
  

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 14533 

To link to this article : DOI : 10.1016/j.jcp.2015.10.050
URL : http://dx.doi.org/10.1016/j.jcp.2015.10.050 

To cite this version : Guo, Jianwei and Veran-Tissoires, Stéphanie and 
Quintard, Michel Effective surface and boundary conditions for 
heterogeneous surfaces with mixed boundary conditions. (2016) 
Journal of Computational Physics, vol. 305. pp. 942-963. ISSN 0021-
9991 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Effective surface and boundary conditions for heterogeneous 

surfaces with mixed boundary conditions

Jianwei Guo a, Stéphanie Veran-Tissoires a,b,∗, Michel Quintard a,c

a Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), 31400 Toulouse, France
b Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
c CNRS, IMFT, 31400 Toulouse, France

a b s t r a c t

Keywords:

Heterogeneous surface
Multi-domain decomposition

Closure problems

Effective surface
Effective boundary conditions

To deal with multi-scale problems involving transport from a heterogeneous and rough 
surface characterized by a mixed boundary condition, an effective surface theory is 
developed, which replaces the original surface by a homogeneous and smooth surface 
with specific boundary conditions. A typical example corresponds to a laminar flow over a 
soluble salt medium which contains insoluble material. To develop the concept of effective 
surface, a multi-domain decomposition approach is applied. In this framework, velocity 
and concentration at micro-scale are estimated with an asymptotic expansion of deviation 
terms with respect to macro-scale velocity and concentration fields. Closure problems for 
the deviations are obtained and used to define the effective surface position and the 
related boundary conditions. The evolution of some effective properties and the impact 
of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, 
comparisons are made between the numerical results obtained with the effective models 
and those from direct numerical simulations with the original rough surface, for two kinds 
of configurations.

1. Introduction

Transport phenomena taking place over heterogeneous and rough surfaces can be found in a wide range of processes, 
such as dissolution, drying or ablation to cite a few. The surface characteristic length-scale (linked to the heterogeneities) is 
generally much smaller than the scale of the global mechanism. In these circumstances, direct numerical simulations (DNSs) 
become difficult to achieve in practical applications. Indeed, DNSs are only possible when the two length-scales have more 
or less the same order of magnitude. To overcome this difficulty, a traditional way of solving such problems is to incorporate 
the micro-scale behaviors into a boundary condition over a smooth, “homogenized” or effective surface.

In [1–3], domain decomposition and multi-scale asymptotic analysis were first introduced to develop an effective surface 
and the associated boundary conditions for the flow over a rough solid–liquid surface. Later, the effective surface concept 
was used to describe ablation processes in aerospace [30] and nuclear safety [15] contexts. Different from these works which 
employed asymptotic method, Wood et al. [33] obtained a spatially smoothed jump condition for the originally non-uniform 
surface with volume averaging technique. For sake of simplicity, most of the previous studies ignored the geometry changes 
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Nomenclature

Roman symbols

A closure variable for the velocity (dimension-

less)

a closure variable for the concentration (dimen-

sionless)

Aβγ surface area of the soluble material in Äi m2

Aβσ surface area of the insoluble material in 
Äi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

B closure variable for the velocity . . . . . . . . . . . . m

b closure variable for the concentration . . . . . . m

br roughness width . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

c concentration of the dissolved species defined 
in Ä . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm−3

ceq thermodynamic equilibrium concentration of 
the dissolved species . . . . . . . . . . . . . . . . . . kgm−3

ci concentration of the dissolved species defined 
in Äi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm−3

c̃i concentration deviation of the dissolved 
species in Äi . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm−3

c0 concentration of the dissolved species defined 
in Ä0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm−3

D diffusion coefficient of the dissolved 
species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

Da Damköhler number (dimensionless)

Daveff effective Damköhler number at 6v
eff

(dimen-

sionless)

D̂a mean Damköhler number over surface 6 (di-

mensionless)

e1 unit normal vector linked to x (dimensionless)

e2 unit normal vector linked to y (dimensionless)

hr roughness height . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

k reaction rate coefficient at 6 . . . . . . . . . . . m s−1

kγ reaction rate coefficient at 6βγ . . . . . . . . m s−1

kσ reaction rate coefficient at 6βσ . . . . . . . . m s−1

k0
eff

effective reaction rate coefficient at 
y = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

kc
eff

effective reaction rate coefficient at 
6c

eff
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

kv
eff

effective reaction rate coefficient at 
6v

eff
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

kw
eff

effective reaction rate coefficient at 
y = w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

k̂v surface average reaction rate coefficient at 
6v

eff
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

l micro-scale characteristic length. . . . . . . . . . . . m

li width of Äi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

L macro-scale characteristic length . . . . . . . . . . . m

m closure variable for the pressure . . . . . Pa sm−1

nls unit normal vector on 6 pointing towards the 
solid (dimensionless)

n0,i unit normal vector on 60,i pointing towards 
the wall (dimensionless)

p pressure defined in Ä . . . . . . . . . . . . . . . . . . . . . . Pa

p0 pressure defined in Ä0 . . . . . . . . . . . . . . . . . . . . . Pa

pi pressure defined in Äi . . . . . . . . . . . . . . . . . . . . . . Pa

Pel micro-scale Péclet number (dimensionless)

p̃i pressure deviation defined in Äi . . . . . . . . . . . Pa

Rel micro-scale Reynolds number (dimensionless)

ReL macro-scale Reynolds number (dimensionless)

s closure variable for the pressure . . . . . . . . . . Pa s

Sc micro-scale Schmidt number (dimensionless)

u fluid velocity defined in Ä . . . . . . . . . . . . . . m s−1

ui fluid velocity defined in Äi . . . . . . . . . . . . . m s−1

ũi fluid velocity deviation in Äi . . . . . . . . . . . m s−1

u0 fluid velocity defined in Ä0 . . . . . . . . . . . . . m s−1

U magnitude of macro-scale velocity . . . . . m s−1

wc
x distance between 60 and 6c

eff
. . . . . . . . . . . . . . m

w v
x distance between 60 and 6v

eff
. . . . . . . . . . . . . . m

x abscissa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

y ordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

β subscript referring to the fluid phase
δ effective surface position. . . . . . . . . . . . . . . . . . . . m

δc position of effective surface under thermody-

namic equilibrium (dimensionless)

δv position of effective surface with no-slip con-
dition (dimensionless)

γ subscript referring to soluble phase
σ subscript referring to insoluble phase
µ fluid dynamic viscosity . . . . . . . . . . . . . . . . . . . . Pa s

Ä global domain

Ä0 subdomain associated with length scale L
Äi pseudo-periodic unit cell
ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm−3

ργ density of soluble medium . . . . . . . . . . . . kgm−3

ρσ density of insoluble material . . . . . . . . . . kgm−3

6 rough solid–liquid interface
6βγ interface between β and γ phases

6βσ interface between β and σ phases

60 fictitious surface separating Ä0 and Äi

60,i restriction of 60 in Äi

6e upper surface of Ä
6c

eff
effective surface under thermodynamic equi-
librium

6v
eff

effective surface with no-slip boundary condi-
tion

6l lateral surface of Ä
6l,i periodic surface lateral surface of Äi



and considered fixed boundaries. In a few studies, these geometry changes were taken into consideration. Vignoles et al. 
[31] ran DNSs for ablation of heterogeneous media. A recent study by Kumar et al. [21] also considered geometry changes 
explicitly when upscaling the reactive flow in a domain with oscillating boundaries, using matched asymptotic expansions.

While there are some similarities, one should not mix the solid–liquid problem with the problem of fluid flowing over a 
porous medium domain. For this latter case, one seeks to link a macro-scale description of the flow in the porous medium 
(e.g. Darcy’s law) to a free fluid flow description in the channel (e.g., Navier–Stokes or Stokes equations). Different effec-
tive boundary conditions have been proposed [6,10,26] for the momentum balance equations. Formal developments using 
homogenization techniques can be found in [10,17,18,20,26]. Different upscaling methods such as volume averaging and 
asymptotic expansions have been implemented in order to obtain effective boundary conditions for various transport prob-
lems [1,9,13,24,25,29,32].

In this work, the problem under consideration is mass and momentum transfer in a laminar boundary layer over a 
heterogeneous rough surface with mixed boundary conditions. Part of the surface is subject to a Dirichlet condition or a 
reactive Neumann condition while the rest is subject to a no-flux Neumann condition. Such problems arise, for instance, 
when dealing with dissolution processes, especially on large-scale cavity formation in geological structures (solution mining, 
karst formations, etc.). The geometry, propagation and some other aspects related to roughnesses generated by dissolution 
were studied experimentally and theoretically in [7]. A similar mathematical problem appears when one considers the 
drying rate of a porous surface with wet and dry patches [27] or for atmosphere-scale problems [5]. Taking the development 
of karstic cavity for example, it often involves multi-scale problems as schematically represented in Fig. 1. It is generally 
difficult to take into consideration the small-scale heterogeneities over the wall surface while working at the cavity scale. 
Therefore, the implemented models of such dissolution problems take in practice the form of an effective surface modeling, 
with a heuristic boundary condition. In general one uses the Dirichlet condition as the macro-scale boundary condition, 
even if heterogeneities (e.g., insoluble material) and roughnesses are present. The position of the effective surface itself is 
guided by meshing consideration without an explicit link to the physics of the problem. These questions are addressed in 
this paper and a methodology is proposed to build and position the effective surface with appropriate boundary conditions.

Two length scales are important to describe the phenomena taking place at the rough surface: one is the characteristic 
length of the large-scale cavity, L, for instance the depth of the large-scale boundary layer developing over the rough surface, 
and the other one is the roughness length scale l. As illustrated in Fig. 1, a fluid β in domain Ä is flowing over a rough, 
heterogeneous surface 6, made of a salt medium γ and an insoluble material σ . Mass transport over the rough surface in 
contact with the fluid can be modeled by different boundary conditions. In case I, the surface is assumed to be composed 
by patches under thermodynamic equilibrium (6βγ ), with surrounding areas with no flux (6βσ ). In case II, the boundary 
condition at 6βγ is replaced by a reactive one. Generally, the surface dissolution rate of a chemical species can be expressed 
under the form [16,22]:

Rdiss = ks

(
1−

cs

ceq

)n

(1)

where cs is the total chemical concentration at the surface, ceq the equilibrium concentration with respect to the dissolving 
species and ks the surface reaction rate coefficient.

The steady-state mass and momentum transfer problem can be described as follows

Pb I in Ä

ρ (u · ∇)u− µ△u+ ∇p = 0 in Ä (2)

∇ · u = 0 in Ä (3)

u · ∇c = ∇ · (D∇c) in Ä (4)

u = 0 at 6 (5)

(B.C. I) c = ceq at 6βγ (6)

or (B.C. II) − nls · D∇c = −kγ ceq
(
1− c

ceq

)
at 6βγ (7)

−n · D∇c = 0 at 6e, 6βσ and 6r (8)

c = 0 at 6l (9)

n · (−pI + µ(∇u+ ∇uT )) = 0 at 6e and 6r (10)

u = U0e1 at 6l (11)

where, kγ is the reaction rate coefficient in ms−1, n is the normal vector pointing outward from the studied domain at 6e , 
6l , 6r and the later mentioned 6l,i , and U0 denotes the magnitude of the inlet velocity. One has n = nls at 6βσ , with nls

the normal vector of 6 pointing towards the solid phase. B.C. I and B.C. II refer to case I and case II problems, respectively. 
It is worthy noticing that the no flux condition at 6e and the constant velocity condition at 6l are not unique, which can 
be replaced, for instance, by zero concentration condition at 6e and constant pressure at 6l , respectively.



Fig. 1. Multi-scale description of the system. The dissolving medium is denoted as γ -phase and the non-dissolving part as σ -phase.

Fig. 2. Close-up view of the velocity field near the rough surface.

Eq. (7) has a form similar to the rate laws proposed in [11,12,28] for limestone and gypsum dissolution. First order 
reaction, i.e., n = 1, is considered in this study. Additional assumptions are used: the fluid is incompressible and its physical 
properties do not vary significantly with concentration. Hydrostatic pressure has been included in the field p. While we have 
in mind potential evolution of the surface 6 due to the dissolution process, it was assumed that the relaxation time for the 
transport problem is smaller at the roughness scale than the one of the dissolution process. Therefore, the transport problem 
is considered at steady-state for a given geometry. Such an assumption is valid when the momentum balance problem is 
independent of the concentration field, i.e., the velocity of geometry evolution is small compared to the relaxation of the 
viscous flow. For instance in the case of gypsum dissolution in water, the characteristic times for the viscous flow relaxation 
and the interface dissolution are about 1 s and 104 s, respectively, for a characteristic length of 1 mm. This example is 
representative of our considered condition. The evolution of the geometry is not within the scope of this paper.

A typical solution of this multi-scale problem would feature large-scale evolution of the pressure, velocity and concentra-
tion far from the surface and deviations from this large-scale pattern in the neighborhood of the roughnesses. This situation 
is schematically represented in Fig. 2. A bulk domain Ä0 is defined where the variables do not show fluctuations induced 
by the roughnesses at the l-scale, and a series of elementary volumes Äi are defined which contain the wall perturbations, 
roughness and heterogeneity. Assuming periodicity is typical of most situations and this assumption is adopted in this pa-
per. Clearly, this suggests that some kind of effective boundary condition may be imposed at the surface of 60 in order to 
reproduce the same bulk fields. One technique to derive effective surface and effective boundary conditions is based on a 
multi-domain decomposition method, as illustrated by [1,15,30]. The idea is to solve the flow and mass transport problems 
in each Äi by introducing an asymptotic expansion of deviation terms based on the macro-scale bulk velocity and concen-
tration fields. In general, closure problems may be found for variables mapping the deviations onto the bulk variables and 
their derivatives. This can be used to provide a set of effective boundary conditions applied at the boundary 60 . It is often 
interesting to place the effective surface in a location different from 60 for sake of efficiency, which will be discussed in 
Section 3. Effective parameter calculations will be provided in Section 4. Finally, two comparisons of direct numerical sim-

ulations results and effective surface results are given in Section 5, which allows us to discuss the practical implementation 
of the effective surface model, and in particular the choice of the “optimal” position of the effective surface.

2. Multi-domain decomposition

As previously introduced, the characteristic length-scale of the rough heterogeneous surface, l, is much smaller than 
the one of the global domain Ä, L, e.g., the depth of the large-scale boundary layer. Therefore, we can assume that all 
fluctuations of velocity and concentration resulting from the wall non-uniformity vanish far from the wall. The Ä domain 
may be decomposed into a global external subdomain Ä0 (with ⋆0 quantities) and local subdomains Äi (with ⋆i quantities) 
by introducing an arbitrary surface 60 , as done in [1,15,30]. Surface 60 should be located at an appropriate position to 
ensure that all fluctuations are contained in Äi subdomains and that the assumption l ≪ L is valid. This decomposition is 
illustrated in Fig. 3.

With the assumption that the wall surface 6 has a periodic structure, the initial problem can be decomposed into a 
Ä0 problem and a series of Äi problems. For sake of simplicity, the development is presented in 2D ((e1,e2) plane) and 



Fig. 3. Multi-domain decomposition.

is sketched in Fig. 3. Vector e1 (x-coordinate) corresponds to the infinite flow direction, e2 (y-coordinate) and n0,i , the 
normal vector to 60,i , are pointing from Ä0 towards Äi . Velocity, pressure, concentration, mass flux and stress tensor are 
continuous across the fictitious surface 60,i , which refers to the intersection between Ä0 and Äi :

u0 = ui (12)

p0 = pi (13)

c0 = ci (14)

n0,i · (−D∇c0 + u0c0) = n0,i · (−D∇ci + uici) (15)

n0,i · (−p0I+ µ(∇u0 + ∇uT
0 )) = n0,i · (−piI+ µ(∇ui + ∇uT

i )) (16)

With these continuity conditions taken into account, the decomposed Ä0 and Äi problems can be written separately as 
follows:

Pb II (in Ä0) (i.e., macro-scale problem)

ρ (u0 · ∇)u0 − µ△u0 + ∇p0 = 0 in Ä0 (17)

∇ · u0 = 0 in Ä0 (18)

u0 · ∇c0 = ∇ · (D∇c0) in Ä0 (19)

c0 = 0 at 6l/Ä0 (20)

−n · D∇c0 = 0 at 6e and 6r/Ä0 (21)

n · (−p0I+ µ(∇u0 + ∇uT
0 )) = 0 at 6e and 6r/Ä0 (22)

u0 = U0e1 at 6l/Ä0 (23)

where, 6l/Ä0 and 6r/Ä0 denote the parts of lateral boundaries contained in Ä0 .

Pb III (in Äi) (i.e., micro-scale problem)

ρ (ui · ∇)ui − µ△ui + ∇pi = 0 in Äi (24)

∇ · ui = 0 in Äi (25)

ui · ∇ci = ∇ · (D∇ci) in Äi (26)

ui (x+ li) = ui(x) at 6l,i (27)

pi (x+ li) = pi(x) at 6l,i (28)

n · (−piI+ µ(∇ui + ∇uT
i )) = 0 at 6l,i and 60,i (29)

ci (x+ li) = ci(x) at 6l,i (30)

ui = 0 at 6 (31)

−n · D∇ci = 0 at 6βσ and 6l,i (32)

(B.C. I) ci = ceq at 6βγ (33)

or (B.C. II) − nls · D∇ci = −kγ ceq
(
1−

ci
ceq

)
at 6βγ (34)



The periodic boundary conditions are based on the assumption that the transverse flux through 6l,i is negligible com-

pared to the one across 60,i .

Solving these problems in a direct manner will make little benefit compared to DNSs. To gain computational efficiency, 
one should seek for generic expressions of variables in Äi subdomains and describe the microscopic behaviors by some 
kind of averaging, instead of considering all the details induced by the surface non-uniformity. Asymptotic expansions are 
used in the next section to estimate ui and ci at first order. By solving the closure problems, these estimates are found and 
effective boundary conditions are built for effective surfaces defined at different positions.

3. Effective boundary conditions

Since first proposed by Carrau [8], effective boundary conditions, or wall laws, have been the research topic of many 
scholars. With a multi-domain decomposition technique and an asymptotic approach, Achdou et al. [1–4] studied both 
mathematically and numerically the problem of laminar flows over periodic rough surfaces with no-slip condition. This 
problem was reviewed by Jäger and Mikelić, including the problem of the interface between a liquid domain and a porous 
domain [18–20]. Veran et al. [30] and Introïni et al. [15] developed the concept of effective surface for momentum and 
mass (or heat) transfer on a rough surface, with a particular attention on the question of positioning the effective surface. 
This paper makes use of similar ideas, incorporating not only the reactive case as in [30] (with a different expression of the 
reaction rate suitable for dissolution problems), but also the case of surface under thermodynamic equilibrium and taking 
into account parts of the surface corresponding to insoluble or non-reactive material.

In this section, the momentum and mass transfer problems are solved separately. Assuming that the flow properties 
are independent of c, the momentum problem can be decoupled from the mass transport one. The momentum transfer 
problem has already been worked out in the above cited literature. Therefore, the development is reviewed rapidly for the 
reader’s understanding, following notations and presentation proposed in [15,30]. First, estimates of ui and pi are made by 
the sum of macroscopic terms and deviations. Then the macroscopic terms are developed by Taylor expansion from 60 . The 
deviation terms are decomposed by means of closure mapping variables. Closure problems are then used to get first order 
estimates of the deviations, and this in turn can be used to determine the effective boundary conditions. The problem for 
mass transfer is solved in a similar manner.

3.1. Momentum effective boundary conditions

As detailed previously, the micro-scale variables are partitioned as shown below

ui = u+ ũi, pi = p + p̃i (35)

where, ũi , p̃i and later mentioned c̃i are the deviations, defined as the difference between micro- and macro-scale variables. 
The global field u and p are equal to u0 and p0 in Ä0 and are smooth continuations of these fields in Äi . Approximating u
and p in Äi with Taylor expansion in the normal direction to 60 , ui and pi can be estimated as

ui = u0|y=0 + y · ∇u0|y=0 +
1

2
yy · ∇∇u0|y=0 + · · · + ũi (36)

pi = p0|y=0 + y · ∇p0|y=0 +
1

2
yy · ∇∇p0|y=0 + · · · + p̃i (37)

First order estimates of ui and pi are

ui = u0|y=0 + y · ∇u0|y=0 + ũi, pi = p0|y=0 + y · ∇p0|y=0 + p̃i (38)

In a developed boundary layer, the velocity is mainly tangential and the gradients for both velocity and pressure are 
dominated by the components normal to the wall, i.e., ∂

∂x
≪ ∂

∂ y
. Therefore, the first order term of the above estimates can 

be rewritten as

y · ∇u0|y=0 = y
∂u0

∂ y

∣∣∣
y=0

e1, y · ∇p0|y=0 = y
∂p0

∂ y

∣∣∣
y=0

(39)

Taking into consideration the no-slip boundary condition described by Eq. (31), the following relation between the dif-
ferent velocities may be written in terms of order of magnitude

O
(
ũi

)
= O

(
u0|y=0

)
= O

(
l

L
U

)
(40)

with U denoting the magnitude of the global velocity u and L the depth of the bulk flow boundary layer.
In order to characterize the flow features at the different length-scales, the macro- and micro-scale Reynolds numbers 

are defined as ReL =
ρUL
µ and Rel =

ρǫUl
µ , respectively, where ǫ = l

L
and the reference velocity in the roughness domain is 



estimated linearly as compared to U . From these two definitions, one can write immediately

Rel = ǫ2ReL (41)

Assuming the flow is laminar implies that the boundary layer thickness scales as Re
− 1

2
L . Taking into consideration also 

that ǫ ≪ 1 due to the assumption of l ≪ L, one obtains ReL ≪ ǫ−2 . By substituting this relation into Eq. (41), it gives 
Rel ≪ 1.

Substituting the approximations of ui and pi defined by Eq. (35) into Eq. (24) and then subtracting Eq. (2) give

ρ (u · ∇) ũi + ρ
(
ũi · ∇

)
u+ ρ

(
ũi · ∇

)
ũi − µ△ũi + ∇ p̃i = 0 in Äi (42)

which can be expressed in a dimensionless form as

Rel
(
u′ · ∇ ′

)
ũ′
i + Rel

(
ũ′
i · ∇

′
)
u′ + Rel

(
ũ′
i · ∇

′
)
ũ′
i − △′ũ′

i + ∇ ′ p̃i
′
= 0 in Äi (43)

with the dimensionless variables (⋆′ quantities) defined as

u′ =
u

ǫU
, ∇ ′ = l∇, ũ′

i =
ũi

ǫU
, p̃i

′
=

p̃il

µǫU
(44)

Given that Rel ≪ 1, Eq. (43) can be simplified by omitting the first three terms. Going back to the dimensional form, we 
have

−µ△ũi + ∇ p̃i = 0 (45)

Hereby the Navier–Stokes equations have been transformed into a Stokes problem in Äi , similarly to that proposed in [15,
18,30].

The other equations of the boundary value problem can be obtained by analogy to Eq. (42), and they can be summarized 
as

Pb IIIũi
(in Äi):

−µ△ũi + ∇ p̃i = 0 in Äi (46)

∇ · ũi = 0 in Äi (47)

n · (−p̃iI+ µ(∇ũi + ∇ũT
i )) = 0 at 60,i and 6l,i (48)

p̃i = 0 at 60,i (49)

ũi (x+ li) = ũi(x) at 6l,i (50)

p̃i (x+ li) = p̃i(x) at 6l,i (51)

u0|y=0e1 + y ∂u0
∂ y

∣∣
y=0

e1 + ũi = 0 at 6 (52)

So far, the resolution of this set of equations still remains expensive, due to the coupling of micro- and macro-scale 
variables. As discussed in [15], and given the linear structure of the problem, the macroscopic terms can be considered 
to be generators of the deviations. From Eq. (52), it is obvious that if the terms with macroscopic variables are zero, the 
deviations of velocity and pressure will both go zero. Therefore, the deviation terms can be represented in the following 
form:

(1) ũi = Au0|y=0 + B
∂u0

∂ y

∣∣
y=0

, (2) p̃i =mu0|y=0 + s
∂u0

∂ y

∣∣
y=0

(53)

Closure problems for closure variables (A,m) and (B, s) are given by Pb III(A,m) and Pb III(B,s) as presented in Appendix B, 
obtained by substituting Eq. (53) into Pb IIIũi

and collecting terms involving u0|y=0 and ∂u0
∂ y

∣∣
y=0

, respectively. At this point, 
one can see that (A,m) = (−e1,0) is a solution for closure problem Pb III(A,m) . Inserting this solution into Eq. (53)(1) gives

ũi = −u0|y=0e1 + B
∂u0

∂ y

∣∣
y=0

(54)

According to velocity continuity at 60,i , we have ũi |y=0 = 0. By introducing w v
x = −B|y=0 , with B the x-component of B, 

the velocity at 60,i can be written as

u0|y=0 = u0|y=0e1 = −w v
x

∂u0

∂ y

∣∣
y=0

e1 at 60,i (55)

which has the form of a Navier condition.



Fig. 4. Schematic illustration of the position of the different effective surfaces, where δv and δc are not normalized with respect to hr .

Following [15,30], it is interesting to look at the modification of this boundary condition for another position of the 
effective surface. For a given effective surface 6eff defined at position y = w , a first order Taylor expansion allows us to 
write

u0|y=w = u0|y=0 + w
∂u0

∂ y

∣∣
y=0

e1 (56)

which can be rewritten as

u0|y=w =
(
w − w v

x

) ∂u0

∂ y

∣∣
y=0

e1 at 6eff (57)

by substituting Eq. (55).
Up to this point, the homogenization procedure enables to build the effective momentum boundary conditions, which 

depend on the choice of the effective surface position. It is seen that at the position defined by y = w v
x one can recover a 

no-slip boundary condition (cf. Fig. 4), which plays an important role in the macro-scale simulations as shown later.

3.2. Mass effective boundary condition

In this section, the same homogenization method is applied to the mass transfer problem. First order estimate for ci can 
be written as

ci = c0|y=0 + y
∂c0

∂ y

∣∣
y=0

+ c̃i (58)

Consequently, Eq. (26) can be transformed into

v
∂c0

∂ y

∣∣
y=0

+ ui · ∇ c̃i = ∇ ·
(
D∇ c̃i

)
(59)

with v = ui · e2 . The mass boundary conditions can be rewritten as

−n ·
(
D ∂c0

∂ y

∣∣
y=0

e2
)
− n · D∇ c̃i = 0 at 6βσ and 6l.i (60)

c̃i (x+ li) = c̃i(x) at 6l,i (61)

c̃i = 0 at 60,i (62)

(B.C. I) c0|y=0 + y ∂c0
∂ y

∣∣
y=0

+ c̃i = ceq at 6βγ (63)

or (B.C. II) −nls ·

(
D

∂c0

∂ y

∣∣
y=0

e2

)
− nls · D∇ c̃i = −kγ ceq

(
1−

c0|y=0 + y ∂c0
∂ y

|y=0 + c̃i

ceq

)
at 6βγ (64)

which must be completed with the momentum equations, such as the Navier–Stokes equation illustrated by Eq. (24) and 
the corresponding boundary conditions illustrated by Eqs. (29) and (31). To solve this problem, a solution for c̃i should be 
sought by linking the deviation to the macroscopic concentration, which writes

c̃i = a(c0|y=0 − ceq) + b
∂c0

∂ y

∣∣
y=0

(65)

where a and b are first-order mapping variables.
Substituting Eq. (65) into Eqs. (60), (63) and (64), we get

−n ·
(
D ∂c0

∂ y

∣∣
y=0

(e2 + ∇b)
)
− n · D

(
c0|y=0 − ceq

)
∇a = 0 at 6βσ and 6l.i (66)

(B.C. I) (1+ a)(c0|y=0 − ceq) + (y + b) ∂c0
∂ y

∣∣
y=0

= 0 at 6βγ (67)



or (B.C.II) −nls ·
(
D ∂c0

∂ y

∣∣
y=0

(e2 + ∇b)
)

− nls · D
(
c0|y=0 − ceq

)
∇a

= kγ ceq

(
(1+a)

(
c0|y=0−ceq

)
+(b+y)

∂c0
∂ y |y=0

ceq

)
at 6βγ (68)

and the problem may be transformed into two independent problems for a and b, i.e., Pb IIIa and Pb IIIb as presented in 
Appendix C. It can be noted that b = −y is a solution of Pb IIIb and consequently ci can be simply expressed as

ci = a
(
c0|y=0 − ceq

)
+ c0|y=0 (69)

Considering u0 = ui and c0 = ci at 60,i , the mass flux balance described by Eq. (15) can be rewritten as

n0,i · (−D∇c0) = n0,i · (−D∇ci) at 60,i (70)

which can be transformed into

n0,i · (−D∇c0) = −
c0|y=0 − ceq

A0,i
D

∫

A0,i

∂a

∂ y
dA at 60,i (71)

where A0,i is the surface area of the boundary 60,i . For later use, an effective reaction rate coefficient k0
eff

is defined as

k0eff = −
D

∫
A0,i

∂a
∂ y

dA

A0,i
(72)

and the effective boundary condition at 60 can be recast into

n0,i · (−D∇c0) = −k0eff ceq

(
1−

c0|y=0

ceq

)
at 60 (73)

Remarkably, the obtained effective boundary condition is, mathematically speaking, of a reactive type, even in the case with micro-

scale thermodynamic equilibrium. Of course, the effective boundary condition has the same form in case I and case II, but the 
values of k0

eff
are given by closure problems with different boundary conditions, as illustrated in Appendix C.

For 6eff at an arbitrary position y = w , the first order estimate of the macro-scale concentration can be developed as

c0|y=w = c0|y=0 + w
∂c0

∂ y

∣∣∣∣∣
y=0

(74)

Assuming at first order that ∂c0
∂ y

|y=w = ∂c0
∂ y

|y=0 , Eq. (73) is rewritten as

D
∂c0

∂ y
|y=w = k0eff ceq

(
1−

c0|y=w − w ∂c0
∂ y

|y=w

ceq

)
at y = w (75)

Therefore, the following reactive condition at an arbitrary effective surface for case I and case II is obtained

n0,i · (−D∇c0) = −kweff ceq

(
1−

c0|y=w

ceq

)
at 6eff (76)

with

kweff =
k0
eff

1− w
D
k0
eff

(77)

Again, the remarkable result is that, whatever the boundary condition at 6βγ (i.e., thermodynamic equilibrium or reac-
tive), the effective boundary condition has the same reactive form. However, it is possible to define an effective surface 6c

eff
to recover an equilibrium condition, i.e., c0 = ceq . From Eq. (75), the position of this surface is given by

wc
x =

D

k0
eff

= −
A0,i∫

A0,i

∂a
∂ y

dA
(78)

3.3. Effective surface and effective boundary conditions

After resolution of the closure problems, it has been shown that the boundary condition for the flow problem is of 
Navier type (results already known) and of Robin type for the mass transfer problem (the original part of this paper). It has 
also been indicated how to estimate the effective boundary condition for a position of the effective surface different from 
60 . Nevertheless, the three surfaces defined previously, 60 , 6v

eff
and 6c

eff
, are those of main interest as will be discussed in 

the next sections.



Fig. 5. Unit cell geometry for the simulation (left) and illustration of roughness shape and roughness density (right).

The obtained general form of the effective boundary value problem consists of Pb II and the boundary conditions at the 
effective surface, for instance, Eqs. (57) and (76) for an arbitrary surface position 6eff (at y = w), which become Eqs. (55)
and (73) when the effective surface is at 60 , or

{
ui = 0

−nls · D∇c0 = −kv
eff

ceq

(
1− c0

ceq

)
(79)

when the effective surface is at 6v
eff

, or
{
ui =

(
wc

x − w v
x

)
∂u0
∂ y

∣∣
y=0

e1

c0 = ceq
(80)

when the effective surface is at 6c
eff

.

4. Effective parameters calculations

The aim of this section is to analyze the impact of some factors, for instance the roughness features, the Péclet, the 
Schmidt and the mean Damköhler numbers, on the effective parameters. The Péclet and the Schmidt numbers are defined 
as

Pel =
uref w

0
x

D
, Sc =

µ

ρD
(81)

where, the cell height w0
x is used as a characteristic length. The reference flow velocity uref is chosen as the x-component 

of the velocity at 60 . The mean Damköhler number will be defined later.
Dimensionless forms of closure problem Pb III(B,s) and Pb IIIa are solved to obtain the effective surface position and 

boundary conditions, with the unit cell presented in Fig. 5. Two shapes of roughness are used in the simulations, semi-ellipse 
or rounded square. The height of the roughness hr and its width br are the two independent parameters. The height and 
width of the unit cell are denoted as w0

x (with w0
x = 8hr ) and li , respectively. In the following simulations, w0

x and hr have 
fixed values, while li and br are varied in order to modify either the roughness geometry or the roughness density as shown 
in Fig. 5.

All the following simulations are performed using COMSOL®. The linear systems are solved with the direct solver 
UMFPACK, which is based on the Unsymmetric MultiFrontal method. The velocity field in Pb IIIa is calculated by solving 
dimensionless steady-state Navier–Stokes equations. Quadratic Lagrange element formulation is used for the closure vari-
ables a, B and the velocity. Linear Lagrange element settings are used for pressure and its mapping variable s. Proper mesh 
qualities are obtained to ensure convergence. For example for the unit cell with br

li
= 0.1, Pel = 25 and Sc = 1, since further 

increase of the number of degrees of freedom larger than 104 leads to the variation of 
∫
A0,i

∂a
∂ y

dA less than 1%, it is con-
sidered that the results are of appropriate quality in such circumstances. Given the fact that the unit cell geometry under 
study is quite simple, it is very easy to get converged results; therefore no more details of the procedure are provided here. 
An example of the converging process is given in the Supporting Information.



Fig. 6. Effective surface position of 6v
eff

(left) and 6c
eff

(right) for different roughness geometries and densities.

4.1. Effect of roughness features on effective surface positions

In this subsection the influences of the roughness geometry and density on the positions of 6v
eff

and 6c
eff

are investigated. 
Since w v

x and wc
x are values varying with the choice of 60 , it is more convenient to introduce the corresponding normalized 

values δv =
w0

x−wv
x

hr
and δc =

w0
x−wc

x
hr

to indicate the effective positions relative to the solid surface (see Fig. 4, where δv

and δc are not normalized with respect to hr ). Results for four sets of simulations are presented in Fig. 6.
In the left graph, it is observed that both the geometry and the roughness density have an impact on δv . One can 

observe that for higher roughness densities, i.e., br
li

→ 1, 6v
eff

goes closer to the roughness height because the narrow gaps 
between asperities make it difficult for the fluid to flow through. The upper limit of δv is one and is nearly reached for the 
thin semi-ellipse and the rounded squares because their roughness shapes are steep. For roughnesses close enough to each 
other, the heterogeneous surface has a similar behavior in terms of momentum transport as a smooth surface located at 
the height of the roughnesses. For smoother roughnesses, the limit case where two roughnesses are adjacent gives a value 
of δv smaller than one as the fluid can still flow partially between the roughnesses. The three sets of simulations with 
semi-ellipse shape also show that thin roughnesses create more resistance to the flow than wider ones. The curves exhibit 
another limit when br

li
→ 0. Even if the two neighboring asperities are far enough from each other, e.g., li = 50hr in this 

case, the roughnesses still have some small impact on the flow and δv tends towards 0.1hr .
In the right graph of Fig. 6, the negative values of δc mean that 6c

eff
locates inside the solid part. The presence of 

insoluble materials makes the averaged concentration on 6 smaller than the equilibrium concentration, therefore 6c
eff

must 
be located beneath 6 to recover the thermodynamic equilibrium. Similar to the case with no-slip condition, both roughness 
shape and roughness density are playing a role on δc . However, one can observe that the three sets of simulations with 
semi-ellipse shapes are superposed, indicating that the width of the roughness has little impact on δc for a given ratio of 
br
li
. One sees from these results that δc tends towards −∞ when the ratio br

li
increases towards one, independently of the 

roughness geometry. For br
li

→ 1, the solid surface in contact with the fluid is mainly formed by the insoluble material and 
little mass transfer occurs between the solid and the fluid, which makes it difficult to recover thermodynamic equilibrium 
effective boundary condition. The upper limit of δc is equal to zero and is obtained for low roughness density ( br

li
→ 0). In 

this case the solid–liquid interface behaves like a homogeneous soluble surface.

4.2. Thermodynamic equilibrium case (B.C. I)

In this subsection, the dependence of kv
eff

on different factors is investigated first. Simulations are conducted for both 
advective–diffusive mass transport regime and purely diffusive regime. In the latter case, the effective reaction rate coeffi-

cient is denoted as kv
effdiffu

. The flat part of the solid–liquid interface is under thermodynamic equilibrium. The roughness 

shape is semi-ellipse with a height of hr . The other geometric parameters of the unit cell are w0
x = 8hr , br = 0.5hr and 

li = 5hr .

The ratio of 
kv
eff

kv
effdiffu

as a function of Pel and Sc is plotted in Fig. 7.

One sees in the figure that 
kv
eff

kv
effdiffu

increases globally with Pel and Sc, which means that the flow has a stronger impact 

on mass transport, as advection becomes more important when increasing (Pel, Sc). For all tested Sc, when Pel < 10, the 



Fig. 7. Ratio between kv
eff

with advection and its value in the purely diffusive case, as a function of Pel and Sc. Semi-ellipse roughness was used with 
br = 0.5hr and br

li
= 0.1.

effective reaction rate coefficient with advection is nearly the same as the one under a purely diffusive regime. For Sc < 0.1, 
the difference between kv

eff
and kv

effdiffu
is less than 1% for Pel < 1000. Consequently, the mass transport problem can be 

simplified into a pure diffusion case in such circumstances, producing an error smaller than 1%. For the cases with Sc close 

to 1, 
kv
eff

kv
effdiffu

reaches a maximum at high Pel values, then decreases and increases again. For higher Sc the ratio increases 

with Pel with different rate except for Sc = 100 and Sc = 1000 that are superposed on the studied range of Pel . One has 
to pay attention that the considered situation in this study is laminar flow within a boundary layer. Therefore for the cases 
with small Sc, the considered Pel should not be too large.

To illustrate the different regimes between mass transport governed by diffusion or by advection, the streamlines of the 
total flux of a versus Sc and Pel are plotted in Fig. 8. With small Pel (10 and 50), the variation of Sc only has some small 
impact on the streamlines, which illustrates the weak influence of the flow on the mass exchange at the reactive surface. 
The value of kv

eff
is therefore close to the value in the purely diffusive case (with a difference less than 1%) as illustrated in 

Fig. 7. With larger Pel values, increasing Sc (i.e., increasing the viscosity) delays the occurrence of recirculations close to the 
rough surface, which explains the maximum values observed in Fig. 7. The recirculations first limit mass transport towards 

the soluble material, and then enhance it for increasing Pel , corresponding to the decrease and increase of 
kv
eff

kv
effdiffu

after the 

maximum values.
In a second set of simulations, the influence of the rough surface geometry on 

kv
eff

kv
effdiffu

is investigated by changing the 

roughness density. From the results presented in Fig. 9, a high roughness density leads to a delay in the transition between 
the advective and diffusive regime. One can observe for example that for br

li
= 0.4 and br

li
= 0.5, the flow alone has a small 

impact on the effective reaction rate coefficient (less than 1%) even for high Pel values. In these configurations, kv
effdiffu

is a 

good estimate of kv
eff
. As the roughness density decreases, 

kv
eff

kv
effdiffu

increases because the flow can pass through the roughness 

more easily, and therefore more solid surface under thermodynamic equilibrium is available for mass transfer.

4.3. The case of a reactive surface (B.C. II)

In this subsection, the flat part of the solid–liquid interface is reactive. To study the impact of the chemical features on 
the effective reaction rate coefficient, some parameters are first introduced. Let kσ denote the reactivity at surface 6βσ . 
One should note that kσ is equal to zero in this study since the σ -phase is non-reactive. The surface average reaction 

rate coefficient for a heterogeneous surface can be approximated as k̂ =
kγ Aβγ +kσ Aβσ

Aβγ +Aβσ
, with Aβγ and Aβσ representing the 

surface areas of 6βγ and 6βσ , respectively. According to the mass conservation from 6 to 6v
eff
, the surface average reaction 

rate coefficient at 6v
eff

can be estimated as k̂v =
kγ Aβγ +kσ Aβσ

Av
, with Av denoting the surface area of 6v

eff
. The structure of 

the concentration field inside the domain will depend on the ratio between reaction characteristic rates and diffusion, 

corresponding to a mean Damköhler number defined as D̂a =
k̂w0

x
D

.



Fig. 8. Total flux streamlines of closure variable a for different Sc and Pel . The roughness shape is a semi-ellipse with br = 0.5hr and br
li

= 0.1.

Fig. 9. Ratio between kv
eff

with convection and its value in the purely diffusive case, as a function of the local Péclet number, for different roughness 
densities given by br

li
and Sc = 0.1.

The roughness shape under consideration is semi-ellipse. The height and width of the roughness, as well as the height 
of the unit cell remain unchanged, with br = 0.5hr and w0

x = 8hr . Two roughness densities, li = 5hr and li = 10hr , are 
considered.

The results of 
kv
eff

k̂v
versus D̂a are presented in Fig. 10 for different Pel and Sc. For small D̂a, 

kv
eff

k̂v
tends towards one despite 

of the flow properties. In such circumstances, the characteristic time of reaction is long compared to the mass-transfer 
kinetics, and the process is consequently limited by reaction. With the increase of D̂a, mass transfer becomes insufficient 
and the process is therefore limited by the mass transport. In other words, k̂v tends to infinity while kv

eff
remains a constant, 

leading to 
kv
eff

k̂v
tending towards zero.

For a fixed roughness density, li = 5hr or li = 10hr , when Pel = 1, an increase of Sc does not affect 
kv
eff

k̂v
since the curves 

of Sc = 1 and Sc = 1000 are superposed, while when Sc remains unchanged, the increase of Pel delays the decrease of 
kv
eff

k̂v
. 



Fig. 10. The ratio of effective reaction rate coefficient kv
eff

over the surface average reaction rate coefficient k̂v , as a function of the mean Damköhler number, 
with different surface geometries.

Fig. 11. The functionality of the effective Damköhler number Daveff with the mean Damköhler number D̂a.

These results illustrate that only relatively large Pel have some impact on kv
eff
, consistent with the following discussion about 

Daveff and with the results illustrated later by Fig. 12. For the geometry with li = 10hr , the decrease of 
kv
eff

k̂v
is delayed since 

the fluid can flow through the roughness more easily thus enhance mass transfer. Therefore, it can be concluded that the 
roughness density, the flow properties in terms of Pel and the chemical features in terms of D̂a have an important influence 
on kv

eff
.

Since it is not convenient to use the ratio 
kv
eff

k̂v
when D̂a is large because it tends to zero, an effective Damköhler number 

defined as Daveff =
kv
eff

w0
x

D
is introduced to indicate the evolution of kv

eff
with D̂a. Results are plotted in Fig. 11. Daveff is 

proportional to D̂a before it reaches a plateau when mass transport becomes the limiting factor of the chemical process, 
consistent with the results of a similar analysis in [14]. Quantitatively, when Pel remains unchanged, Daveff for li = 10hr is 
twice as large as for li = 5hr in the limit of large D̂a. This is also explained by the fact that mass transport is limiting the 
process under large D̂a and increasing the proportion of the dissolving phase is equivalent to increasing mass transport. 
Moreover, flow and roughness density have only a small impact on Daveff for small D̂a because in such circumstances it 
is the surface reaction rate coefficient but not mass transport that controls the process. Furthermore, Daveff increases with 



Fig. 12. Ratio between kv
eff

with advection and its value in the purely diffusive case, as a function of the local Péclet number and for different Schmidt 
numbers. The roughness shape is a semi-ellipse with br = 0.5hr and br

li
= 0.1.

roughness density under small D̂a and decreases with roughness density under large D̂a, which is due to the transition of 
the limiting factor.

Finally, the importance of mass transport by advection is studied by plotting 
kv
eff

kv
effdiffu

versus Pel for two D̂a values and for 

different Sc, as shown in Fig. 12. One sees from the figure that with the increase of Pel , the ratio 
kv
eff

kv
effdiffu

tends to increase 

since the advection term becomes more important. The curves with the same Sc have similar trends but with different 
magnitudes. In the case with higher D̂a, the role of advection is more important and the transitions from the diffusive 
regime to the advective regime take place at smaller Pel . For the curves with Sc = 0.1, the increases happen at relatively 

large Pel and can lead to larger 
kv
eff

kv
effdiffu

than the curves with Sc = 10 in some circumstances, because the growth of 
kv
eff

kv
effdiffu

with Sc = 10 slows down at about 3000 < Pel < 7000. This trend is similar to the results obtained with the thermodynamic 
equilibrium boundary condition. Recirculations close to the rough surface have a similar impact, first limiting the mass 
transport towards the reactive surface and then enhancing it. To summarize, to estimate kv

eff
by kv

effdiffu
will produce an error 

less than 5% for the studied cases with D̂a = 1, because the reaction rate coefficient is the limiting factor of process and the 
flow properties have negligible impact. One has to be careful to represent kv

eff
by kv

effdiffu
at large D̂a since the flow properties 

can have significant influence in such conditions.

5. Application of the effective surface model

As introduced in Section 3, there are different potential choices for the position of the effective surface, e.g., the fictive 
surface 60 , surface 6v

eff
which recovers the no-slip boundary condition, surface 6c

eff
which recovers the thermodynamic 

equilibrium condition, or any arbitrary location. In this section the objective is to identify the most appropriate effective 
surface by investigating the errors between direct numerical simulations (DNSs) over the original rough surface and simula-

tions with the effective surface model. Two situations are considered, typical of the development of a mass boundary layer 
over a rough surface.

The first application corresponds to a boundary layer over a rough wall parallel to the flow. The original model for 
DNSs is illustrated by the upper drawing of Fig. 13(a). The characteristic length of the system used to normalize the space 
variables is HÄ , i.e., L, the height of the global domain. The system is W = 3HÄ wide. A short flat zone is set with a length 
of 0.5HÄ before the rough surface in order to have an already developed boundary layer, which is closer to the periodic 
boundary condition hypothesis stated previously. In addition, the roughness height is chosen to be small enough to have 
ǫ = l

L
= 0.1 and l = 8hr . The roughness has a shape of semi-ellipse with br = 0.5hr . In terms of geometry for the effective 

models, the flat surface at the entrance remains unchanged and the original rough surface is replaced by a smooth effective 
one. The lower drawing in Fig. 13(a) gives an example of the effective model with no-slip condition at the effective surface. 
The original flat surface and the effective surface are connected by a small step. It is clear that some assumptions of the 
homogenization are not valid in this particular area, which is a singularity (no-periodicity, etc.). Specific developments could 
be done to overcome this problem, but in the present work the general results are simply used to see if it is acceptable.



Fig. 13. Schematic representation of the computational domain: DNSs over the heterogeneous surface and the first order effective models (application 1 in 
(a) and application 2 in (b)).

In the second application, the boundary layer develops on a rough cylinder perpendicular to the flow. As illustrated 
in Fig. 13(b), the rough surface in the DNSs is replaced by the smooth circular surface in the effective model. Since the 
considered geometry is symmetric with respect to x-axis, only the transport in the upper half domain is simulated. The 
characteristic length of the system used to normalize the space variables is L, the cylinder diameter. The height of the half 
domain is HÄ = 1.5L and the width is W = 2.5L.

DNSs are performed using dimensionless forms of Pb I equations with B.C. I. For the effective model, the closure problems 
Pb III(B,s) and Pb IIIa illustrated in the appendices are solved first to obtain the effective surface position and the effective 
boundary conditions, as summarized in subsection 3.3. Then the effective macro-scale problem Pb II is solved using these 
obtained effective boundary conditions. Similar numerical settings were used as in the last section. Convergence analyses 
were conducted for each computation to guaranty the results quality (see Support Information).

5.1. Application 1: boundary layer over a rough wall parallel to the flow

The way to quantify the differences between the two simulations is to calculate the error on the integration of the total 
mass flux over the solid–liquid surface, called QDNS for the rough surface and Q eff for the effective one. Simulations are 
done for flows with ReL = 1 and ReL = 50, with two roughness densities: br

li
= 0.5 and br

li
= 0.1. The relative errors on 

the total mass flux are plotted in Fig. 14 for different effective surface positions. For effective surface at a position lower 
than 2.5hr , the relative error committed by the model is smaller than 1%. At higher effective surface positions and for the 
different Reynolds numbers, the error increases when increasing the position of the effective surface. One can also observe 
that the roughness density has little impact on the error compared to the influence of ReL . Increasing the distance between 
roughnesses by a factor of five only increases the error by less than 1%, while increasing ReL from 1 to 50 nearly doubles 
the error. For the different flow conditions or geometry, a minimum value of the relative error is obtained around yeff = hr . 
It is closest to 6v

eff
among the particular effective surface positions discussed before.

To demonstrate the representativeness of the effective model with the effective surface located at 6v
eff

, the results of 
DNSs and the first order effective model are compared in terms of velocity, concentration fields and the distribution of 
mass flux over the reactive surface as illustrated in Figs. 15 and 16, respectively. Results with the effective surface at 60 are 
also shown in these figures to illustrate the discrepancies created by the large step between the flat zone and the effective 
surface.

In the upper graph of Fig. 15, one can observe that the velocity contours obtained by DNSs (solid line) and those obtained 

with the first order effective model with an effective surface at w0
x−wv

x
L

i.e., at 6v
eff
, are overlapped, with negligible errors. 

This is consistent with previous findings in the literature for the momentum transport problem. Results with the effective 
surface at wv

x
L

(dot line), i.e., at 60 , give the good trend but are not precisely representing the DNSs velocity field. As for 

concentration contours, one sees in the lower graph of Fig. 15 that those obtained with the effective surface at w0
x−wv

x
L

are 
also well superposed with the DNSs results, except inside the small entrance region where the conditions for upscaling 
break down as discussed previously. Quantitatively, this creates a small and rather acceptable discrepancy of 0.07% on the 

total mass flux. The iso-concentration contours obtained with the effective surface at w0
x
L

show some discrepancies that 
increase with x

L
, leading to a relative error on the total mass flux of around 6.2%.

In Fig. 16, the distribution of the normal mass flux, q, along the reactive surfaces in the effective model with 6v
eff

and 
60 and that along the rough surface in the original model are compared. For the DNSs, values are discrete because q needs 



Fig. 14. Relative error on Q eff compared to QDNS , for different positions of the effective surface, with different surface geometries, Sc= 1 and two values 
of ReL .

Fig. 15. Dimensionless velocity field (upper graph) and concentration (lower graph) contours for the initial rough domain and two effective smooth domains, 
with an entrance dimensionless flow velocity of 1, ReL = 25 and Sc = 1.



Fig. 16. Normal flux along the reactive surfaces for the initial rough domain and two effective smooth domains, with an entrance dimensionless flow 
velocity of 1, ReL = 25 and Sc = 1.

to be averaged for each li . The results of the DNSs and the effective model with 6v
eff

show a good agreement. For the model 
with the effective surface at 60 , q distribution differs from the DNSs in the entrance region after the step. This is mainly 
the consequence of the discrepancies observed in the velocity field.

5.2. Application 2: rough cylinder in a laminar flow

This second case illustrates the accuracy of the effective model for a more complex configuration than the previous 
application. Simulations are done for a flow with ReL = 0.1 and Sc = 1000, with 50 roughnesses distributed uniformly 
over the cylinder surface and ǫ = 0.1. In the two graphs of Fig. 17, one can observe that both velocity contours (top) and 
concentration contours (bottom) obtained by DNSs (black solid line) and with an effective surface at 6v

eff
(blue dashed line) 

are overlapped, with negligible errors. The error on Q is less than 0.1%, proving again the validity of the first order effective 
surface model. This error remains smaller than 0.1% even by increasing ǫ to 0.5 (the scale separation assumption is no more 
valid). However for ReL = 1, Sc = 1000 and ǫ = 0.5, the model starts to show some limitations and gives results with an 
error around 3%.

5.3. Effective parameters estimates

In these last paragraphs, potential estimates of the effective properties are discussed in order to reduce computational 
costs, taking application 1 as an example. As mentioned previously in Section 4, for a high roughness density the effective 
surface position is close to the roughness height. One first possible approximation is to set the effective surface position at 
the roughness height, using a no-slip boundary condition and then use the effective reaction rate obtained for an effective 
surface at hr , which will be called 6r

eff
. Relative errors committed on the total mass flux using this approximation are 

compared to the one with the correct effective model with 6v
eff

. Results are assembled in Table 1 for ReL = 25 and Sc = 1, 
and for rounded square roughnesses with br = hr . The approximated model gives results with relative errors less than 1% 
even for roughness densities as low as 0.2, i.e., br

li
= 0.2 with δv = 0.73. This first approximation gives good results for 

certain rough surface geometries and will save computational time as the closure problem for the flow does not need to be 
solved anymore.

In addition to this first estimate, an approximation can be made on the effective reaction rate as well. In the range of ReL
used for the global simulations (1 to 1000), the corresponding micro-scale Péclet number will not exceed 100 for Schmidt 
numbers below 10. From the parametric study of Section 4, it has been observed that the effective reaction rate obtained 
for pure diffusion can be a good approximation of the effective reaction rate with flow. As a result, Pb IIIa with B.C. I can be 
simplified into a purely diffusive one in these application ranges. For example, the largest difference between errors on Q , 
committed with and without accounting for the flow in kv

eff
is 0.002 (obtained with br

li
= 0.1, ReL = 500 and Sc = 5 which 

has a ratio 
kv
eff

kv
effdiffu

≈ 1.02).

To sum up, all these numerical results demonstrate the efficiency of using an effective surface model, characterized by a 
homogeneous and smooth surface, to reproduce the flow and reactive mass transport over a heterogeneous rough surfaces, 
with a good accuracy. The use of estimates without solving Pb III(B,s) can help to gain computational time, but may need to 
be tested on larger domains.



Fig. 17. Dimensionless velocity field (top) and concentration (bottom) contours for the initial rough domain and the effective smooth domain, with an 
entrance dimensionless flow velocity of 1, ReL = 0.1 and Sc = 1000.

6. Conclusion

The concept of effective surface has already proven its usefulness for several transport mechanisms. The main con-
tribution of this paper concerns mass (and momentum) transfer for a laminar flow over a heterogeneous rough surface 
characterized by mixed boundary conditions. A very important constraint necessary to develop the effective surface concept 
is the separation of scales between the global boundary layer thickness and the zone of influence of the surface hetero-
geneities within that boundary layer. Additional assumptions were made, like micro-scale pattern periodicity, which could 
probably be replaced by less restrictive constraints. Based on these assumptions, the methodology of multi-domain decom-



Table 1

Relative errors committed on the total mass flux over the reactive surface between the effective 
model simulations and the DNSs, for different roughness densities with br = hr and rounded 
square roughnesses, an entrance dimensionless flow velocity of 1, ReL = 25 and Sc = 1.

br
li

δv 6v
eff

(in %) 6r
eff

(in %)

0.8 0.977 0.262 0.179

0.67 0.964 0.234 0.117

0.2 0.729 0.372 0.674

0.1 0.458 0.581 1.63

0.067 0.318 0.675 2.03

position was used to decompose the domain under investigation into a macro-scale subdomain and a range of micro-scale 
unit cells.

To determine what boundary conditions should be prescribed and where the effective surface should be placed, first 
order estimates of the micro-scale variables were made by means of Taylor expansion, and the resolution was obtained by 
solving corresponding closure problems. After this homogenization procedure, alternative effective surface positions were 
found. General expressions for the effective boundary conditions were obtained, and, for some effective surfaces of interest, 
the related effective boundary conditions were derived from the generic form. Among the different choices, the effective 
surface with a no-slip boundary condition or any other position close to this surface have the advantage that it induces the 
smallest errors. For a rough surface with part under equilibrium and part with no flux, the effective boundary condition 
turns out to be of a reactive type, with an effective reaction rate coefficient depending on the geometry and flow properties. 
Interestingly, this establishes a fundamental relationship with the case of a reactive surface with non-uniform reaction rates 
([30] and this paper).

The influences of some parameters, including roughness geometry, flow properties and surface chemical characteristics, 
were studied. These analyses showed that the geometry of the asperities, in terms of density and shape, has a significant 
impact on the effective surface position. A higher roughness density leads to an effective surface farther from the lower part 
of the rough surface, and vice versa. Flow properties have a stronger impact for the case with smaller roughness density.

The study of the impact of flow properties showed that in some circumstances, the advective–diffusive flow regime can 
be simplified into a purely diffusive one. In addition, since the chemical characteristics are the limiting factors at small 
D̂a, it is acceptable to approximate the effective reaction rate coefficient by the surface average. At large D̂a, the chemical 
process is controlled by the mass transport, and the effective reaction rate coefficient should be calculated by the closure 
problems developed for the specific conditions. Due to the strong impact of flow properties at large D̂a, the mass transport 
by advection should be taken into account.

At last, simulations were conducted for both the original model and the effective ones in application 1. The results 
comparison in terms of total flux showed that the one with the no-slip condition (6v

eff
) is more accurate than the fictive 

surface with slip condition (60). Contours of velocity and concentration, and total flux at a specific cross-section obtained 
by the original model and by the effective model with the effective surface at 6v

eff
agreed very well. Velocity and concen-

tration comparisons for a more complex geometry also showed good agreements. These two applications demonstrate the 
representativeness of the effective surface models to the original ones.

As indicated in the introduction, one of the motivation for this study was to model phenomena taking place at “dissolv-
ing” interfaces (drying, karstic and other underground cavities, etc.). Therefore, the surface geometry is not given a priori but 
is a result of the process. How the surface geometry changes with time under different conditions? What is the recession 
rate? And how these effects can be handled by a macro-scale theory (here the concept of effective surface) are open prob-
lems which are of major interest. Additional coupling may arise, in particular, hydrodynamic and dissolution instabilities 
may produce different surface patterns (as illustrated in [23]) and this also is an issue that needs to be considered in the 
future.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2015.10.050.

Appendix B. Closure problems for the velocity

Pb III(A,m) (in Äi):

−µ△A + ∇m = 0 in Äi (82)

∇ · A = 0 in Äi (83)



n · (−mI+ µ(∇A+ ∇AT )) = 0 at 60,i and 6l,i (84)

A (x+ li) = A(x) at 6l,i (85)

m (x+ li) =m(x) at 6l,i (86)

A+ e1 = 0 at 6 (87)

Pb III(B,s) (in Äi):

−µ△B + ∇s = 0 in Äi (88)

∇ · B = 0 in Äi (89)

n · (−sI+ µ(∇B + ∇BT )) = 0 at 60,i and 6l,i (90)

B (x+ li) = B(x) at 6l,i (91)

s (x+ li) = s(x) at 6l,i (92)

B+ ye1 = 0 at 6 (93)

Appendix C. Closure problems for the concentration

Pb IIIa (in Äi):

ui · ∇a = ∇ · (D∇a) in Äi (94)

a (x+ li) = a(x) at 6l,i (95)

a = 0 at 60,i (96)

−n · D∇a = 0 at 6βσ and 6l,i (97)

(B.C. I) 1+ a = 0 at 6βγ (98)

or (B.C. II) −nls · D∇a = k (1+ a) at 6βγ (99)

Pb IIIb (in Äi):

v + ui · ∇b = ∇ · (D∇b) in Äi (100)

b (x+ li) = b(x) at 6l,i (101)

b = 0 at 60,i (102)

−nls · (e2 − ∇b) = 0 at 6βσ (103)

(B.C. I) y + b = 0 at 6βγ (104)

or (B.C. II) −nls · D (e2 + ∇b) = k (b + y) at 6βγ (105)

with the momentum equations illustrated by Eqs. (24), (29) and (31) for the above two sets of closure problems.
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