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a b s t r a c t

In this paper, the authors investigate four original methodologies for sizing a battery bank inside a

passive wind turbine system. This device interacts with wind and load cycles, especially for a stand-alone

application. Generally, actual wind speed measurements are of long duration which leads to extensive

processing time in a global optimization context requiring a wide number of system simulations. The first

part of this article outlines two sizing methodologies based on a statistical approach for the sizing of the

electrochemical storage device of a stand-alone passive wind turbine system. Two other efficient

methodologies based on the synthesis of compact wind speed profiles by means of evolutionary algo-

rithms are described in the second part of this paper. The results are finally discussed with regard to the

relevance of the battery bank sizing and in terms of computation cost, this later issue being crucial to an

Integrated Optimal Design (IOD) process.
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1. Introduction

Continuity and reliability of electricity supply from wind

energy are the two basic criteria for feeding isolated sites. These

two criteria can be satisfied by including several types of storage

(accumulators, H2 storage, etc.), but this solution is hampered by

high ownership costs [1–5]. Thus, providing consumers in remote

areas with reliable and cheap electricity depends upon optimal

combination and sizing design of the wind generation system

coupled with the storage bank. Recently, most optimal configura-

tions are obtained by performing a global optimization process,

where a high number of simulations is required [6–14]. However,

the unpredictable character of the wind speed presents a sig-

nificant drawback since the system simulations are carried out

over a long period of time. In numerous publications, Bagul,

Borowy and Salameh [15–17] have developed several methodol-

ogies for optimally sizing a Wind/PV system associated with a

battery bank for a given load. These methods are based on the use

of long term data for both irradiance and wind speed. Several

studies have used the average hourly wind speed data over a few

years simulation period. Other researchers [18–20] have devel-

oped probabilistic methods to determine the annual energy output

of a wind system. In particular in [21], a probabilistic approach was

developed to calculate a long term system performance with

respect to the average monthly fraction of a load fed by generation

systems. In this context, the present study deals with the optimal

design of a battery bank for a passive Wind Turbine (WT) system

ensuring the continuous supply of an isolated typical farm (see

Fig. 1). The design of this system requires taking account of the

wind potential and the load demand.

However, the "time phasing" of wind data, generating WT

energy/power with the load profile (here a cycle time of 24 h), sets

a specific problem when sizing the storage device: indeed, the

difference between power production and power consumption

profiles is not sufficient to characterize the battery sizing. Finding

the most critical phasing between WT production and load con-

sumption must be considered. This worst case for the battery

sizing will be identified by varying the phase shift between pro-

duction and consumption profiles. This will be specifically shown

in Section 4.3.

In this study, four battery sizing methodologies for a 8 kW

stand-alone passive WT system are investigated. The first two

methodologies are based on statistical approaches and consist in

determining the constraints (in terms of power and energy needs)

associated with the storage system from temporal Monte-Carlo-

based simulations including wind and load profile variations. The

evolution of the wind speed was considered as stochastic while

the load profile was deterministically repeated from day to day

(Fig. 2). In order to take account of the wind potential features,

only slow dynamics related to seasonality have been integrated in

the wind profile, i.e. fast dynamics related to turbulence are

neglected. Wind features are then represented with a Weibull

statistic distribution. Finding the most critical constraints in the

storage system requires simulating the system over a long period

of time in order to include all correlations between power pro-

duction and consumption (e.g. time windows with low wind

power and high load power and inversely). Such a process is rather

expensive in terms of computation cost. It can locally be used to

size the battery when the other components of the system (i.e. the

passive WT) are known. However, if a global integrated design

process is concerned, where all components have to be simulta-

neously optimized the computation cost of these latter approaches

may be problematic. In order to solve this issue, we have investi-

gated two other methodologies for reducing wind profile duration

while keeping a trace of wind features in terms of intensity,

variability and statistics. This original approach suggested in [22] is

adapted for compacting wind speed profiles: it consists in gen-

erating compact wind profiles by aggregating elementary para-

meterized segments in order to fulfill target indicators repre-

senting the features of a reference wind profile of longer duration

[23]. This inverse problem involving the determination of the

segment parameters is solved using an evolutionary algorithm.

The remaining of the paper is organized as follows. The passive

wind system and the battery characteristics are described in

Section 2. In Section 3, statistical battery bank sizing methodolo-

gies are presented. Section 4 is dedicated to the sizing process

based on the synthesis approach of a representative and compact

wind speed profile. The results obtained from these sizing

approaches are summarized and compared in Section 5 in terms of

performance (sizing accuracy) and computation cost.

2. Description of the hybrid system

The considered system is a 8 kW full passive WT battery

charger without active control and with a minimum number of

sensors as studied in [8,9]. The deterministic load profile is set for

24 h and repeated from day to day as indicated in Fig. 2.
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Fig. 1. WT system with battery for stand-alone application (rural site electrification).
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Fig. 2. Typical farm load profile for one day.



2.1. Similitude sizing model

In [9], an integrated optimal design method based on multi-

objective optimization has been developed for sizing the elements

of a 1.7 kW passive wind turbine system. In our case, a simplified

approach has been preferred based on the exploitation of simili-

tude effects. The new generator dimensions are related to the

‘reference’ bore radius rsref and the machine length lrref of the

optimized generator. The reduced parameters αr and αl are intro-

duced:

αr ¼
rs

rs ref

αl ¼
lr

lr ref
ð1Þ

where αl ¼ αr ¼
ffiffiffiffiffiffiffi

Pnew

Pref

q

¼ 2:136 (Pnew¼8 kW and Pref¼1.7 kW) and

where the index ref is associated with the parameters of the

reference “optimal” system (i.e. the 1.7 kW wind turbine system of

[9]). Finally, using a similitude-based approach, the PMSG as well

as the wind turbine features can be deduced for a 8 kW passive

wind turbine system. Results obtained with this approach will be

presented in the following.

2.2. Passive WT

The 8 kW passive WT parameters have been obtained by

applying the similitude relations. In Tables 1 and 2, the two con-

figuration parameters are summarized.

The WT model is based on a “mixed reduced model” described

in [8]: this model neglects the electrical mode effect but simulates

the mechanical, especially due to the turbine inertia. In order to

simplify the modeling approach and to limit the computation cost,

the DC bus voltage is supposed to be constant, whatever the bat-

tery state of charge: it has been proved in other studies [8] that

this assumption is acceptable and does not question the battery

sizing accuracy. This simplified model has been chosen due to its

computation efficiency which authorizes analyzing system cou-

plings (WT – battery – load) with environmental (wind cycle)

influence.

Fig. 3 shows the extracted power of the new passive WT system

obtained by similitude from the reference structure, i.e. a 1.7 kW

optimized passive WT. It can be seen that the quality of wind

power extraction of this passive configuration (blue curve) very

closely matches the behavior of active WT systems (e.g. [24])

operating at optimal wind powers by using an MPPT control

device (i.e. the red cubic curve in Fig. 3). An IXYS VUO190 is

considered for the diode bridge rectifier.

2.3. Battery features

In this study, a lead acid Yuasa NP 38-12I [26] is considered as

battery element. These batteries can be used over a broad tem-

perature range permitting considerable flexibility in system design

and location:

% Charge: &15 °C to 50 °C
% Discharge: &20 °C to 60 °C
% Storage: &20 °C to 50 °C (fully charged battery)

Table 1

Wind turbine parameters.

Reference turbine New turbine

Radius R (m) 1.25 2.67

Friction coefficient fWT (N m s/rd) 0.025 0.52

Inertia JWT 1.5 31.22

Power coefficient Cp at MPPT Cp opt 0.441 0.441

Tip speed ratio λ at MPPT λopt 6.9 6.9

Table 2

PMSG parameters.

Reference generator New generator

Teeth width wt (mm) 5.465 11.672

Yoke thickness dy (mm) 14.096 30.098

Number of pole pairs p 3 3

Number of slots per phase per pole Nspp 3 3

Leakage inductance Lf (mH) 0.224 0.118

Main inductance Lm (mH) 0.763 0.731

Stator inductance Ls (mH) 1.369 1.2

Stator flux Φs (Wb) 0.211 0.4708

Stator resistance Rs (Ω) 0.128 0.0148

Nomenclature

Symbols

t time step

Ncycle number of battery cycles

oNcycle4 average number of battery cycles

DOD battery depth of discharge

DODmax battery maximum depth of discharge

SOC battery state of charge

ωcycle battery cycle weight

cF number of battery cycles to failure

Nrep number of battery replacement

PBAT battery power

PBAT MAX battery maximum (charge) power

PBAT MIN battery minimum (i.e. maximum discharge) power

E battery energy (i.e. actual energy in the battery)

ES battery useful energy (i.e. total energy of the battery)

Ta battery autonomy (number of hours of autonomy)

PWT wind turbine power

Pload load power

Nd number of days (in the Monte Carlo simulations)

NBT number of battery cells

oNBT 4 average number of battery cells

TCPU CPU time

Δt time duration

ref index for reference values of powers, energy,

wind speed

compact index for the corresponding values of the compact

profile

PDF probability distribution function

CDF cumulative distribution function

ε global error function in the compact synthesis process

εstat global error between two cumulative distribution

functions

V wind speed

oV4 average wind speed

oV3
4 average cubic wind speed

Vmax maximum wind speed value

Vmin minimum wind speed value

EV intermittent wind pseudo energy



The basic characteristics at 20 °C are summarized in the Table 3.

The estimation of the battery lifetime constitutes a difficult

topic which is still a topical issue in the scientific area. The battery

lifetime depends on multiple factors such as SOC variations, dis-

charge and charge current rates, ambient conditions (temperature,

humidity). In this paper, we use as battery lifetime indicator a

simple model based on the cycles to failure curve versus Depth of

Discharge (DOD) displayed in Fig. 4. Other factors affecting the

battery lifetime are neglected. It should be noted that such

approach based on the battery cycling has been used in earlier

studies [27–29]. In practice, typical battery state of charge (SOC)

evolutions during the system operation are considered. The cycle

counting method known as “rainflow” based on Downing's algo-

rithm [30] is then applied for determining the number of cycles

Ncycle corresponding to different intervals of DOD (typically the

whole DOD range is divided into 10 equally spaced intervals).

Finally, the “equivalent” number of full cycles oNcycle4 is calcu-

lated as follows:

oNcycle4 ¼
X

DOD
ωcycleðDODÞ ' NcycleðDODÞ ð2Þ

where the weight ωcycle evaluates the effect of a cycle at a given

DOD with regard to a cycle at full DOD, i.e.:

ωcycleðDODÞ ¼
cF ð100%Þ

cF ðDODÞ
ð3Þ

The number of expected battery replacement Nrep in the system

over a given period can be deduced from the corresponding

equivalent number of full cycles:

Nrep ¼
oNcycle4

cF ð100%Þ

$ %

ð4Þ

where bc denotes the integer part function

2.4. The battery sizing algorithm

The determination of the battery cell number is based on the

energy sizing algorithm explained in detail in [30]. This algorithm

computes the active storage energy required for the battery from

the corresponding power evolution PBAT(t) while satisfying a

maximum depth of discharge (DODmax). It is based on an upper

saturated integration of the power in the battery bank due to the

fact that the charge power is no longer integrated if the battery

state of charge is maximal. In such a case, we consider that charge

power is wasted in order to avoid the battery bank oversizing. This

method is preferred to a simple integration method which gen-

erally leads to a battery bank oversizing during wide charge phase

(high winds with reduced load). Two operating conditions can be

considered for the battery bank sizing: standard operations with

wind production. In this case, the battery power can be expressed

as the difference between the extracted wind power and the load

power (i.e. PBAT¼PWT&Pload). The mechanical wind turbine output
power, PWT(t) (W), generated by the wind turbine is PWT ¼

1
2CpρSv3,

where ρ is the air density (kg m &3), S denotes the swept rotor area

(m2), v represents the wind speed (m/s) and Cp is the power

coefficient from manufacturer data corresponding to the turbine

studied in [5] and that can be interpolated with: CpðλÞ ¼ &

3:98:10&8
λ7&4:21:10&6

λ6þ2:1:10&4
λ5&3:1:10&3

λ4þ1:64:10&2
λ3

&0:0176λ2þ0:0174λ&1:93:10&3

where λ is the tip speed ratio which depends on the turbine

rotational speed Ω (rad/s), on the wind turbine radius R and on the

wind speed v: λ¼ RΩ
v

– The resulting power profile in the battery should represent the

system behavior over a long period of time and include the

stochastic wind features in a particular location (variability and

intensity)

– faulty operations without wind production. In this case, the

battery power is only related to the load power (i.e.

PBAT¼&Pload) on a desired duration Ta representing the number

of hours (or the number of days) of autonomy.

It should be noted that the whole system sizing (including the

battery sizing) results in an optimization problem with several

objectives (cost, autonomy, efficiency, battery lifetime). The

investigation of different tradeoffs with regard to some suitable

design variables (e.g. WT size, PMSG features, battery DODmax)

constitutes a specific problem that can be solved using traditional

multiobjective optimization methods. Such methods require the

iteration of the system sizing and simulation with respect to

design variable variations. Nevertheless, they can be applied only if

the computational time of the sizing models is acceptable.
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Table 3

Basic characteristics of a Yuasa NP 38-12I lead acid battery

element.

Property Value

Nominal capacity C3 30.3 A h

Nominal voltage V0 12 V

Nominal discharge Current I3 10.1 A

Maximum discharge power Pdis_max 144 W

Maximum charge power Pch_max 288 W
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Fig. 4. Cycles to failure curve of the Yuasa accumulator cell.



Therefore, the reduction of the complexity and computational

time of the battery sizing in standard operations is of prime

importance. The remaining of this paper is only focused on this

issue. Consequently, in the following sections, the system auton-

omy and the battery lifetime will result of the battery sizing in

standard operations and will not be optimized. The optimization

of these criteria with regard to relevant design variables and the

investigation of system tradeoffs will be the subject of a com-

plementary ongoing study.

3. Statistical battery bank sizing methodologies based on

Monte Carlo simulations

3.1. A statistical approach based on the wind speed profile

distribution

Wind speed data can be predicted by several statistical dis-

tributions models from the wind energy potential at a particular

location. In this first approach, the sizing process is based on the

generation of a wind cycle from its statistical distribution [32]. The

continuous temporal wind speed profiles are generated from a

statistical distribution. A certain number of samples are generated

with a random number generator according to the established

statistical distribution. The continuous temporal profiles are then

obtained by interpolating the generated samples. The synoptic of

the random process generation of the wind speed cycles is illu-

strated in Fig. 5.

As previously mentioned, the battery bank sizing is related to

the level of power and energy which depend on the magnitude

and phase of wind potential and of the load demand. In order to

determine the relevant battery bank sizing, i.e. when the system is

under the “worst” case conditions (maximum power and energy),

several wind speed profiles with increasing duration have to be

generated until the battery sizing is stabilized. This sizing is then

obtained when the number of battery cells required to supply the

load becomes quasi-constant.

The synoptic of this battery bank sizing process is shown in

Fig. 6. The issue consists in producing 11 wind cycles with a pro-

gressive duration from 1 to 200 days. These cycles are synthesized

from a given wind statistic (i.e. a particular Weibull distribution)

during Nd days (Nd¼{1, 2, 3, 10, 20, 30, 50, 70, 100, 150, 200 days}).

Subsequently, after having simulated the WT system by means of

the “mixed-reduced model”, 11 extracted wind powers (PWT) are

generated. The load power (Pload) is daily repeated during the

Nd days.

The number of battery elements and the computational time

(TCPU) under different wind speed profiles are given in Table 2. The

computational time is the time needed by the processor to

simulate the system model and to perform the battery sizing

process. The corresponding system autonomy and the battery

lifetime indicator, consisting in the equivalent number of full

cycles extrapolated over 20 years, are given in Table 3.

3.2. A statistical approach based on the extracted wind power

distribution

With the aim of reducing the computational time, an essential

factor in an IOD context, this approach consists in directly gen-

erating the extracted power (PWT) histogram instead of the wind

histogram as previously proposed. For each interval of wind speed,

the corresponding extracted power is estimated by simulating the

passive wind system (the extracted power is synthesized on the

same timescales as with the first approach).

From wind statistics, the histogram of PWT is built. Therefore,

the WT power profile is directly obtained from its distribution by

means of random number generation and interpolation techniques

exactly as previously for the wind time cycle generation. Following

this step, from histogram of powers, the output WT power can be

directly generated before obtaining the battery power used for the

storage bank sizing process (Fig. 7). The storage bank sizing pro-

cess is quite similar to the first approach, i.e. producing 11 W

power cycles with a progressive duration from 1 to 200 days and

waiting until the number of battery cells becomes quasi-constant.

3.3. Results

The results obtained from both statistical approaches are

compared in Table 4 and in Table 5 with regard to the battery

sizing, the CPU time, the system autonomy and the lifetime indi-

cator. A first analysis of these results shows that oNBT4 becomes

quasi-constant and does not exceed 132 battery elements for a

number Nd470 days in both approaches (see Fig. 8). This “optimal

duration threshold” is sufficient for taking wind variability into

account (i.e. stochastic features of wind) and to obtain a suitable

and robust sizing for the battery bank. It can be observed from

Table 3 that it also leads in both approaches to the same number of

battery cycles which approximately equals 380 and represents

2 battery replacements in the system over 20 years. Finally, the

second approach offers a notable reduction of computational time,

Weibull probability

density function
Sampling Interpolation

Wind speed 

sequence
Discrete

signal

Wind speed

profile

Fig. 5. Wind speed cycle generation.

Fig. 6. Battery bank sizing process based on a wind profile generation from its

statistical distribution.



e.g. for 70 days results showed a decreased rate of 5.5 on the CPU

time during the system simulation: simulations are performed

with a standard computer (Core Duo 1.7 GHz).

4. Battery sizing based on a compact synthesis approach

In this section, a “compact synthesis process” is applied on an

actual wind speed profile of 200-day duration considered as

reference data, with the aim of generating a compact profile of

reduced duration Δtcompact. Two different approaches are investi-

gated depending on the choice of the target indicators used for

generating the fictitious compact wind speed profile in order to

establish its correspondence with reference data.

4.1. Synthesis process of representative and compact wind speed

profiles

The synthesis process of compact wind profiles is based on the

approach developed in [22]. It consists in generating a fictitious

profile of any environmental variable (e.g. temperature, wind

speed, solar irradiation, driving cycle profile) by fulfilling some

constraints related to “target indicators” (typically minimum,

maximum and average value, probability distribution). These

indicators can be evaluated from a set of reference cycles usually of

long duration: here we have considered a 200-day wind profile.

This fictitious profile is obtained by aggregating elementary seg-

ments as shown in Fig. 9. Each segment is characterized by its

amplitude ΔSn (ΔSminrefrΔSnrΔSmaxref) and its duration Δtn
(0rΔtnrΔtcompact). A time scaling step is performed after this

profile generation in order to fulfill the constraint related to the

time duration, i.e. ΣΔtn¼Δtcompact. Finding a compact fictitious

profile of an environmental variable consists in finding all segment

parameters so that the generated profile fulfills all target

Fig. 7. Battery bank sizing process based on an extracted power generation profile from its statistical distribution.

Table 4

Results obtained from statistical approaches with Monte Carlo simulations – CPU

time and average number of battery cells.

Number of

days

CPU Time (s) Average number of battery cells

oNBT4

Wind speed-

based

approach

Output WT

power-based

approach

Wind speed-

based

approach

Output WT

power-based

approach

1 0.10 0.06 46 45

2 0.19 0.17 54 57

3 0.29 0.26 61 61

10 0.56 0.31 88 88

20 0.78 0.32 97 98

30 1.21 0.41 109 114

50 3.06 0.58 117 118

70 4.57 0.83 130 129

100 7.06 1.32 126 127

150 12.80 2.47 126 124

200 19.23 4.00 132 131

Table 5

Results obtained from statistical approaches with Monte Carlo simulations – life-

time indicator and system autonomy.

Number of

days

System autonomy (h) Number of cycles (over 20

years)

Wind speed-

based

approach

Output WT

power-based

approach

Wind speed-

based

approach

Output WT

power-based

approach

1 4.8 4.7 648 653

2 6 6 477 463

3 6.3 6.3 469 469

10 9.1 9.1 408 408

20 10 10.2 411 411

30 11.3 11.8 410 414

50 12.2 12.2 391 391

70 13.3 13.3 375 376

100 13 13.1 386 384

150 13.1 12.8 374 374

200 13.4 13.2 372 373
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indicators (with respect to the reference data) on the reduced

duration Δtcompact. This results in solving an inverse problem with

2N parameters where N denotes the number of segments in the

compact profile. This has been achieved using evolutionary algo-

rithms and more especially with the clearing method [33] well

suited to deal with this kind of problem with high dimensionality

and high multimodality. It should also be noted that the number N

of segments can itself be optimized through a self-adaptive pro-

cedure [22]. The target indicators are defined to characterize the

signal (minimum, maximum, average values, probability density

function) but they can also be related to the design context (here,

the WT system has to charge a battery bank for which maximum

power and energy range are relevant).

4.2. Compact synthesis approach using system-based targets

The first compact synthesis approach is based on the use of

target indicators related to the storage system features. In this

approach, the global sizing of the storage system is related to the

three following variables: PBATMAX, PBATMIN and ES which respec-

tively denote the maximum and the minimum storage powers in

the battery PBAT(t) and the maximum energy quantity imposed on

this storage. These variables are extracted from the simulation of a

8 kW passive WT system over the reference profile of Δtref¼200

days and used as target indicators in the synthesis process. Note

that the reference value of the storage useful energy ESref is defined

as follows:

ESref ¼ max EðtÞ& min EðtÞ ð5Þ

with EðtÞ ¼
R t
0 PBAT ðτÞdτ tA ½0;Δtref + where E(t) is a saturated

integral, with 0 as upper limit so that the battery storage is only

sized in discharge mode to avoid oversizing during a long charging

period (high winds with reduced load). An additional target

indicator is considered to take account of statistic features of the

reference wind cycle. We use the Cumulative Distribution Function

CDF(Vref) [23] computed from the corresponding probability den-

sity function (PDFref) related to the reference wind speed beha-

viour. PDFref is evaluated on 20 equally spaced intervals between

0 and the maximum wind speed value Vrefmax. Finally, the global

error ε to be minimized in the synthesis profile process can be

expressed as:

ϵ¼
PBATMAX&PBATMAX ref

PBATMAX ref

' (2

þ
PBATMIN&PBATMIN ref

PBATMIN ref

' (2

þ
ES&ESref
ESref

' (2

þϵstat

ð6Þ

where the statistic error εstat denotes the mean squared error

between both CDFs relative to reference and generated wind speed

profiles:

εstat ¼
1

20
'
X

20

k ¼ 1

CDFðkÞ&CDFref ðkÞ

CDFref ðkÞ

' (2

ð7Þ

All ‘ref’ indexed variables are based on the reference wind

profile of Fig. 10. The inverse problem is solved with the clearing

algorithm [33] using a population size of 100 individuals and a

number of generations of 500,000. Multiple optimization runs are

performed with different compaction times Δtcompact. In particular,

the minimum compaction time (i.e. min Δtcompact) was determined

using a dichotomous search in order to ensure a global error ε less

than 10&2. Table 6 shows the values of the global error ε versus the

compaction time. It can be seen that the lowest value for Δtcompact

ensuring the fulfillment of the target indicators with sufficient

accuracy is about 10 days. Fig. 11 displays the characteristics of the

generated wind profile obtained from the aggregation of 109 ele-

mentary segments fulfilling all target indicators. It can be seen

from this figure that the CDF of this compact wind profile closely

coincides with that of the reference wind profile.

Table 7 compares the values of the target indicators related to

the battery sizing for the reference profile and the fictitious profile

generated with the clearing algorithm. A good agreement between

those values indicates that the compact wind profile would cer-

tainly lead to the same battery sizing as with the reference wind

profile over a longer period. This will be verified in Section 5.

Finally, it should be noted that the equivalent number of full cycles

resulting from the fictitious wind profile and extrapolated over 20
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years is 385. This number is coherent with the reference values

obtained in Table 5 with wind profiles of longer duration.

4.3. Compact synthesis approach using wind-based targets

In this second approach, the selected target indicators are only

related to the wind features: this approach can be considered as

generic in the case of any WT systemwhatever its sizing. We firstly

consider three indicators Vmax, Vmin and oV3
4 representing the

maximum and minimum speed values and the average cubic wind

speed value. Note that oV3
4 is used instead of the average wind

speed value oV4 because the WT power is directly proportional

to the cubic wind speed value. Similarly to the previous approach,

we also add the CDF as a target indicator associated with the wind

profile in order to take the wind statistic into account. Finally, we

consider as the last indicator related to “wind energy” the variable

EV defined as:

EV ¼ max
tA ½0;Δt+

EðtÞ& min
tA ½0;Δt+

EðtÞ ð8Þ

with EðtÞ ¼
R t
0ðV

3ðτÞ&oV3
4 Þdτ tA ½0;Δt+

EV represents an “intermittent wind pseudo energy”. In fact, EV
plays a similar role with ES in the previous approach for the sto-

rage system. Note that the wind power being proportional to V3, EV
is not actually energy (in Joules or kWh) but can be seen as a

“pseudo energy” which is qualitatively related to the wind energy.

The global error ε to be minimized with this second approach can

be expressed as:

ε¼
Vmax&Vmax ref

Vmax ref

' (2

þ
Vmin&Vmin ref

Vmin ref

' (2

þ
oV3

4&oV3
4 ref

oV3
4 ref

 !2

þ
EV &EV ref

EV ref

' (2

þεstat ð9Þ

where εstat is computed according to Eq. (7) and where the refer-

ence intermittent wind energy EVref is scaled according to the

compact profile duration:

EV ref ¼
Δtcompact

Δtref
' EVref ðΔtref Þ ð10Þ

The inverse problem is solved with the clearing algorithm with

the same control parameters as in the previous subsection. Mul-

tiple optimization runs were performed with different compaction

time Δtcompact. The minimum value for this variable ensuring a

global error of less than 10&2 was identical to that found with the

previous approach (i.e. 10 days). Fig. 12 shows the characteristics of

the generated wind profile obtained for Δtcompact¼10 days, from

the aggregation of 130 elementary segments fulfilling all target

indicators. The good match between the compact generated pro-

file and the reference profile can also be observed in this figure in

terms of CDF. Finally, Table 8 shows that the values of the target

indicators are very close in both cases. For comparison with the

previous approach, we also give the sizing of the battery obtained

from the simulation of the compact profile. It should be noted that

contrary to the first approach, the second does not include phase

correlations between wind and load profiles because it only con-

siders wind speed variations to generate the compact wind speed

profile. Consequently, the second approach does not ensure find-

ing the most critical constraints on the storage device in terms of

production – load phase shift. This can be a posteriori done by

sequentially shifting the obtained wind profile to its 10 day time

window in compliance with the deterministic load profile repe-

ated from day to day. The maximum storage energy quantity ES is

computed for each phase shift and the highest (most critical) value

is returned (see Fig. 13). In this way, a value of 34.4 kWh is

obtained for ES which is very close to that resulting from the

reference profile simulation (i.e. 32.3 kWh).

Finally, we mention that the equivalent number of full cycles

resulting from the fictitious wind profile and extrapolated over 20

years is 398, close to the previous values obtained with the other

approaches.

4.4. Validation of the previous results for various WT sizes

In order to validate the effectiveness of the previous approa-

ches, the compact wind profiles obtained in both methods are

used to estimate the battery sizing for various WTs. Three WTs are

Table 6

Influence of Δtcompact on the global error ε.

Δtcompact (days) 40 20 10 5

Global error ε E8.10&3
E9.10&3

E9.10&3
E7.10&2
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Fig. 11. Generated wind speed profile (a) with corresponding CDF (b).

Table 7

Target indicators of the generated wind speed profile.

Reference profile (200

days)

Compact profile (10

days)

Error (%)

PBATMAX (kW) 30 30 0

PBATMIN (kW) &5.88 &5.82 0.1

ES (kWh) 32.36 32.4 0.12



considered with nominal power of 7 kW, 8 kW and 9.5 kW. The

tables below summarize the results obtained for the battery sizing

variables (i.e. PBATMAX, PBATMIN and ES) for each WT sizing with the

reference profile of 200 days duration and with the compact

profiles resulting from both approaches developed in the previous

sections. A good match between those variables is obtained in all

cases whatever the WT sizing. This indicates that compact profiles

generated by our synthesis process can be used in a sizing process

(typically with an IOD approach) instead of the reference profile

for the battery sizing (Tables 9–11).

5. Synthesis and discussion

Table 12 summarizes a comparison of the four battery sizing

approaches using statistical and compact synthesis techniques.

It can be observed from this table that we roughly obtain the

same battery size whatever the method used (129ro

NBT4r134). The statistical methods lead to a reduction in the

wind speed profile duration by a ratio of 2.85 (i.e. 70/200 days)

and it can be clearly seen that the CPU time is also decreased.

Methods using compact synthesis techniques provide better

compacting factor and allow a significant reduction of the com-

putational time versus statistical methods based on Monte Carlo
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Fig. 12. Generated wind speed profile (a) with corresponding CDF (b).

Table 8

Target indicators of the generated wind speed profile.

Reference profile (200

days)

Compact profile (10

days)

Error (%)

Vmax (m/s) 25.1 25.9 3.58

Vmin (m/s) 0 0 0

oV3
4 (m3/s3) 876.4 871.4 0.57

EV (m3/s2) 32.3 34.4 0.42
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Fig. 13. Illustration of the phase shift of the wind speed profile (generated with the

wind-based compact synthesis approach) on the battery sizing.

Table 9

Results obtained for a 7 kW passive WT.

Reference profile

(200 days)

System-based tar-

gets (10 days)

Wind-based tar-

gets (10 days)

PBATMAX (kW) 26.3 26.3 26.3

PBATMIN (kW) &5.88 &5.83 &5.83

ES (kWh) 46.9 46.2 46.8

Table 10

Results obtained for a 8 kW passive WT.

Reference profile

(200 days)

System-based tar-

gets (10 days)

Wind-based tar-

gets (10 days)

PBATMAX (kW) 30 30 30

PBATMIN (kW) &5.88 &5.82 &5.2

ES (kWh) 32.36 32.40 34.40

Table 11

Results obtained for a 9 kW passive WT.

Reference profile

(200 days)

System-based tar-

gets (10 days)

Wind-based tar-

gets (10 days)

PBATMAX (kW) 34.8 34.8 34.8

PBATMIN (kW) &5.82 &5.82 &5.82

ES (kWh) 26.14 28.90 28.00



simulations. Indeed, the initial duration of the actual wind speed

profile has been divided by 20 (i.e. 10/200 days). We conclude that

approaches based on compact synthesis are highly efficient in

terms of sizing accuracy and reduction of the wind speed profile

duration. This offers significant gains in terms of computational

time in the framework of the optimization process of such sys-

tems. Moreover, it has been shown that the use of the compact

fictitious profiles resulting from these approaches leads to con-

sistent constraints with respect to the battery cyclability.

6. Conclusion

In this paper, several methodologies for sizing a battery bank

devoted to a stand-alone WT system have been developed and

compared. The first two proposed sizing approaches take account

of stochastic features of wind energy potential in a particular

location with a given deterministic power demand. These

approaches are based on the exploitation of wind speed dis-

tribution from a Weibull law or the extracted power histogram at

the WT output. It has been shown that a robust sizing of the

battery bank can be obtained from the stochastic generation of

either the wind speed profile or the extracted WT output power

using a specific algorithm. Two additional approaches have been

developed for compacting wind speed profiles. These approaches

consist in generating compact wind profiles by aggregating ele-

mentary parameterized segments in order to fulfill target indica-

tors representing the features of a reference wind profile of longer

duration. It has been shown that both latter approaches are able to

represent the main features of the reference profile with respect to

the wind farm potential and are also relevant for evaluating the

critical conditions imposed on the battery storage (i.e. power and

energy needs, number of cycles) in a hybrid WT system. All sizing

methods lead roughly to the same battery size and the same

cyclability features but with different wind profile durations. Sta-

tistical methods have provided a gain of 2.5 in time window

reduction, while compact synthesis methods have led to a gain of

20. From these compact profiles, a subsequent reduction of the

computation time should be obtained in the context of the opti-

mization process of such systems.

Acknowledgements

This work was supported by the Tunisian Ministry of High

Education, Research and Technology; CMCU – 12G1103 and by a

SMI project of the INP Toulouse.

References

[1] Gavanidou E, Bakirtzis A. Design of a stand alone systemwith renewable energy
sources using trade-off methods. IEEE Trans Energy Convers 1992;7(1):42–8.
http://dx.doi.org/10.1109/60.124540.

[2] Chedid R, Rahman S. Unit sizing and control of hybrid wind–solar power

systems. IEEE Trans Energy Convers 1997;12(1):79–85. http://dx.doi.org/

10.1109/60.577284.
[3] Kellogg W,D, Nehrir MH, Venkataramanan G, Gerez V. Generation unit sizing

and cost analysis for stand-alone wind, photovoltaic and hybrid wind/PV

systems. IEEE Trans Energy Convers 1998;13(1):70–5. http://dx.doi.org/

10.1109/60.658206.
[4] Bernard-Agustín JL, Dufo-Lopez R, Rivas-Ascaso DM. Design of isolated

hybrid systems minimizing costs and pollutant emissions. Renew Energy

2006;31(14):2227–44. http://dx.doi.org/10.1016/j.renene.2005.11.002.
[5] Senjyu T, Hayashi D, Yona A, Urasaki N, Funabashi T. Optimal configuration of

power generating systems in isolated island with renewable energy. Renew

Energy 2007;32:1917–33. http://dx.doi.org/10.1016/j.renene.2006.09.003.
[6] Yazdanpanah-Jahromi MA, Barakati S-M, Farahat S. An efficient sizing method

with suitable energy management strategy for hybrid renewable energy sys-

tems. Int Trans Electr Energy Syst 2013. http://dx.doi.org/10.1002/etep.1790.
[7] Belfkira R, Nichita C, Reghem P, Barakat G. Modeling and optimal sizing of

hybrid energy system. Int. Power Electronics and Motion Control Conference

(EPE-PEMC). Poznan, Poland; 2008. p. 1834–39. http://dx.doi.org/10.1109/EPE

PEMC.2008.4635532.
[8] Lim JH. Optimal combination and sizing of a new and renewable hybrid

generation system. Int J Future Gener Commun Netw 2012;5(2):43–60.
[9] Sareni B, Abdelli A, Roboam X, Tran DH. Model simplification and optimization

of a passive wind turbine generator. Renew Energy 2009;34:2640–50. http:

//dx.doi.org/10.1016/j.renene.2009.04.024.
[10] Tran DH, Sareni B, Roboam X, Espanet C. Integrated optimal design of a passive

wind turbine system: an experimental validation. IEEE Trans Sustain Energy

2010;1(1):48–56. http://dx.doi.org/10.1109/TSTE.2010.2046685.
[11] Gupta SC, Kumar Y, Agnihotri Gayatri. REAST: renewable energy analysis and

sizing tool. J Electr Syst 2011;7(2):206–24.
[12] Protogeropoulos C, Brinkworth B, Marshall R. Sizing and techno-economical

optimization for hybrid solar photovoltaic/wind power systems with battery

storage. Int J Energy Res 1997;21:465–79. http://dx.doi.org/10.1002/(SICI)

1099-114X(199705)21:6o465::AID-ER27343.0.CO;2-L.
[13] Morgan T, Marshall R, Brinkworth B. ARES – a refined simulation program for

the sizing and optimization of autonomous hybrid energy systems. Sol Energy

1997;59(4–6):205–15. http://dx.doi.org/10.1016/S0038-092X(96)00151-X.
[14] Seeling-Hochmuth G. A combined optimization concept for the design and

operation strategy of hybrid-PV energy systems. Sol Energy 1997;61(2):77–87.

http://dx.doi.org/10.1016/S0038-092X(97)00028-5.
[15] Borowy BS, Salameh ZM. Optimum photovoltaic array size for a hybrid wind/

PV system. IEEE Trans Energy Convers 1994;9(3):482–8. http://dx.doi.org/

10.1109/60.326466.
[16] Borowy BS, Salameh ZM. Methodology for optimally sizing the combination of

a battery bank and PV array in a Wind/PV hybrid system. IEEE Trans Energy

Convers 1996;11(2):367–75. http://dx.doi.org/10.1109/60.507648.
[17] Bagul AD, Salameh ZM, Borowy BS. Sizing of a stand-alone hybrid wind-

photovoltaic system using a three-event probability density approximation.

Sol Energy 1996;56(4):323–36. http://dx.doi.org/10.1016/0038-092X(95)

00116-9.
[18] Barkirtzis AG, Dokopoulos PS, Gavanidous ES, Ketselides MA. A probabilistic

costing method for the evaluation of the performance of grid-connected wind

arrays. IEEE Trans Energy Convers 1989;4(1):99–107. http://dx.doi.org/

10.1109/60.23147.
[19] Abouzar I, Ramakumar R. Loss of power supply probability of stand-alone

wind electric conversion system: a closed form solution. IEEE Trans Energy

Convers 1991;6(1):445–52. http://dx.doi.org/10.1109/60.105267.
[20] Bakirtzis AG. A probabilistic method for the evaluation of the reliability of

stand-alone wind energy conversion system. IEEE Trans Energy Convers

1992;7(1):99–107. http://dx.doi.org/10.1109/60.124548.
[21] Conti S, Tina G, Vagliasindi U. A new method for estimating the long term

average performance of hybrid Wind/PV systems. In: Proceedings of Eurosun.

Copenhagen, Denmark. June 19–22; 2000.
[22] Jaafar A, Sareni B, Roboam X. Signal synthesis by means of Evolutionary

algorithms. J Inverse Probl Sci Eng 2012;20(12):93–104. http://dx.doi.org/

10.1080/17415977.2011.624619.
[23] Belouda M, Belhadj D, Sareni B, Roboam R, Jaafar A. Synthesis of a compact

wind profile using evolutionary algorithms for wind turbine system with

storage. MELECON’2012. Hammamet, Tunisia; 2012. http://dx.doi.org/10.1109/

MELCON.2012.6196464.

Table 12

Comparison of the four battery sizing approaches.

Actual profile Duration (days) Time reduction Average nb. of battery cells oNBT4 CPU Time (s)

200 1 132 19.23

Statistical approach Wind speed-based approach 70 2.85 130 4.57

Output WT power-based approach 70 2.85 129 0.83

Compact synthesis approach System-based targets 10 20 132 0.34

Wind-based targets 10 20 134 0.34



[24] Fefermann Y, Randi SA, Astier S, Roboam X. Synthesis models of PM Brushless

Motors for the design of complex and heterogeneous system. EPE’01. Graz,

Austria. September; 2001.
[26] 〈http://www.houseofbatteries.com/〉.
[27] Drouilhet S, Johnson BL. A battery life prediction method for hybrid power

applications. In: Proceedings of the 35th AIAA Aerospace Sciences Meeting

and Exhibit. Reno, USA; 1997.
[28] Dufo-Lopez R, Bernal-Agustin JL. Multi-objective design of PV-wind-diesel-

hydrogen-battery systems. Renew Energy 2008;33:2559–72. http://dx.doi.

org/10.1016/j.renene.2008.02.027.
[29] Jaafar A, Akli CR, Sareni B, Roboam X, Jeunesse A. Sizing and energy man-

agement of a hybrid locomotive based on flywheel and accumulators. IEEE

Trans Veh Technol 2009;58(8):3947–58. http://dx.doi.org/10.1109/
TVT.2009.2027328.

[30] Downing SD, Socie DF. Simple rainflow counting algorithms. Int J Fatigue
1982;4(1):31–40. http://dx.doi.org/10.1016/0142-1123(82)90018-4.

[32] Roboam X, Abdelli A, Sareni B. Optimization of a passive small wind turbine
based on mixed Weibull-turbulence statistics of wind. Electrimacs. Québec,
Canada; 2008.

[33] Petrowski A. A clearing procedure as a niching method for genetic algorithms.
In: Proceedings of the IEEE international conference on evolutionary com-
putation. Nagoya, Japan; 1996. p. 798–803. http://dx.doi.org/10.1109/ICEC.
1996.542703.


