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ABSTRACT: The annual cycle of extreme 1-day precipitation events across the UK is investigated by developing a
statistical model and fitting it to data from 689 rain gauges. A generalized extreme-value distribution (GEV) is fit to the
time series of monthly maxima, across all months of the year simultaneously, by approximating the annual cycles of the
location and scale parameters by harmonic functions, while keeping the shape parameter constant throughout the year. We
average the shape parameter of neighbouring rain gauges to decrease parameter uncertainties, and also interpolate values
of all model parameters to give complete coverage of the UK. The model reveals distinct spatial patterns for the estimated
parameters. The annual mean of the location and scale parameter is highly correlated with orography. The annual cycle of
the location parameter is strong in the northwest UK (peaking in late autumn or winter) and in East Anglia (where it peaks
in late summer), and low in the Midlands. The annual cycle of the scale parameter exhibits a similar pattern with strongest
amplitudes in East Anglia. The spatial patterns of the annual cycle phase suggest that they are linked to the dominance of
frontal precipitation for generating extreme precipitation in the west and convective precipitation in the southeast of the
UK. The shape parameter shows a gradient from positive values in the east to negative values in some areas of the west.
We also estimate 10-year and 100-year return levels at each rain gauge, and interpolated across the UK. Copyright  2008
Royal Meteorological Society
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1. Introduction

The strongest weather impact on agriculture, economy
and society results from rare extreme events, as, for
instance, heat waves, heavy storms and flooding due to
intense rainfall. The occurrence of precipitation extremes
already shows persistent trends in many regions of the
world (Trenberth et al., 2007) and is projected to further
increase under anthropogenic global warming (Meehl et
al., 2007).

For the UK, Osborn et al. (2000); Osborn and Hulme
(2002) and Maraun et al. (2008 hereafter M2008), studied
the decadal variability of the daily precipitation intensity
distribution, and found trends towards heavy precipitation
during winter, and to a lesser extent also during spring
and autumn. Fowler and Kilsby (2003), however, found
no overall trend in the annual 1-day precipitation maxi-
mum during recent decades.

Regional climate model simulations according to the
IS92a and IPCC SRES scenarios project an increase in
extreme precipitation across the UK (Jones and Reid,
2001; Ekström et al., 2005).

One method for analysing the occurrence rate of
extreme weather events is extreme-value statistics (EVS)
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(Embrechts et al., 1997; Coles, 2001). This branch of
statistics has been widely applied in hydrology and cli-
matology (Brown and Katz, 1995; Coles and Tawn, 1996;
Coles and Casson, 1998; Katz, 1999; Katz et al., 2002;
Naveau et al., 2005). For the popular block maxima
approach, one divides the observed time series into blocks
and aims to model the distribution of the maxima of these
blocks. Most analyses of heavy precipitation consider
either annual or seasonal maxima. As many applications
require knowledge about return levels corresponding to
return periods of the order of decades or even centuries,
disregarding month-to-month variations is a seemingly
justified simplification. Using this approach, one further-
more avoids the difficulties of explicitly modelling the
annual cycle.

Precipitation in the UK, however, does show a pro-
nounced annual cycle, and for the assessment of agricul-
tural and hydrological impacts it is important to know
when during the year precipitation extremes are expected
to occur. While an increase in mean precipitation alone
during the growing season tends to increase the agricul-
tural yield, heavy precipitation might damage crops, espe-
cially in their juvenile stage. Furthermore, grain crops are
highly vulnerable to flooding, and the intensity and tim-
ing of rainfall influence the persistence and efficiency of
pesticides (Rosenzweig et al., 2001). The annual cycle
of extremes is also important for flooding and erosion:
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droughts reduce the capability of soil to absorb water;
heavy rains following a period of drought – a situation
more likely during summer than in winter – thus result
in increased runoff and a higher potential for flooding
(Rosenzweig et al., 2001). Likewise, the erosion of soil
by heavy rainfall may depend on the time of year that
the event occurs: erosion may be more likely if the soil is
initially dry (Yu et al., 2006), or if there is little vegeta-
tion, such as on agricultural fields during winter (Favis-
Mortlock, 2006). The latter effect is likely to increase,
because more winter precipitation is expected to fall as
rain, rather than snow, due to global warming (Nearinga
et al., 2005).

Additionally, changes in extreme precipitation have
not been homogeneous throughout the year. As stated
above, M2008 found sustained trends towards heavier
precipitation in winter, but during summer no clear trends
manifested themselves. This observation is consistent
with model projections of future climate (Jones and Reid,
2001; Ekström et al., 2005). Consequently, knowledge
about the present-day occurrence of extreme precipitation
during the year is essential to assess the impact of
future changes. Also, the above-mentioned discrepancy
between the results of M2008 and Fowler and Kilsby
(2003) might become clearer by studying the changing
occurrence of heavy rainfall during the year: if the
annual maxima considered in the latter study occur
predominantly during summer time (where no trends
occur), the overall trend might be vanishing although
precipitation extremes during other seasons become more
likely.

Finally, there are valid reasons to investigate the
annual cycle of extreme precipitation even if the focus
is actually on annual maxima. For example, the block
maxima approach requires identically distributed random
variables within a block. If the occurrence rate of
high magnitudes is changing from season to season,
this condition is in general not fulfilled. By explicitly
modelling the annual cycle we may reduce the violation
of this condition.

Therefore, we develop a model for the annual cycle
of precipitation extremes, based on EVS. Considering
monthly maxima instead of annual maxima, we make
better use of the rather limited data. We include the annual
cycle in the form of a harmonic function that modulates
the distribution of monthly maxima in the course of
a year. The parametric (harmonic) form of the model
reduces the uncertainty of the parameter estimates. This
approach is based on a more general method described in
Coles (2001) and Katz et al. (2003), who include external
influences as covariates in their extreme-value analysis.
We analyse a set of 689 rain gauge records across
the UK, revealing coherent spatial patterns of extreme
precipitation characteristics and their annual cycle.

In Section 2, we present the data used in this study,
and in Section 3 we briefly introduce the concepts of
extreme-value statistics, maximum likelihood estimation
and covariates. The actual statistical model of the annual

cycle is developed in Section 4. Results are presented in
Section 5 and discussed in Section 6.

2. Data

The selection of daily precipitation data we use in this
study is based on the (Met Office Integrated Data Archive
System) MIDAS land surface observation data, pro-
vided by the British Atmospheric Data Centre (BADC,
www.badc.ac.uk).

We choose a subset identical to the one in M2008,
which is itself an update of earlier work first presented
in Osborn et al. (2000). Our selection comprises 689
stations covering the whole UK, selected according to
their overall length of record and a low number of
missing values. The spatial coverage is dense in England,
with fewer stations elsewhere, especially in the north of
Scotland.

We use all data in the range of 1 January 1900–
31 December 2006; most gauges, however, commenced
recording in January 1961, and for some stations no
recent values (e.g. for the last decade) are available.
For a detailed discussion of the selected rain gauges,
including a list of stations, please refer to M2008 and
the corresponding supplementary material. Dry days of
zero precipitation are not removed in our analysis.

3. Methods

To analyse the annual cycle of extreme precipitation, we
employ EVS. This branch of statistics aims to describe
the occurrence rate of extreme values in a sequence of
random numbers, that is, the tail of a probability distri-
bution. The central theorem of EVS (Fisher-Tippett, or
Three-Types Theorem) states that for increasingly large
values, the tails of most probability distributions can
be approximated using the general extreme-value dis-
tribution (GEV) (Embrechts et al., 1997; Coles, 2001).
A standard approach of EVS describes the probability
distribution of the most extreme values within a block
of consecutive data points, the so-called block maxima
approach, which we pursue here. We estimate the param-
eters of the GEV from a series of maxima with the
maximum likelihood approach (Coles, 2001).

3.1. The generalized extreme-value distribution

Assume a physical process (here, precipitation) is rep-
resented by a sequence of n random variables, Xt (t =
1..n), which are independent and identically distributed
(iid), with unknown distribution. Denote the maximum
of this sequence as

Mn = max{X1, . . . , Xn} (1)

The Fisher-Tippett theorem states the following: if the
probability distribution of the properly rescaled maximum
converges for increasing block length (n → ∞) to a
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limiting distribution G(z), then G(z) belongs to the
family of GEV distributions:

G(z; µ, σ, ξ) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]−1/ξ
}

(2)

defined on {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ <

∞, σ > 0 and −∞ < ξ < ∞. The parameter µ is called
the location parameter and determines the position of the
distribution, the scale parameter σ determines the width,
and ξ , the shape parameter, determines the decay of the
distribution for large values of z: for ξ < 0, the tail has
a finite upper value (Weibull distribution); for ξ > 0, the
tail is long with a power law decay (Fréchet distribution).
In the limit ξ → 0 one obtains a Gumbel distribution with
an exponential decay, i.e. a short tail (Embrechts et al.,
1997; Coles, 2001). Leadbetter et al. (1983) have shown
that the iid condition can be relaxed such that the Fisher-
Tippet theorem holds also for a wide class of stationary,
but not necessarily independent, stochastic processes.

For a set of empirical data, an infinite sequence is of
course not possible. However, in many cases a reasonable
approximation by the GEV can be reached already for
finite values of n, depending on the auto-correlation and
distribution of Xt . Furthermore, for the estimation of the
GEV parameters, a sufficiently large number of observed
maxima is needed. Therefore, one divides the time series
into blocks and considers the maxima in these blocks.
Here, one has to trade-off block length and number of
maxima, that is, bias and variance (uncertainty). For
many purposes in climatology, annual maxima are a
preferred choice, not only because of the block length but
also to avoid an explicit modelling of the seasonal cycle.
In some cases, such as precipitation, monthly maxima
can already be approximated sufficiently well with the
GEV (see Section 5.1).

For risk assessment, one is interested in the proba-
bility of the observed variable (here, daily precipitation)
exceeding a certain level. These levels are expressed as
return levels rT for a certain return period T ; rT is defined
as the level which is exceeded with probability

P(z > rT ) = 1 − G(rT ;µ, σ, ξ) = 1

T
(3)

i.e. on average, once every T blocks. For further details
on extreme-value statistics we refer the reader to the
excellent introduction by Coles (2001) and the compre-
hensive book by Embrechts et al. (1997).

3.2. Maximum likelihood estimation

From an observed series, xt , t = 1..n · m, divided into
m blocks of length n, one can extract a block maxima
series zi , i = 1..m, according to Equation 1. From this,
one can estimate the parameters of a GEV distribution
describing this series. One possible approach is maximum
likelihood estimation (Edwards, 1992; Embrechts et al.,
1997; Coles, 2001).

The likelihood for the parameters given a maxima
series zi is

L(µ, σ, ξ | zi) =
m∏

i=1

g(zi;µ, σ, ξ) (4)

where g(z; µ, σ, ξ) is the density function of the distri-
bution G(z; µ, σ, ξ). The likelihood is a function of the
parameters µ, σ and ξ , for a given set of maxima zi ; as
such, it is not a probability density function. It is, how-
ever, proportional to the probability that data zi would
occur given the parameters µ, σ and ξ . For a discussion
of the difference between a probability and a likelihood
refer to, for instance, Edwards (1992).

The idea of maximum likelihood estimation is now to
adjust the parameters such that L(µ, σ, ξ | zi) attains a
maximum. The resulting vector

θ̂ = (µ̂, σ̂ , ξ̂ ) = arg max
µ,σ,ξ

{L(µ, σ, ξ)} (5)

is the maximum likelihood estimator (MLE) for the
parameters. We solve Equation 5 by numerical opti-
mization. The covariance matrix measuring the uncer-
tainty of the estimates is calculated from the estimated
Fisher information matrix. The latter is the second
derivative of the log-likelihood function �(µ, σ, ξ | zi) =
log L(µ, σ, ξ | zi) and is a measure for the curvature of
the likelihood at the maximum (Coles, 2001).

Maximum likelihood estimation assumes that the data
are a typical realization from the distribution with param-
eters µ̂, σ̂ , ξ̂ . Therefore, it works very well for large
datasets; for very limited data, one might prefer other
strategies, e.g. probability-weighted moments (Hosking
et al., 1985; Embrechts et al., 1997).

However, the MLE has an advantage which we will use
in the following: GEV parameters that depend on time
or external variables can straightforwardly be included in
the model.

In climatology, the characteristics of extremes are
often non-stationary and depend on changes in large-scale
processes, seasonality or long-term trends. Consequently,
the GEV parameters are no longer constants but functions
of a driving process or time. For instance, the constant µ

(or σ or ξ ) can be replaced by the function

µ = µ(t) = µ0 + aµ · c(t) (6)

The c(t) can either be a function in time, for instance, a
parametric trend or a harmonic function, or it can be the
observation of a process that influences the extremes, for
instance, a large-scale weather index. In the latter case,
c(t) is called a covariate (Coles, 2001; Katz et al., 2003).

These new parameters, µ0 and aµ (or the correspond-
ing parameters for σ and ξ ), can be estimated in the same
way as µ, σ and ξ using Equation 5.
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4. Developing the statistical model of the annual
cycle

4.1. Exploratory fit

To investigate how the distribution of extreme precipita-
tion events in the UK changes during the year, we first
carried out an exploratory study. We separated each sta-
tion’s time series into 12 sub-series, 1 for each month.
Within these sub-series, we chose the length of the month
as the block length, n. The difference in lenghts of the
months of 1, or maximally 3 days, is disregarded. In
Section 5.1, we will demonstrate that this block length is
already sufficient to yield an adequate approximation of
the maxima distribution with the GEV. We also repeated
the analysis with a block length of 2 months (combining
the months of 2 consecutive years) and found no signifi-
cant change in the results. A potential reason is that the
distribution of daily precipitation (commonly modelled
as gamma, e.g. Osborn and Hulme (2002)) is already

close to a GEV distribution. Furthermore, the low auto-
correlation of the precipitation process does not slow
down the convergence of the maxima distribution towards
the GEV.

Examples from three typical rain gauges are shown in
Figure 1, 3 and 5. The black crosses with error bars depict
the monthly estimates for µ, σ , ξ , and the coefficient
of variation, σ/µ, as well as the 0.1 quantile and the
0.01 quantile, with the corresponding 95% confidence
intervals. The solid line is a sine fitted to the estimates
for the single months.

Throughout the text, we will refer to these exploratory
estimators as the exploratory (EX) model. In the follow-
ing, the EX model will be confronted with a sinusoidal
model.

4.2. The sinusoidal model

The exploratory study showed that, especially for µ and
σ , a sine function with amplitude and phase as parameters

Figure 1. Oxford (England); GEV fit for monthly maxima of daily precipitation. Crosses plus bars: 12 separate fits, one for each month (EX
model) and the corresponding 1.96σ confidence intervals; Dashed line and shading: The sinusoidal model for the annual cycle (SIN model),

including 1.96σ confidence bands. Dots in the lower panels are the observational maxima for each month over the whole record.
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may be an appropriate model for the annual cycle. To
obtain a model which is linear in the parameters, we
modelled µ and σ as a combination of sine and a cosine
with a 1-year period, evaluated at the centre-day of each
month, ci :

µi = µ0 + aµ sin
(

2πci

365.25

)

+ bµ cos
(

2πci

365.25

)
, i = 1 . . . 12 (7)

σi being modelled correspondingly. In the following, we
will refer to the sinusoidal model as the SIN model.

In comparison to the EX model, which considers each
month separately, the SIN model of the location and
scale parameter has got the advantage that it combines
information from all months, and uses all available data
to estimate seven parameters (µ0, aµ, bµ, σ0, aσ , bσ ,ξ ).
In the former case, we have to estimate 36 parameters
(µ, σ, ξ for each month) with the same amount of data.
This implies a significant reduction in degrees of freedom
of the model, and thus, reduces the uncertainty in the
derived quantities, e.g. return levels. This advantage,
however, will only be realized if the simplified model
is able to capture the annual cycle behaviour in an
appropriate way (see Section 4.3 for a discussion of our
choice of a constant shape parameter at each location).

For every rain gauge, we estimate the parame-
ters of the SIN model, combined into the vector
θ = (µ, aµ, bµ, σ0, aσ , bσ ), by the maximum likelihood
approach Equation 5. Again, three typical examples are
shown in Figures 1, 3 and 5. The result for the SIN
model is shown as a dashed line, with shading depict-
ing the 95% confidence bands. The agreement of the SIN
model (dashed line) with the sine (solid line) fitted to the
results from the EX model demonstrates the suitability
of the model assumption. The climatological discussion
will follow in Section 6.

4.3. Modelling the shape parameter

Figures 1, 3 and 5 show that a SIN model is not easily
justified for the shape parameter. The estimated values of
ξ for the EX model do not clearly follow a simple sine,
and the confidence bands are so wide that the individual
monthly values are compatible with a constant value
throughout the year, or in some cases even with zero.
Thus, we investigated whether a constant model for ξ is
suitable, or whether an annual cycle (ξ0, aξ , bξ ) has to be
taken into account. For this purpose, we employed two
criteria: the consistency of the spatial structure of ξ0, aξ

and bξ ; and, additionally, a likelihood ratio test (Cox and
Hinkley, 1994).

For ξ , a coherent spatial pattern only emerges for
the constant offset (see Figure 7(g)), confirming our
assumption not to enforce ξ = 0. However, no coherent
pattern appears for the amplitude and phase of the
annual cycle in ξ (not shown). The likelihood ratio test,
performed for each station, assesses whether the annual

cycle in ξ results in a significant improvement of the
estimation. A significant number of stations (that is,
more stations than expected by chance on the 1, 5 and
10% levels) showed a significant improvement of the
likelihood with an annual cycle in ξ ; but also here, no
spatially coherent structure occurred. This result suggests
that the annual cycle in ξ may compensate for minor
model mis-specifications at some stations, but has no
physical relevance.

Based on this outcome, we decided to enforce a con-
stant shape parameter throughout the year, estimated
individually for each station. Investigations of several
randomly selected examples (not shown) revealed that
the omission of the annual cycle in ξ introduces only a
marginal change in the estimated quantiles, but consider-
ably reduces the parameter uncertainty.

4.4. Smoothing and refitting

The spatial coherence of many of the estimated parame-
ters suggests to combine the information of single sta-
tions. As parameters vary slowly in space, smoothing
the values of neighbouring stations would gain a reduc-
tion in variance to the cost of only a little bias: some
small-scale structures, perhaps due to orography, are not
accounted for (’smoothed out’). In addition to the reduc-
tion in variance, smoothing allows one to interpolate from
a network of stations to an arbitrary point in the UK.
The accuracy of this interpolation obviously depends on
the density of the network and, again, on the smooth-
ness of the parameter changes. In a mountainous region,
where small-scale orography affects the local precipita-
tion, a narrower smoothing window (and thus, a denser
station coverage) is necessary, compared to a flat region.
Unfortunately, stations cluster in England, as opposed to
a sparse network in the Scottish Highlands. Thus, our
interpolations, especially for Northern Scotland, should
be regarded as a guidance to highlight large-scale patterns
only, local characteristics are not resolved.

We smoothed ξ0, the spatially coherent parameter esti-
mated with the highest uncertainty. To keep calcula-
tions simple and comprehensible, we decided against a
more sophisticated kriging algorithm (Cressie, 1991) but
choosing instead a kernel smoother,

ξ 0,i =
Ns∑

j=1

wi,j ξ̂0,j (8)

Here, the weights wi,j between a point i in the UK and
a station j are chosen as a Gaussian kernel with a cross-
section width of 30 km, with

∑N
j=1 wi,j = 1. The number

of stations N is 689. The smoothed ξ 0,i now has a greatly
reduced standard error σ

ξ
.

Ideally, the averaging would be done simultaneously
with the maximum likelihood estimation. This, how-
ever, would involve large computational cost and prob-
ably also cause numerical problems. Thus, we decided
to smooth the maximum likelihood estimate ξ̂0 of the
SIN model, and then re-estimate all other parameters
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with a fixed ξ0 = ξ 0 for every station (i.e. each station’s
maximum likelihood estimate of ξ0 is replaced by the
value from the smoothed field for that location). The
reduced parameter vector of this model is then θ−ξ0 =
(µ0, aµ, bµ, σ0, aσ , bσ ), leading to a new maximum like-
lihood estimate. A Monte Carlo study (not shown) indi-
cated that the standard error of ξ , σ

ξ
, was small enough

not to affect the (reduced) covariance matrix of the re-
estimated parameters.

The increase in bias of these estimates compared to
the fit including a (variable) parameter ξ0 is low, but the
variance is considerably reduced. Smoothing the quite
accurately estimated scale and location parameter would
not gain much reduction of variance; hence, we forbear
from any further spatial smoothing.

5. Results

In the following, all results from the SIN model are
obtained with a spatially smoothed and fixed value of
the shape parameter ξ 0 (without an annual cycle), and
re-estimated location and scale parameters, each with a
sinusoidal annual cycle.

5.1. Example stations

A typical example of an observation where daily precipi-
tation extremes are well modelled by a sinusoidal annual
cycle (i.e. where the SIN model fits well) is the record
from Oxford (Met Office Source Identifier 606). We used
data from 1 January 1900 to 31 December 2006. One can
clearly see the strong annual cycle in the location and
scale parameter µ and σ (upper row in Figure 1).

The suitability of the SIN model becomes evident from
the good agreement between the results for the individual
months (the EX model, crosses), and the dashed curve
depicting the SIN model. One also sees the reduction of
the error bars by about 50%, when using the SIN model
instead of the EX model. The middle row shows the fit
of the shape parameter ξ and the coefficient of variation
σ/µ. The shape parameter apparently exhibits a bi-annual
cycle (crosses), but all values for the single months are

compatible with the constant value we included in the
SIN model. In some studies, the coefficient of variation
is modelled as a constant to further simplify the statistical
model. Our results indicate that here this assumption is
not justified: the annual cycle for µ and σ are slightly out
of phase, which results in an asymmetric sine-like shape
of the coefficient of variation (though its amplitude is
reduced relative to the annual cycle of µ and σ ).

The bottom row of Figure 1 shows the 0.1 and
0.01 quantiles, that is, the magnitude exceeded with a
probability of 10 and 1% in a certain month, respectively.
Good agreement between the EX and the SIN model is
evident again. However, for the 0.01 quantile, a deviation
becomes apparent: for the EX model, some extremely
high values in June, July and September lead to high
estimates of the shape parameter for these months, and
thus, also to high quantiles (crosses). In the SIN model,
the time-independent shape parameter ξ is estimated from
values of the whole year. In this representation, the
record maximum precipitation values in June, July and
September are seen as quite improbable ’outliers’; hence
the estimates of the corresponding quantiles in the SIN
model are considerably lower (dashed line) than those
from the EX model. Nevertheless, in both models the
highest extreme precipitation events for Oxford are to be
expected in August.

The diagnostic plots in Figure 2 confirm the suitability
of the SIN model. The left panel shows a probability–
probability (P-P) plot, that is, the empirical frequency
distribution of the data against the probability distribution
of the fitted model. The right panel shows a quantile–
quantile (Q-Q) plot, that is, the empirical quantiles against
the quantiles of the fitted model. Due to the time-
dependent location and scale parameter, the distribution
varies throughout the year. Thus, both the data and
the probability distribution of the model have been re-
normalized to a time-independent Gumbel distribution.
(For each month, the distribution is transformed to
have zero location, unit scale, and vanishing shape
parameter. This enables one to combine all results into
one diagnostic plot instead of twelve separate ones
(Coles, 2001)). In both cases, the bisector indicates a

Figure 2. Oxford (England); diagnostic P-P plot (a) and Q-Q plot (b) of the SIN model. The fitted time-varying distribution (and the data,
respectively) is re-normalized to a time-independent Gumbel distribution. 95% confidence intervals (dashed) are obtained from 999 realizations

of this Gumbel distribution.
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perfect agreement between data and model. The P-P plot
focuses on the mass of the distribution, the Q-Q plot
reveals more information about the tails. The latter one
complements the quantile plots shown in the bottom row
of Figure 1. The three extremely high values occurring
in June, July and September lead to an upswing of the
data quantiles compared to the model quantiles in the
extreme tail of the Q-Q plot. However, except this slight
discrepancy involving just three monthly maxima from
the 107-year record, the overall agreement is high.

Kinlochewe in the northwestern Scottish Highlands
(Figures 3 and 4, Source Identifier 66, data for 1 January
1961–1 December 2006) is another example for a good
fit of the SIN model. Here, the annual cycle in ξ is even
less pronounced. Unlike in Oxford, the most extreme
precipitation is expected in December and January. The
diagnostic plots in Figure 4 shows that the SIN model in
general performs very well; only some very extreme val-
ues in February and March, as well as in September and
October, are not captured by the SIN model. This causes
the slight deviation of the Q-Q plot for very large values.

The time series of Aberporth (Wales, Source Iden-
tifier 1198, data for 2 January 1941–31 December
2006) shows some extremely high values between June
and October, which are not well captured by the SIN
model (see Figure 5). In the EX model, these val-
ues result in high estimates of the shape parameter
during this season. The constant shape parameter in
the SIN model hence leads to a much lower estima-
tion of the return levels compared to the EX model
(although the resulting curve (dashed) still lies within
the confidence intervals of the EX model). This dis-
crepancy could indicate that the SIN model is mis-
specified for some stations where the shape parameter
changes throughout the year. However, the discussion
of return level estimates in Section 5.3 suggests that the
SIN model, in combining information of the whole year,
simply reduces the uncertainty in the shape parameter
estimation.

The discrepancies apparent from the quantile plots in
Figure 5 are reflected in a deviation of the empirical
quantiles from the SIN model quantiles for extreme

Figure 3. Kinlochewe (Scotland); GEV fit for monthly maxima of daily precipitation, as in Figure 1.
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Figure 4. Kinlochewe (Scotland); diagnostic P-P plot (a) and Q-Q plot (b); as in Figure 2.

Figure 5. Aberporth (Wales); GEV fit for monthly maxima of daily precipitation, as in Figure 1.

values, see the right panel in Figure 6. The five extremely
high values occurring from June to October are clearly
visible.

The presented examples demonstrate the benefits and
limits of the SIN model. On the one hand, the model helps
to significantly reduce the uncertainty of the estimated

parameters. One the other hand, the model might be mis-
specified for individual situations.

For Oxford and Kinlochewe, small but significant
deviations of the scale parameter from a perfect sine are
visible (Figures 1 and 3). Here, including higher-order
harmonic functions might improve the performance of
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Figure 6. Aberporth (Wales); diagnostic P-P plot (a) and Q-Q plot (b); as in Figure 2.

the model. A similar argument holds for the shape
parameter in Aberporth (Figure 5). However, as we
aim to extract the most relevant physical characteristics
of the annual cycle of heavy precipitation, and its
spatial characteristics, we keep the model as simple as
reasonably possible.

Aberporth has been selected as an example of a small
number of stations, where some extremely high values are
not well captured by the SIN model, as visible in the Q-Q
plot (Figure 6). Apart from the points discussed above,
the discrepancy could be explained by the presence of
multiple distributions (see, e.g. van den Brink et al.,
2004; Vannitsem, 2007). However, as these ‘outlier’
stations do not cluster in certain regions, there is no
further evidence for such a case. More likely, the problem
could also be caused simply by finite sampling: analysing
689 finite realizations, some of them will almost certainly
be untypical such that the proposed model does not fit
perfectly.

5.2. Spatial structure

Figures 7 presents the spatial distribution of the esti-
mated GEV parameters obtained for the SIN model. The
circles depict the results for individual stations, after re-
estimating the parameters of the reduced SIN model (see
Section 4.4); the coloured background is a kernel interpo-
lation as described in Section 4.4 to highlight large-scale
spatial patterns. The rain gauges were chosen according
to their completeness and length, to provide a reason-
able amount of data for each month. As a result, the
spatial coverage in some regions, especially in Scot-
land, is quite sparse. We would like to point out that,
in consequence, small-scale structures due to small-scale
orographic effects are not represented in this study.

Figure 7(a–c) shows the spatial pattern of the annual
cycle in the location parameter µi = µ0 + aµ sin(2πi/

12) + bµcos(2πi/12), namely, the annual mean µ0, the

relative amplitude
√

a2
µ + b2

µ/µ0, and the phase (the date
when the sine wave reaches its maximum and is plotted).

A distinct feature is the strong east–west gradient.
Lowest values of the location parameter offset µ0 occur
in East Anglia, the highest values along the west coast,

especially in Cornwall, South Wales, the Lake District
as well as the western Scottish Uplands and the south-
western Scottish Highlands. Interestingly, the location
parameter is relatively low in the northern Highlands,
the Outer Hebrides, the Orkney and Shetland Islands and
Northern Ireland though in some of these areas the rain
gauge network is sparse and is dominated by stations at
lower elevations.

Relative to the annual mean, the annual cycle in the
location parameter is, as expected, strongest in West
Scotland including the Hebrides, Orkneys and Shetlands,
the Lake District, Cornwall and North Wales around
Snowdonia. However, high values also occur in some
areas around the south and east coasts, especially in East
Anglia and along the English Channel.

The phase of the annual cycle finally shows a clear
east–west gradient, with highest values in August in the
heartland of England, and highest values in November
along the south coast, the west coast, most of Wales and
Northern Ireland and Scotland, with the exception of the
northern and eastern Scottish coasts, where the highest
values occur 1 or 2 months earlier.

A similar pattern emerges for the scale parameter,
see Figure 7(d–f). The basic structure for the offset
resembles that of the location parameter, although the
values in the northeast of Scotland, the Outer Hebrides,
the Orkneys and Shetlands are notably lower compared
to the rest of the UK. But as this observation is based
on a low number of rain gauges, it should not be
overemphasized.

The overall pattern of the relative amplitude of the
scale parameter annual cycle is similar to that of the
location parameter, with two pronounced differences.
First, along the west coast, the relative amplitude is high
only in Scotland; in Wales and Cornwall it is weak.
Second, the area of a high relative amplitude in the
southeast is even more clearly marked.

The phase-pattern of the scale parameter is almost
indistinguishable from that of the location parameter, but
its annual cycle peaks earlier in the heart of England
(already in July) and even later in the southwestern
Scottish Highlands (in December).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7. (a–c) Location parameter, (d–f) scale parameter. Circles: values for single stations; background: kernel average. (a) and (d) offset µ0

and σ0, (b) and (e) relative amplitude
√

a2
µ + b2

µ/µ0 and
√

a2
σ + b2

σ /σ0 of the annual cycle, (c) and (f) phase of the annual cycle (position of the
sine’s maximum). (g) Shape parameter ξ . Triangles and Circles: values for single stations; background: kernel average. Upper (lower) triangles

depict positive (negative) estimates not compatible with zero, circles depict estimates compatible with zero on a 95% level.
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(a) (b) (c)

(d) (e) (f)

Figure 8. (a–c) 10-year return level, derived from (a) annual maxima, (b) the EX model and (c) the SIN model. Values lower than 35 mm (larger
than 110 mm) have been plotted in red (blue). (d–f) 100-year return level, derived from (d) annual maxima, (e) the EX model and (f) the SIN

model. Values lower than 40 mm (larger than 160 mm) have been plotted in red (blue).

Figure 7(g) depicts the spatial pattern of the shape
parameter. The triangles and circles represent the results
for individual fits of the full SIN model. The circles mark
all values compatible with zero, i.e. zero lies within their
1.96 standard error intervals (95% significance level).
Upper (lower) triangles stand for positive (negative)
values not compatible with zero. The background shows
the kernel averaged results. The background values at the
station locations have been used for the re-estimation of
the reduced SIN model, see Section 4.4.

The shape parameter exhibits an interesting southwest-
northeast gradient, which is quite different from the
pattern of the other parameters. Values are significantly
positive (upper triangles) over almost all the UK away
from the south and west coasts, in Northern Ireland and
North Wales, with higher values in the Midlands, the east
coast and the northern Highlands. Maxima occur along
the east coast around Inverness, and between Edinburgh

and Newcastle. Zero and negative values occur along the
south and west coast, with clusters of negative values in
Cornwall, the Lake District, and the southern Uplands
of Scotland. This pattern clearly justifies the use of the
GEV distribution instead of the Gumbel distribution (with
ξ = 0).

5.3. Return levels

Return level estimates are often derived with the annual
maxima approach. For many cases in risk assessment,
one is interested in extreme levels of long return periods,
and not in the detailed shape of the annual cycle. It
may, therefore, appear to be a reasonable choice to
consider only one value per year. The block maxima
approach, however, assumes a stationary process. In
general, the maximum of a non-stationary process is
not well modelled by a GEV distribution. This means
that the block maxima approach is only valid for a
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process without, for instance, an annual cycle. A case
where the GEV might be a reasonable approximation is
a situation, where the extreme precipitation occurs only
in a particular pronounced season. As demonstrated in
the previous sections, UK precipitation extremes show
a distinct, though spatially varying, annual cycle and, a
priori, it is not clear whether the annual maxima approach
provides reasonable results.

In the following, we compare return levels derived
from the annual maxima approach with those from the EX
model and the SIN model. The estimation of return levels
from annual maxima is straightforward according to
Equation 3. Return levels from the EX model and the SIN
model have to be calculated numerically. When Gi(z)

(i = 1, . . . , 12) denotes the probability of the occurrence
of a value smaller than z in the month i, then the T -year
return level rT can be calculated by solving the equation

12∏
i=1

Gi(rT ) = 1 − 1

T
(9)

Corresponding confidence intervals for the SIN and the
EX model can be derived by propagating the parameter
uncertainties through Equation 9. These intervals will
depend on the actual length of the observation and the
desired return level. For a guideline of the expected range,
we refer the reader to the 0.9 and 0.99 quantile plots for
Oxford and Kinlochewe (Figures 1 and 3), representing
the monthly 10-year and 100-year return levels for a long
and a rather short observation, respectively.

We estimate return levels for all stations. By spatial
interpolation, we highlight large-scale structures of return
levels, disregarding small-scale orographic effects.

The return levels derived from annual maxima should
suffer from the non-stationarity given by the annual cycle.
The EX model explicitly, and without any constraints,
models the annual cycle based on monthly maxima.
It relies on the suitability of approximating monthly
maxima with the GEV, and on the stationarity assumption
within every month. As this model has the most degrees
of freedom, it is afflicted with the widest confidence
intervals. The shape parameter, estimated for every month
separately, might be particularly sensitive to extreme
’outliers’. The SIN model provides return level estimates
with considerably narrower error intervals, yet it relies on
the suitability of the sine shape to model the annual cycle
of the location and scale parameters, and the assumption
that the shape parameter is invariant during the year.
Figure 8(a–c) shows the 10-year return levels estimated
from (a) annual maxima, (b) the EX model and (c) the
SIN model. At first glance, the three panels are virtually
indistinguishable.

The most notable exceptions are that estimates from
the EX model are higher than those from the other
approaches in two regions: southern East Anglia and
southeast Scotland/northeast England. One can see the
expected east–west gradient, with higher return levels
along the west coast and lower values especially in the

southeast. Particularly high return levels prevail in the
western Highlands and the Lake District.

Figure 8(d–f) shows the 100-year return levels esti-
mated from (d) annual maxima, (e) the EX model and
(f) the SIN model. A marked discrepancy stands out:
values estimated from the EX model are larger than
those derived from the SIN model or the annual max-
ima approach in most parts of the UK. This discrepancy
is especially strong in the coastal stretch from Edinburgh
to Newcastle where the shape parameter is positive and
relatively large; a rather small discrepancy is found in
the Lake District and the western Highlands where the
shape parameter is compatible with zero or even negative
(Figure 7(g)). Large positive shape parameter estimates
can be a consequence of a few extremely high rainfall
events. In the EX model, shape parameters are estimated
separately for every month of the year which results in
large positive shape parameter estimates for months with
a few large events (see Figure 5). These months con-
tribute strongly to the calculation of extreme return levels,
while months with small shape parameters do not. This
flexibility in the shape parameter to vary during the year
is neither present in the SIN model nor in the annual
maxima approach; shape parameter estimates are con-
fined to a smaller value, closer to an annual average than
to the extreme estimates in the EX model. As a conse-
quence, the SIN model and the annual maxima approach
yield smaller 100-year return levels. Without any fur-
ther a priori knowledge about the model structure (e.g.
physical reasons for a time-constant shape parameter), it

is not clear which of the return level estimates are more
realistic.

The differences between the 100-year return level
estimates from the SIN model and the annual maxima
approach are less pronounced. In general, the latter
results show a higher spatial variability, a fact not
surprising, since the former approach combines the
shape parameters of neighbouring rain gauges. The
relatively good agreement between the two approaches
suggests that annual maxima mostly provide reasonable
return level estimates, despite the previously discussed
theoretical limitations. Equally, the agreement supports
the specification of our SIN model.

The overall spatial pattern of the 100-year return level
resembles that of the 10-year return levels: highest values
are observed in the western Highlands and the Lake
District, lowest values in the southeast.

6. Discussion and conclusions

We studied the annual cycle of heavy daily precipitation
across the UK by means of EVS, and approximated the
distribution of monthly maxima by the GEV distribution.
To combine the information from individual months, we
developed a parametric model which described the annual
variations in the location and scale parameter of the GEV
distribution as a phase-shifted sine function, and assumed
a time-independent shape parameter.
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This model proved to be suitable: the approximation
of the monthly maxima distribution by the GEV and
the annual cycle by a sine wave both appeared to be
reasonable. The parametrization in form of a sine wave
helped to considerably reduce the parameter uncertainties
compared with a model that was fit to each month
independently. The combination of the estimated shape
parameter values from neighbouring rain gauges further
reduced parameter uncertainties.

Our statistical results demonstrate that the scale
parameter, in general, is not in phase with the loca-
tion parameter (Figures 7(c) and 7(f)), although the spa-
tial patterns of their annual means are highly corre-
lated (Figures 7(a) and 7(d)). Thus, modelling the shape
parameter as a constant multiple of the location param-
eter is not valid when looking at the seasonal variations
of extreme precipitation. For a study of annual maxima,
the phase shift is irrelevant and a combination of location
and scale parameter might be useful, although their ratio
might be spatially varying.

We compared return levels derived from annual max-
ima, an exploratory model of separately considered
monthly maxima and the parametric sinusoidal model
(see Figure 8). We found that, although the annual max-
ima approach relies on a stationarity assumption of daily
precipitation, it provides, in general, reasonable results.
The exploratory model is afflicted with the highest param-
eter uncertainties and, perhaps, systematically overesti-
mates the shape parameter, and hence, the return levels of
rare events (e.g. 100-year events). The sinusoidal model
proved to be a good compromise between a bias due to a
stationarity assumption and the uncertainty owing to too
many parameters.

Our study provides detailed insight into the seasonal
variations of extreme precipitation in the UK. Along
the middle north-south axis, the amplitude of the annual
cycle in the location parameter is less than 15% of the
corresponding annual mean (Figure 7 (b)), in the scale
parameter even just around 10% (Figure 7(e)). However,
along the west coast and in the southeast, seasonal varia-
tions are strong, with up to 30% in the location parameter
and 40% in the scale parameter.

The season when precipitation extremes are most likely
to occur depends strongly on the region as well: along the
west coast, the heaviest precipitation is expected during
late autumn and winter, whereas along the east coast and
the Midlands, the maximum location and scale parame-
ters occur during late summer (Figures 7 (c) and (f)).

The estimated return levels agree well with the results
published in the Flood Estimation Handbook (Faulkner,
1999). Those results additionally account for small-scale
variations by additional empirical knowledge. In that
study, however, the accuracy of very high return levels
might be limited because of the restriction to a Gumbel
distribution, that is, a vanishing shape parameter. In our
analysis, a coherent spatial pattern of the shape parameter
emerged, indicating that different geographical situations
might influence the shape parameter (see Figure 7(g)).

Our results are related to different processes of precipi-
tation and driving mechanisms. The offset of the location
parameter is correlated (Pearson) at 0.65 with the max-
imum elevation in the 10-km vicinity of a rain gauge
(topography data from the USGS ETOPO30 dataset),
clearly showing the effect of mountain ranges on oro-
graphic precipitation.

Regions of predominantly convective rainfall extremes
can be identified by extremes occurring in summer.
In the UK, these are, especially, the Midlands and
the east of England. Here the location parameter is
low without a strong annual cycle. The scale param-
eter in this region also has a low offset, but shows
a pronounced annual cycle. In other words: in Cen-
tral and East England, precipitation is generally low,
but from time to time very heavy summer thunder-
storms occur. These findings agree notably well with
the thunderstorm climatology for the UK, developed by
Perry and Hollis (2005, thunderstorm climatology, avail-
able at http://www.metoffice.gov.uk/climate/uk/averages/
19712000/mapped.html). Convective precipitation and
thunderstorms also accompany frontal precipitation dur-
ing winter, especially along the remotest parts of the
British west coast. These areas, dominated by frontal pre-
cipitation, are characterized by low values of the shape
parameter, and high values of the location and scale
parameter, peaking in winter.

Between the frontal dominated climate along the west
coast with extremes occurring during winter, and the
somewhat more continental climate with extremes arising
predominantly from summer convection, a transition zone
exists. Here, the overall annual cycle is weak, with
convective rain contributing during summer, and frontal
precipitation contributing during winter.

Our results help to assess the future impact of climate
change. Climate models predict an increase in UK
heavy precipitation throughout the year, though more
consistently during winter than summer (Christensen et
al., 2007). On the one hand, our study identifies regions
and seasons, where extremes are already strong and might
get even stronger (e.g. early winter in western UK).
On the other hand, we showed regions and seasons,
where extreme precipitation is weaker at present but
might become significant in the future (e.g. winter in
East Anglia). These results might prove important for
agriculture and hydro engineering.

Future work could further investigate the different pre-
cipitation processes discussed above and try to incor-
porate, for instance, the elevation into the statistical
model. Furthermore, it could be interesting to add a
higher harmonic to the model to decrease possible mis-
specifications, and to study whether the shape of the
annual cycle might be region dependent. A recently
developed approach by Heffernan and Tawn (2004) can
be used to assess the interdependencies between precip-
itation events at different stations, and provide estimates
for the total volume of rainfall in a single event. Finally,
our results might be used to evaluate the performance of
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regional climate models at simulating the annual cycle of
extreme precipitation.
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