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HIGHLIGHTS

e Coupled analysis of TM signature and REE in forest ecosystem compartments.
e Regional integration of atmospheric deposition by biomonitors.
e Mosses reflect canopy influence on TM atmospheric deposition.
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1. Introduction

ABSTRACT

In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by
biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE)
concentrations have been measured in lichens and mosses collected in three French forest sites located in
three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition
(BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and
local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p < 0.05)
more enriched in mosses. Similar REE ratios were measured in soils, bedrock, lichens and mosses at each
study sites, indicating a regional integration of atmospheric deposition by both biomonitors. Both TM
signature and REE composition of mosses revealed that this biomonitor is highly influenced by
throughfall composition, and reflect atmospheric deposition interaction with the forest canopy. This
explained the higher enrichment measured in mosses for elements which concentration in deposition
were influenced by the canopy, either due to leaching (Mn), direct uptake (Ni), or dry deposition
dissolution (Pb, Cu, Cs).

to survey extensively TM dispersion in the environment and their
potential impact on ecosystems, large scale studies often use bio-

Trace metals (TM: Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V
and Zn) are highly dispersed in the atmosphere, mostly by human
emissions (Nriagu and Pacyna, 1988; Steinnes et al., 1997; Rauch
and Pacyna, 2009), with potential harmful effects on ecosystems
(Ulrich and Pankrath, 1983; Nriagu, 1990; Adriano, 2001). In order

* Corresponding author. CNRS, EcoLab, 31326 Castanet-Tolosan, France.
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monitors (Boileau et al., 1982; Harmens et al., 2008; Steinnes, 1995).
Lichens and mosses are ubiquitous in forest ecosystems, and have
been widely used as monitors of TM atmospheric pollution mainly
because they lack of any root system and have no or limited cuticles
(Garty, 2001; Szczepaniak and Biziuk, 2003). Different TM accu-
mulation capabilities have been reported for lichens and mosses
(Nieboer et al., 1978; Beckett and Brown, 1984; Bargagli et al.,
2002), and even between different lichen and moss species in
relation to their various ecologies and morphologies. Lichens,
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which are slow growing association of fungi and algae, and mosses,
can both grow on soils (terricolous) and tree barks (corticulous).
These two groups of organisms have different life span: mosses live
for a few years (During, 1979), when lichens have generally longer
life span up to several decades (Manson and Hale, 1959; Armstrong
and Bradwell, 2010). If regional correspondence could be estab-
lished between estimation of Cd and Pb total deposition and their
content in mosses (Harmens et al., 2012), an accurate estimation of
TM atmospheric deposition cannot be established using TM con-
tent in mosses (Aboal et al., 2010). Trace metal accumulation in
mosses and lichens is influenced by several processes, including
uptake of elements from the soil and surrounding vegetation, and
loss of elements (Boquete et al., 2011). In forested ecosystems,
biomonitors receive atmospheric inputs that have been modified
by the canopy. Concentrations of both major and trace elements are
greatly influenced by the interaction with the forest cover,
including assimilation or release of elements by the canopy and
accumulation of dry deposition on leaves or needles (Heinrichs and
Mayer, 1977; Godt et al., 1986; Probst et al., 1992; Gandois et al,,
2010). These processes have to be taken into account when
considering biomonitors collected in forested areas.

Rare earth elements (REE) are a group of trace chemical ele-
ments with similar physicochemical characteristics (Henderson,
1984). Different bedrocks show specific REE compositions There-
fore, the pattern of the REE series is widely used to trace sources
and processes in petrology (Weill and Drake, 1973; Chauvel and
Jahn, 1984; Vidal et al., 1984) and Earth's surface sciences (Tricca
et al,, 1999; Aubert et al., 2001; Laveuf and Cornu, 2009). Their
lithogenic origin and conservative behaviour make them pertinent
tracers of dust dispersion. Rare earth element are directly analysed
in aerosols (Ferrat et al., 2011; Gueguen et al., 2012; Yang et al,,
2007) or in precipitations (Zhang and Liu, 2004; Spickova et al.,
2010), or indirectly in peat bogs (Aubert et al., 2006; Shotyk et al.,
2001) and lichens (Agnan et al., 2014) to investigate the origin of
atmospheric deposition.

The objectives of this study are to assess the spatial integration
and the influence of local forested environment on TM record by
biomonitors in forest ecosystems. Two types of biomonitors have
been selected for their contrasted ecology: terricolous mosses and
corticolous lichens. In order to investigate elemental transfer in the
forested ecosystems, tracers of elemental origin and mobility in
ecosystems, including REE and TM signatures have been analysed
in various compartments of the ecosystem: soil and bedrock, pre-
cipitation (open field and throughfall) and biomonitors. This study
has been carried out in three contrasted forested sites, covering a
wide range of environmental conditions, and located in three
distinct mountainous areas in order to assess the spatial integration
of biomonitors.

2. Material and method
2.1. Study sites

The study sites belong to the French RENECOFOR network
(Réseau National de suivi a long terme des Ecosystemes Forestiers,
i.e. National Network for the long term Monitoring of Forest Eco-
systems), managed by the ONF (Office National des Foréts, i.e. Na-
tional Forest Board). This network is part of the ICP Forest network
(International Co-operative Programme on Assessment and Moni-
toring of Air Pollution Effects on Forests, http://icp-forests.net).
Three sites (EPC 08, EPC 63 and SP 11) were chosen because they are
located, in three different mountainous areas (Ardennes, Massif
Central, and Pyrenees) of France (Fig. 1, Table 1), and were previ-
ously investigated by Gandois et al. (2010) for trace metal
deposition.

Fig. 1. Location of the three studied sites.

2.2. Sample collection and preparation

2.2.1. Soils and bedrocks

With regards to trace metal and REE, the soil and bedrock total
composition was analysed within the ICP Forest network frame-
work. Five soil samples were collected for each site (0—10 cm,
10—20 cm, 20—40 cm, 40—80 cm, 80—100 cm) in 2007—2012 for
the first four layers (using a hand auger) and in 1998—1999 for the
deepest layer (in soil pit). The samples were sieved (<2 mm) and
powdered before analyses.

2.2.2. Atmospheric depositions

In the studied sites, both BD and TF were sampled weekly for
one year from September 2007 to October 2008 following a pro-
tocol described in Gandois et al. (2010). This publication focused on
selected element (Al Cu Pb Fe Ni Mn Cd Zn, Sb). We included here
the analysis of other elements (As, REE, see Table 2) that had been
analysed in the samples (Gandois, 2009).

2.2.3. Biomonitors

2.2.3.1. Mosses. Mosses were collected in the vicinity of the
RENECOFOR plots in 2007 and 2008, following an adaptation of the
2006 ICP Vegetation network protocol: (Harmens et al., 2008). Two
terricolous species were sampled under the canopy and more than
3 m away from the tree trunks: Hypnum cupressiforme Hedw., (Hc)
in ECP 08 and EPC 63, and Thuidium tamariscinum (Hedw.) B., S. & G.
(Tt) in EPC 63 and SP 11. Three replicates were sampled for each
species. One replicate was made by pooling ten small plots of
mosses collected on the soil. Mosses samples were brought back to
the laboratory, dried at 40 °C, and grinded in a Ti-mill. They were
then digested (H,0,/HNO3) in a clean room using a microwave
oven at 220 °C and 20 bar pressure, following the ICP vegetation
procedure (ICP Vegetation, 2005). The blanks showed no contam-
ination during the digestion process: the measured concentrations
were always below the detection limits. The repeatability of the
method was checked by mineralisation and analytical determina-
tion of triplicates of samples. Coefficients of variation were less
than 5%.
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Table 1
Study sites description.

Site Location Altitude (m a.s.l.) Average annual precipitation® (mm) Vegetation cover Bedrock type Soil type®

EPC 08 Ardennes 1300 Picea abies (L.) Karst. Schist Cambic podzol
475

EPC 63 Massif Central 990 Picea abies (L.) Karst. Basalt Andosol
950

SP 11 Pyrenees 1100 Albies alba Mill. Carbonated marl Stagnic luvisol
950

2 Average for the period 1999—2005.
b WRB for soils (FAO).

2.2.3.2. Lichens. For lichen samples, sampling and mineralisation
followed the protocol described by Agnan et al. (2013). Grown up
lichens (several-year-old) were collected in 2011 on tree trunk
using non-metallic material. Three corticolous lichen species were
sampled among the most commonly found: Xanthroria parietina
(L.) Th. Fr. (Xp) in the three sites, Parmelia sulcata Taylor (Ps) in EPC
63 and EPC 08, and Evernia prunastri (L.) Ach. (Ep) in EPC 08. Dried
samples were powdered using nitrogen liquid and mineralised by
an HNOs3/HF/H,0, mixture in a cleanroom (EcolLab, Toulouse,
France). The blank samples allowed checking no contamination
during the procedure.

2.3. Sample analysis

Atmospheric deposition, moss and lichen samples were ana-
lysed for TM and REE with ICP-MS (7500 ce, Agilent Technologies,
OMP-GET, Toulouse, France). The detection limit depended on the
considered element: between 5 and 100 pg g~ Indium (1°In)/
Rhenium (®’Re) were used as internal standards. The accuracy of
digestion and analysis protocol was checked using certified stan-
dards. SLR-4 for water samples, pine needle SRM-1575a, Moss II
and Moss III (Steinnes et al., 1997) for moss samples, and lichen
IAEA-336, pine needle SRM-1575a and peach leaves SRM-1547 for
lichen samples. Measured values were within the certified ranges.
Similar recoveries (from —20% to 0%) were observed for the two
protocols used for lichen and moss series, although using different
acid mixtures.

The soil and bedrock samples were fused in Pt crucibles by LiBO,
at 980 °C in an automatic tunnel oven. Samples were mineralised
by a HNO3/H,0;/glycerol mixture and analysed by ICP-MS (CRPG,
Nancy, France). A blank and 5 international geostandards
(Govindaraju, 1994) were prepared and analysed with each sample
batch. Recovery efficiency on geostandard was >85% for all
elements.

2.4. Statistical analysis

Statistical analyses were performed using the R software and the
ade4 and ggplot2 packages. Significant differences were tested
using the Kruskal-Wallis (KW) test (¢ = 0.05). The principal
component analysis (PCA) was performed on standard score TM
data.

3. Results
3.1. Trace metal content in mosses and lichens

Trace metal contents in biomonitors are presented in Table 2.
The measured TM concentrations in mosses were consistent with
lower bound of the values reported for France and the rest of
Europe in 2005 and 2010 (Harmens et al., 2010), except for Cr in SP
11, Pb in EPC 08 and Zn for all the sites. The data did not shown

exceeding values like in Belgium and countries of Eastern Europe
(e.g. Bulgaria, Serbia or Slovakia), in relation to the site location far
from direct TM sources, reflecting background levels. For lichens,
the TM concentrations fell between “very high naturality” class to
“low naturality/alteration” class following the scale defined by
Bargagli and Nimis (2002), except for Al and Fe in SP 11 with
“middle alteration” class. Manganese concentrations were signifi-
cantly (KW, p < 0.05) higher in mosses compared to lichens in the
three sites, as well as Pb and Ni in EPC 08, Cs in EPC 63, and Cu and
Ni in SP 11. On the contrary, Al, Fe, Cr, As, Sn and Sb concentrations
were significantly higher in lichens compared to mosses for the
three sites (KW, p < 0.05, except for Al and Cr in SP 11). The rare
earth elements concentrations were similar for lichens and mosses
for a given site. The REE range fall into the values published in the
literature and reported in Dolegowska and Migaszewski (2013) for
Poland, Scandinavia and Canada.

3.2. Trace metal enrichments in mosses and lichens

The enrichment factors (EF) in biomonitors were calculated for
each element X following Equation (1) using Al as the normalising
element and the local bedrock as the reference (Bargagli, 1995).

EF = M (1)
(X/ Al)Local Bedrock

The dispersion of EF values calculated in the three sites is pre-
sented in Fig. 2. In the three sites, calculated EF were above 2 for
both biomonitors for all studied elements except for Fe and V. The
calculated enrichment factors for most elements were higher in
EPC 08 compared to the other study sites. For lichens, based on the
median value (Fig. 2), EF increased following this order:
Fe <V <Cr<Cs<Mn<Ni<As<Sn<Cd<Pb<Zn<Cux<Sb.The
increase order of EF for mosses was close to the lichen one:
Fe <V<Cr<As<Ni<Sn<Mn<Cu<Cs<Sb<Cd<Zn<Pb.If
sites were considered individually, EF were significantly higher in
mosses compared to lichens in the three sites for Mn, Pb, Cs, Cu, and
Ni (KW, p < 0.01).

3.3. Association of TM in forest ecosystem compartments

The principal component analysis (PCA) based on TM concen-
trations in biomonitors and deposition is shown on Fig. 3. The first
axis, explaining 40% of the data variance, discriminated bio-
monitors (lichens, mosses) and deposition (BD and TF). The litho-
genic elements with low EF (Al, Fe, Cr or V), as well as two
micronutrients, Cu and Ni were the main contributors to this axis.
The second axis, which explained only 15% of the data variance
discriminated lichens and BD from mosses and TF. Lead, Mn, Zn and
Sb were the main contributors for this axis.

The TM signatures were further investigated using the ratios of
the normalised concentration to Al (Fig. 4a and b). These ratios
were lower in soil and bedrock compared to other compartments in



Table 2
Mean and standard deviation (SD) of the concentration (ug g~ ') of the studied TM and REE elements in the different ecosystem compartments.

n Al As Ccd Cr Cs Cu Fe Mn Ni Pb Sb Sn \Y Zn La Ce Nd Sm Yb

EPC 08 Lichen (ugg™") 5 Mean 807.21 049 047 233 013 7.04 523.59 41.80 181 525 028 0.64 1.81 8345 0574 0.970 0.388 0.076 0.030
SD 554.15 024 025 0.67 0.07 128 275.34 959 044 083 005 0.06 0.86 3517 0309 0.586 0226  0.044 0.020
Moss (ng g ") 4 Mean 19741 013 0.22 1.14 0.18 6.28 24147 21242 250 944 021 040 1.64 46.05 0287 0433 0.189  0.035 0.010
SD 2720 002 003 012 004 034 27.41 6825 029 147 002 0.05 0.14 098 0.029 0.043 0.022  0.002 0.001

Bulk deposition (ugL~') 14 Mean 6.86 0.09 0.09 0.07 001 0.88 4.14 324 044 070 012 0.10 035 12.04 <QL <QL <QL <QL <QL

SD 6.73 005 0.15 0.05 0.03 0.60 3.99 1.84 023 059 007 027 0.17 864 <QL <QL <QL <QL <QL

Throughfall (ug L™1) 14 Mean 2447 023 0.06 0.15 005 1.64 1265 15731 0.67 3.09 0.85 20.00 040 2995 0.011 0.020 0.010 <QL <QL

SD 22.08 050 0.08 0.11 0.05 1.34 7.58 105.61 062 196 041 7368 0.16 3824 0.006 0.012 0.007 <QL <QL
Soil and bedrock (ugg™!) 5 Mean 77,74558 44.01 042 103.08 584 30.11 3246644 28051 1179 3711 220 3.78 11016 48.12 26254 53208 21.778 4.427 3.495
SD 11,504.66 652 0.10 940 073 430 2268.72 8846 442 1642 029 1.36 9.28 10.15 2.017 6.560 1.944 0414 0.143
EPC 63 Lichen (ugg™") 8 Mean 98832 0.67 0.07 222 034 6.88 759.13 2514 126 251 012 033 236 30.00 0.815 1.499 0.581 0.106 0.031
SD 299.36 035 0.04 1.00 020 2.11 262.20 396 054 1.14 003 0.16 0.54 18.07 0.139 0322 0.109  0.022 0.007
Moss (ug g 1) 12 Mean 386.13 0.14 0.10 084 064 3.78 280.13  172.81 112 227 0.06 0.11 1.05 3472 0370 0.707 0.300 0.056 0.014
SD 139.01 0.03 0.07 023 0.18 085 101.98 3969 028 0.68 0.02 0.05 0.31 13.30 0.127  0.190 0.072  0.013 0.003

Bulk deposition (ugL~') 14 Mean 886 0.10 0.06 0.08 001 0.84 4.84 322 062 024 006 0.04 019 4332 <QL <QL <QL <QL <QL

SD 18.71 0.07 0.10 0.06 0.01 0.68 1049 507 096 026 004 0.07 008 5944 <QL <QL <QL <QL <QL

Throughfall (ug L™1) 14 Mean 3729 124 0.03 027 028 196 1643 13134 0.61 4.09 1.05 048 036 2421 0.025 0.060 0.031 <QL <QL

SD 16.10 189 0.02 0.15 026 078 6.81 12042 029 316 072 1.11 0.14 14.73 0.008  0.021 0014 <QL <QL

Soil and bedrock (ngg™!) 5 Mean 94,505.15 11.19 057 72.07 3.08 19.95 63,637.53 164897 2891 37.54 129 339 14147 14048 58426 119.370 42.034 7.432 2456
SD 1393528 290 0.13 16.71 044 829 1417641 20451 958 3059 103 0.61 4295 1340 14.563 20.262 11.306 1.995 0.606

SP 11 Lichen (ug g ') 5 Mean 2364.13  0.68 0.07 3.69 026 4.66 1347.08 2929 172 228 012 038 413 2205 1354 2.647 1.136  0.216 0.081
SD 105430  0.18 0.01 1.31 013 092 595.59 14.65 0.54 147 005 016 1.96 9.62 0.606 1.192 0523  0.098 0.038
Moss (ug g~ 1) 6 Mean 163335 039 0.17 328 028 820 989.07 9740 325 3,67 005 0.14 3.08 2431 1.006 2.104 1.062 0224 0.064
SD 71237 012 0.07 1.26 0.12  2.68 454.91 29.72 1.05 115 002 006 1.29 862 0387 0.803 0448  0.093 0.028
Bulk deposition (ugL™') 14 Mean 423 012 0.02 0.09 0.01 1.06 243 253 083 023 047 013 027 2392 <QL <QL <QL <QL <QL
SD 3.04 008 002 0.06 0.01 1.05 2.15 2.07 1.04 016 119 031 019 2942 <QL <QL <QL <QL <QL
Throughfall (ug L™1) 14 Mean 50.33 0.24 0.05 0.16 0.02 2.80 22.71 46.76 094 785 153 042 050 1641 0.037 0.102 0.051 <QL <QL
SD 2758 012 0.03 0.09 0.02 1.67 7.89 1669 042 380 079 0.80 023 1336 0.018  0.050 0030 <QL <QL

Soil and bedrock (ugg™!) 5 Mean 70,064.38 10.15 038 10650 9.11 17.70 37,90526 44671 43.09 2445 072 2.89 10920 9745 35610 69210 30408 5.928 2485
SD 6633.53 1.03 0.10 288 137 875 117720 25859 594 422 009 011 6.06 6.66 1.697  2.839 1232  0.375 0.056
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Fig. 2. Boxplot of enrichment factors in lichens (n = 18) and mosses (n = 22) using Al and local bedrock normalisation (*p < 0.05, **p < 0.01, ***p < 0.001, KW test).

the forest ecosystem in relation to the high Al content in soil. The
ratios were lower in biomonitors compared to both bulk deposition
and throughfall. For elements contributing to ACP axis 1 (Cu and Ni,
Figs. 3 and 4a), the ratios measured in biomonitors aligned with
those measured in BD and TF. A decrease of these ratios from BD to
TF suggested the direct uptake of these elements by the forest
canopy. Ratios in lichens were lower compared to mosses. For el-
ements which contributed to axis 2 (Mn and Zn given as examples,
Figs. 3 and 4b), ratios differed in lichens and mosses. For these el-
ements, the TM signature in mosses align with the throughfall one
whereas the TM signature in lichens is close to the BD one (Fig. 4b).

3.4. REE signature in forest ecosystem compartments

In order to identify REE origin in biomonitors, we plotted a di-
agram showing La/Sm vs La/Yb for lichens, mosses and local
bedrock (Fig. 5a). The combination of these two ratios allowed
discriminating the local bedrocks from the three study sites: the La/

axis 2 (15%)

axis 1 (40%) s dl

Yb ratio is different for the three locations. The La/Sm ratio is
similar for SP 11 and EPC 08 (around 6) but is higher for EPC 63
(around 8). In EPC 63 and SP 11, the REE ratios measured in lichens
and mosses are close to the bedrock ones. In EPC 08, the signature
measured in the biomonitors differs from the local bedrock, with
higher ratios measured in the biomonitors. In SP 11 and EPC 63, the
light REE ratio (La/Sm) is higher in lichens compared to mosses, and
is closer to the one measured in the local bedrock, whereas the La/
Yb do not discriminate lichens from mosses. This is not verified in
EPC 08 site, where the La/Yb ratio, and not the La/Sm ratio, dis-
criminates lichens and mosses. In all sites, REE ratios measured in
lichens are closer to the bedrock ones compared to the one
measured in mosses. This is also shown when looking at light REE
ratios (La/Ce vs La/Nd) in biomonitors, TF and local bedrock
(Fig. 5b—d). In all sites, lichen signatures for these ratios are close to
the bedrock one, whereas mosses show an intermediate signature
between local bedrock and TF. This is less clear in EPC 08, where the
REE signature measured in TF covers a wider range of values.
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Fig. 3. Two first factors (55% of the data variance) of the PCA analysis by variable (a) and by observation (b) of the TM concentrations in biomonitors (lichens and mosses) and

atmospheric deposition (bulk deposition and throughfall).
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4. Discussion
4.1. Bioaccumulation of TM deposition by lichens and mosses

Since both lichens and mosses are widely used as biomonitors,
their respective bioaccumulation capabilities have been investi-
gated in various environmental contexts (Berg et al., 1995; Garty,
2001; Bargagli et al., 2002; Szczepaniak and Biziuk, 2003). In
highly contaminated contexts and using transplant of lichen and
moss bags (Basile et al., 2008; Bargagli et al., 2002), higher accu-
mulation by mosses was observed. The authors suggest that lichens
are more sensitive to environmental factors, like rainfall, and that
elements contained in lichens are more likely to be leached. In the
context of this study (low contaminated forest ecosystems), higher
concentrations of lithogenic elements (Al, Fe, Cr and As) were
measured in lichens compared to mosses, the latter being enriched
in Mn in all sites, and Pb and Ni in two of the three sites. Higher EF
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values were calculated for Cs, Mn, Pb and Cu in mosses and
therefore higher contamination would be identified if mosses were
considered compared to lichens (Fig. 2). This observation supports
the fact that terricolous mosses were not influenced by direct
elemental transfer from soils, which would have induced high
concentration of lithogenic elements in terricolous mosses. The
higher concentration for Al, Fe, Cr and As observed for lichens could
be related to different mechanisms. Since we sampled corticulous
lichens, transfer from the soil cannot explain this enrichment. Tree
barks are known to reflect TM atmospheric deposition and accu-
mulate particulate deposition, including lithogenic minerals (Faggi
et al.,, 2011; Gueguen et al., 2012). Transfer from barks or stemflow
to lichens has been observed for major elements, but appears
limited for trace elements (Prussia and Killingbeck, 1991; Sloof and
Wolterbeek, 1993). In the low contamination context of our study,
the higher concentrations of lithogenic elements (Al, Fe, Cr) and the
relative loss of some TM (Cu, Ni, Fig. 3a) by lichens compared to
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Fig. 5. La/Sm vs La/Yb ratio in lichens, mosses and soil and bedrock for the three studied sites (a) and La/Ce vs La/Nd ratio in lichens, mosses, throughfall and soil and bedrock for

EPC 08 (b), EPC 63 (c) and SP 11 (d).



mosses and deposition were more likely due to higher selective
accumulation of lithogenic elements by lichens or longer accumu-
lation time. In the case of mosses, the concentrations of TM in
biomonitors vary with time and selective loss of elements has been
observed (Boquete et al., 2011). The longer life span of lichens and
therefore the longer accumulation time compared to mosses could
explain their higher concentration of lithogenic elements (Catinon
et al., 2009).

4.2. Spatial integration of biomonitors

The REE ratios (La/Sm vs La/Yb) have been used to investigate
the origin of TM deposition in environmental archive, like peat
(Aubert et al., 2006). In this study, distinct values of the La/Smvs La/
Y ratios were observed for the soils and bedrocks of the three
studied sites, allowing the identification of the local dust signature
(Fig. 5a) for the different mountainous massifs. This specific
signature was recorded by both mosses and lichens, highlighting a
regional integration of TM atmospheric deposition by biomonitors.
Trace metal dispersion range depend on the chemical form during
emission and transport (Chester et al., 1993; Desboeufs et al., 1999;
Colbeck, 2008). While some TM can be transported for long dis-
tance, the influence of TM emissions hotspots like cities and fac-
tories rapidly decrease within kilometres (Aznar et al., 2008;
Cloquet et al., 2006).

In the Pyrenees (SP 11), higher concentration of Al and Fe and
REE were measured in mosses and lichens compared to the other
sites, in accordance with the high deposition of these elements in
this area (Gandois et al., 2010). This is potentially related to the
former mining activity in the area. In the North-East of France (EPC
08, Fig. 4a and b), REE signatures in TF was more dispersed, and
higher La/Sm ratios were measured in biomonitors compared to the
local soil and bedrock (Fig. 4b). Higher La/Sm ratio could indicate
industrial deposition, as measured in particulate matter originating
from steel plants by Gueguen et al. (2012). In this site located in an
industrial area, higher EF compared to other sites were recorded by
both lichens and mosses for many elements (Zn, Sr, Pb, V, Cr, Ni, Sn
and Co), reflecting relatively more anthropogenic metallic atmo-
spheric deposition already evidenced (Gandois et al., 2010) and
registered in surface layers of the soils (Hernandez et al., 2003).

4.3. Influence of vegetation on biomonitor records

Both TM rand REE ratios in biomonitors highlighted the higher
influence of throughfall on moss composition compared to lichens.
Mosses were enriched in Mn compared to lichens, and in some
sites, in Pb, Ni, and Cu (Fig. 2). The Mn/Al and Zn/Al ratios in mosses
aligned with the throughfall ones, and showed a relative enrich-
ment in Mn compared to Zn (Fig. 4b). In forested ecosystems,
throughfall composition reflects processes occurring on the canopy,
including elemental recretion, direct uptake, as well as accumula-
tion and leaching of dry deposition (Lindberg and Lovett, 1992;
Probst et al., 1992; Balestrini et al., 2007; Gandois et al., 2010).
The Mn enrichment of mosses reflects the already observed high
Mn cycling in forested ecosystem and recretion by the canopy
(Petty et Lindberg, 1990; Gandois et al., 2010), and highlights the
influence of canopy on moss record (Schilling and Lehman, 2002).
Trace metals that are mostly deposited in the form of dry deposi-
tion, including Al, Fe and Pb, are enriched in TF, as a consequence of
dissolution of accumulated dry deposition on the canopy. For these
elements, TF is a proxy of both wet and dry deposition (Hou et al.,
2005; Gandois and Probst, 2012). In mosses, the REE ratios reflected
both TF composition and the local bedrock (Fig. 5), while lichen
closely reflected the local bedrock composition. This add to the
evidence that in forested ecosystems mosses also reflect the

influence of accumulation of dust deposition on forest canopy and
following dissolution and leaching in TF. The integration of TM from
other sources than atmospheric deposition to mosses has been
highlighted by Steinnes (1995), and included transfer from vascular
plants, direct uptake from soil, and ion exchange with deposition.
All these reasons have been cited by Aboal et al. (2010) to explain
the lack of correlation between TM content in mosses and atmo-
spheric deposition measured in BD. Our results suggest that in
forest ecosystems, the lack of correlation between mosses and BD is
related to the canopy influence, mosses reflecting TF composition.
Depending on the considered element, this includes recretion by
the canopy or dissolution of accumulated dry deposition. When
compared to lichens, mosses reflect the local below-canopy envi-
ronment and integrate wider spatial influence due to dust depo-
sition. In survey networks, mosses are collected under the forest
cover to assess TM deposition (Harmens et al., 2012). This study
confirms that below canopy collected mosses do not reflect bulk
deposition.

5. Conclusion

This study combined the TM and REE signatures in biomonitors
(mosses and lichens) and in various compartments of the forest
ecosystem (bulk deposition and throughfall, soil and bedrock), in
order to study the elemental transfers between compartments.

The similar REE ratios measured in soil and local bedrock and
biomonitors for each mountainous area showed that lichens and
mosses integrated a regional atmospheric signal, including both
soil derived and industrially influenced atmospheric deposition.
Based on EF, comparable contamination diagnostics could be
addressed using lichens and mosses, with the exception of Cs, Mn,
Ni, Pb and Cu. Different accumulation of TM by lichens and mosses
were attributed to a different influence of forest ecosystems on the
two biomonitors. Mosses reflected the TF composition whereas li-
chens were less influenced by the forest canopy. These organisms
were enriched in micronutrients highly cycled in forested ecosys-
tems and leached by the forest cover, like Mn. In contrast to lichens,
mosses were also enriched in element likely transported in the
form of dry deposition (Cs, Pb, Cu, REE), which accumulate on forest
canopy. They are more influenced than lichens by the local under-
canopy environment and integrate a wider spatial signal in relation
to dust deposition on the canopy. When collected in forested eco-
systems, mosses reflect both atmospheric deposition and canopy
influence.
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