

To cite this version : Hugues, Jérôme and Delange, Julien
Modélisation et analyses d’architecture IMA à l’aide d’AADL :
analyses de sûreté de fonctionnement et génération de code.
In: Acte des Journées Méthodes Formelles, 26 January 2016 - 26
January 2016 (Toulouse, France).

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15107

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Institut Supérieur de l’Aéronautique et de l’Espace

Jérôme Hugues, ISAE
Julien Delange, CMU/SEI

Model-Based Design, Automated Code Generation
and Safety Analysis of ARINC653 Architectures using

the AADL

> One fault instance of an ADIRU (Air Data Inertial Reference
Unit) on-board a Boeing 777-2H6ER caused an hazardous
accident to Malaysian Air flight 124 in 2005,

> Key question is: could we avoid similar scenario in future
system design? How? Associated cost?

> Failure has been (partially) described in publically available
reports by NTSB, and Vanderbilt University, used for study

Introduction

JMF'2016 2

Agenda
1. How to capture architecture key elements using AADL

• Real-time architecture, ARINC653 patterns, etc.
2. Link them to implementation artifacts

• Simulation through code generation
3. Trace them w.r.t. safety analysis objectives

> (from ATSB report 200503722)

About Boeing 777-2H6ER ADIRU

JMF'2016 3

n Multiple levels of redundancy.
n work without maintenance with one fault in each FCA.

> ISIS-11-101 TR by Vanderbilt Univ.
• Four modules
• Two types of ports

The Model in ARINC 653 Architecture

JMF'2016 4

1. Capturing architecture key elements using AADL
• Real-time architecture, ARINC653 patterns, etc.

2. Link them to implementation artifacts
• Simulation through code generation

3. Trace them w.r.t. safety analysis objectives

Outline

JMF'2016 5

> International standard promoted by SAE, AS-2C committee
» Released as AS5506 family of standards
» Version 1.0 (2004), version 2 (2009), 2.1 (2012)
» Based on feedback from the aerospace industry

> Annex document to address specific needs
» ARINC653, Behavior, data, error modeling, code

generation, …
> AADL objectives are “to model a system”
» With analysis in mind
» To ease transition from well-defined requirements to the

final system : code production
> Require semantics => any AADL entity has a semantics

(natural language or formal methods).

AADL: Architecture Analysis & Design Language

JMF'2016 6

> Regular modeling process
» Define sub-system boundaries, interfaces, configuration
» Mixing text, graphics, property editor to manage model complexity

Modeling of the ADIRU with AADL

JMF'2016 7

Overview of the AADL model

JMF'2016 8

> AADL default semantics check
» Containment hierarchy, applicability of configuration

parameters (units, types, etc), types of message
exchanged, port connection, etc.

> ARINC 653 verification plugs-ins
» Part of AADL eco-system: OSATE, MASIW, Ocarina, …
» Check connections
» Validity of ARINC653 Configuration parameters:

• Major Frame Correctness, Properties of Memory Components, Dimensioning
of Memory Components, Partitions Bindings, Partitions Executions,
Separation of Memory

» Additional checks: constraints set by RTOS vendors, e.g.
alignment of memory segments, max number of threads,
ports, size of queues, etc.

First level of analysis: core and plug-ins

JMF'2016 9

1. Capturing architecture key elements using AADL
• Real-time	architecture,	ARINC653	patterns,	etc.

2. Link them to implementation artifacts
• Simulation through code generation

3. Trace them w.r.t. safety analysis objectives

Outline

JMF'2016 10

> ARINC653 Executives require an additional configuration
file, but …

> A (full) AADL model must define all components
» For analysis or code generation purposes

> Can derive configuration file from the AADL model
» Implemented in Ocarina, targets DeOS and VxWork653

> Part of the model bus philosophy
» One repository that can be mined for various purposes
» Analysis, code generation, management of configuration

parameters

AADL and XML configuration data

JMF'2016 11

AADL: modeling data types

JMF'2016 12

-- Part of the Annex D – Data Modeling Annex

data C_Unsigned_Long_Int
-- This data component defines a C unsigned long int type, with a
-- dual nature The first properties defines its representation in
-- memory, the two last its mapping in C.
properties
Data_Model::Data_Representation => integer;
Data_Model::Number_Representation => unsigned;
Data_Size => 4 bytes;
Source_Language => (C);
Type_Source_Name => "unsigned long int";
end C_Unsigned_Long_Int;

data accData extends C_Unsigned_Long_Int
end accData;

subprogram acc1_dataOutput_spg
features

acc1DataOut: out parameter SHM_DataType::accData;
event_in: in parameter SHM_DataType::actionData;

end acc1_dataOutput_spg;

> Binding code to AADL components

> Mapping from AADL model to code

AADL and subprograms

JMF'2016 13

subprogram acc1_dataOutput_spg
features
acc1DataOut: out parameter SHM_DataType::accData;
event_in: in parameter SHM_DataType::actionData;

properties
Source_Language => (C);
Source_Name =>"acc1dataoutput";
Source_Text => ("../../../acc_code.o");

end acc1_dataOutput_spg;

subprogram acc1_dataOutput_spg
features
acc1DataOut: out parameter SHM_DataType::accData;
event_in: in parameter SHM_DataType::actionData;

end acc1_dataOutput_spg;

void acc1_dataOutput_spg (/* C */
(acc1DataOut *SHM_DataType_accData,
event_in: SHM_DataType_actionData);

> The AADL architecture has all details about
» Task, queues, buffers, etc.
» Used for schedulability analysis, generation of ARINC653

configuration
> Ocarina: massive code generation
» Take advantage of global knowledge to optimize code,

and generate only what is required
» Reduce as much as possible error-prone and tedious

tasks

> Targets DeOS and VxWorks 653
• See all demos and videos from http://aadl.info/aadl/demo-

arinc653/

AADL and code generation

JMF'2016 14

1. Capturing architecture key elements using AADL
• Real-time	architecture,	ARINC653	patterns,	etc.

2. Link them to implementation artifacts
• Simulation through code generation

3. Trace them w.r.t. safety analysis objectives

Outline

JMF'2016 15

> System safety process uses many individual methods and analyses,
e.g.
» hazard analysis
» failure modes and effects analysis
» fault trees
» Markov processes

> Related analyses are also useful for other purposes, e.g.
» maintainability
» availability
» Integrity

> Goal: a general facility for modeling fault/error/failure behaviors that can
be used for several modeling and analysis activities.

AADL Error Model Scope and Purpose

JMF'2016 16

SAE ARP 4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment

Annotated architecture model permits checking for consistency and
completeness between these various declarations.

System

Component

Subsystem

Capture FMEA model

Capture hazards

Capture risk mitigation architecture

Automation of SAE ARP4761 System Safety Assessment Practice

JMF'2016 17

& EMV2FHA
Spreadsheet
Uses error sources

FTA
CAFTA, OpenFTA
Uses composite
error behavior

Markov Chain
PRISM
Uses error flows
& behavior

FMEA
Spreadsheet
Uses error flows &
propagations

RBD/DD
OSATE plugin
Uses composite
error behavior

Annotating the model with Error Information (1)

JMF'2016 18

Declaring error sources

Documenting the error

Annotating the model with Error Information (2)

JMF'2016 19

Passing the error directly
through components features

Annotating the model with Error Information (3)

JMF'2016 20

Receiving a erroneous value
makes the component to fail

> Functional Hazard Assessment:
• List all potential error sources, Include documentation from the model

>Fault Impact Analysis
• Bottom-up approach, Trace the error flow defined in the architecture

> Fault Tree

EMV2 at work

JMF'2016 21

> AADLv2 leveraged to model the ADIRU system
» Full architectural description of the avionics system
» Link with consistency checks for ARINC653 patterns
» Code generation towards ARINC653 APEX
» Safety analysis using the AADL EMV2 annex

> AADL ecosystem provide all required tools, using OSATE2
and Ocarina, completed with spreadsheets, FTA tool and
target RTOS

> Future work will consider connection with requirement
engineering, and better coverage of faulty scenarios

Conclusion

JMF'2016 22

