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a b s t r a c t

This work aims at optimizing sludge pretreatment by non-isothermal sonication, varying frequency, US

power (PUS) and intensity (IUS varied through probe size), as well as hydrostatic pressure and operation

mode (continuous vs. sequential e or pulsed e process).

Under non isothermal sonication sludge solubilization results from both ultrasound disintegration and

thermal hydrolysis which are conversely depending on temperature. As found in isothermal operation:

- For a given specific energy input, higher sludge disintegration is still achieved at higher PUS and

lower sonication time.

- US effects can be highly improved by applying a convenient pressure.

- 12 kHz always performs better than 20 kHz.

Nevertheless the optimum pressure depends not only on PUS and IUS, but also on temperature evo-

lution during sonication.

Under adiabatic mode, a sequential sonication using 5 min US-on at 360 W, 12 kHz, and 3.25 bar and

30 min US-off gives the best sludge disintegration, while maintaining temperature in a convenient range

to prevent US damping.

1. Introduction

Wastewater treatment plants (WWTP) commonly involve acti-

vated sludge and a large amount of excess bacterial biomass re-

mains at the end of the process. After use, sewage sludge is usually

landfilled, used for land fertilization or incinerated, but these

disposal methods involve high energy consumption and may have

adverse effects on health and environment. A sustainable solution

for sludge management is anaerobic digestion (AD) resulting in

biogas production. However, hydrolysis step is rate-limiting and

sludge pretreatment is needed to break the cells wall and improve

its biodegradability.

Apart from some popular techniques used in sludge processing,

e.g. thermal, chemical or other mechanical methods, ultrasound

(US) has gained interest for such purpose, as it provides efficient

sludge disintegration (Pilli et al., 2011; Tyagi et al., 2014) and does

not require any chemical additive. Ultrasonic pretreatment was

reported to improve biodegradability and bio-solid quality (Khanal

et al., 2007; Trzcinski et al., 2015), to enhance biogas/methane

production (Barber, 2005; Braguglia et al., 2015; Khanal et al., 2007;

Onyeche et al., 2002), to reduce excess sludge (Onyeche et al., 2002)

and required sludge retention time (Tiehm et al., 1997).

Operating conditions of sonication can significantly affect the

cavitation intensity and consequently the rate and/or yield of the

US-assisted operation. Ultrasound efficiency is indeed influenced

bymany factors: US parameters (related to frequency FS, power PUS
and intensity IUS), presence of dissolved gas and particles, nature of

the solvent (volatility), configuration of the acoustic field (standing

or progressive wave), temperature (damping), hydrostatic pres-

sure (Ph), etc. (Lorimer andMason,1987; Pilli et al., 2011; Thompson

and Doraiswamy, 1999).

As regards US-assisted sludge pretreatment, specific energy

input (ES) is recognized as the key parameter, but others have

proved to have significant effects at given ES value, e.g. PUS, IUS, (Li

et al., 2010; Liu et al., 2009; Show et al., 2007; Wang et al., 2005;

Zhang et al., 2008b) and FS (Tiehm et al. 2001; Zhang et al.

2008a). Previous investigations also indicated sonication without

cooling (referred as “adiabatic” sonication although heat losses) to

be much better than isothermal treatment thanks to the combined* Corresponding author.
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effects of cavitation and temperature rise due to ultrasound energy

dissipated into the sludge (Chu et al. 2001; Kidak et al. 2009; Le

et al., 2013a; Huan et al. 2009). In order to better elucidate ul-

trasound effectse i.e.without thermal interactions, our group first

applied isothermal conditions thanks to an external cooling and

highlighted the positive effect of audible frequency (12 vs. 20 kHz),

the importance of hydrostatic pressure, and the separate roles of

power density and power intensity (Delmas et al., 2015; Le et al.

2013a). At any investigated condition (PUS, IUS, FS), a clear optimal

pressure was observed due to opposite effects of pressurization: a

negative one on the bubble number and size connected to

enhanced cavitation threshold, but a positive one on bubble

collapse characteristics (Pmax, Tmax). The higher the power intensity

(and then the higher acoustic pressure PA) and power density, the

higher is the optimum hydrostatic pressure e since much lower

than PA e providing also higher disintegration. For a given equip-

ment operating at the same specific energy, US performance might

be more than doubled by selecting high power and optimum

pressure. Nevertheless, at a fixed pressure, the usual recommen-

dation of “high power-short sonication time” might fail: a lower

power, but closer to its optimum pressure could perform better. In

addition, audible frequency was successfully tested: with same

conditions 12 kHz outperformed 20 kHz in any case. These results

are of major interest for general sonochemistry, but they are

probably not obtained at optimum temperature as sludge disinte-

gration is known to be thermally activated. Thus in the practical

case e of non-isothermal ultrasonic sludge disintegration e

heat release would have a positive additional effect, but limited to

some degree as conversely cavitation effects would decrease.

This work thus aims at optimizing sonication process for non-

isothermal sludge disintegration by simultaneous investigation of

the significant parameters, i.e. PUS, IUS (varied both through PUS and

emitter surface), FS (20 and 12 kHz) and Ph. Without any cooling but

heat losses, temperature rise might be controlled e and possibly

optimized through the operation mode (continuous vs. sequential

e or pulsed e sonication).

2. Materials and methods

2.1. Sludge samples

Waste activated sludge (WAS) was collected from a French

wastewater treatment plant. Standard analytical methods (see x

2.2) were used to evaluate its properties gathered in Table 1. Note

that sludge sampling was performed at different periods in relation

with the changes in US equipment along this work. Synthetic WAS

samples labeled “a” and “b” in Table 1 were used for investigating

the efficiency of “adiabatic” sonication under pressure (varying PUS
and probe size) and for optimizing the US-assisted process

(continuous vs. sequential treatment), respectively.

Sludge was sampled in 1 L and 100 mL boxes and frozen. As

mentioned in previous studies (Kidak et al., 2009; Le et al., 2013b),

it was verified that this conditioning method did not significantly

affect COD solubilization results (variation less than 8%).

Synthetic samples were prepared by diluting defrosted raw

sludge with distilled water up to a total solid concentration of 28 g/

L e an optimum value for US sludge disintegration according to our

previous work (Le et al., 2013a).

2.2. Analytical methods

Standard Methods (APHA, 2005) were applied to measure total

and volatile solid (TS and VS) contents. TS content was obtained by

drying the sludge sample to a constant mass at 105 !C. Then the

residue was ignited at 550 !C and VS content was calculated from

the resulting weight loss.

In order to get normalized data the degree of sludge disinte-

gration (DDCOD) was calculated by measuring the chemical oxygen

demand in the supernatant (SCOD) before and after treatment.

SCOD was measured by Hach spectrophotometric method after

preliminary vacuum filtration using a cellulose nitrate membrane

with 0.2 mm pore size. Following Schmitz et al. (2000), DDCOD was

given as the ratio between the soluble COD increase during soni-

cation and that resulting from a strong alkaline disintegration of

sludge (0.5 M NaOH for 24 h at room temperature (Huan et al.,

2009)):

DDCOD ¼ ðSCOD$ SCOD0Þ=ðSCODNaOH $ SCOD0Þ*100ð%Þ (1)

Besides, potassium dichromate oxidation method (standard

AFNOR NFT 90e101) was used to measure the total chemical oxy-

gen demand (TCOD).

The particle size distribution (PSD) of sludge before and after

treatment was measured by laser diffraction on a Mastersizer 2000

(Malvern Inc.). After dilution in osmosed water (300 fold), the

suspensionwas pumped into themeasurement cell (suctionmode).

As found in previous studies (Bieganowski et al., 2012; Minervini,

2008), the refractive index and absorption coefficient were set to

1.52 and 0.1, respectively (default optical properties). Moreover it

was checked that these mean optical properties led to a weighted

residual parameter of less than 2% as recommended by the

manufacturer. An average of five consecutive measurements

(showing less than 3% deviation) was made and the volume mean

diameter D[4,3] (or de Brouckere mean diameter) was calculated.

2.3. US equipment and experimental procedure

The experimental set-up (see Fig. S1 in Supplementary Mate-

rials) used a cup-horn sonicator included in an autoclave reactor

(internal diameter of 9 cm and depth of 18 cm, for a usable capacity

of 1 L). The stainless steel reactor was connected to a pressurized N2

bottle and a safety valve (HOKE 6500) limited overpressure to

19 bar.

To achieve experiments at a selected temperature, the reactor

was cooled by circulating fresh water stream (15 !C) in an internal

coil. It could be also heated by two 500 W annular heaters whose

power can be adjusted thanks to a PID controller. The suspension

was stirred by a Rushton type turbine of 32 mm diameter. Ac-

cording to our previous work (Le et al., 2013a), its speed was set to

500 rpm to prevent centrifugation of the particles. The same syn-

thetic sludge volume (V ¼ 0.5 L) was used for each experiment.

The equipment included two generators working at 12 and

20 kHz, and for each two different probes of 13 and 35 mm diam-

eter, labeled as SP and BP, respectively. Maximum PUS (transferred

Table 1

Properties of the sludge samples (a and b).

Parameter Sample

a b

Raw sludge sample

pH 6.3 6.3

Total solids (TS) g/L 31.9 34.2

Volatile solids (VS) g/L 26.4 30.2

VS/TS % 82.8 88.3

Synthetic sludge sample

Total solids (TS) g/L 28.0 28.0

Mean SCOD0 g/L 2.8 4.1

SCODNaOH0.5M g/L 22.7 22.1

TCOD g/L 36.3 39.1

SCODNaOH/TCOD % 62.5 56.5



from the generator to the transducer) was 100 W and 400 W for SP

and BP, respectively. During operation, the transducer was cooled

by compressed air.

For a given set of operating conditions, different sonication

times (t), corresponding to four values of ES (7000, 12,000, 35,000,

and 50,000 kJ/kgTS), were usually applied, where:

ES ¼ ðPUS*tÞ=ðV*TSÞ (2)

First, the effect of temperature on sludge disintegration (DDCOD)

was investigated for both isothermal and “adiabatic” sonication

under standard conditions e 20 kHz, atmospheric pressure. Then

the influence of US parameters and hydrostatic pressure was

evaluated under non-isothermal conditions. Finally, a pulsed-mode

procedure was applied to further optimize the US-assisted process.

In some cases, experiments were duplicated and the coefficients of

variation of DDCOD were about 5%.

3. Results and discussion

3.1. Temperature effect

Two different effects result from the ultrasonic pretreatment:

extreme macro and micro mixing due to cavitation and increase in

the bulk temperature. To evaluate the contribution of each on

sludge disintegration, different tests were applied: (1) sonication

(150 W, BP) under isothermal conditions (cooling at 28 ± 2 !C), (2)

“adiabatic” sonication (i.e. same conditions, but without any cool-

ing), (3) thermal hydrolysis: without US and with a progressive

increase as recorded in (2), and (4) 5 min of US and progressive

temperature increase afterwards.

Results are presented in Fig. 1. Based on DDCOD values, treatment

efficiency could be ranked as follows: (2) (“adiabatic” sonicat-

ion) > (4) (short sonication time and thermal hydrolysis) > (1) (low

temperature sonication) ~ (3) (thermal hydrolysis only). DDCOD

values of sonicated samples under adiabatic conditions were about

twice those obtained under cooling (28 !C). Note that in any case

after 5 min of US at 150W-BP, sludge particles were almost dis-

rupted: D[4,3] was about 110 mm as compared to 380 mm of raw

sludge, proving particle size not to be the convenient quantity for

sludge treatment.

The main information brought by these experiments is: first,

cavitation and thermal hydrolysis seem to show almost additional

effects during adiabatic sonication; second, thermal hydrolysis of

early disrupted sludge is faster than that of raw sludge. Therefore

the combined effect is actually more complex: cavitation acts

mainly during the early stage of the adiabatic sonication, then US

being progressively damped by the increasing temperature, ther-

mal hydrolysis takes over, being “boosted” by the initial work of US.

The resulting positive effect of combining US and temperature rise

for sludge disintegration is in agreement with the conclusion of

earlier works (Chu et al., 2001; Kidak et al., 2009; Huan et al., 2009),

but opposite to most power US applications in which temperature

only damps cavitation.

To further understand the effect of temperature on cavitation

efficiency, additional experiments were conducted on WAS “b”

presented in Table 1, under a constant temperature of 28, 55 or

80 !C. Results, given in Fig. 2, show an increase in DDCOD when

increasing T from 28 to 55 !C, but a decrease at 80 !C. It is well

known that at high temperature cavitation bubbles accumulate

water vapor during the growth phase at low acoustic pressure,

which will cushion bubble collapse and make it much less violent.

Moreover, there was only small differences in DDCOD between

isothermal US and sole thermal hydrolysis at the same T of 80 !C. It

is then clear that cavitation intensity is severely dampened at high

temperature.

3.2. Effect of US parameters on non-isothermal sonication at

atmospheric pressure

The effect of PUS on DDCOD under non-isothermal sonication was

investigated using the following ranges: 50e100 W for SP and

50e360 W for BP. Experiments were conducted at 20 kHz under

atmospheric pressure and using WAS “a” from Table 1. Results are

reported in Fig. 3.

As expected, the evolution of sludge temperature was found to

depend on PUS: higher PUS resulted in a faster temperature increase

and yielded a higher final value at given ES as the reactor was not

fully insulated. In addition, and more surprisingly, different tem-

perature profiles were also observed with same PUS but different

probe sizes: at 50 W, final T increased from 40 !C to 46 !C when

switching from SP to BP. This unexpected result means that the

efficiency of US transmission to the sludge is significantly better

Fig. 1. Effect of temperature profile* on time-evolution of DDCOD under sonication

(FS ¼ 20 kHz, PUS ¼ 150 W, BP, WAS “a” from Table 1, and atmospheric pressure) and/or

thermal hydrolysis. *The upper x-axis indicates the evolution of temperature during

adiabatic US and thermal hydrolysis.

Fig. 2. Effect of temperature on sludge disintegration by isothermal sonication

(FS ¼ 20 kHz, PUS ¼ 150 W, BP, WAS “b” from Table 1, and atmospheric pressure);

comparison to thermal hydrolysis.



with the big probe than with the small one, maybe due to limited

wave propagation under intense cavitation.

Fig. 3a, corresponding to the small probe, proves that high PUS e

short time is the most effective for US sludge pretreatment at at-

mospheric pressure as found in isothermal condition at 28 !C

(Delmas et al., 2015). Nevertheless, the positive effect of PUS in

adiabatic mode was not better than in isothermal mode: for

instance, at ES of 50,000 kJ/kgTS, DDCOD increased by 12% from 50 to

100 W as compared to 13% for sonication at 28 !C (Delmas et al.,

2015). That means there was no positive effect of the slight tem-

perature gain at 100 W as compared to 50 W (up to 17 !C) despite

the temperature level reached was still moderate.

Conversely, the 50 W-sonication could have benefit from the

temperature increase when switching from small to big probe, as

in the latter case higher DDCOD was reached despite lower IUS
(Fig. 3b). With BP, high power was only efficient in adiabatic con-

ditions for ES lower than 20,000 kJ/kgTS (when the increase in

sludge temperature and US duration were still small). The appar-

ently surprising reverse trend at higher ES, then higher t, might be

explained by a lower US efficiency at higher temperature. So in this

high range of ES, the beneficial effect of temperature through

thermal hydrolysis should be overpassed by its detrimental effect

on cavitation efficiency (as yet suggested on Fig. 2).

However, it should be mentioned that the results in Fig. 3 were

achieved on samples rapidly cooled at the end of sonication. In this

case, the beneficial effect of thermal hydrolysis (a slow process)

could not be fully recovered during the shortest treatments, e.g.

33 min for 360 W and 78 min for 150 W, as compared to 4 h for

50 W (Fig. 3b). Another comparison could then be made based on

the same treatment period, including sonication plus maturation

under stirring only (“thermal hydrolysis” after US). Thereby, addi-

tional experiments were conducted using BP at both same ES and

treatment time. At 50 W, sonication was applied in the ES range of

7000e50,000 kJ/kgTS and the suspensions were then cooled down

immediately to 28 !C. At 150 W and 360 W, US was turned off after

same ES values were reached, but the stirrer was still working

(without cooling) until the whole durations equaled those of 50 W

experiments. Results of DDCOD, given in Fig. 4, show again the high

PUS e short time sonication to be the best mode for sludge disin-

tegration at atmospheric pressure, thanks to thermal hydrolysis

afterUS disintegration. Nevertheless only very slight difference was

observed between 150 and 360W due to reduced cavitation effects

at high temperature. Temperature evolutions (due to heat losses)

corresponding to experiments at 50,000 kJ/kgTS are depicted in

Supplementary Materials (Fig. S2). Of course, one may suggest that

thermal insulation of our equipment would provide even better

results by keeping higher temperature after sonication. Note that

such energy saving by insulating the reactor could also save US

energy for the same result in terms of DDCOD.

To sum up, the effect of heat released by sonication is rather

complex and cannot be neglected. Besides, at atmospheric pres-

sure, sludge disintegration still benefits from high PUS if enough

time is let for thermal hydrolysis induced by US heating to operate.

3.3. Effect of US parameters on the optimum pressure and

subsequent DDCOD

Optimum pressures under adiabatic US were searched in the

1e5 bar range at a given ES value, but for different PUS (100e360W)

and probe sizes using WAS “a” from Table 1. Results are shown in

Fig. 5 where same ES (50,000 kg/kgTS) but different total treatment

durations were applied (contrary to recommendations from pre-

vious section). This should however not much change the location

of the optimum pressure, but only the final corresponding DDCOD

value.

Under isothermal sonication at 28 !C (Delmas et al., 2015), the

optimum pressure was found to shift toward higher pressures

when increasing PUS (and thus IUS proportionally):

- 1 bar (or even lower) at 50 W, 2 bar at 150 W and 3.5 bar at

360 W for BP,

- 1.5 bar at 50 W and 2.5 bar at 100 W for SP.

Surprisingly, under temperature rise as in the present work, the

same optimum pressure of 2 bar was obtained with the same probe

(BP) at different PUS (150 and 360 W) while an increase would be

expected at higher power according to isothermal data. The

respective evolution of optimal pressure vs. PUS is more complex in

non-isothermal conditions, due once again to the result of opposite

effects of temperature on cavitation intensity and thermal hydro-

lysis: the optimal pressure values found at 28 !C slightly increase at

Fig. 3. Effect of ES and PUS on DDCOD under “adiabatic” sonication (FS ¼ 20 kHz,WAS “a”

from Table 1, and atmospheric pressure): (a) SP and (b) BP. Final temperatures of

adiabatic US are also given.

Fig. 4. Effect of ES and PUS on DDCOD under “adiabatic” sonication followed by stirring

up to 240 min (FS ¼ 20 kHz, WAS “a” from Table 1, atmospheric pressure).



the moderate temperatures resulting from sonication at 100 W

with SP when no cooling is applied (from 2.5 bar to 3 bar -Fig. 5),

but they decrease at the extreme temperatures found at 360 W

with BP (from 3.5 bar to 2 bar -Fig. 5). This unexpected result (due to

the negative effect of very high T) would deserve more analysis

based on single cavitation bubble dynamics at high temperature

and high pressure. It should be additionally noticed that the opti-

mum is less marked in “adiabatic” conditions where only a part of

DDCOD is due to acoustic cavitation, the other part being due to

temperature rise and not dependent on the hydrostatic pressure.

In short, sonication effect can be improved by applying a

convenient pressure and this optimum is due to opposite effects of

hydrostatic pressure. At high external pressure, the increase of the

cavitation threshold reduces the number of cavitation bubbles but

their collapse is more violent (Lorimer and Mason, 1987). Associ-

ated with our previous work under isothermal sonication, it can be

concluded that location of the optimum pressure is dependent on

PUS, IUS, as well as on temperature.

3.4. Optimization of sludge sonication pretreatment

High PUS-short time, low FS (12 kHz according to our previous

work, Delmas et al., 2015), and adiabatic conditions should be

preferred to improve US disintegration of sludge. Moreover, the

optimum pressure was found to depend on US parameters and

thermal effects induced by high power ultrasound. Then this sec-

tion is devoted to finalizing optimization of US sludge disintegra-

tion by searching for the optimum pressure, while setting the other

parameters at the most favorable conditions expected (i.e. 12 kHz,

BPworking at 360W, and adiabatic conditions) usingWAS “b” from

Table 1.

It can be also noted that sonication at high PUS resulted in too

high sludge temperature, more than 80 !C, while the safety range

recommended by themanufacturer is less than 65 !C for the 12 kHz

device. Extreme temperatures might harm the transducer, lead to

unstable PUS, and are not convenient to provide intense cavitation.

In fact, several runs were interrupted due to the high temperature.

Sequential (or pulsed) sonication was therefore investigated to

limit the temperature increase and possibly improve the process.

The comparison of continuous and sequential modes contributes to

the optimization of sludge US pretreatment.

Fig. 6a compares continuous vs. sequential US sludge disinte-

gration using same ES value of 35,000 kJ/kgTS and varying pressure

within 1e3.25 bar, as the optimumwas expected in this range (cf. x

3.3, 3.25 bar being the value found for isothermal sonication (28 !C)

at 12 kHz and 360 W with BP). Besides, 35,000 kJ/kgTS was chosen

to have a relatively short treatment time in the most severe

conditions (continuous sonication at 360 W), not to harm the

transducer (by limiting temperature rise).

The following conditions were investigated:

(i) 50 W continuous sonication at 1 bar (164 min)

(ii) 360 W continuous sonication at 1, 2, and 3.25 bar (23 min)

(iii) 23 min of 360 W continuous sonication, as in (ii), but fol-

lowed by stirring (no US) up to 164 min, to get the same

treatment time as in (i) (marked as 360W-‘xx’ bar þ stirring)

and let thermal hydrolysis operate after the temperature rise

due to sonication

(iv) Sequence made of 1 min US at 360 W followed by 6 min

stirring (no US) and pursued for a total duration of 164 min

(marked as 360W-1/6-‘xx’ bar)

(v) Sequence made of 5 min US at 360W followed by 30 min

stirring (no US) and pursued up to 164 min of treatment

(marked as 360W-5/30-‘xx’ bar).

Two US pulses of 1 min and 5 minwere selected in order to vary

the temperature fluctuations around the smooth continuous tem-

perature profile (at 50 W). Temperature profiles during sequential

sonication are given in Fig. 6b.

For the continuous “adiabatic” process, sonication at 360 W

under 2 bar was found as the best condition regardless of the total

treatment time. It is interesting to note that the final temperature

under 360 W US increased from 80 !C to 99 !C with increasing

pressure from 1 to 3.25 bar, proving a better energy transmission at

high pressure. Nevertheless this better transmission does not mean

better efficiency for sludge disintegration: as yetmentioned, too high

temperature is very detrimental for cavitation intensity, due to the

less violent collapse of cavitation bubbles containing toomuch vapor.

The 360 W runs including a consecutive maturation period up to

164 min (mentioned as “þ stirring” in Fig. 6a) showed much better

disintegration than those cooled just after sonication, thanks to

thermal hydrolysis, and resulted in closer DDCOD values at 2 and

3.25 bar, clearly higher than that at 1 bar. The benefit as compared to

the50Woperationwasonly significant if thewhole treatment period

was indeed kept unchanged. However, temperature at the end of the

360Wcontinuous sonicationwas toohigh (both forequipment safety

and cavitation efficiency). Then its disadvantages as abovementioned

could be avoided by a sequential US application mode.

For the sequential mode, 360 W sonication at 3.25 bar was the

most efficient, followed by that at 2 bar, then 1 bar. The pressure of

2 bar was no longer an optimum in the sequential process which

provided a very similar temperature profile at 2 and 3.25 bar. Be-

sides, the advantage of the 35 min period cycle (5/30) as compared

to 7 min period cycle (1/6) at all applied pressures might be again

due to temperature effect: the maximum sludge temperatures

during 5/30 mode were indeed higher than those during 1/6 mode

(see Fig. 6b). At the same ES value of 35,000 kJ/kgTS and same

treatment time of 164 min, DDCOD resulting from the “optimal”

sequential process was about 40% higher than that from 50 W

continuous sonication. However, this sequential mode did not

perform much better than the continuous operation at 360 W,

while yielding more reasonable temperatures.

In short, sequential sonication at 12 kHz and under 3.25 bar e

with 5min of adiabatic sonication at 360Wand 30min of stirringe

appears as the best combination to achieve a high sludge disinte-

gration degree with the advantage of maintaining temperature in

the recommended range.

4. Conclusions

This work shows how non-isothermal ultrasonic sludge disin-

tegration may be improved by lowering frequency (under audible

Fig. 5. Comparison of pressure effects on DDCOD under adiabatic and isothermal (28 !C)

sonication for different combinations of PUS-probe sizes (FS ¼ 20 kHz, ES ¼ 50,000 kJ/

kgTS, WAS “a” from Table 1).



threshold), increasing power while decreasing sonication time,

finding the optimal pressure, and using sequential mode.

First, the effect of temperature increase due to sonication

without cooling could not be neglected both during and after the

process, accounting for resulting thermal hydrolysis of sludge is

rather slow at moderate temperature. As a result, at a given specific

energy, more efficient sludge disintegration was still achieved

when applying higher power if same total time was kept. This

temperature evolution also affected the optimum value of pressure

to be applied for sonication enhancement, which differed from that

observed during isothermal operation. Concerning disintegration, a

slight improvement was obtained at moderate temperature, mainly

due to conjugate effects of higher number of cavitation bubbles and

thermal hydrolysis, but a decrease at extreme temperatures

(>80 !C) due to the less violent collapse of cavitation bubbles

containing too much vapor. Due to combined cavitation and ther-

mal effects, the optimum temperature should be higher than in

most other US applications.

Then, a sequential operation using 5 min US-on at 360 W,

12 kHz, and 3.25 bar and 30 min US-off showed the best effi-

ciency of sludge disintegration and the advantage of maintaining

temperature in the recommended safety range. In a large

continuous equipment with a convenient thermal insulation,

same optimum temperature would be achieved with much less

US energy consumption increasing the economic viability of this

process.

Fig. 6. Continuous and sequential US sludge disintegration at different pressures under adiabatic conditions (a) DDCOD and (b) temperature profiles (BP, ES ¼ 35,000 kJ/kgTS,

FS ¼ 12 kHz, WAS “b” from Table 1).



It is clear that 12 kHz e much more efficient than 20 kHz e is

probably not the optimal frequency and additional work would be

deserved. This improvement at low frequency would probably be

observed on many other applications of physical effects of power

ultrasound. Nevertheless equipment is not directly available and

should be designed specifically.

Finally these optimal conditions should be used in future ex-

periments on methane production to quantify the positive effect of

sonication on both yield and kinetics.
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