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Abstract—This paper investigates the vulnerability of several
micro- and nano-electronic technologies to a mixed harsh envi-
ronment involving high total ionizing dose at MGy levels and
high temperature. Such operating conditions emerge today for
several applications like new security systems in existing or future
nuclear power plants, fusion experiments, or deep space missions.
In this work, the competing effects of ionizing radiations and
temperature are characterized in elementary devices made of
MOS transistors from several technologies. First, devices are
irradiated using a radiation laboratory X-ray source up to MGy
dose levels at room temperature. Devices are either grounded or
biased during irradiation to simulate two major circuit cases: a
circuit which waits for a wake up signal, representing most of the
lifetime of an integrated circuit operating in a harsh environment,
and a nominal circuit function. Devices are then annealed at
several temperatures to discuss the post-irradiation behavior and
to determine whether an elevated temperature is an issue or not
for circuit function in mixed harsh environments.

Index Terms—Annealing, bulk silicon, fully depleted (FD), high
temperature, MGy irradiation, partially depleted (PD), silicon on
insulator (SOI), total ionizing dose (TID).

I. INTRODUCTION

LECTRONIC systems designed for harsh environments

are used in various applications, such as high energy
physics instruments, fusion reactors or space missions. Since
recent events which occur in Fukushima Daichii, they have
been pointed out as critical issues for safety systems in nuclear
facilities, when used to monitor parameters such as ionizing
radiation level, temperature or pressure levels either in the
nuclear core or in the spent-fuel pools of nuclear power plants
[1]. Radiation tolerant electronic components dedicated to other
applications like space exist [2], [3]. They are designed to meet
the specifications required for the targeted environment, which
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commonly implies lower Total Ionizing Dose (TID) levels
than those encountered by electronic components in the case
of an accident in nuclear power plant. For instance, most space
missions consider that devices and Integrated Circuits (ICs)
have to withstand less than 1 kGy while electronic systems in
nuclear power plants have to be hardened up to several MGy
ionizing doses. Specific studies should thus be performed to
identify technologies which may present enough hardening
potential to meet such requirements. Only few papers have
been dedicated to high TID effects in electronic devices [4], [5],
[6], [7]. Most of them discussed the hardening level of either
bulk or SOI technologies in the frame of the Large Hadron
Collider using dedicated test structures. More recently, a review
of the MGy dose effects induced in a wide range of modern
and innovative technologies including bulk, Partially Depleted
(PD) Silicon On Insulator (SOI), Fully Depleted (FD) SOI and
FinFET structures has been presented [8].

This paper being more focused on nuclear facilities, it
considers both high TID and high temperatures occurring in
nominal and accidental conditions. Few papers have already
addressed such mixed temperature and irradiation issues but
considering ionizing doses of about few Mrads [9], [10],
[11], two orders of magnitude lower than recent requirements
specified for nuclear power plants particularly in accidental
conditions. To the authors’ knowledge, the combination of
MGy irradiation and elevated temperature is considered as
the most constraining scenario for accidental conditions. Test
standards [12], [13] to qualify equipments designed for such
an environment thus recommend performing a two-step exper-
imental procedure, the first one being devoted to irradiations
up to MGy doses, followed by a thermodynamic test. The main
issue discussed in this paper is to determine how the temper-
ature affects the TID response of elementary test structures
fabricated in various technologies.

II. EXPERIMENTAL DETAILS

A. Devices

Three different technologies are studied in this paper to es-
timate their relative strengths and weaknesses in high TID and
temperature environments:

—0.18 pmconventional bulk I/O technology featuring

Metal-Oxide-Semiconductor (MOS) transistors designed
either with a standard Open Layout (OLT) or an Enclosed



TABLE I
NOMINAL VOLTAGE VS TECHNOLOGY

I/OBulk  PDSOI FDSOI

Technology 0.18 pm  0.13 uym 20 nm
Nominal

Voltage 3.3v 2V ooV

Layout (ELT). The nominal voltage of the technology is
33 V.

— 130 nm PDSOI technology featuring MOS transistors
processed on a SOI substrate with two designs: standard
Floating Body (FB) and Body Contacted (BC) devices.
The silicon film thickness is enough to prevent coupling
effects [14] occurring in the following FDSOI technology.
The nominal voltage of the technology is 1.2 V.

—20 nm FDSOI technology featuring open layout transis-
tors. One characteristic of this technology is that devices
and ICs can be processed on different base SOI substrates.
The silicon film thickness, the front-end and the back-end
of line processes are similar in all cases, but such ICs can
be fabricated on SOI substrates with various Buried OXide
(BOX) thicknesses Tpox = 145 nm, 25 nm or 11 nm.
This may affect the FDSOI device response to MGy dose
levels since it was already demonstrated to significantly
modify the TID response of such integrated devices at
10kGy [15].

Table I summarizes the nominal voltages used for each tech-

nology.

All devices are mounted in standard Dual-In Line packages

for both irradiation and temperature experiments.

B. Irradiation and Annealing Tests Description

First, devices are irradiated using a 10 keV X-ray laboratory
source at a constant dose rate of 50 Gy/s. The TID is deposited
in several steps up to a maximum of 1 MGy. Electrical measure-
ments are performed at each TID step. Static drain-current I vs
gate-voltage Vg electrical characteristics are measured with a
HP 4145 parametric analyzer through a Keithley 707 switching
matrix. All parameter extractions presented in this paper come
from these static measurements including the threshold voltage
V1, the subthreshold slope S~1, the transconductance g, the
drive current Ion (Ip at Vgg = Vpg = Vpp) and the leakage
current Iopr (Ip at Vgg = 0 Vand Vpg = Vpp).

Devices are either grounded or biased during irradiation. In
the following, these two bias configurations are referred as the
NULL-case and OFF-case respectively. In the NULL-case, all
terminals are grounded. The device can thus be considered in a
stand-by mode signal. In contrast, it is in its nominal bias con-
figuration when the device is biased during irradiation such as
in the OFF-state. In this bias case, only the drain electrode is bi-
ased to the nominal voltage of the technology Vp = Vpp when
other terminals are grounded. These two configurations aim at
representing most of the device functions to simulate the main
profile of use of electronic devices in such harsh operating con-
ditions, especially in accidental conditions, for which an IC is
most of the time in a stand-by mode.

Temperature

250 °C
200 °C
150 °C |-

25°C
>Time

1h 1h 1h

Fig. 1. Schematic of annealing steps performed during experiments. Electrical
measurements are performed at room temperature between each temperature
step.

Then, isochronal annealing experiments are performed using
a dedicated setup to investigate the effect of temperature. Three
annealing steps are done at 150°C, 200°C and 250°C, each of
them during 1 hour. Electrical measurements are always per-
formed at room temperature. A simple schematic of the an-
nealing steps is plotted in Fig. 1. The experimental setup is op-
timized to reduce to only few minutes the rise time and the fall
time between each temperature steps.

The first annealing step (1 hour, 150°C) is done to be con-
sistent with requirements described in standards for test of
in-containment instrumentation in accidental conditions [12],
[13]. The two others are performed to get additional insights on
temperature effects induced in highly irradiated silicon-based
devices and to discuss the phenomena at stake in a wider range
of operations.

III. MGY DOSE SENSITIVITY OF SI-BASED TECHNOLOGIES

Two major TID induced effects in MOS devices are reported
in the literature [16], [17], [18]: on the one hand the trapping of
radiation-induced generated charges in the oxide bulk, and on
the other hand the generation of interface traps at silicon-dielec-
tric interfaces. Physical mechanisms leading to oxide-charge
trapping and interface traps generation are widely studied since
it is needed to mitigate their effects on electronic device char-
acteristics. Their respective contributions are usually estimated
using the charge separation technique described in [19] which
allows to attribute a voltage, either Vo or Vi, and then a den-
sity NoT or Npr for oxide-trapped charge and interface traps
respectively.

In most cases, radiation-induced trapped charges are posi-
tive in MOS devices. It leads to the modification of electrical
characteristics of electronic devices and ICs depending on their
technology, architecture, fabrication process and geometry. This
may shift the electrical characteristics -V of MOS transistors
when the total amount of trapped charge is enough to change the
electrostatic potential in the active silicon layer. All main elec-
trical parameters (Vrpm,Ion and Iopr) can thus be modified
due to ionizing radiation. Furthermore, oxide-trapped charges
can also trigger uncontrolled parasitic conduction paths such as
parasitic lateral transistors due to trapping in field oxides [20],
enhanced narrow channel effects [7], [21] or parasitic back tran-
sistors in SOI technologies [22]. This could also shift the main
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Fig.2. DraincurrentIp vs gate voltage Vgs characteristics of two bulk NMOS
transistors: an Open Layout Transistor (OLT, top, a) and an Enclosed Layout
Transistor (ELT, bottom, b) before irradiation (black squares) and after 1 MGy
(red circles). Transistors are grounded during irradiation.

electrical characteristics of FDSOI devices due to both charge
trapping into the BOX and coupling effects inherent to this spe-
cific SOI technology [14], [15], [23], [24], [25].

In contrast, interface traps are either negative or positive in
NMOS or PMOS transistors respectively. In both cases, they
degrade the subthreshold slope S~ of I-V characteristics.

A. Bulk Technology

The TID behavior of I/O transistors fabricated using a
standard 0.18 pm bulk technology is investigated as in [21].
Fig. 2 shows the Ip — Vg characteristics obtained on a
standard Open Layout Transistor (OLT) with a wide design
(transistor width W = 10 pm and gate length Lg = 0.34 pm)
from pre-rad (black squares) up to 1 MGy (red circles). It
highlights the most relevant parameters which will be used in
the following of this study.

The open layout transistor (Fig. 2(a)) exhibits a significant in-
crease of the leakage current Iopg; this is due to the buildup of
oxide-trapped charge in field oxides which triggers the parasitic
lateral conduction [20]. By contrast and as expected, no signifi-
cant shift of the threshold voltage AV~ is observed, meaning
that Radiation-Induced Narrow Channel Effect (RINCE) [7],
[21] does not occur in the wide OLT (Fig. 2(a)). Even so, ra-
diation-induced effects occur at MGy dose levels despite the
fact that devices are grounded during irradiation. The device re-
sponse is less impacted than when devices are biased during
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Fig.3. Leakage currentshifts Alorr vs TID in Open Layout Transistors (OLT,
black squares) and Enclosed Layout Transistors either grounded (ELT, filled red
circles) or biased (ELT, open red circles) during irradiation.

irradiation [8] but the effect remains significant. Using an en-
closed geometry [7] in the transistors’ design (ELT, Fig. 2(b))
strongly mitigates these effects since oxide-charge trapping only
occurs in the thin gate oxide. In that case, Ip — Vg character-
istics are mostly changed due to the buildup of interface traps,
which only degrades the subthreshold slope and then the drive
current Loy.

Fig. 3 summarizes the leakage current increase with TID
measured on bulk devices. As expected, the ELT (red circles)
presents high TID tolerance with very limited modifications
of its electrical characteristics; devices being grounded (filled
red circles) or biased (open red circles) during irradiation. This
geometry features no interface between active silicon and thick
field oxides which intrinsically removes the parasitic lateral
conduction leading to the observed Iorr increase on the OLT
(black squares). Using ELT also mitigates the RINCE which
can occur in narrow transistors.

In the same time, Fig. 2 shows that the drive current Iy
decreases by about 30% at 1 MGy in both the OLT and the
ELT. This significant lowering of the drive-current with TID
must be considered in the circuit design to get margins enough
to prevent circuit failure due to the lowest drivability obtained
after irradiation. Actually, the circuit won’t be able to operate in
nominal conditions: a slower speed than the nominal one should
be used to ensure reliable circuit functions.

From the circuit design’s standpoint, the main drawback re-
mains the significant area penalty induced by this hardening by
design technique for both PMOS and NMOS transistors.

B. Partially Depleted SOI Technology

PDSOI technologies have already demonstrated their capa-
bilities to withstand MGy dose irradiations. In the late eighties,
pioneering works performed by Leray et al. [4], [5], [6] demon-
strated the hardening potential of SOI technologies to MGy dose
levels for Large Hadron Collider applications. More recently,
PDSOI devices designed with external body contacts exhibited
a very promising tolerance to MGy dose [8] either grounded
or biased during irradiation. In such devices, the buildup of
oxide-trapped charge in the BOX induces a parasitic back con-
duction which increases the leakage current Iopr for devices
biased during irradiation. By contrast, it was demonstrated that
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Fig. 4. Leakage current Lopp shifts induced after 1 MGy on a Body Contacted
transistor either grounded (filled squares) or biased (open squares) during irra-
diation.

when devices are grounded during irradiation, the amount of
trapped charge in the BOX is not enough to modify the elec-
trical characteristics even after 3 MGy. This is confirmed by the
parameter extractions plotted in Fig. 4 for body contacted de-
vices only. Actually, all other electrical parameters are almost
unaffected by TID.

The Iopr current slightly increases from 0.3 MGy for devices
grounded (filled squares) or biased (open squares). The leakage
current shifts reach less than 2 nA at 1 MGy which stays within
very low leakage current range. In this particular case, Alpgr is
larger when the device is grounded during irradiation than when
it is OFF-biased. Actually, the OFF-case does not seem to be the
worst case for such a device. Indeed, larger modifications have
been presented in [8] for similar devices biased in the ON-state
during irradiation (gate biased to the nominal voltage, other ter-
minals grounded). However, one should note that the Algrg
presented in Fig. 4 are still small despite the high TID value.
Such a technology appears highly tolerant to TID all the more
because the drive current Ion stays within the same value (less
than 2% change, not shown here, see Fig. 7 in Section III-D for
more details) even after a 1 MGy irradiation.

By contrast, PDSOI transistors with a standard design
without external body contacts, named as floating body tran-
sistors, behave in a different manner which will be close to
the one of bulk transistors studied in the previous section.
Floating body transistors feature interfaces between the active
silicon and field isolations contrary to body contacted devices.
Such devices then suffer from the inherent parasitic lateral
conduction due to buildup of oxide-trapped charge in field
oxides leading to potential additional Iorr increase.

C. Fully Depleted SOI Technology

Finally, the FDSOI technology offers better scalability for
nanometer scale era than both bulk and PDSOI technologies.
This technology provides high performances, low power con-
sumption and improved process variability [26], [27] which are
all key issues for highly integrated technologies intended for
commercial market. However, its TID sensitivity is strongly
governed by oxide-charge trapping in the BOX which modifies
the main electrical characteristics due to electrostatic coupling
effects inherent to the FDSOI structure [14]. Some papers [15],
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Fig. 5. Ion — lorr characteristics as a function of TID on FDSOI transistors
processed on SOI substrates with a BOX thickness Tgox = 145 nm (black
squares), Teox = 25 nm (red circles) and Tgox = 11 nm (blue triangles).
Transistors with both a short gate length (Lg = 70 nm, filled symbols) and a
long gate length (L = 1 pm, open symbols) are plotted for each SOI substrate
option. Devices are grounded during irradiation.

[23], [24], [25] show that the TID sensitivity of FDSOI tech-
nologies is mainly driven by the body doping level, designed
with or without body contacts, the gate length and above all the
buried oxide thickness. All studies previously published were
dedicated to TID below 10 kGy, so the following investiga-
tions will focus on the TID behavior of FDSOI transistors fabri-
cated on various SOI substrates, i.e. various BOX thicknesses,
at MGy dose levels. All devices were fabricated using a sim-
ilar process leading to the same active silicon thickness, gate
stack and doping levels. Their TID responses can thus be di-
rectly compared.

Fig. 5 summarizes the Ion — Iopr characteristics of FDSOI
devices on three different SOI substrates: Tgox = 145 nm
(black squares), Tpox = 25 nm (red circles) and Tpox =
11 nm (blue triangles). Results for transistors with both a short
gate (filled symbols) and a long gate (open symbols) are dis-
played.

Short gate transistors all exhibit significant modifications of
their electrical performances with TID. The drive currents Iopp
increase by several decades when Ipy almost decreases with
TID, especially on the device with Tgpox = 145 nm (filled
black squares). Decreasing the BOX thickness down to the
thinnest value Tpox = 11 nm enhances the TID tolerance by
reducing the shifts reported both on Ion and Igrp compared to
the other SOI substrate options. This is even more obvious on
transistors with a long gate length (Lg = 1 pm, open blue tri-
angles). Only the drive current Iy exhibits variations but with
a leakage current Ioppp which stays within the same order of
magnitude. Furthermore, results obtained on devices processed
with Ultra-Thin BOX (UTB) substrates (Tgox = 25 nm and
11 nm) are characteristic of their overall TID behavior since
it was previously demonstrated that this behavior does not
change with bias configuration during irradiation [15]. These
promising results indicate that FDSOI devices may withstand
high TID levels with appropriate substrate and design options,
both if grounded or biased during irradiation. Obviously, stan-
dard thick BOX (Tgox = 145 nm) devices do not present
such characteristic, the NULL case being the one presenting
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Fig. 6. Ion — lopr characteristics as a function of TID on FDSOI transis-
tors processed on SOI substrates with a BOX thickness Tgox = 145 nm
(filled symbols) and Tgox = 25 nm (open symbols), grounded (squares) or bi-
ased (circles) during irradiation. Transistors have an extremely short gate length
LG = 30 nm.

the weakest TID induced modifications. So, the TID response
of nanometer-scaled transistors with Lg = 30 nm either
grounded (black squares) or biased (red circles) during irradi-
ation processed on two different SOI substrates is presented
in Fig. 6 within an IonvsIopr plot. Devices are fabricated on
substrates with a BOX thickness of either Tgox = 145 nm
(filled symbols) or Tgox = 25 nm (open symbols).

Fig. 6 clearly highlights the bias dependence of the FDSOI
devices’ TID response at MGy dose levels. Thick BOX devices
(filled symbols) exhibit a clear bias dependence of their TID
responses when the one of thin BOX devices (open symbols)
is not anymore governed by the bias configuration during irra-
diation as already observed at lower TID in [15]. Ion — IoFr
characteristics of thick BOX devices (Tgox = 145 nm) are
clearly separated when measurements performed on transistors
processed on the SOI substrate with Tgox = 25 nm (open sym-
bols) are nearly superimposed. Thin BOX devices present a sig-
nificant increase of the leakage current Iopr with TID, but their
functionality do not suffer from any drive-current Ioy degra-
dation. Fig. 6 basically shows the opposite behavior with an
improvement of Iox with TID which can be attributed to both
the radiation-induced shift of the electrical characteristics and
the stronger coupling effects with BOX thinning. This specific
property may be beneficial to enhance the FDSOI devices’ TID
tolerance at MGy levels since the transistor drivability is not
degraded contrary to what is observed on thick BOX devices.
If the requirements needed by the final application can manage
increase of the leakage current, thus of the power consumption,
such technology may present interesting properties to operate
in harsh environment with a reduced cost related to the design
hardening.

D. Discussion on the Hardness Potential of Modern
Technologies Submitted to High TID

All investigated technologies show TID behaviors directly
linked to their architecture, fabrication process, design and ge-
ometry. However, using the appropriate design options allows
enhancing their TID tolerance. Fig. 7 summarizes the Ion —
Iorr plots obtained on the most TID tolerant device for each
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Fig. 7. lon — lorr characteristics as a function of TID on FDSOI transistors
for bulk (black squares), PDSOI (red circles) and FDSOI (blue triangles) tech-
nologies. Devices are grounded during irradiation.

studied technology: bulk (black squares), PDSOI (red circles)
and FDSOI (blue triangles).

As a main conclusion, results presented in Fig. 7 show that
all devices are still functional after a 1 MGy irradiation. Their
electrical characteristics change with TID but in all cases they
could be managed using the appropriate margins in the circuit
design. The entire Ion — Iopr characteristics must be consid-
ered, and not only the pre- and post-irradiation results, which
do not necessarily give the largest TID-induced modifications.
In the case of an accident in a nuclear facility, the choice of a
technology will probably be driven by the circuit function and
reliability rather than by its power consumption. Indeed, one
may consider that in such environment, the power consumption
of a stand alone circuit will not be the first critical parameter
compared to its functionality and reliability. The requirements
on the drive current stability with TID would be a greater issue
than the one of the leakage current.

IV. IMPACT OF ELEVATED TEMPERATURE ON MGY DOSE
SENSITIVITY

The experiments should represent the real environment as
much as possible. Elevated temperatures have thus to be con-
sidered in addition to ionizing radiations for security systems
in nuclear facilities. Standards for tests in such conditions rec-
ommend to anneal irradiated devices for one hour at 150°C
to qualify equipments submitted to mixed harsh environments
[12], [13]. Such tests have been performed on all irradiated de-
vices presented previously but they are also completed with ad-
ditional experiments performed up to 250°C in order to discuss
the annealing behavior of electronic devices in a wider range of
operations.

Elevated temperatures in MOS devices usually induce re-
covery of radiation-induced effects [16]. Radiation-induced
oxide-trap charges could be detrapped when point defects
responsible for interface traps may anneal. So, elevated
temperature may be an efficient way to recover electrical
characteristics of pristine integrated circuits. However, using
elevated temperatures is also a way to perform dynamic “life
tests” which speeds up the ageing of electronic components.
Irradiated devices may apparently recover electrical charac-
teristics close to their initial ones but they could also suffer
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transistor is grounded both during irradiation and annealing.

from a degraded reliability and thus a strongly lower remaining
lifetime than at room temperature.

Fig. 8 presents the typical recovery observed on irradiated
MOS transistors after annealing experiments at elevated tem-
peratures: the subthreshold slope retrieves its initial value,
meaning that most interface traps are annealed after 250°C
(red circles) in this transistor. The Ip — V@gg characteristics
of the ELT annealed at 250°C superimposed the characteristic
measured on this transistor before irradiation (not shown for the
sake of clarity) meaning that the major part of radiation-induced
degradation are annealed. Such plot cannot be presented for the
PDSOI transistor since no reliable parameter extractions can
be done due to the weak impact of ionizing radiations induced
on electrical characteristics of these transistors. Actually, no
significant oxide charge and interface traps buildup occurs in
the tested PDSOI devices.

FDSOI devices exhibit I-V characteristics which retrieve
their initial shape after annealing in Fig. 9. It highlights that the
I-V curve of the device that experienced a 1 MGy irradiation
followed by 250°C annealing (blue triangles) is closely shaped
like the pristine one (black squares). It means that a strong
annealing of both the oxide-trap charge and the interface traps
occurs in the gate oxide and in the buried oxide and at each
silicon-oxide interfaces respectively. These phenomena are
enough to recover electrical characteristics close to the pristine
one after the 150°C annealing step (green hexagons). These re-
sults are very promising since the elevated temperature mostly
counterbalances the ionizing dose effects reported in FDSOI
devices even in the nominal qualification test conditions.

Elevated temperatures strongly reduce the influence of TID
on the interface traps buildup in MOS devices even at MGy
dose levels. This is summarized in Fig. 10 where the Ion —
Iorr characteristics obtained on the three tested technologies
are plotted. All Iopn — Iorr characteristics retrieve values close
to their initial ones for all tested devices.

However, one should consider the entire “story” of the de-
vices characteristics’ instead of only looking at the pre-irradia-
tion, post-irradiation and post-annealing results. If so, most of
the information on the TID and annealing behaviors would have
been lost. This may lead to take circuit design margins which do
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Fig. 10. Ion — lorr characteristics as a function of TID on FDSOI transis-
tors for bulk (black squares), PDSOI (red circles) and FDSOI (blue triangles)
technologies. Annealing results are presented for each technology with open
symbols for 150°C,200°C and 250°C. Devices are grounded during irradia-
tion and annealing experiments.

not include the largest modifications induced by TID and tem-
perature on the electrical characteristics.

Furthermore, elevated temperatures may degrade the intrinsic
reliability of electronic devices and then reduce their lifetime by
several years. This should be quantified by additional dedicated
tests to foresee the failure probability of security systems and
their replacement periodicity.

Finally, the test procedure presented in this paper only in-
volves “irradiation then temperature” tests. It never takes into
account the effect of ionizing radiation with temperature at the
same time which represents the more realistic test case com-
pared to real accidental conditions. However, it was demon-
strated recently by Girard et al. [28] that it may strongly affect
the radiation response of optical fibers which show higher TID
induced degradation of their optical propagation properties con-
trary to what is usually assumed. It should then be checked using
dedicated experiments in electronic devices as well to ensure
that “irradiation THEN temperature” tests are still relevant than
their “irradiation AND temperature” counterparts for modern
and innovative technologies. Finally, these first results obtained
using 10 keV x-rays on modern technologies should be by to



gamma radiation experiments which are more representative to
the real environment.

V. CONCLUSION

This paper reviews the TID behavior of several micro- and
nano-electronic devices at MGy dose levels combined with el-
evated temperatures. The experimental results show that de-
sign rules specific to each technology are required to ensure de-
vice functionality at MGy dose levels under elevated tempera-
ture. This paper also highlights that one has to take the entire
electrical characteristics shifts’ induced by ionizing radiations
and elevated temperatures to take margins enough to prevent
any circuit function failure instead of taking only the pre- and
post-TID/temperature test results. At first glance, elevated tem-
peratures lower MGy ionizing dose-induced effects but their im-
pacts on the intrinsic reliability and lifetime of electronic de-
vices have to be quantified to properly qualify electronic sys-
tems designed for mixed harsh environments. Furthermore, ded-
icated studies should be performed to ensure that usual test pro-
cedures to qualify electronic devices operating in a mixed envi-
ronment involving ionizing radiation and high temperature are
still relevant for innovative and technologies.
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