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Longitudinal study of a tilt-body vehicle: modeling, control and stability
analysis

Leandro R. Lustosa, François Defaÿ and Jean-Marc Moschetta1
Institut Supérieur de l’Aéronautique et de l’Espace,

ISAE-RESEARCH, Toulouse 31400, France

Abstract— This work studies a longitudinal high incidence
flight envelope dynamic model for use in a convertible tilt-body
vehicle designed for indoor/outdoor environments. The model
assumptions are chosen so that a singularity-free nonlinear
differential equation system is obtained. The model is complex
enough to predict wind tunnel experiments yet simple enough
to be described by analytical expressions (instead of physically
difficult to interpret lookup tables). Wind tunnel measurements
took place to identify flying model parameters, validate model
and support autopilot design by means of scheduled linear
quadratic regulator controller. Finally, controller design is
validated by means of stability analysis based on regions of
attraction computation via Lyapunov theorems and invariant
sets during the entire transition between airplane mode and
hover mode.

I. INTRODUCTION

Remote building intrusion missions in complex urban
environments calls for the use of micro air vehicles (MAVs)
capable of performing both long-endurance and hover flights.
Traditionally, long-endurance missions are performed by
fixed-wing architectures which advantage from lift genera-
tion by aerodynamic surfaces due to the aircraft movement
with respect to air. This yields high-speed stable flight even
under adverse wind conditions. On the other hand, hovering
platforms (e.g. multi-rotor platforms, helicopters) cannot
benefit from air to vehicle relative movement and calls for
energetically expensive propulsion methods that precludes
long-distance missions but allows for sustained low-speed
unstable indoor flights. This work proposes a hybrid architec-
ture based on the tilt-body concept, called MAVion (see Fig.
1), that is capable of balancing aerodynamic and propulsion
design parameters to deliver a solution to the remote building
intrusion problem.

Other concepts are available for implementation in hybrid
vehicles. For example, one alternative option is to tilt the
engines such as in the V-22 Osprey configuration. One
drawback in such a configuration is the appearance of
aerodynamic downward forces due to propeller slipstream in-
teraction with the wing surface. Reduction of such forces are
achieved by means of tilt-wing configurations in which some
fraction of the wing rotates with the rotor. In the domain of
MAVs, the AVIGLE [1], the MAVerix [2] and others [3] are
examples of such concept and they all require an additional
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engine above the horizontal tail to provide pitching moment
control. Both possess moving mechanical parts that add to
complexity and preclude further miniaturization but allow for
fuselage horizontal stabilization during all flight stages.

The MAVion project philosophy is strongly based on
manufacturing simplicity and transition flight capacity thus
yielding a highly underactuated platform with a high degree
of coupling between aerodynamic and propulsion subsys-
tems that calls for accurate mathematical modeling, precise
parameter identification and robust control laws. Previous
modeling of vertical take-off and landing (VTOL) vehicles
[4], [5] are used herein to support physical modeling and an
aerodynamic/propulsion interaction factor ki is introduced
to abstract slipstream wake funneling effects. Furthermore, a
wind tunnel campaign is performed to validate and identify
all aerodynamic parameters and validate the model.

Finally, this paper shows that the highly nonlinear na-
ture of the transition from airplane flight (stable) to hover
flight (unstable) calls for nonlinear control techniques. As
a first approach, this document assumes lateral stability
while focusing only on longitudinal dynamics (pitch axis). A
comprehensive controls overview for VTOL systems that in-
cludes proportional integral derivative (PID), pole placement,
backstepping, linear-quadratic-Gaussian, H∞ and H2 control
techniques can be found in [6]. MAVion employs scheduled
linear quadratic regulators (LQR) to stabilize the vehicle over
all trajectory and the present work contributes by means of
a rigorous analysis of controller stability via invariant sets
and Lyapunov candidate functions [7].

The paper is organized as follows. Section II delineates the
physical and mathematical model of MAVion and comments

Fig. 1. MAVion under wind tunnel testing.



over some design issues. Section III describes the process of
parameter identification and the wind tunnel campaign that
supported this work. Section IV portraits the control strategy
adopted and rigorously prove stability for the whole hover-to-
horizontal flight transition. Finally, concluding remarks and
perspectives are given in section V.

II. TILT-BODY LONGITUDINAL MODEL

MAVion contains 4 moving parts with respect to the
aerodynamic fuselage as Fig. 2 illustrates. Roughly, two
elevons with deflections δ1 and δ2 deliver pitching moment
(with respect to body-fixed axis ŷb) and rolling moment (with
respect to body-fixed axis x̂b) by means of symmetrical and
asymmetrical deflections, respectively, while two propeller
engines with rotation speeds ω1 and ω2 deliver thrust and
yawing moment (with respect to body-fixed axis ẑb) by
means of symmetrical and asymmetrical rotation speeds.
Notice that is the case because the motors are installed in
a counter-rotative tandem configuration with rotation direc-
tion chosen to counter wing tip vortices, which artificially
increases the aspect ratio. It also provides a natural way
to trigger banked turns since increasing ω1 would not only
result in a positive yaw moment but also in an induced posi-
tive rolling moment yielding a starboard curve in horizontal
flight. Finally, lift is generated by the aerodynamic shape of
the fuselage where inside resides most electronic parts and
payload.

x̂b

ẑb

ŷb

ω2

ω1

δ2

δ1

Fig. 2. Perspective view, body-axis definition and MAVion actuation inputs.

Figure 3 illustrates the MAVion free-body diagram during
an arbitrary flight instant. We assume symmetry in counter-
rotating propellers speed ω and elevons deflection δ to cancel
out lateral/directional dynamics and focus on longitudinal
flight. Under these assumptions, convenient system state x′,
actuator u and disturbance w definitions are

x′ =


vn
vd
θ

θ̇

 , u =

(
ω
δ

)
, w =

(
wn
wd

)
(1)

where vn, vd, wn, wd and θ, denote, respectively, MAVion
and wind velocities with respect to the ground expressed
in the local north-east-down (NED) coordinate system, and
pitch angle with respect to the local horizontal.

δ
W

T

L

D M

θ

Fig. 3. MAVion free-body diagram: aerodynamic/propulsion forces and
moments conventions and directions.

In order to calculate ẋ′, we apply Newton’s second law
(see Fig. 3) and obtain

mv̇n = (D + 2T )cosθ + Lsinθ (2)

mv̇d = mg + Lcosθ − (2T +D)sinθ (3)

Jy θ̈ = M (4)

where g, m and Jy denote, respectively, local gravity,
MAVion mass and inertia moment with respect to the y-axis.
Notice that, otherwise stated, aerodynamic drag D and lift
L, aerodynamic pitching moment M , and propulsion thrust
T are hereafter described in body-fixed axes.

A. Aerodynamic model

By means of the Buckingham-Π theorem [8] and assuming
inviscid incompressible flow, we relate the aerodynamic
forces and moments to the system state according to

L =
1

2
ρv2∞SCL(α, δ) (5)

D =
1

2
ρv2∞SCD(α, δ) (6)

M =
1

2
ρv2∞c̄SCM (α, δ) (7)

where ρ, v∞, S, c̄, α, CL, CD and CM are, respectively, air
density at drone location, true air speed with respect to the
drone, reference wing area and chord, angle of attack; and
lift, drag and pitching moment coefficients. Furthermore, for
a fixed δ = δ0, the wide envelope of flight angles precludes
the use of a linear aerodynamics coefficient model and calls
for a Fourier series 2π-periodic function approximation such
as

CL(α, δ0) = AL0(δ0) +

N∑
k=1

ALk(δ0)cosα+BLk(δ0)sinα

(8)
As it will be presently shown, the choice of picking only

the k = 2 term for moment terms and k = 1 for force terms
yields a non-linear differential equation structure which has
good properties we shall take advantage in the analysis and
design phase. On the other hand, we model the effect of



elevon deflection on CL(α, δ), CD(α, δ) and CM (α, δ) as a
linear extra term in α. Mathematically,

CL(α, δ) = AL0 +AL1cos(α) +BL1sin(α) + CLδδ (9)

CD(α, δ) = AD0 +AD1cos(α) +BD1sin(α) +CDδδ (10)

CM (α, δ) = AM0 +AM2cos(2α) +BM2sin(2α) + CMδδ
(11)

which yields

CM (α, δ) = CMa+CMbcos
2α+CMcsinαcosα+CMδδ

(12)

for the following change of parametersCMa

CMb

CMc

 =

1 −1 0
0 2 0
0 0 2

AM0

AM2

BM2

 (13)

Furthermore, notice that(
cosα
sinα

)
=
−1

v∞

[
cosθ −sinθ
sinθ cosθ

](
wn − vn
wd − vd

)
(14)

The discontinuity at the origin in equation 14 does not
pose a problem for fixed-wings since they operate always
with v∞ >> 0. However, hovering vehicles ideally operate
exactly at the discontinuity position and call for a different
parametrization that bypass α. By substituting equations 12
and 14 into equation 7, for instance, we obtain

M = pm(x′,u,w, cosθ, sinθ) (15)

where pm(·) is a nonlinear function of the listed arguments
and has an analytical expression that does not include α, and
it is thus more suitable to model and numerically simulate
hovering flight. To transform it into a more numerically
stable non-trigonometric function of only x′, u and w, we
can use the quaternion formulation, which for longitudinal
flight yields

q =


q0
q1
q2
q3

 =


cos( θ2 )

0
sin( θ2 )

0

 (16)

From the double arc angle formula we obtain the relation
between Euler angles and quaternion formulation.

cosθ = cos2(
θ

2
)− sin2(

θ

2
) = q20 − q22 (17)

sinθ = 2sin(
θ

2
)cos(

θ

2
) = 2q0q2 (18)

We substitute above results into equation 15 and redefine
the state x′ to be

x =
(
vn vd q0 q2 θ̇

)T
(19)

so that we obtain a nonlinear equation on x, u and w
only (equation 20). A similar development is performed on
aerodynamic drag and lift forces counterparts to obtain non-
trigonometric equations for D and M (equations 21 and 22).

L = pl(x,u,w) (20)

SwSw

Fig. 4. Propeller wing interaction: slipstream wake illustration and the
division between dry and wet sections.

D = pd(x,u,w) (21)

M = pm(x,u,w) (22)

B. Propulsion model

Similarly to the aerodynamic forces and moments develop-
ment, an argument by means of the Buckingham-Π theorem
yields

T = ρω2D4
pCT (J) (23)

where Dp, CT and J are, respectively, propeller reference
diameter, thrust coefficient and advance ratio given by

J =
v∞cosα

ωDp
(24)

In high angle of attack flight, the thrust coefficient is
commonly modeled [4] as

CT (J) = CT0 + CTJJ (25)

Notice that we don’t model propeller external torques due
to the counter-rotating propellers and longitudinal motion
assumptions. Finally, we substitute equations 14, 17, 18, 24
and 25 into 23 to obtain the following polynomial equation

T = pt(x,u,w) = CT0ρω
2D4

p+

+ ρωD3
pCTJ

(
(q20 − q22)(vn − wn) + 2q0q2(wd − vd)

)
(26)

C. Wing-propeller interaction

The development of the aerodynamic forces model as-
sumed that the free-stream relative wind velocity is indepen-
dent of the propulsion system. One could design a propulsion
system to deliver low wake induced velocity to attain to this
assumption. However, under this assumption, hovering flight
would deliver zero free-stream velocity and consequently
zero aerodynamic forces and moments that would preclude
attitude control. Therefore, slip-stream air induced velocity is
a design quantity that must be not reduced, but instead, kept
in a interval of acceptable and influential values posing an
additional design challenge in comparison to flying wings.
An appropriate model is therefore necessary and described
in the following.



We follow the guidelines settled in [9] and define two
different wing sections as illustrated by Fig. 4. We assume
one of them to be unaffected by the propulsion wake and is
modeled according to equations 20, 21 and 22. The other will
be affected by a slip-stream wake profile and its effect on
the aerodynamic equations is modeled by means of a induced
free-stream velocity v∞,i and an accordingly induced angle
of attack αi as illustrated by figure 5. The geometry of
the model suggests superposition over the air flows and the
following modification in the angle of attack equation (see
equation 14)(
cosαi
sinαi

)
=
−1

v∞,i

([
cosθ −sinθ
sinθ cosθ

](
wn − vn
wd − vd

)
−
(
vi
0

))
(27)

where vi is the induced velocity of slip-stream at the
downstream side of propeller disk which, by means of the
propeller momentum theory for forward helicopter flight
[10], is a solution of

v2i + v∞cosαvi −
T

2ρSp
= 0 (28)

where Sp denotes propeller disk area. Therefore, we write

vi =
1

2

[√
(v∞cosα)2 +

2T

ρSp
− v∞cosα

]
(29)

where the α-based terms can be again passed-by by substi-
tution of equation 14. Notice also that equation 27 yields

v2∞,i = (wn − vn)2 + (wd − vd)2 + v2i + · · ·

· · ·+ 2vi

(
(q20 − q22)(vn − wn)− 2q0q2(vd − wd)

)
(30)

Finally, for aerodynamic forces and moments in the slip-
stream area we have

Lw =
1

2
ρv2∞,iSwCL(αi, δ) (31)

Dw =
1

2
ρv2∞,iSwCD(αi, δ) (32)

Mw =
1

2
ρv2∞,ic̄SwCM (αi, δ) (33)

where Sw denotes the wet area of the wing. In this work,
we shall model it as (see Fig. 4)

Sw = c̄Dp (34)

v∞,i

vi
v∞α

αi

Fig. 5. Computation of induced relative air velocity v∞,i and induced
angle of attack αi by means of superposition of flows assumption.

Fig. 6. SabRe (Soufflerie bas Reynolds) closed-loop wind tunnel facility.

and
Sd = S − 2Sw (35)

However, in the light of the moment theory [4] one can
show that the wet area Sw contracts before it reaches the
elevons and that vi changes along the slipstream direction.
These phenomena are hard to model in the presence of a
aerodynamic surface in the propeller wake thus we introduce
in this work the factor ki in equation 29 to take these effects
into account by modifying the induced velocity vi such that

vi =
ki
2

[√
(v∞cosα)2 +

2T

ρSp
− v∞cosα

]
(36)

The interaction factor ki should be tunned by means
of experimental data or computer fluid dynamics software.
Finally, substitution of equations 12 and 27 into 31, 32 and
33 yields nonlinear equations of the form of equations 37,
38 and 39.

Lw = pl,w(x,u,w) (37)

Dw = pd,w(x,u,w) (38)

Mw = pm,w(x,u,w) (39)

D. Putting it all together

The dynamic equations can then be written as

ẋ = f(x,u,w) (40)

where f : R9 → R5 is a nonlinear, non-trigonometric and
singularity-free function for all values normally encountered
in all stages of flight.

x̂bal

ŷbal x̂bal

ŷbal

Fig. 7. Two internal balance configurations.



1

2

3

ARM7 µCXbee
ω2

δ2,command

δ2

Fig. 8. MAVion wind tunnel model instrumentation.

III. PARAMETERS IDENTIFICATION AND FIXED POINTS

The mathematical model provides the means to exploit
isolated aerodynamic and propulsion data and predict the
behavior of the whole vehicle and reason over its design
features (e.g., mass, airfoil, propeller geometry). Therefore,
except for ki, the mathematical model parameters are either
pure geometric, aerodynamic or propulsion quantities and
can be identified separately.

While geometric quantities can be directly measured,
aerodynamic and propulsion coefficients call for wind tunnel
measurements. For the sake of completeness, this section
superficially describes the wind tunnel campaign that sup-
ported this work (see [11] for more information) and how
the longitudinal subset of the collected data was used to
interpolate the aerodynamic coefficients, tune the interaction
factor ki and validate the model. Propulsion identification
was carried out in [12] and the respective parameters (among
all others identified in this work) can be found in the
appendix section.

The experiments were ran at the SabRe closed-loop wind
tunnel (Fig. 6) located at ISAE and capable of delivering low
Reynolds stable and uniform flow at a wind velocity range
of 2 to 25 m/s, thus ideal for experimenting full-span micro

1

2 3
4 5 6 7

Xbee

ωt V∞

Fb,Mb

α

ω, δ

Fig. 9. Wind tunnel acquisition system set-up.

air vehicles. Although a 6-component study was performed
(3-dimensional forces and moments), this paper focus only
on longitudinal quantities, i.e., drag D, lift L and pitching
moment M measured with zero sideslip. Forces and mo-
ments were measured by means of a calibrated 5-component
internal balance in two different configurations (see figure 7)
in order to obtain the 6 force/moment components (see [11]
for more information).

−20 0 20 40 60 80 100

−0.5

0

0.5

1

C
L

(α
,δ

)

Aerodynamic coefficients

−20 0 20 40 60 80 100

0

0.5

1

1.5

2

C
D

(α
,δ

)

−20 0 20 40 60 80 100

−0.6

−0.4

−0.2

0

0.2

α (deg)

C
M

(α
,δ

)

δ = −30o

δ = −15o

δ = 0o

δ = +15o

δ = +30o

Fig. 10. LMS interpolated curves (solid lines) of the measured data (marks).

An adapted MAVion was manufactured for wind tunnel
campaign purposes (Fig. 1). Its main objectives were to
enable rigid installment of the internal balance in both con-
figurations and to provide a non-deformable airfoil section
to aerodynamic identification. Fig. 8 illustrates the electronic
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Fig. 11. Required velocity vn, elevon deflection δ, propeller speed ω and power P for achieving equilibrium at a given pitch angle θ. Notice that the
mathematical model does not model power requirements thus there is no model fixed points in the required power figure. Furthermore, power was estimated
by measuring the electric current into the system and accounts for motors, electronics, propellers engines and XBee radio transmission link.

counterpart. Notice that elevon deflections were measured
by means of potentiometers installed directly at the elevons
avoiding servo measurements that are susceptible to inaccu-
racy due to rod deformations and servo-control errors. On the
other hand, propellers speed were measured by the brushless
CC motors speed controllers.

The campaign data set is roughly divided in two parts.
The first was taken by independently setting the angle of
attack α, motor speed ω and flap deflection δ to the values
illustrated by table I. All combinations were exhaustively
explored and the associated forces and moments registered.
Notice that the unconventional nature of the vehicle calls for
an unconventional envelope of testing variables that include
very high angles of incidence. Fig. 10 isolates aerodynamic
data from propulsion data by plotting the experimental
aerodynamic coefficients in the wind coordinate system for
ω = 0 and different elevon deflections. Each coefficient point
is calculated by means of equations 5, 6 or 7, and later
interpolated by least mean-squares to fit equations 9, 10 and
11. The results are shown in Fig. 10.

The second data set comprises of wind relative velocity,
elevon deflection and propeller rotation required to achieve
static equilibrium in a given angle of attack. The experimen-
tal procedure fundamental idea is to, as previously done in
[13], for each sampled α, iteratively search for values V∞,
δi, ωi that will deliver aerodynamic/propulsion forces and
moments (notice gravitational suppression) that will cancel
gravitational forces and moments on the flying model; which
has a different mass distribution than the wind tunnel model
that is not meant to fly.

V∞ 10 m/s

α
−10, 0, 10, 20, 30, 40, 50,

deg
60, 70, 80, 90

ω 0, 400, 800 rad/s
δ −30,−15, 0, 15, 30 deg

TABLE I
FLIGHT VARIABLES TESTED IN LONGITUDINAL CONFIGURATION.
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The desired flying model mass distribution is such that
the center of mass is longitudinally located at a position
0.15c away from the leading edge and is motivated by a 10%
stability margin controls requirement. The results can be seen
in Fig. 11 along with power required curves. Furthermore, at
this stage, all mathematical model parameters are identified
except ki which is determined by

ki = arg min
ki

Np∑
j=1

f(xj ,uj ,0)TSf(xj ,uj ,0) (41)

where

xj =
(
vn,j 0 cos(

αj

2 ) sin(
αj

2 ) 0
)T

(42)

and
uj =

(
δj ωj

)T
(43)

where Np is the number of experimental points,
{vn,j , δj , ωj} are the experimental equilibrium variables for a
given αj , and S is a diagonal positive definite scaling matrix
to account for different orders of magnitude between f(·)

components. Finally, after identifying ki, the mathematical
equilibrium curves can be plotted by means of numerically
solving f(x,u,0) = 0 and compared with experimental
values for model validation. The results can be seen on Fig.
11.

The results validate the design by demonstrating that the
MAVion is capable of sustaining flight from 0m/s to 20m/s
in the absence of wind. Equivalently speaking, the MAVion
is capable of maintaining hover flight in adverse wind
conditions up to 20m/s. It is noted that MAVion maximum
speed was not reached in wind tunnel testing due to internal
balance strain gauge saturation and it is still an unknown.
However, the blow-up in propeller engine rotation ω for
small angles of attack in the equilibrium figures suggests an
upper bound of vn ≤ 20m/s. Finally, the elevator deflection
angle shows a maximum of δ = 27o at α = 40o, within the
range of the elevon aerodynamic efficiency. This confirms
that the propeller slipstream is strong enough to guarantee
pitch control throughout the entire transition flight.

Finally, the mathematical model allows for drag polar
computation (see Fig. 14) which defines the necessary angle



Require: Q,R > 0 for acceptable hover flight performance
Require: ρinit > 0,∆ρ > 0
i← 0
(xi,ui)← (xh,uh)
while ∃p ∈ F : p /∈ ∪ik=0R(ρk) do
i← i+ 1
ρ← ρinit
A← ∂f

∂x

∣∣∣
x=x0,u=u0

, B ← ∂f
∂u

∣∣∣
x=x0,u=u0

Compute LQR gain Ki for linear system ẋ = Ax̃+Bũ
while ẋTP x̃+ x̃TP ẋ < 0 ∀x̃ : V (x̃) < ρ+∆ρ do
ρ← ρ+ ∆ρ

end while
ρi ← ρ
Find (x∗,u∗) ∈ F : (x∗ − xi)

TP (x∗ − xi) = 0.70ρi
(xi+1,ui+1)← (x∗,u∗)

end while

Fig. 13. Summary of equilibrium trajectory fixed point sampling and global
scheduled LQR controller generation algorithm.

of attack αh (and consequently xh and uh) for maximum en-
durance. Such point will be defined as MAVion’s horizontal
flight cruise equilibrium point. On the other hand, the point
where vn = 0, i.e. hover equilibrium points xv and uv , can
be as well easily computed and both valors are illustrated at
table II among other flight quantities that derives from the
results from this section.

IV. CONTROL DESIGN AND STABILITY ANALYSIS

For the purpose of assessing local stability of an equilib-
rium point (x0,u0,0), consider the following linearization
of f(x,u,0)

ẋ = f(x,u,0) ≈ Ax̃ +Bũ (44)

where
A =

∂f

∂x

∣∣∣∣x = x0

u = u0

, B =
∂f

∂u

∣∣∣∣x = x0

u = u0

(45)

and
x̃ = x− x0, ũ = u− u0 (46)

Fig. 12 shows the poles of the open-loop transition matrix
A along the fixed point curves previously shown in Fig. 11. It
can be readily seen that the MAVion is longitudinally stable
during horizontal flight for values of θ as high as 42o. After
this value, MAVion operates in unstable fixed points that calls

Angle of attack for hovering αv = 90o

Angle of attack for horizontal flight αh = 15o

Maximum speed under good weather 20m/s
Maximum wind rejection under hover 20m/s

Cruise speed 12m/s
Maximum endurance 40min
Endurance in hover 10min

TABLE II
ESTIMATED FLIGHT QUANTITIES ASSUMING A 50G CAMERA PAYLOAD.

for nonlinear control techniques. Additionally, traditional
short-period and phugoid fixed-wing aircraft dynamics can
be exploited from the figure. For instance, for horizontal
cruise flight (α = 15o), MAVion experiences a reasonable
well damped (ξ = 0.76) short-period mode with period
T = 0.44 seconds that would be acceptable to human
pilots. Additionally, the phugoid mode delivers a more lightly
damped (ξ = 0.40) oscillation that can still be compensated
out due to its large period: T = 9.84 seconds.

The control technique employed herein to stabilize
MAVion during the horizontal-to-hover trajectory made up
of its fixed points is gain-scheduled linear quadratic regulator
(LQR) [14], [15], [16], [17]. This strategy computes the
linear controller ũ = −Kx̃ that minimizes the following
quadratic cost function:

J(ũ) =

∫ ∞
0

(x̃TQx̃ + ũTRũ)dt (47)

subject to the linearized system dynamics of Eq. 44 at a
fixed point (xi,ui). In this way, it is possible to transition
from one fixed point (xi,ui) to another close-by fixed point
(xi+1,ui+1) by means of a linear controller. A sequence of
such steps yields the global controller necessary to take the
MAVion from horizontal flight equilibrium point at (xh,uh)
to hover flight equilibrium point at (xv,uv).

The question that remains is how many equilibrium points
(and therefore different LQR controllers) are necessary to
cover the whole transition. For that, the region of attraction of
fixed points and the trajectory are simultaneously calculated
by means of Lyapunov level sets [7] according to the Algo-
rithm 13. The algorithm basically starts from one equilibrium
point (xi,ui) and attempt to prove its asymptotic stability
in the largest region R(ρ) of the form

R(ρ) = {x̃ ∈ R5 : V (x̃) < ρ} (48)
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Fig. 14. Aerodynamic drag polar and max endurance operating point.



by means of a Lyapunov candidate function of the form

V (x̃) = x̃TP x̃ (49)

for some positive definite P . For that to happen, the function
V (x̃) must respect

V̇ (x̃) = ẋTP x̃ + x̃TP ẋ < 0 ∀x̃ ∈ R5 : V (x̃) < ρ (50)

where
ẋ = f(x,−Kx̃,0) (51)

The largest ρ that satisfies equation 50 for a fixed point
(xi,ui) is denoted ρi. Given R(ρi), the next fixed point
(xi+1,ui+1) is chosen such that it is inside the region of
attraction of (xi,ui). For robustness, this work chooses
(xi+1,ui+1) ∈ F (F is defined hereafter as the set of
all equilibrium points in the horizontal-to-hover trajectory
defined in Fig. 11) such that

V (xi+1−xi) = (xi+1−xi)
TP (xi+1−xi) = 0.70ρi (52)

The procedure is summarized in Fig. 13 and yields the
regions of attraction illustrated by Fig. 12. It proves stability
for the scheduled LQR controller during the entire transition
flight if a minimum of 10 trim points are correctly chosen.
Since stability demonstrations by means of Lyapunov func-
tions deliver only sufficient conditions, it could be the case
that less trim points were necessary. Furthermore, the figure
additionally serves as a flight envelope which guarantees
stability during any longitudinal flight using this controller.

V. CONCLUSION

A longitudinal study of a tilt-body vehicle called MAVion
was conducted and included modeling, identification of pa-
rameters and design of a nonlinear controller to allow for
flight stability over all longitudinal flight envelope.

Aerodynamic coefficients were identified by means of a
wind tunnel campaign and the mathematical model accu-
rately predicted an equilibrium transition trajectory. Wind
tunnel data confirmed a maximum speed under good weather
of 20m/s and hover flight stability under adverse wind
conditions up to 20m/s. In the light of this results, MAVion
proved to be a good platform for outdoors not only because
of its horizontal flight mode but also for its good wind
rejection feature.

The study of the dynamic behavior described how sta-
ble fixed-wing aircraft phugoid dynamic modes turn into
unstable modes by studying the movement of linearized
system poles during an equilibrium trajectory. Furthermore,
a Lyapunov stability analysis took place to discover a suf-
ficient number of trim points to ensure controller stability.
Finally, the lateral/directional dynamics have to be studied
for outdoor flight under windy conditions to ensure that the
MAVion can follow a complex trajectory.
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