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Abstract: This paper describes some contributions to Model Free Control (MFC). For example,
its properties about disturbance rejection are analyzed. It is also shown that it is possible to
propose new estimation methods for an extended version for MFC using time-varying parameters
of an ultra-local model. In particular it is emphasized that these parameters can be estimated
using alternative and standard adaptation methods. An application to a thermal process model
illustrates one specific point of the new adaptive approach.

Keywords: Parameter estimation, model-free control, adaptive ultra-local model control.

1. INTRODUCTION

During the last decade a new control strategy has been
proposed in Fliess and Join (2008) and Fliess et al. (2011).
This control strategy is based on two specific features. On
the one hand the use of an ultra-local model given by:

[y(t)]
(n)

= F (t) + α(t)u(t), (1)

where :

• y(t) and u(t) are the scalar output and input of the
system;

• n is the derivation order of the proposed ultra-local
model. Usually, and for practical applications, n = 1
or 2 is sufficient to describe during a short time period
the system behavior;

• F (t) is a time-varying function which transforms as
a disturbance term the higher order terms and the
complexity of the model;

• α(t) is a time-varying gain. The advice given in
papers on model-free control is to consider constant
this gain and choose its value such that y(n)(t) and
that αu(t) are “of the same magnitude”. Let us
mention here that this standpoint leads to fruitful
practical applications. See for instance the concrete
applications listed in Fliess and Join (2013) and the
references therein. Nevertheless, one of the objective
of our paper is to consider a time dependency of the
gain α(t).

On the other hand the model-free control is designed fol-
lowing flatness-based principles (Sira-Ramirez and Agrawal
(2004); Fliess et al. (1995); Lévine (2009)). Namely, for a
desired reference trajectory on the system output, denoted
r(t) and defined on a given time domain [0, tf ], the control
is given by:

u(t) =
1

α̂(t)

[
(r(t))

(n)
− F̂ (t) +R(p)e(t)

]
, (2)

where:

• e(t) is the tracking error r(t)− y(t);
• R(p) is a rational function in the differential operator
p (Rotella and Zambetakis (2013)). Let us mention
that the coefficients of R(p) may be time-varying
functions;

• α̂(t) and F̂ (t) are the instantaneous estimated values
for the coefficients α(t) and F (t) of the ultra-local
model (1).

When the controller (2) is applied to the system, taking
into account the ultra-local model, we obtain:

[y(t)]
(n)

= F (t)

+
α(t)

α̂(t)

[
(r(t))

(n)
− F̂ (t) +R(p)e(t)

]
.

Let us introduce the following notations:

• k(t) =
α(t)

α̂(t)
and λ(t) = 1− k(t);

• g(t) = F (t)− k(t)F̂ (t);
• S(p) = pn + k(t)R(p),

then the previous controller (2) yields the following closed
loop system:

S(p)e(t) = λ(t) (r(t))
(n)
− g(t). (3)

This relationship leads to the conclusion that estima-
tors and the regulator R(p) must be designed such that∫ tf

0
e(t) < E where E is the admissible error in the

tracking objective.

As a particular case the adaptive control (2) is defined
through the PID structure

R(p) = kP +
kI

p
+

kDp

1 + τF p
, (4)

where kP , kI and kD are the gains of the proportional,
integral and derivative actions, respectively, and, τF is the
time-constant for the filtered derivative. Let us remark
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Fig. 1. Closed-loop control.

that the control with (4) is denoted by Fliess and Join
(2008); Fliess et al. (2011) as an intelligent-PID controller.
We prefer here the adjective adaptive due to the fact that
the coefficients of the controller (2) are adapted through
the estimation of α(t) and F (t) with a differential equation
(see for instance Becedas et al. (2009) or Wu (1999)). Let
us mention also that in the case where α(t) is fixed at the
beginning to a given value (e.g. α(t)≡ 0.9 or 1) then the
closed-loop controlled becomes:

(pn +R(p)) e(t) = F (t)− F̂ (t), (5)

and the adaptation mechanism has a consequence on the
right-side term of the error dynamics only. With respect
to the proposed model, let us mention that some similar,
but different, control strategy has been given in Ilchmann
and Ryan (2009). The main difference is that in our
approach are estimated the drift term and the input gain.
Considering the estimation for α(t) we are led beyond the
i-control and we are going towards adaptive control (a-
control).

In this paper we restrict the scope to single-input single-
output systems. Nevertheless, the case of multivariable
systems could be considered with the same guidelines as
in Fliess et al. (2006); Fliess and Join (2008). The paper
is organized as follows. Section 2 describes some remarks
about disturbance rejection properties and the use of prior
knowledge in the extended MFC. Section 3 proposes some
alternative and standard parameter estimation methods
for MFC. In section 4 an application to a thermal process
is presented. Concluding remarks are given in section 5.

2. SOME REMARKS ON MODEL-FREE CONTROL

As it can readily be seen we have considered here a little
bit more complex model than those used in the usual
literature or applications on this topic by introducing the
time-varying parameter α(t). Indeed we consider in the
following this parameter as a parameter which must be
estimated. This point of view leads to a light difference
with the implementation of intelligent controllers, namely
i-P and i-PI controllers which are using derivatives esti-
mators. Nevertheless, we are in position to perform some
remarks which reenforce the advantages for the free-model
control. These comments are to be added to the proposed
ones in D’Andrea-Novel et al. (2010); Fliess et al. (2011).

2.1 Implicit integral action

Let us suppose that the closed-loop control (2) is per-
formed with exact estimations for F (t) and α(t) (Fig. 1)
where b and d are disturbances. With e(t) = r(t) − z(t)
and z(t) = y(t) + b(t), we obtain

[y(t)]
(n)

= F (t) + α(t)×

{
1

α(t)

[
(r(t))

(n)

−F (t) +R(p)e(t)] + d(t)} ,

= (r(t))
(n)

+R(p)e(t) + α(t)d(t),

thus we get

(pn +R(p)) e(t) = −pnb(t)− α(t)d(t). (6)

When the closed-loop system is stable, the first conse-
quence of this result is the reject of output perturbations
b(t) = ti for i = 0 to n − 1. In the case where integral

action are included in R(p), namely R(p) =
R∗(p)

pm
with

m > 0, we obtain(
pn+m +R∗(p)

)
e(t) = −pn+mb(t)− pm (α(t)d(t)) . (7)

Obviously, when α(t)d(t) = tj , for j = 0 to m − 1, the
disturbance rejection is ensured.

2.2 A priori knowledge

The main advantage of the model-free control is to gen-
erate a control design without an a priori model for the
system. In this framework, the reference trajectory to track
is fixed at the beginning. Nevertheless, we are going to see
that taking into account a dynamic model for the system
can improve the convergence properties for the estimators
or to see that the parameter α cannot be considered as a
constant. Let us suppose that the system is described by
the nonlinear input-output model

[y(t)]
(ν)

= Φ(y(t), u(t)), (8)

where Φ(y(t), u(t)) is a function which depends on input-
output variables and their derivatives up to the (ν − 1)-th
order. Let us mention here that, in practice, the order ν of
this model is greater or equal to n. Firstly, from the flatness
standpoint, the first task is to generate the reference to
track, r(t) such that r(n)(t) = Φ(r(t), ur(t)) where ur(t)
stands for the control which ensures that y(t) = r(t).
Secondly, from the model (8) we can build

[y(t)]
(n)

= Φ(y(t), u(t))+

[y(t)]
(n)
− [y(t)]

(ν)
+ α(t)u(t)− α(t)u(t),

where n is an arbitrary integer and α(t) an arbitrary
possibly time-varying gain. Obviously, α(t) can be fixed
at the beginning to 1, but the identification of F (t) in the
ultra-local model (1) leads to

F (t) = Φ(y(t), u(t)) + [y(t)]
(n)
− [y(t)]

(ν)
− α(t)u(t).

We deduce that

α(t) =
Φ(y(t), u(t)) + [y(t)]

(n)
− [y(t)]

(ν)
− F (t)

u(t)
. (9)

As a consequence, an estimator for F (t) may lead to a
possibly time-varying gain α(t). Let us mention here that
the construction of F (t) and α(t) is not unique for a
given model. This fact will be proved in the parameter
estimation section 3.

In order to be more precise consider the model of an active
magnetic bearing used in De Miras et al. (2013). This
model can be written as

ÿ(t) = D(t) +
λsign(i(t))i2(t)

2m (g − sign(i(t))y(t))
, (10)



where the output is the displacement y(t), the control is
the current i(t) in the coil, D(t) is a load disturbance, g
the nominal gap between the coil and the shaft, m is the
shaft mass and λ an electromagnetic constant parameter.
With n = 2, two models such as (1) can be deduced. On
the one hand

ÿ(t) = D(t) +
λsign(i(t))i2(t)

2m (g − sign(i(t))y(t))
− i(t) + i(t),

which leads to the identification

F (t) =D(t) +
λsign(i(t))i2(t)

2m (g − sign(i(t))y(t))
− i(t),

α(t) = 1.

It is the model used in De Miras et al. (2013) which implies
an estimation of F (t) only. On the other hand, another
point of view, among others, can be used here. Namely,
we can write (10) as

ÿ(t) = D(t) +

[
λsign(i(t))i(t)

2m (g − sign(i(t))y(t))

]
i(t),

which leads to the identification

F (t) =D(t),

α(t) =
λsign(i(t))i(t)

2m (g − sign(i(t))y(t))
,

where the gain α(t) is a time-varying gain. To our point of
view, the previous remark leads us to consider an estimator
for α(t) too.

3. PARAMETER ESTIMATION

The first three subsections of this part are independent.
The first one points out the non uniqueness of the esti-
mated model. The second one deals with some obtained
tracking property. The third subsection proposes a new
adaptation mechanism for the drift term and the input
gain of the ultra-local model. In the fourth subsection an
improvement is indicated for the case of a fast time-varying
input gain.

In the following we take n = 1 in the ultra-local model (1).

3.1 Generalized inverse based estimator

A possibility for the estimation is to consider the ultra-
local model (1) as the regressor

ẏ(t) = U(t)θ(t), (11)

where U(t) = [ 1 u(t) ] and θ(t)T = [ F (t) α(t) ]. Usually,
the term α(t) is fixed at the outset or, in some cases as
in (Gédouin et al. (2011)) is a nonlinear known function.
The basic principle is to estimate the drift term F (t). The
purpose of this section is to point out that, on the one
hand, α(t) can be estimated too, and, on the other hand,
this estimation introduces an arbitrary parameter which
allows a significance of the parameter α(t). Indeed, the

estimation θ̂(t) of θ(t) can be thought as the solution of
the undetermined linear equation (11). As, for every t,
rank (U(t)) = 1, this system is consistent (or compatible)
which leads to

θ̂(t) = U(t){1}ẏ(t) +
(
I2 − U(t){1}U(t)

)
z(t), (12)

where :

• U(t){1} is an arbitrary generalized inverse of U(t),
namely it fulfills the relationship (Ben-Israel and
Greville (2003))

U(t)U(t){1}U(t) = U(t);

• z(t) is an arbitrary 2-dimensional vector. Because
rank (U(t)) = 1, we get

dim (ker {U(t)}) = rank
(
I2 − U(t){1}U(t)

)
= 1.

Consequently, if we denote v(t) a vector such that
span {v(t)} = ker {U(t)}, the arbitrary part of (12) can
be reduced to(

I2 − U(t){1}U(t)
)
z(t) = λ(t)v(t),

where λ(t) is the arbitrary scalar parameter. This param-
eter allows to span the solution set of (11) which can be
written as

θ̂(t) = U(t){1}ẏ(t) + λ(t)v(t),

The estimations of F (t) and α(t) are depending of this
parameter which can be tuned with respect to some
supplementary constraints.

Let us consider now a particular, but important, case. Let
us chose the following generalized inverse for U(t)

U(t){1} =

[
1
0

]
,

which leads to

I2 − U(t){1}U(t) =

[
0 −u(t)
0 1

]
.

This particular case allows to consider λ(t) as the second
component of z(t) and, the solution set can be read as :

F̂ (t) = ẏ(t)− λ(t)u(t),

α̂(t) = λ(t),

where the meaning of the parameter appears clearly. As a
first remark the case of constant λ(t) has been considered
in Fliess and Join (2013), and secondly, we get

F̂ (t) = ẏ(t)− α̂(t)u(t). (13)

As another example let us take U(t){1} = U(t)+ the
pseudo-inverse of U(t) (Ben-Israel and Greville (2003)).
Namely,

U(t)+ =
1

1 + u(t)2

[
1

u(t)

]
,

which leads to
I2 − U(t)+U(t) =[
1 0
0 1

]
−

1

1 + u(t)2

[
1 u(t)

u(t) u(t)2

]
=

1

1 + u(t)2

[
u(t)
−1

]
[ u(t) −1 ] .

With µ(t) = [ u(t) −1 ] z(t), the estimator can be read as

θ̂(t) =U(t)+ẏ(t) + µ(t)
1

1 + u(t)2

[
u(t)
−1

]
,

=
1

1 + u(t)2

{
ẏ(t)

[
1

u(t)

]
+ µ(t)

[
u(t)
−1

]}
,

=
1

1 + u(t)2

[
ẏ(t) + µ(t)u(t)
u(t)ẏ(t)− µ(t)

]
,

which leads to



F̂ (t) =
ẏ(t) + µ(t)u(t)

1 + u(t)2
,

α̂(t) =
u(t)ẏ(t)− µ(t)

1 + u(t)2
.

Let us remark that the elimination of µ(t) leads to the

same relationship, namely F̂ (t) = ẏ(t) − α̂(t)u(t). Nev-
ertheless, the existence of the degree of freedom in the
estimation induces that no a priori exact values for F (t)
and α(t) exist independently of outer constraints.

For instance some outer constraints on the control (e.g.
saturations,...) need α̂(t) > αmin to ensure the implemen-
tation. With the parameters λ(t) or µ(t) this point can be
obviously satisfied.

The formula (13) indicates clearly that two estimation
strategies can be used. On the one hand, from the algebraic
method presented in Fliess and Join (2008); Fliess et al.
(2011); Mboup et al. (2009) we can obtain the estimation
̂̇y(t) of the first derivative of y(t). In this framework F (t)
and α(t) has to be performed in two successive steps. An

estimate α̂(t) of α(t) leads to the estimation F̂ (t) = ˆ̇y(t)−
α̂(t)u(t). The details can be found in the cited works. Let
us mention here that the algebraic methods can be used
or can be extended to the estimation of a gain α which
can be considered as constant during a short period of
time. For shortness sake the developments are not given
in the present paper but will be the subject of future
works. Indeed, we are interested in an adaptive estimation
strategy to get F (t) and α(t).

3.2 Tracking for derivative

With the control

u(t) =
ṙ(t)− F̂ (t) + k (r(t)− y(t))

α̂(t)
,

and the estimator F̂ (t) = ˆ̇y(t)− α̂(t)u(t), where ˆ̇y(t) is an
estimator for the derivative of the output. We are led to
write

u(t) =
ṙ(t)− ˆ̇y(t) + α̂(t)u(t) + k (r(t)− y(t))

α̂(t)
.

The elimination of u(t) leads to

ṙ(t)− ˆ̇y(t) + k (r(t)− y(t)) = 0.

With the error term e(t) = r(t)−y(t) the previous equation
can be read as

(k + p)e(t) = ˆ̇y(t)− ẏ(t),

where p stands for the derivative operator.

Let us suppose that k > 0 and limt→∞ e(t) = 0, namely,
the regulator ensures perfect tracking, then we have proved
that the derivative estimator converges to the real deriva-
tive of the output signal. In other words, the estimation
error and the tracking error are related through a filtering
as

ˆ̇y(t)− ẏ(t) =
1

k + p
e(t).

3.3 Adaptation mechanism

Let us suppose here that α and F are unknown constants
such that:

ẏ(t) = F + αu(t) = θTφ, (14)

where θT = [F α] and φT = [1 u].

Due to the fact that the system output derivative is not
measurable, we proceed by filtering as in the parametric es-
timation of continuous-time systems (Baysse et al. (2011)).
Namely, considering the filtered signals yf (t) = G(p)y(t)
and uf (t) = G(p)u(t), where G(p) is the transfer of the
filter, yields the filtered version of the ultra-local model.
Then, from (14) it can be written that

ẏf (t) = [ F α ]

[
1f (t)
uf (t)

]
= θTφf (t),

where 1f (t) stands for the filtered unit step G(p)H(t)
where H(t) is the Heaviside step function and φT

f (t) =

[ 1f (t) uf (t) ]. When the filter is supposed to be strictly
proper ẏf (t) is obtained with the output filtering

ẏf (t) = pG(p)y(t).

Then the filtered estimated ultra-local model is proposed
as

ẏf (t) = θ̂Tφf (t) =
[
F̂ α̂

] [ 1f (t)
uf (t)

]
.

Because this estimator is to be used in an adaptive con-
troller, the parameters can be obtained from the minimiza-
tion of the following normalized quadratic criterion

J = min
θ̂


1

2

(
ẏf − θ̂Tφf

)2

m2


 ,

where m2 is chosen to satisfy that
φf

m
∈ L∞ as proposed

in Ioannou and Sun (1996). For example we can use:

m2 = 1 + γφT
f φf ,

where γ > 0. The minimization can be then obtained using
the gradient algorithm

ǫ =
(ẏf − θ̂Tφf )

1 + γφT
f φf

and
˙̂
θ = −Γ∇J(θ̂) = Γφf ǫ.

Where the adaptive gain Γ is a symmetric definite posi-
tive matrix. This algorithm have good tracking alertness
properties. In practice, first- or second-order filters G(p)
with unit static gain provide good results. For example it
can be used:

G(p) =
c

p+ c
; G(p) =

c2

(p+ c)2
;

Of course, some knowledge about the system bandwidth
frequency is useful.

The convergence and stability properties of this new adap-
tive controller are under study and will be the subject
of a future paper. In particular it could be necessary to
use adaptive gradient with projection laws as discussed in
Ioannou and Sun (1996) to obtain a more robust design.



3.4 Estimation for a time-varying α(t)

In the case of time-varying functions F (t) and α(t) the
previous procedure can be also used. In order to give a
simplified description we consider here a first-order filter

G(p) =
c

c+ p
. The objective here is to determine a filtered

ultra-local model which takes time into account in the
functions to estimate. From the filtered ultra-local model
we have

ẏf (t) = FG(p)H(t) +G(p) (α(t)u(t)) .

As we can formally write

G(p) =
1

1 + τp
= 1− τp+ (τp)

2
− · · ·

with τ =
1

c
, we obtain

ẏf (t) = FG(p)H(t) + α(t)u(t)− τ (α̇(t)u(t) + α(t)u̇(t)) +

τ2 (α̈(t)u(t) + 2α̇(t)u̇(t) + α(t)ü(t))− · · ·

= FG(p)H(t) + α(t)
(
1− τp+ (τp)

2
− · · ·

)
u(t) +

α̇(t)
(
−τ + 2τ2p− 3τ3p2 + · · ·

)
u(t) + · · ·

For simplicity sake, let us consider we look for estimations
for α(t) and α̇(t). Thus taking into account the first terms
in the previous series leads to the ultra-local (truncated)
filtered model

ẏf (t) = FG(p)H(t) + α(t)uf (t) + α̇(t)uff (t),

where uf (t) = G(p)u(t) and

uff (t) =
(
−τ + 2τ2p− 3τ3p2 + · · ·

)
u(t),

=

[
d

dp

{
1

1 + τp

}]
u(t) = −

τ

(1 + τp)
2u(t).

In this case the regressor can be written (using again that
1f (t) stands for the filtered unit step):

ẏf (t) = Θ̂
T
Φf (t) =

[
F̂ α̂ ˆ̇α

]
[

1f (t)
uf (t)
uff (t)

]
,

and, the previous adaptation strategy can be used.

4. EXAMPLE

The simplified model of the thermal process trainer Feed-
back PT320 is given by

y(t) =
Ke−Tdpu(t)

(1 + τ1p)(1 + τ2p)
,

where the parameters K, Td,τ1 and τ2 can vary because
they depend on the operating point.

For a nominal point with medium air flow and temperature
set-point of 40◦C (in the figure 2 the corresponding sensor
voltage value is around 5 volts) the following values can
be obtained (Baysse et al. (2011), Baysse (2010))

y(t) =
0.8e−0.22pu(t)

(1 + 0.45p)(1 + 0.15p)
.

The simulations results are obtained with an a-P controller
(with kP = 3) using Matlab-Simulink. A second-order

time (seconds)

0 10 20 30 40 50 60
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1

2

3
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8

Fig. 2. Tracking with parameters change (black: controlled
output, red: reference, 4 stands for 35◦C and 6 for
45◦C).

estimation filter G(p) with c = 10 is used; γ = 1 and
Γ = 500I, where I is the identity matrix. The initial value

for the θ̂ vector is θ̂(0) =

[
1
1

]
.

In order to evaluate the adaptation properties of the
proposed estimation strategy the parameters of the process
to be controlled are changed at time t = 35 seconds to:

y(t) =
0.6e−0.18p

(1 + 0.35p)(1 + 0.15p)
u(t),

which means a change of the operating point (e.g. the air
flow has been increased). Simulation results are shown in
the figure 2 for the behavior of the process (where it can be
clearly seen the adaptation transients starting at t = 0 and
t = 35 seconds and showing the good tracking alertness
properties of the normalized gradient algorithm) and, in
the figure 3 the time evolution of the parameters of the
ultra-local model. Notice that the estimated parameters
are not constant and the adaptation mechanism follows the
process variations. In our simulation example, a control
with a constant value for α could be used, nevertheless,
our adaptation algorithm gives an admissible set of esti-
mated varying parameters. Other simulations (not shown
here due to space limitations) permit to see that the
obtained regulation performances with the a-P controller
have equivalent settling times to those obtained with a
fixed PID tuned with the Ziegler-Nichols frequency re-
sponse model as described in Aström and Häglund (2006).

5. CONCLUSION

This paper proposes some contributions for the analysis
and for the implementation of adaptive ultra-local model
control. In particular it was proposed a new extended
version of MFC using time-varying parameters. Indeed the
simplest version considers that the α parameter is con-
stant. Also alternative adaptive versions giving estimates
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Fig. 3. Estimation with parameters change (black: F̂ , red:
α̂).

for the parameters of the ultra-local model were proposed.
Simulations were provided which point out the efficiency
of the reference tracking and the good convergence prop-
erties. In the paper some other research lines have been
proposed and will be the subject of next papers.
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