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Abstract—This study discusses the application of sequential
decision making under uncertainty and mixed observability in
a mixed-initiative robotic target search application. In such
a robotic mission, two agents, a ground robot and a human
operator, must collaborate to reach a common goal using,
each in turn, their recognized skills. The originality of the
work relies in considering that the human operator is not
a providential agent when the robot fails. Using the data
from previous experiments, a Mixed Observability Markov
Decision Process (MOMDP) model was designed, which allows
to consider aleatory failure events and the partial observable
human operator’s state while planning for a long-term horizon.
Results show that the collaborative system was in general able
to successfully complete or terminate the mission, even when
many simultaneous sensors, devices and operators failures
happened. So, the mixed-initiative framework highlighted in
this study shows the relevancy of taking into account the
cognitive state of the operator, which permits to compute a
policy for the sequential decision problem which prevents to
re-planning when unexpected (but known) events occurs.

Keywords-MOMDP, robotics, mixed initiative, operators cog-
nitive state estimation

I. INTRODUCTION

Unmanned Vehicles (UVs) are becoming increasingly
present in a wide variety of operational contexts such
as military operation, border security, inspection of con-
taminated area for prevent human from hazard exposure.
Most of scientific and technical efforts have focused on
the implementation of smart sensors, complex embedded
systems and autonomy to enhance the efficiency of the UVs
[1], especially when the human operator can not analyze
or access visual data [1]–[4]. However these developments
were generally achieved without questioning the integration
of the human operators in the control loop [5]: the human
operator is considered as a providential agent that will be
able to take over when sensors or automations fail [2]–[4].
Yet, poor user interface design, complexity of automation
and high operational pressure can leave the human operator
ill-equipped when mental workload exceeds human capacity
[6]. For instance, careless design of authority sharing can
lead to human-automation conflicts when the human opera-
tor misunderstand the automation behavior [7], [8]. The oc-
currence of such situation is critical as long as it may cause

”mental confusion” (i.e. the human operator is unable to
glance and process the relevant parameters) [8] or attentional
tunneling (i.e. the human operator is excessively focused
on a single display) [9] yielding to irrational behavior [10].
Not surprisingly, a safety analysis report [11] revealed that
human factors issues were involved in 80% of accidents.
This trend has led Cummings and Mitchell (2008) to state:
”Because of the increased number of sensors, the volume of
information, and the operational demands that will naturally
occur in a multiple-vehicle control environment, excessive
cognitive demands will likely be placed on operators. As
a result, efficiently allocating attention between a set of
dynamic tasks will be critical to both human and system
performance. - p. 451”.

A promising avenue to deal with these issues is to
consider that robot and human abilities are complementary
and are likely to provide better performance when joined
efficiently than when used separately. This approach, known
as mixed-initiative [12], [13] defines the role of the human
and artificial agents according to their recognized skills.
It allows the human and the robot to set the appropriate
level of autonomy of the robot [14]. An interesting mixed-
initiative proposition, presented by [15], relies on a statistical
approach to determine which entity (i.e human or UVs) is
the most efficient for a given task. Interestingly enough,
this approach paves the way for allocating roles and sharing
authority between the human and artificial agents. In [3], a
mixed-initiative planning approach is proposed to monitor-
ing the system and to coordinate operator’s interventions
in a rescue scenario. In this work, the mixed-initiative
planning continuously coordinates, integrates and monitors
the operator’s interventions and decisions. Another example
can be found in [16], in which a robot and an human operator
collaborate for an urban search and rescue mission in order
to detect and report objects of interest.

A key issue to design a mixed-initiative system is to
implement a decision system. This latter defines the role
and the authority of human and artificial agents, while
estimating capabilities of evolved human (intention, situation
awareness, sensor’s failure perception) and robotic agent
(sensor’s status, mission task, etc). Such decision-making



system can be governed by a policy resulting from the res-
olution of a Partially Observable Markov Decision Process
(POMDP), as proposed by [17], which is able to adapt itself
to the user’s intention getting feedback from the user in
terms of satisfaction. A different way to drive interaction
using POMDPs is studied in [18] for assisting persons with
dementia during hand-washing. Note that, the state vector
of the robot can be often considered as fully observable
while the operator’s cognitive state is, by definition, partial
observable. Such decomposition can be addressed using a
Mixed Observability Markov Decision Process (MOMDP)
[19], which is a stochastic model derived from the POMDP
[20]. The MOMDP is a formal framework that considers
fully and partially observable state variables under proba-
bilistic uncertainties while decreasing the computational cost
required to produce a optimal policy [19]. In addition, these
two types of agents may face unexpected random situations
during the mission. It can be modeled as probabilistic effects
of actions. Moreover, this kind of model allows the inclusion
of the uncertainty in the observations of the agents’ states
(i.e the cognitive state of the human operator) and the
environment. The MOMDP aim to achieve a policy that
maps an optimal action for each belief state – composed
by the observable state and the partially observable state
estimation. Thus, it is expected that the resulting policy
could help to implement a genuine adaptive interaction,
because this formalism is perfectly suited to maintain a state
estimation and to decide of the men-robot system dynamics
based on data coming from sensors applied to the operator
(e.g eye-tracker) and from sensors embedded in robots.

In this present study, we propose to test the MOMDP
approach on an mission involving a human and a physical
UV that cooperate to perform a target identification task.
Data collected during previous experiments allowed us to
set probabilities of UV failure as well as of human operators
poor cognitive state. This paper is organized as follow: first
we recall POMDP and MOMDP models. In the sequence we
present the mission model treated. Afterwards we evaluate
the results obtained for such modeling. And, finally we
conclude and discuss future work.

II. BACKGROUND

A. POMDP overview

POMDPs model situations where the agent only has
access to partial information about the state of the system.
A POMDP is a Markov Decision Process where the agent
does not have access to the state of the system: it has only
a partial and imprecise observation [20]. In this context, the
agent maintains a probability distribution over states, i.e. a
belief state, which is updated after each action executed and
observation perceived.

A POMDP is a tuple (S,A,Ω, T,O,R, b0, γ) where:
• S is a bounded set of states;
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Figure 1. Transition models of a POMDP and a MOMDP.

• A is a bounded set of actions;
• Ω is a bounded set of observations;
• T : S × A × S → [0; 1] is a transition function such

that T (st+1, a, st) = p(st+1 | a, st);
• O : Ω×S → [0; 1] is an observation function such that
O(ot, st) = p(ot|st);

• R : S ×A→ R is a reward function associated with a
state-action pair, and;

• b0 is the initial probability distribution over states.
• γ ∈ [0, 1[ is the discount factor

We note ∆ the belief state space. At each time step t, the
agent updates its belief state defined as an element bt ∈ ∆
using the Bayes’ rule [20].

boa(s′) =
p(o|s′, a)

∑
s p(s

′|s, a)b(s)∑
s′ p(o|s′, a)

∑
s p(s

′|s, a)b(s)
(1)

Solving a POMDP consists in finding a policy function
π : ∆ → A that maps to each belief state an optimal
action that maximizes a performance criterion. The ex-
pected discounted reward from any initial belief V π(b) =
Eπ [

∑∞
t=0 γ

tr(bt, π(bt)) | b0 = b] is usually optimized. The
value of an optimal policy π∗ is defined by the optimal value
function V ∗ that satisfies the Bellman optimality equation:

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈Ω

p(o|a, b)V ∗(boa)

]
(2)

where, γ is the discount factor. When r(b, a), can be
computed as an average gain r(b, a) =

∑
s r(s, a)b(s), the

optimal value of belief states is proven to be piecewise
linear and convex and solution of the Bellman’s equation
[20]. As it, at nth optimization stage, the value function Vn
can be parametrized as a set of hyperplanes over ∆ known
as α-vectors. An α-vector and the associated action a(αin)
define a region of the belief state space for which this vector
maximizes Vn. Thus, the value of a belief b can be defined
as: Vn(b) = maxαi

n∈Γn
b · αin. The optimal policy at this

step is then: πn(b) = a(αbn).



Recent offline solving algorithms HSVI2 [21] or SARSOP
[22], for instance, approximate the value function with a
bounded set of belief states B, where B ⊂ ∆. These
algorithms implement different heuristics to explore the
belief state space using probabilistic trials reaching in this
way only relevant belief states, and updating the value of V
for them, instead of computing the value function for all the
belief state space, which is a continuous space.

B. MOMDP

The Mixed Observability Markov Decision Process
(MOMDP) is an extension recently proposed for the
POMDP model [19], which explores the particular structure
where certain state variables are fully observable. This
factored model leads to a very significant time gain in policy
computation, improving the efficiency of a point-based al-
gorithms. According to [23] the completely observable state
is represented by x and the partially observable state by y.
In this way, the couple (x, y) specifies the complete state
with |S| = |X |× |Y|, where X represents the space with all
the possible values of the variable x (resp. Y to y).

A MOMDP is a tuple (X ,Y, A,Ω, TX , TY ,Ω, R, b0, γ),
where:

• X is the bounded set of fully observable state variables;
• Y is the bounded set of partially observable state

variables;
• A is a bounded set of actions;
• Ω is a bounded set of observations;
• TX : X × A× X × Y → [0; 1] is a transition function

such that TX (x, y, a, x′) = p(x′|x, y, a);
• TY : Y×X×A×X×Y → [0; 1] is a transition function

such that TY(x, y, a, x′, y′) = p(y′|x, y, a, x′);
• O : Ω×Y → [0; 1] is an observation function such that
O(o, a, x′, y′) = p(o|x′, y′, a);

• R : X × Y × A → R is a reward function associated
with a state-action pair; and:

• b0 = (x0, bY0) is the initial probability distribution over
states.

• γ ∈ [0, 1[ is the discount factor.

Note that, as the probability distribution over states con-
cerns only the Y set, the belief state update is redefined as:

bo,a,x
′

Y (y′) = η
∑
y′∈Y

p(o|y′, x′, a)p(y′|x, y, a, x′)p(x′|x, y, a)bY(y)

(3)
where, η is a normalization constant. The belief state b is

now noted by the couple (x, bY), and BY is the belief state
space y conditioned by x : BY(x) = {(x, bY), bY ∈ BY}.
BY(x) is a sub-space of B, such that B =

⋃
x∈X BY(x).

Solving MOMDPs consists in finding a set of policies
πx : BY → A, which maximize the criterion :

π∗x ← arg max
πx∈Π

Eπx

[
∞∑
t=0

γtr((xt, b
t
Y), π((xt, b

t
Y)))

∣∣∣∣∣b0 = (x0, bY0)

]
(4)

As for the POMDP, the value function at a time step n <∞
can be also represented by a set of α-vectors:

Vn(x, bY) = max
α∈Γn

Y(x)
(α · bY) (5)

where α is the hyperplan over the space By(x). In this
way, the value function over the complete state space is
parametrized by the set ΓY(x), i.e. Γ = {ΓY(x), x ∈ X}.
So, given a belief state (x, bY) the optimal action is defined
by the action associated with the α-vector that maximizes
maxα∈ΓY(x)(α · bY). For more details about MOMDP algo-
rithm resolution, please see [19], [23].

Next, we present previous experiments which were used
as base for statistical data in order to leaning the MOMDP
model for the target search mission taking into account the
operator’s cognitive state.

III. PREVIOUS EXPERIMENTS

A. Material
The experimental set-up was developed at ISAE-

SUPAERO. It was composed of a robot and a ground station.
The robot was equipped with different sensors such as a
GPS for autonomous navigation, an Ultrasound sensor to
detect and avoid obstacle, a video camera and an Xbee
transmitter to communicate with the ground station. It had
a 15 minutes autonomy thanks to electrical battery. The
robot could be operated in manual mode or in supervised
mode. In manual mode, the robot was operated with a
joystick. In supervised mode, the robot performed waypoint
navigation autonomously, but any action of the operator
with the joystick let her/him take over until the joystick
was released. The ground station was displayed on a 24-
inch screen showing different kinds of information to control
and supervise the robot such as a tactical map, a panoramic
video scene screen; a mission synoptic ; an interactive panel
sending the requests to the human operator; a status panel
panel indicating the state of the GPS, the ultrasound sensor
and the battery; and a guidance mode state (i.e. supervised or
manual). Note that the operator could not see the robot and
only gathered information through the screen. Fig. 2 shows
the interface of the ground station to operate the robot during
the mission.

B. Assessing probability of failures of the robot
A first experiment was conducted to assess the probability

of failure of the different sensors and devices embedded
in the robot. Thirty tests were run and consisted of a 10
minutes navigation task with the robot evolving among four
waypoints in a field at ISAE-SUPAERO campus. The results
are summarized on Table I, where FP design the failure
probability.



Figure 2. Operator’s interface and areas of interest [24].

Table I
SENSORS STATUSES

Sensor Ok Not Ok FP

Battery battOK battKO 2/30

GPS1 gpsOK gpsKO 3/30

Ultrasound1 usOK usKO 3/30

Camera2 camOK camKO 3/30

Ground station2 stOK stKO 1/30

Joystick2 jsOK jsKO 1/30

Xbee2 xbOK xbKO 2/30

1 indicates the essential sensors for autonomous operation.
2 indicates the essential devices for manual operation.

C. Assessing human’s performance

Data collected from a previous experiment [10] were
used to assessing the probability of the human operator
to perceive robot failures. The scenario of this experiment
consisted of a target localization and identification task
involving a ground robot and a human operator. The target
to be identified had two short messages written in white
on each side (front side OK, back side KO). The mission
had four main segments: S1- Reach the area, S2- Scan
for target, S3- Identify target, and S4- Battery-Failure.
At the beginning of the mission, the robot evolved in an
autonomous supervised mode to reach the target area (S1)
and then start scanning the area to detect the target (S2).
When the robot was close to the target, the operator had
to take over in manual mode and to identify the target S3).
While the operator was performing the identification task, a
low battery event was triggered (S4). In turn this event yield
to a safety procedure that made the robot to go back to base
autonomously. As this event occurred while the operator was
excessively focused on his target identification task, it was
expected that he would missed the alerts and thus persist in
achieving the target detection task.

1) Assessing failure perception: 12 subjects participated
to the experiment and were equipped with an electrocardio-
gram (ECG) and a 25 Hz Pertech head mounted eye tracker.
This latter device was used to collect participants’ eye gaze
on the user interface. More specifically we focused our eye
tracking analysis on eight areas of interest (AOI) of the user
interface: 1) tactical map, 2) message panel, 3) guidance

mode (supervised vs manual), 4) synoptic, 5) ”back to base”
warning, 6) GPS and ultrasound status, 7) battery status, 8)
panoramic video. The collected ocular data were used to set
the probability of the operator to perceive the sensor’s status
(sensors statuses are summarized in Table I). This sensor
status perception probability is based on the normalized sum
of the averaged fixation time (∆T ) on the related AOIs.
For instance, when the GPS or the ultrasound are lost, the
icons turns to red (area 6) and the robot is stopped (i.e it
can be seen through the panoramic video - area 8). When
the low-battery event occurs, three changes can be observed
in the user interface: (i) the battery icon (area 7) turns to
orange with the associated low battery message, (ii) the
mode changes automatically from manual to supervised, and
area 3 blinks twice and (iii) the segment status became back
to base (area 5).

Thus we introduced the spGpsUs boolean state variable
that can be used to model perception about a GPS or
ultrasound status by the operator:

p(spGpsUs = Y | auto && (gpsKO || usKO)) =

=
∆TArea 6 + ∆TArea 8

∆T all areas
= 0.70

p(spGpsUs = Y | manual && (gpsKO || usKO)) = 0.86

With the same reasoning, for the spBatt (Battery status
perception) boolean state variable, the transition probability
was defined by the normalized sum of the averaged time
that the participants expended looking to areas 3, 5 and 7
during the manual and autonomous operations:

p(spBatt = Y | manual && battKO) =

=
∆TArea 3 + ∆TArea 5 + ∆TArea 7

∆T all areas
= 0.021

p(spBatt = Y | auto && battKO) = 0.033

2) Assessing cognitive availability: the result of the ex-
periment revealed that 8 participants out of 12 did not
understand the robot behavior, though some of them glanced
at the battery failure indicator. These 8 participant persevered
to achieve the no-longer-relevant identification task [10].
This typical behavior is known as ”attentional tunneling”
and is defined as ”the allocation of attention to a particu-
lar channel of information, diagnostic hypothesis or task
goal, for a duration that is longer than optimal, given
the expected costs of neglecting events on other channels,
failing to consider other hypotheses, or failing to perform
other tasks” [25]. Therefore, the inference of such impaired
attentional state is of great importance to design a mixed
initiative system. We implemented an Adaptive Neuro-Fuzzy
Inference System (ANFIS) to detect attentional tunneling
that is associated with higher cardiac activity, decreased



saccadic activity and long concentrated eye fixations [24].
The ANFIS classifier had a probability of 91.1% to detect
Attention Tunneling (please report to [24] for more details).
This detection probability was used in this study to define
the observation function of the Cognitive Availability state
variable as shown further. Cognitive Availability is defined
here as the capability of the human operator to be available
and aware of the robot’s status during all mission tasks.

Table II
ATTENTION TUNNELING PROBABILITY FUNCTION

available N available Y

oAvailable N 91.1 8.9
oAvailable Y 0 100

3) Cognitive countermeasure to assist the human oper-
ator: many studies revealed that alarms are inefficient to
warn human operator during high workload situations such
as performing manual control and identifying target [26].
Rather than adding alarms during stressful situations, an
optimal solution to warn the human operator consists of
temporarily removing the information the human operator is
focusing on, and replacing it by an explicit visual stimulus
designed to change the attentional focus. The principle of
this cognitive countermeasure was tested in second exper-
iment with 11 participants facing the same scenario (i.e.
target identification task and battery failure). The results
revealed that these cognitive countermeasures helped 10
participants out of 11 to perceive the battery failure and
to let the robot go back to base [9].

IV. MODELING THE COLLABORATIVE TARGET
IDENTIFICATION MISSION

Using all those previous experimental data, a MOMDP
model was defined in order to drive the adaptive interaction
between the human operator and the UV. The choice for a
Mixed Observability model comes from the nature of our
problem: the robot and mission states can be considered as
fully observable, while the operator’s cognitive ability, here
considered as Cognitive Availability is a partially observable
state variable by definition.

The mission can be decomposed in six high level phases:
going to zone, searching the target, handling the target,
returning to base, on base and failed. The robot states can
be defined by the cross product of the phases, the embedded
sensors statuses, the statuses of the ground station, the on
board camera, the Xbee and the joystick devices, and the
Cognitive Availability as cognitive state of the operator.
Next, we present the fully and partially observable state
variables considered in the model.

Fully observable state variables (X ): The section III-C
and tables I and III, present the fully observable state
variables considered in the mission modeling. As discussed
before, mission phases were classified according to the

operation mode. The sensors statuses were discretized in
two possibilities: OK and KO (not OK). It was also assumed
that after a sensor failed, it switches to KO and remained
KO until the end of the mission. The sensors’ failure
probabilities were shown in Table I.

Fig. 3 summarizes the transition function for the mission
phase state variable. A manual mode was associated with
each autonomous mode (except the on base and failed
mission phases). One can argue that, in a human operator’s
point of view, there is only one manual mode, but for
modeling propose, the manual mode was factored in four
phases (see Table III) to prevent the planner from selecting
a supervised mode already held when returning to the
autonomous operation mode.

e0 e1 e2 e3

e4e5

m0 m1 m2 m3

Figure 3. Mission phases and summarized transitions. The loop transitions
(red lines) indicate the transitions observed after getAttention or cMeasure
actions.

Table III
MISSION PHASES

mission phase autonomous mode manual mode

going to zone e0 m0
target searching e1 m1
target handling e2 m2
returning to base e3 m3
on base (final) e4 -
failed (final) e5 -

As show in previous experiments presented before, it
is relevant to define two fully observable variables that
model the operator’s sensor’s status perception (see section
III-C). Note that, operator’s perception about sensor’s status
(GPS/ultrasound and battery) state variables are assumed as
fully observable, because it is not possible to observe if the
human operator perceived (i.e. his cognitive process) only
with the eye-tracker device. In this case, for example, if the
operator looked to the areas (6 and 8) between two decision
time steps, he should detect, with a probability of 0.70, for
supervised mode, or 0.86, for manual mode, if there was
a GPS or a ultrasound breakdown because the related icon
turns to orange (see Fig. 2 and Section III-C).

Partially observable state variable (Y): The operator’s
Cognitive Availability is considered in this study as the op-
posite of Attentional Tunneling [9], [24], [27]. The measure



of the allocation of attention if not a straightforward task
[24]. Therefore, we consider the Cognitive Availability of
the human operator as a partially observable variable. Hence:
available Y models that the human operator is cognitively
available (resp. available N, not cognitively available). As-
sociated with this partially observable state variable we have
two possible observations: oAvailable Y meaning that the
operator is observed as cognitively available and potentially
aware of the situation and oAvailable N modeling that he is
observed as not cognitively available. Table II summarizes
the observation probability function for this observation
variable.

Actions: Discrete actions were defined as: goToZone,
tgtSearch, tgtHandle, retBase, onBase, getAttention and
cMeasure. Action result depends on the aleatory sensors
behavior (cf. Table I). For instance, in a nominal case and
based on previous works [9], [24], [27], the robot is able to
autonomously navigate and avoid obstacles, but if the robot
chosen goToZone and the ultrasound sensor fails, the mission
phase turns to manual mode (m0) (see Fig. 3) because the
robot is no more able to avoid obstacles autonomously. If
a low battery event arrives, the robot can return to the base
automatically if it was in a supervised mode. When it was in
a manual mode, it can switch to returning to base (with any
action) automatically only if the human operator is aware of
the failure, i.e. if he was observed as cognitively available
being aware of the situation and by consequence leaving the
joystick.

The getAttention is considered as a non deterministic
action, since it should be used when the robot needed
help and the operator’s Cognitive Availability was estimated
as ”not available” (oAvailable N). The same occurs with
the action cMeasure (countermeasure), which should be
executed when a low battery event arrives during a manual
operation and the operator was considered as ”not available”
(e.g his attention was focused on handling the robot and he
would not notice the alerts on the user interface). In such
case, when a cMeasure action is launched the robot wait the
human operator leaves the joystick (see Fig. 3).

Rewards: The reward function (R) was designed in
order to payoff suitable actions, for instance, goToZone in
the phase e0 when the navigation sensors are OK, and to
punish otherwise. The same occurs with the manual modes
and its essential devices (cf. Table I). Note that, we have
chosen to associate a increasing reward with sequential
phases, i.e. reward associated with the action tgtSearch in
e1 considering essential sensors are OK (R=15) is more
important than the action goToZone in the e0 phase (R=10).
We have considered that processing the target in manual
mode is more dependable than in autonomous mode, since
the interpretation done by the human operator is more
reliable. In this case, the reward for the choice of tgtHandle
in manual mode (R=30) is more important than tgtHandle
in supervised mode (R=20).

 0

 1000

 2000

 3000

 4000

 5000

 6000

e0/m0 e1/m1 e2/m2 e3/m3 e4 e5

autonomous

manual

failed/aborted

(a) Number of visits per mission phase. (b) Percentages.

The action getAttention only has a positive payoff (R=30)
if the operator’s Cognitive Availability is estimated as ”not
available” (oAvailable N) considering that at least one of
the essential devices are KO and that the human operator did
not see the alert, otherwise the reward is negative (−500).
Similarly, the action cMeasure has a positive payoff (R=50)
only if the operator is perceived as ”not available” in a
manual mode when a low battery event arrives.

A mission is considered as fully accomplished if the robot
had passed through the phases e2 or m2 (resp. processed
the target autonomously or manually) and arrived at base
e4. When the robot returns to the base (autonomously
or manually) before processing the target, the mission is
considered as aborted and when the robot is unable to reach
the base, the mission is considered as failed.

V. SIMULATION RESULTS

The APPL 0.96win SARSOP1 [23] was used as solver.
The grammar of this solver has a special format that differs
from the classical input POMDP file format2. Therefore, we
have developed a script written in Python 2.7.8 to produce
the MOMDP input file. For the MOMDP resolution, we have
set the precision ε to 0.01. We recall that this precision is
related to the difference between the upper and lower bound
of the value function for the initial belief state, which is
considered as a stop optimization criterion.

Statistical analysis was performed to process the results
over 5000 policy simulations. Fig. 4(a) provides an overview
of how many times the robot passed by each mission phase.
Note that, the robot passed through phase e1 exactly 5000
times and never crossed the phase m0, this can be explained
by the fact that the initial state, when all fully observable
state variable values are known, caused a deterministic cycle
in the first time stamp.

To sum up, the mission was fully accomplished 2998
times (59.96%) (cf. Fig. 4(b)), meaning that the robot has
passed through the phases e2 or m2, respectively processing
the target autonomously or manually, and arrived at base
e4. In such cases, the target was handled in autonomous
mode (e2) 1228 times, which represents 41% of successful
missions, and it was handled in manual mode (m2) 1770
times (resp. 59% of successful missions). Fig. 4(b) also
shows that the robot returned to the base in 68.72% of times

1http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
2http://www.pomdp.org/code/pomdp-file-spec.shtml



(including aborted missions). The mission completely failed,
i.e. it reached e5, 1564 times (31.28%).

The Table IV presents an example of a Fully accomplished
mission where the robot changed its mode to manual (m2)
for the operator process the target (bigger reward), then the
GPS failed. This was not a problem at that moment because
the operator did not need the GPS to handle the target. Next,
the robot remained in manual (m3) but the operator seemed
not to be aware, so, the robot ask for his attention (action
getAttention), and the operator led the robot to the base.

Finally, a aborted mission is shown in the table V. In
this aborted mission a low battery event occurred while the
operator was processing the target and the robot observed
him or her as ”not available” (not aware) of the failure.
Consequently, the robot executed a countermeasure action
(cMeasure) trying to show the situation to the operator.
After, the robot changed its phase to returning to base (e3)
and went home. Here, is interesting to observe that the
operator never looked to the areas 3, 5 or 7 (cf. Fig. 2),
where the low battery event could be identified without the
countermeasure.

VI. CONCLUSIONS

This study has shown the effectiveness of the MOMDP
model as basis for mixed-initiative actions planning. In such
cases, agents must collaborate by bringing, according to their
recognized skills, the relevant elements to reach together
a shared goal. In our application case, the robot counts
on the operator to process a target, since the operator’s
interpretation is considered more reliable that the robot’s.
Also, the robot may needs the intervention of a human
operator in cases where an essential sensor for autonomous
navigation breaks down. Our principal contribution in this
mixed-initiative problem is that we have considered that
the human operator is not a providential agent, i.e. he can
be unaware of the situation. To model the problem, we
have used data collected from previous experiments with
an heterogeneous human-robot system. Based on it, the
probability functions were assigned for the sensors failure,
operator’s perception about sensor’s status and for the oper-
ator’s cognitive availability. With the MOMDP model and a
simulated environment, we checked that the collaborative
system was in general able to successfully complete or
terminate the mission, even when the simulated environment
caused many simultaneous sensors/devices/operator failures.

Future work shall to take into account in the model
more than one partially observable state variable. For the
human factor community, the estimation of the operator state
is obviously more complex and composed by more state
variables than the one considered in this study (workload,
stress, engagement, etc). In the future, we hope to take into
account more cognitive states as, for instance, the operator’s
workload or stress level, and evaluating the policy in a real
manner set-up with human operator participants.
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[17] T. Taha, J. V. Miró, and G. Dissanayake, “A POMDP frame-
work for modelling human interaction with assistive robots,”
in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 544–549.

[18] J. Hoey, A. Von Bertoldi, P. Poupart, and A. Mihailidis,
“Assisting persons with dementia during handwashing using
a partially observable markov decision process,” in Proc. Int.
Conf. on Vision Systems, vol. 65, 2007, p. 66.

[19] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Planning under
uncertainty for robotic tasks with mixed observability,” The
International Journal of Robotics Research, vol. 29, no. 8,
pp. 1053–1068, 2010.

[20] R. Smallwood and E. Sondik, “The optimal control of par-
tially observable Markov processes over a finite horizon,”
Operations Research, pp. 1071–1088, 1973.

[21] T. Smith and R. Simmons, “Point-based POMDP algorithms:
Improved analysis and implementation,” in Proc. UAI, 2005.

[22] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient
point-based POMDP planning by approximating optimally
reachable belief spaces,” in Proc. RSS, 2008.

[23] S. C. Ong, S. W. Png, David, and H. W. S. Lee, “POMDPs
for robotic tasks with mixed observability,” in Proceedings of
Robotics: Science and Systems (RSS), 2009.

[24] N. Régis, F. Dehais, E. Rachelson, C. Thooris, S. Pizziol,
M. Causse, and C. Tessier, “Formal detection of attentional
tunneling in human operator–automation interactions,” IEEE
Transactions on Human-Machine Systems, vol. 44, no. 3, pp.
326–336, 2014.

[25] L. C. Thomas and C. D. Wickens, “Eye-tracking and indi-
vidual differences in off-normal event detection when flying
with a synthetic vision system display,” in Proceedings of
the Human Factors and Ergonomics Society Annual Meeting,
vol. 48, no. 1. SAGE Publications, 2004, pp. 223–227.

[26] F. Dehais, M. Causse, F. Vachon, N. Régis, E. Menant, and
S. Tremblay, “Failure to detect critical auditory alerts in the
cockpit evidence for inattentional deafness,” Human Factors:
The Journal of the Human Factors and Ergonomics Society,
vol. 56, no. 4, pp. 631–644, 2014.

[27] S. Pizziol, F. Dehais, and C. Tessier, “Towards human opera-
tor state assessment,” in Proceedings of the 1st International
Conference on Application and Theory of Automation in
Command and Control Systems. IRIT Press, 2011, pp. 99–
106.




