑅 as the minimum 
value of the system components 𝑅𝑅𝑅 is not accurate. 
Likewise, computing the minimum value of components 
𝑅𝑅𝑅 in a degrading system is not a trivial task. This is 
because the system reconfigures in degraded modes to 
maintain its function, thus changing some components 
operating mode and therefore changing their degradation 
rates and 𝑅𝑅𝑅. In other words, the 𝑅𝑅𝑅 of a component in a 
system depends on the future states of the system.  

We will first explain the context of this paper, then develop 
the proposed method for system-level PHM, and finally 
illustrate with an application to a case study. 

 
CONTEXT AND FRAMEWORK 

Definitions 

Several specific terms will be used in the following 
development, they will be defined here. 
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A health indicator 𝐹𝑖 is a relation between several physical 
parameters, 𝛼1, … ,𝛼𝑚 that represent the degradation of a 
component. It is defined with an associated threshold 𝑇𝑖 , 
above which the related component is considered faulty.  

The health state ℎ𝑖 of a component 𝐶𝑖 is the value of its 
health indicator at a defined point in time:  

𝒉𝒊(𝒕) = 𝑭𝒊�𝜶𝟏, (𝒕) … ,𝜶𝒎(𝒕)�      (1) 

and its state 𝑧𝑖 is either functioning: 

𝑯𝒊 < 𝑻𝒊 ⇒𝒛𝒊 = 𝟏      (2) 

or faulty: 

𝑯𝒊 > 𝑻𝒊 ⇒𝒛𝒊 = 𝟎      (3) 

A system of 𝑛 components has 𝑞 = 2𝑛 states 𝑍1, … ,𝑍𝑞 
where each system state: 

𝒁𝒋 = �
𝒛𝟏
⋮
𝒛𝒏
� 𝝐 {𝟎,𝟏}𝒏      (4) 

is a vector containing the 𝑛 components states. The space: 

𝓩 = � 𝒁𝟏 , … ,𝒁𝒒�      (5) 

can be divided into two sub-spaces 𝑍𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑍𝑓𝑓𝑛𝑓 
corresponding respectively to the states leading to a system 
failure and the states in which the system functions. 

The evolution of the health state ℎ�̇� corresponds to a certain 
degradation rate. An associated degradation function 𝑑𝑖 
represents its evolution in time so that:  

𝒉𝒊̇ = 𝒅𝒊(𝒑𝒑𝒑𝒑𝒎𝒑𝒕𝒑𝒑𝒑)      (6) 

and allows computing the health state at a certain future 
time ℎ𝑖�𝑡𝑓𝑓𝑓𝑓𝑓𝑓�. In practice, under the hypothesis that the 
operating condition stay the same in the future, ℎ𝑖�𝑡𝑓𝑓𝑓𝑓𝑓𝑓� 
can be computed using a history of health states and 
interpolating it to obtain a trend for future times, for 
example by linear regression.  

The health state evolution depends a priori on the health 
state of every component of the system, so that:  

𝒉𝒊̇ = 𝒅𝒊(𝒉𝟏, … ,𝒉𝒊, … ,𝒉𝒏).      (7) 

Reminder on Component-Level 𝑅𝑅𝑅 Computing 

 

 

The starting point of a system-level 𝑅𝑅𝑅 computing is the 
component-level 𝑅𝑅𝑅 computing. To compute it, in 
practice, the health state history of a component 𝐶 is 
interpolated and the resulting function is used to determine 
when the health indicator will reach the threshold. The time 
elapsed until then defines the 𝑅𝑅𝑅. 

In the literature, only few methods are proposed to compute 
a system-level prognostic [10 – 14]. 

Methods to Compute System-Level 𝑅𝑅𝑅 

In this part, we will review the methods already existing and 
usually used to compute a 𝑆𝑅𝑅𝑅.  

In most existing methods, a recurrent simplifying hypothesis 
consists in considering that the components degradations are 
independent from one another. This amounts to considering 
that, for a component 𝐶𝑖, the health indicator evolution 𝑑𝑖 
only depends on the corresponding ℎ𝑖, that is to say:  

𝒉𝒊̇ = 𝒅𝒊(𝒉𝟏, … ,𝒉𝒊, … ,𝒉𝒏) = 𝒅𝒊(𝒉𝒊).      (8) 

In order to explain them concretely, the methods will be 
accompanied by a system consisting in two pumps mounted 
in parallel, shown on Figure 3 below. 

Figure 2: Component-Level 𝑹𝑹𝑹 Computing 
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Figure 3: Explanatory Example 
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Figure 1: System Degradation 
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For safety and reliability reasons, most systems in 
aeronautics are either redundant (several components have 
the same function) or reconfigure in degraded states or both, 
which is usually the case. These systems are called resilient. 
In order to make this explanatory system more realistic, we 
will consider that it is resilient. Indeed, when a pump fails, 
the system will carry on functioning (redundancy), but the 
remaining pump will rotate with an increased speed to do so 
while meeting the required performance (reconfiguration). 
Therefore only a failure of both pumps will cause a system 
failure. 

In Case of No Redundancy—A first method considers that: 

𝓩𝒇𝒇𝒏𝒇 = ��
𝟏
⋮
𝟏
�� ,      (9) 

meaning that the system is only considered functioning 
when every component functions.  

In this method, a 𝑅𝑅𝑅 is computed for each component 
𝐶1, … ,𝐶𝑛 as a list of component-level 𝑅𝑅𝑅 and the 𝑆𝑅𝑅𝑅 is 
their minimum: 

𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶 = [𝐶1, … ,𝐶𝑛] 
𝐹𝐶𝐹 𝑖 𝑖𝑛 𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶: 
 𝐶𝐶𝐶𝐶𝐶𝑡𝐶 𝑅𝑅𝑅𝑖 
𝑆𝑅𝑅𝑅 = 𝐶𝑖𝑛𝐶𝐶𝑚𝐶𝐶𝑛𝑓𝑛𝑓𝐶  (𝑅𝑅𝑅𝑖) 
 
Applying this method to the explanatory system amounts to 
considering that: 

𝑺𝑹𝑹𝑹 = 𝑹𝑹𝑹𝟐.      (10) 

 

The fact that this system is redundant makes it irrelevant for 
this system. Indeed, 𝑆𝑅𝑅𝑅 is defined as the time remaining 
until the system fails which is not the case when a single 
pump fails according to the system definition. 

The fact that most systems are redundant in aeronautics 
(which is our field of study) results in a strongly 
underestimated 𝑆𝑅𝑅𝑅, thus making this method irrelevant, 

albeit conservative, as the 𝑅𝑅𝑅 computed with this method 
will always be smaller than 𝑆𝑅𝑅𝑅. 

In Case of Redundancy—A second method takes into 
account the system redundancy, meaning that 𝑍𝑓𝑓𝑛𝑓 is not 

only equal to ��
1
⋮
1
�� as the redundancies allow the system to 

function even if some components are faulty.  

This method uses the same algorithm as the first one and 
adds a test if the system state is included in 𝑍𝑓𝑓𝑓𝑓𝑓𝑓 in order 
to define 𝑆𝑅𝑅𝑅 as the time at which the system has a 
failure: 

𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶 = [𝐶1, … ,𝐶𝑛] 
𝐹𝐶𝐹 𝑖 𝑖𝑛 𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶: 
 𝐶𝐶𝐶𝐶𝐶𝑡𝐶 𝑅𝑅𝑅𝑖 
𝑊ℎ𝑖𝑖𝐶 Z𝜖𝒵𝑓𝑓𝑛𝑓: 
 𝑖𝑓𝑚𝐶 = 𝑎𝐹𝑎𝐶𝑖𝑛𝐶𝐶𝑚𝐶𝐶𝑛𝑓𝑛𝑓𝐶  (𝑅𝑅𝑅𝑖)) 

𝑆𝑅𝑅𝑅𝑓𝑚𝐶 = 𝑅𝑅𝑅𝑖𝑡𝑡𝑡  
𝑅𝐶𝐶𝐶𝑅𝐶 𝐶𝑖𝑓𝑚𝐶 𝑓𝐹𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶 
𝑍�𝑖𝑓𝑚𝐶� = 0 

𝑆𝑅𝑅𝑅 = 𝑆𝑅𝑅𝑅𝑓𝑚𝐶 
 

According to the definition of the explanatory system: 

𝓩𝐟𝐟𝐟𝐟𝐟𝐟 = ��𝟎𝟎�� .      (11) 

Therefore SRUL is the maximum of both pumps 𝑅𝑅𝑅: 

𝑺𝑹𝑹𝑹 = 𝑹𝑹𝑹𝟏.      (12) 

This method improves the 𝑆𝑅𝑅𝑅 accuracy compared to the 
first one, since it takes into account the system redundancy.  

However, it does not take into account the possible 
reconfigurations. As an example, for the previous system, if 
the second pump increases its rotation speed when one fails, 
it might increase its degradation rate, and therefore the real 
𝑅𝑅𝑅 of this component would be smaller than the computed 
𝑅𝑅𝑅. 

Therefore, this method might not be conservative due to the 
system reconfigurations, which makes it irrelevant as well. 

PROPOSED APPROACH 
Assumptions 

The first assumption made in the method developed in this 
paper is that the operational conditions are the same 
between the different points at which the physical 
parameters are measured. That is to say, the degradation is 
not influenced by the aircraft operational conditions. 

Figure 4: 𝑺𝑹𝑹𝑹 Computing Without Redundancy 
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The second hypothesis is that 𝑍𝑓𝑓𝑛𝑓 is not only equal to 

��
1
⋮
1
��. This assumption allows taking into account the 

system redundancy, as explained earlier in the second 
method. 

Finally, the third assumption is that, for a component 𝐶𝑖, the 
health indicator evolution do not depend only on ℎ𝑖, but also 
on components states  𝑧1, … 𝑧𝑖−1, 𝑧𝑖+1, … , 𝑧𝑛, that is to say:  

𝒉𝒊̇ = 𝒅𝒊(𝒛𝟏, … 𝒛𝒊−𝟏,𝒉𝒊, 𝒛𝒊+𝟏, … , 𝒛𝒏).      (13) 

This assumption is closer to reality compared to the second 
method and will allow adding relevancy to the computed 
SRUL. Under this assumption, a new notation can be used: 

𝒅𝒊(𝒛𝟏, … 𝒛𝒊−𝟏,𝒉𝒊, 𝒛𝒊+𝟏, … , 𝒛𝒏) = 𝒅𝒊𝒁(𝒉𝒊)      (14) 

where 𝑑𝑖𝑍 represent the values taken by 𝑑𝑖 when: 

𝒁 =

⎝

⎜
⎜
⎜
⎛

𝒛𝟏
⋮

𝒛𝒊−𝟏
𝟏
𝒛𝒊+𝟏
⋮
𝒛𝒏 ⎠

⎟
⎟
⎟
⎞

.      (15) 

The innovation of the method lies in this assumption, which 
means that the system reconfiguration is taken into account. 

It is interesting to note that this third assumption is an 
intermediate step between: 

𝒉𝒊̇ = 𝒅𝒊(𝒉𝒊)      (16) 

And: 

𝒉𝒊̇ = 𝒅𝒊(𝒉𝟏, … ,𝒉𝒊, … ,𝒉𝒏),      (17) 

As the components states are a discretization of the health 
indicators. 

This intermediate assumption allows a simplification of 
application while not losing the relevancy of the result. 

Inputs of the proposed method 

In order to use this method, a complete model of the system 
is not needed, neither is a precise knowledge of an indicator. 
These are some of the interests brought by this method. 

Some parameters are needed to initialize this method. 

First, one needs a history of the health state ℎ𝑖 for each 
component, without needing to know how it was obtained 
but only to initialize the computing.  

Then, one needs the degradation function 𝑑𝑖 for each 
component 𝐶𝑖, that is to say every of the degradation 
functions.  

Finally, one needs to know the system states leading to a 
system failure: 𝑍𝑓𝑓𝑓𝑓𝑓𝑓. 

These parameters are enough to use the described method, 
note that no model of the system is needed. No deep 
knowledge of the system is needed; neither is knowledge of 
its architecture and functioning, as these data are completely 
transparent in the system. 

Proposed Algorithm 

The ground of this method and its innovation compared to 
previous methods is to take into account the system 
reconfiguration according to the system state. Therefore, 
under the third assumption presented in part 2, the 
components 𝑅𝑅𝑅 are re-computed with the updated 
degradation functions each time the system state changes. 

An important thing to point out is that every calculation is 
done at the same instant; the algorithm only simulates the 
future failures and system state changes. 

The algorithm describing this method is the following: 

𝑍 = �
𝑧1
⋮
𝑧𝑛
� = 𝑍𝑗 

𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶 = [𝐶1, … ,𝐶𝑛] 
𝐹𝐶𝐹 𝑖 𝑖𝑛 𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶: 
𝐶𝐶𝐶𝐶𝐶𝑡𝐶 𝑅𝑅𝑅𝑖  𝑤𝑖𝑡ℎ 𝑐𝐶𝐹𝐹𝐶𝑛𝑡 𝑑𝐶𝑎𝐹𝑎𝑑𝑎𝑡𝑖𝐶𝑛 𝑓𝐶𝑛𝑐𝑡𝑖𝐶𝑛𝐶 
𝑊ℎ𝑖𝑖𝐶 Z𝜖𝒵𝑓𝑓𝑛𝑓: 
 𝑖𝑓𝑚𝐶 = 𝑎𝐹𝑎𝐶𝑖𝑛𝐶𝐶𝑚𝐶𝐶𝑛𝑓𝑛𝑓𝐶  (𝑅𝑅𝑅𝑖)) 

𝑆𝑅𝑅𝑅𝑓𝑚𝐶 = 𝑅𝑅𝑅𝑖𝑡𝑡𝑡  
𝑅𝐶𝐶𝐶𝑅𝐶 𝑖𝑓𝑚𝐶 𝑓𝐹𝐶𝐶  𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶 
𝑍�𝑖𝑓𝑚𝐶� = 0 

 𝐹𝐶𝐹 𝑖 𝑖𝑛 𝐶𝐶𝑛𝐶𝑖𝑑𝐶𝐹𝐶𝑑 𝐶𝐶𝐶𝐶𝐶𝑛𝐶𝑛𝑡𝐶: 
𝐶𝐶𝐶𝐶𝐶𝑡𝐶 𝑅𝑅𝑅𝑖  𝑤𝑖𝑡ℎ 𝑐𝐶𝐹𝐹𝐶𝑛𝑡 𝑑𝐶𝑎𝐹𝑎𝑑𝑎𝑡𝑖𝐶𝑛 𝑓𝐶𝑛𝑐𝑡𝑖𝐶𝑛𝐶 

𝑆𝑅𝑅𝑅 = 𝑆𝑅𝑅𝑅𝑓𝑚𝐶 
 
Example 

 

 

An example is shown on Figure 5 with the system defined 
in the previous method. This graph describes the 

Figure 5: Degradation Functions 
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degradation function of 𝑃1: 𝑑1
(1,1) being the normal 

degradation and 𝑑1
(1,0) the increased degradations, when the 

pump rotation speed is increased. Additionally, the function 
𝑑1

(0,0) represents the case where Z 𝜖 𝒵𝑓𝑓𝑓𝑓𝑓𝑓 , that is to say 
when ℎ𝑖 = 𝑇. 

 

 

Figure 6 shows the process allowing calculating the 𝑅𝑅𝑅 on 
the previous example. Indeed, the indicator starts degrading 
following 𝑑1

(1,1), then when the system state changes (in 
this case a pump fails) it changes of degradation function 
and continues degrading following 𝑑1

(1,0)  until the whole 
system fails. 

CASE STUDY 
It is important to note that the case study developed here 
aims to illustrate the method rather than demonstrate here, 
as it is not a real case. 

System 

Use—The system under study is a simplified bleed valve 
system. These valves are disposed in aircraft engines in 
order to regulate the bleed air pressure dispatched to 
downstream users. The valves can have several different 
positions and are moved by actuators.  

 

 

Model— For the purpose of this paper, we consider that the 
system is composed by four identical valves. The valves are 
operating nominally when all four are functioning.  

 

When one has a failure, the three remaining compensate the 
loss of air flow and thus function in “boost” mode, that is to 
say the demand in pressure from each valve will be higher 
and will therefore degrade faster. Finally when less than 
three valves are functioning, the system cannot fulfill its 
function with the required performance and is thus 
considered faulty. 

Parameters— As described in part 3, the procedure takes in 
input a health state ℎ𝑖 for each component and the different 
degradation functions 𝑑𝑖 (that is to say every part 𝑑𝑖

𝑍 of 
each 𝑑𝑖 function) for each component 𝐶𝑖. 

Since the purpose of this paper is to explain the method 
rather than how to obtain these parameters, they are 
considered known in this study. For the following of this 
case study and thanks to knowledge acquired on this system, 
we can define several spaces of which the system state 𝑍 
can be a part. 

First: 

𝓩𝒏𝒏𝒎𝒊𝒏𝒑𝒏 = ��

𝟏
𝟏
𝟏
𝟏

��       (18) 

is the space of the system states for which every component 
degrades nominally.  

Then: 

𝓩𝒃𝒏𝒏𝒑𝒕 = ��

𝟎
𝟏
𝟏
𝟏

� ,�

𝟏
𝟎
𝟏
𝟏

� ,�

𝟏
𝟏
𝟎
𝟏

� ,�

𝟏
𝟏
𝟏
𝟎

��       (19) 

is the space containing the system states for which some 
components have an accelerated degradation due to some 
other components being faulty.  

Finally: 

𝓩𝒇𝒑𝒇𝒏𝒕𝒇 = 𝓩 − 𝓩𝒏𝒏𝒎𝒊𝒏𝒑𝒏 − 𝓩𝒃𝒏𝒏𝒑𝒕      (20) 

Figure 6: Process For Changing Degradation Functions 

Figure 7: Bleed Valve System Degraded Mode Modelling 

Figure 8: Bleed Valve System Nominal Mode Modelling 
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Is the space containing the states for which the system is 
faulty, as defined in the previous part. 

Following these definitions, the valves degradation 
functions are showed on Figure 9, for valve 𝑖. 

 

 

Study 

The current time is 𝑇𝑛𝐶𝑛. At this point, the value of the 
health indicators for the four components are known, and 
their evolution before this point is not important for the 
implementation of the method, as we just explained. 

At the beginning of the study, in this case, the health 
indicator is below the threshold for each component, 
therefore they are all considered functioning nominally. The 
degradation functions associated to the normal degradation 
mode is therefore used to compute the 𝑅𝑅𝑅 for each 
component. This is showed on Figure 10. 

At this point, we can note that the first method explained in 
part 2 would give 𝑆𝑅𝑅𝑅 = 𝑅𝑅𝑅2 and the second one 
explained in part 3 would give 𝑆𝑅𝑅𝑅 = 𝑅𝑅𝑅4. 

The next step for the developed method is to select the 
minimal 𝑅𝑅𝑅, here 𝑅𝑅𝑅2 . The “current” time is then 
updated to: 

𝑻𝒏𝒏𝒏′ = 𝑻𝒏𝒏𝒏 + 𝑹𝑹𝑹𝟐.      (21) 

Before 𝑇𝑛𝐶𝑛′, the system’s state is  �
1
1
1
1

�. After that date it 

becomes �

1
0
1
1

� since the second valve has exceeded its 𝑅𝑅𝑅. 

Therefore after this point, the three other valves function - 
and therefore degrade - in “boost” mode. 

 

 

According to the method developed in this paper, the 
components 𝑅𝑅𝑅 are recomputed after this point using the 
degradation functions linked to the right system state, that is 
to say the “boost” mode degradation for each component:  

𝒅𝟏
𝟐,  𝒅𝟑

𝟐and 𝒅𝟒
𝟐.      (22) 

 Therefore  𝑅𝑅𝑅1′, 𝑅𝑅𝑅3′ and 𝑅𝑅𝑅4′ are computed. This is 
showed on Figure 11.  

Finally, since the condition for the system to work with the 
required performance is to have at least three valves 
functioning, the system 𝑅𝑅𝑅 is:  

𝑺𝑹𝑹𝑹 = 𝑹𝑹𝑹𝟒′.      (23) 

 

 

This case study shows, on a simplified system, that the 
method developed in this paper can add accuracy compared 
to the methods previously explained. Moreover, taken the 
system reconfiguration into account will usually reduce the 
computed 𝑆𝑅𝑅𝑅 compared to the method taking only the 
system redundancy into account. Therefore it is a “safer” 
𝑅𝑅𝑅 computing as it estimates a smaller 𝑆𝑅𝑅𝑅, while being 
closer to the real 𝑆𝑅𝑅𝑅. 

Figure 9: Degradation Functions For The Bleed Valve 
System 

Figure 10: System-Level RUL Computing, First Iteration 
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Results 

This system was implemented with the method explained, 
using arbitrary values. The health indicator values taken at 
𝑇𝑛𝐶𝑛 are:  

𝒉𝟏 = 𝟎.𝟒𝟒𝟒,      (24) 

𝒉𝟐 = 𝟎.𝟒𝟒𝟎,      (25) 

𝒉𝟑 = 𝟎.𝟑𝟒𝟎      (26) 

and: 

𝒉𝟒 = 𝟎.𝟑𝟒𝟒.  (27) 

The nominal degradation function is computed thanks to a 
linear regression, using a history of each health indicator, 
and the “boosted” degradation function is taken constant, 
with a rate of 0.003 by flight cycle for the health indicators 
increase. 

The 𝑆𝑅𝑅𝑅 is computed with each method. The first method, 
where the redundancy and system reconfigurations are not 
taken into account, returns: 

𝑺𝑹𝑹𝑹 = 𝟒𝟎𝟎.      (28) 

The second one, which takes the redundancy into account 
but not the system reconfigurations, returns:  

𝑺𝑹𝑹𝑹 = 𝟒𝟒𝟒.      (29) 

Finally, the method developed here returns: 

𝑺𝑹𝑹𝑹 = 𝟒𝟑𝟐.      (30) 

These values illustrate the differences between each method. 

This case study showed several interests of the method 
developed in this paper.  

First of all it showed that the computed 𝑅𝑅𝑅 for each 
component are more accurate than when computed 
separately. Indeed with this method the 𝑅𝑅𝑅 computed will 
always be equal or superior to the ones computed 
separately, therefore the components can be used longer 
without fear of unforeseen failures. 

Then the real innovation of this method comes with the 
computing of an accurate 𝑆𝑅𝑅𝑅. This allows knowing when 
the system will stop completing its main function. The 
results of this case study confirm that this method is more 
accurate than when computing the component 𝑅𝑅𝑅 
separately. It also confirms the importance of taking into 
account the system reconfigurations. 

However this case study is based on a simple modelling of a 
real system, where the data such as the health indicators 
values and the degradation functions are given arbitrarily.  

 
CONCLUSION 

This paper introduced a new method allowing calculating a 
system-level 𝑅𝑅𝑅, and updating the components 𝑅𝑅𝑅 by 
using the system state. Therefore this a priori simple 
method takes into account not only the system redundancy, 
but also its reconfiguration, which tackles a new dimension 
in system-level prognostics. Although the assumptions are 
very simple, this adds a new level of precision into the 
𝑆𝑅𝑅𝑅 computing compared to the most common methods 
which consist mostly in calculating the minimum between 
several component-level 𝑅𝑅𝑅. This method has already 
been implemented in python, with an architecture based on 
the OSA-CBM standard. 

The second interest is that a complete model of the system 
or knowledge of its architecture are not needed for it to 
function. Only two things are needed as input for this 
platform, which are an initial health level for each 
component, and the degradation functions corresponding to 
each system state. This allows a great interoperability since 
the health levels and degradation functions can be supplied 
by different experts for different parts of the system, without 
the platform user knowing precisely where it comes from. 
The latter can then focus directly on the Health Management 
part, by using the 𝑆𝑅𝑅𝑅 provided by the platform. 

The limitation of this method comes from the determination 
of these input parameters, which is not developed in this 
paper. Indeed, even though system experts could determine 
a useful health indicator, the degradation function can be 

Figure 9: System-Level RUL Computing, Second 
Iteration 
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very complex to build for several reasons. First of all, even 
though the system functioning is usually very well known in 
the nominal mode, it is usually not the case for the degraded 
modes; therefore it could be hard to build degradation 
functions from system models in these modes. Then, 
proceeding to an offline data analysis to determinate the 
degradation functions can be useful in the nominal mode, 
but it could prove hard for the degraded modes. Indeed, a 
system will usually not stay long in these modes, either 
because it will be repaired or the system will go in a 
different degraded mode shortly after. Therefore, only a few 
data will be available in each degraded mode. Another 
advantage of this method, however, is that it leaves all 
possibilities to determine degradation functions open. 

In order to go further, it is therefore needed to obtain the 
input parameters. For that, two different approaches are 
available. The first one relies only on data mining, and an 
offline analysis of recorded data on the systems. However, 
for the reasons explained just above, it could take a long 
time before enough data are gathered on systems to use 
them. The second solution is to take into account 
Prognostics and Health Management from the beginning of 
the system design phase. It consists in building useful 
indicators, place sensors to measure the needed variables, 
and being able to transmit this information to a health 
management system. 
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