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A High-Order Compact Limiter Based on Spatially
Weighted Projections for the Spectral Volume and the
Spectral Differences Method

Raphaël Lamouroux1 · Jérémie Gressier1 ·
Gilles Grondin1

Abstract This paper exposes the theoretical developments needed to design a class of spa-
tially weighted polynomial projections used in the definition of a compact limiter dedicated
to high-order methods. The spectral volume framework and its integral representation of the
solution is used to introduce the degree reduction of the polynomial interpolation. The degree
reduction is conducted through a linear projection onto a smaller polynomial space. A partic-
ular care is taken regarding the conservativity property and results in a parametric framework
where projections can bemonitored with spatial weights. These projections are used to define
a simple and compact high-order limiting procedure, the SWeP limiter. Then, numerical eval-
uations are performed using the spectral differences method for the mono-dimensional Euler
equations and demonstrate the high-order behavior of the SWeP limiter.

Keywords Compact limitation · High-order schemes · Spectral differences method ·
Order reduction · Hyperbolic conservation laws

1 Introduction

The past two decades saw major improvements in the development of high-order computa-
tionalmethods. It has been recognized that high-order schemes are valid candidates to address
CFD challenges of the forthcoming years such as aeroacoustic, vortex-dominated flows, sep-
aration prediction, or turbulence awareness. One of their key features lies in their ability
to deliver a higher level of accuracy for a computational cost lower than that of common
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“low-order” methods such as finite differences or finite volume methods. Furthermore, most
popular high-order methods come with a compact stencil favouring parallel data processing.
Incidentally, industrials actors keep a close watch on their elaboration. For a complete and
recent review of the status of the high-order methods in CFD, the reader is referred to [1–3].

The work presented in this paper is based on a major high-order method, the spectral
volume method (SVM). The SVM is a compact high-order method that belongs to the more
general class of Godunov-type finite volume methods [4,5]. Based on the extra degrees of
freedom (DoFs) provided by an additional partitioning of the mesh cells, the SV delivers a
compact high-order data reconstruction scheme. After Wang et al. [6] introduced the method
in 2002, it was further developed through basic 1D [7] and 2D [8,9] numerical evaluation,
before Liu et al. [10] extended the method to 3D systems . In 2006, Sun et al. [11] introduced
viscous flow treatment in the SVM in order to extend the range of applications to the Navier–
Stokes equations. The SVM was compared to the discontinuous Galerkin method by Zhang
et al. [12] as they tested the stability, accuracy and convergence of both methods. To the
knowledge of the authors, the most demanding computations carried out using SVM are
due to Haga et al. [13]. Using the Japanese Earth simulator they completed 3D simulations
of the transonic flow around ONERA-M6 wing and captured the λ-shaped shock structure.
Different analyses of the SVM properties have also been performed. Van den Abeele et al.
[14,15] studied its dissipative and dispersive behaviour and discovered weak instabilities for
specific mesh cells partitions. Harris et al. [16] managed to eliminate these weak instabilities
using some bi-dimensional optimization studies of the aforementioned cells partitions.

The implementation of the method has also been the subject of different studies. Harris et
al. [17] developed an efficient variant of the SVM which avoided Gauss quadrature formula
for flux computations in and brought it close to the spectral difference formulation. This
methodology also lead to an hp-adaptive version of the SVM [18]. More recently, SVM
schemes have exhibited some connections with the correction procedure via reconstruction
or CPR schemes [19].

Solving a system of conservation laws like the Euler system is not an easy task since
solutions may contain discontinuities even if a smooth initial condition is considered. When
using high-order schemes, discontinuities tend to create spurious numerical oscillations. Con-
sequences go from the simple noising of the solution to computation failure. To avoid the
development of oscillations, twomain strategies have emerged: resort to a limiting procedure
or add artificial viscosity to the equations. The viscous approach is an active field of research,
closely linked to the most recent developments regarding high-order schemes [20], although
their origin can be traced back up to the 50’s [21]. Nevertheless, the ideas of this paper are
related to the first strategy. Most commonly used limiters include total variation bounded
(TVB) limiter [22], moment limiter [23,24], MOOD limiter [25,26] and ENO/WENO lim-
iter [27,28]. The main challenge with the design of a limiting procedure is in reaching a
middle ground between non-oscillatory and high-order properties. This hindrance has been
well overcome with the very new implementations of the WENO framework for the discon-
tinuous Galerkin scheme [29] and the CPR scheme [30]. These studies show that high-order
accuracy was preserved for smooth computations and at the same time discontinuities were
well handled and oscillations strongly limited. In [29,30], important efforts are carried out to
extend the stencil of the WENO scheme to its minimum. A numerical scheme generally falls
into the category of the compact schemes if it only uses the information from its neighbour-
ing cells and so are the WENO implementation described in [29,30]. Yet, in these cases, the
knowledge of the solution field at all the DoFs contained in the immediate neighbouring cells
is still needed and the strict compacity of the high-order scheme involved is lost. By strict
compacitywemean that the unique additional informations usually needed (the informations



that need to be exchanged between processors) are those involved in the Riemann solver
used for the fluxes definition, i.e. the interpolated state values from the neighbouring cells at
their shared faces. This last property is very advantageous in a HPC context as the computing
efficiency is highly dependent on the amount of data exchanged between the different CPUs.

This paper aims at exposing theoretical developments regarding a particular polynomial
projection methodology used in the definition of a compact limiting procedure recovering
high-order accuracy. The compactness level of the aforementioned limiting procedure is
even better than that of most popular high-order schemes (spectral differences, discontinuous
Galerkin,…), as the sole information contained in the cell is used to construct the limited
solution. The idea of avoiding previously mentioned numerical issues with a reduction of the
polynomial degree is present in the MOOD methodology [25] and is also at the basis of our
approach. An extension of the SVM is introduced and serves as a framework where spatially
weighted projections (SWeP) intuitively arise. Then, a compact limiting procedure based
on the previous projections, the SWeP limiter, is proposed. In its setup, the projections are
defined to adequately represent discontinuities thanks to the important amount of information
per cell that characterizes high-order methods. Finally, so as to demonstrate the effectiveness
of our limiter and its easy integration into a high-order scheme, numerical computations of
the one-dimensional Euler equations are performed using the spectral differences method.

The present paper is built up as follows. In Sect. 2 we present the effects of the reduction
of the polynomial degree of the solution representation for the spectral volume method and
the spectral differences method. Section 3 exposes the theoretical development that led to the
definition of specific compact projections. Then in Sect. 4, a limiting procedure based on the
spatially weighted projections defined in Sect. 3, denoted as the SWeP limiting procedure,
is presented. Finally, Sect. 5 gathers numerical simulations involving the proposed SWeP
limiter.

2 Order Reduction for the Spectral Volume and the Spectral Differences
Method

2.1 General Framework of the Order Reduction

Consider the hyperbolic conservation law over the spatial domain Ω bounded by ∂Ω and
governed by the following partial differential equation in conservative form:

∂t u = −∇ · F (u) , (1)

where u (x, t) represents the scalar or vectorial conservative variable defined on Ω × [0, T ].
Flux F (u) can be a linear or non-linear function of u. Domain Ω is divided into N s cells Si .
That is:

Ω =
⋃

i∈I s
Si , (2)

with I s = �1, N s�. Let p be a positive integer and Pp [X ] be the set of polynomials of
degree at most p. For both the spectral volume method (SVM) and the spectral differences
method (SDM), a polynomial solution ûh is sought in the finite element space of piecewise
continuous functions:

V p
h = {

vh ∈ L∞ (Ω) | vh Si ∈ Pp [X ] , i ∈ I s
}
. (3)



To be able to represent the N s different polynomials of degree p, each cell hosts N c degrees
of freedom (DoFs). The different DoFs are gathered in vector us, which is for example an
element of R

N s×N c
in the scalar case. One of the main differences between the SVM and the

SDM is in the definition of these DoFs. The SDMuses a pointwise representationwhereas the
SVM uses an integral representation. The computation of the right hand side of (1) is as well
specific to each scheme. As their name indicate, the SVM uses a finite-volume methodology,
while the SDM is based on a finite-difference approach. Yet, despite those differences, both
schemes can take the following general semi-discrete form:

dus

dt
= R

(
ûh
)
, (4)

where residual R
(
ûh
)
represents the spatial discretization operator. The function mapping

the piecewise continuous polynomial ûh to the vector of DoFs us is denoted by L :

L :
{
V p
h −→ R

N s×N c

ûh �−→ us
. (5)

LetB p = {
φ
p
k | k ∈ �1, N p�

}
be a basis ofPp [X ]. In order to uniquely define the polynomial

in each cell, it is necessary that the number of DoFs per cell is equal to the cardinal N p of
basis B p . That is:

N c = N p = (p + d)!
p!d! , (6)

where d is the spatial dimension of the problem. If so, L is invertible and the semi-discrete
scheme (4) becomes:

dus

dt
= R ◦ L −1 (us

)
. (7)

HereL −1 can be identified as part of the reconstruction stepwhich is often used to interpolate
the state of the solution.

The main feature of the SVM and SDM is the compact and high-order behaviour of the
spatial discretization operator. However, when dealing with discontinuities (shocks), high-
order interpolation often produces numerical oscillations (because of Runge’s phenomenon
for example) or overshoots. The different TVD [31] and TVB [32] schemes strategies or,
as mentioned in the introduction, the use of artificial viscosity or limiters aim at reducing
these oscillations. More recently, the extension of the WENO schemes family to the dis-
continuous Galerkin method (DG) [33,34] or the correction procedure via reconstruction
scheme (CPR) [30,35] have contributed to the development of high-order methods for the
computation of discontinuous flows. Yet, when using the WENO limiting procedure, the
strict compactness of the stencil is lost, reducing the computation parallelization efficiency.

In order to damp the oscillations and the overshoots that can appear with high-order
interpolations without altering the compactness of the scheme, we consider a direct reduction
of the polynomial degree instead of a concurrent and a posteriori interpolation method. This
strategy is based on the idea that the problem addressed, the oscillations, are represented in a
polynomial expansion by the polynomials of the highest degree, like they are represented by
high order trigonometric functions in a Fourier series. This property is used for example by
Persson et al. [36] to activate artificial viscosity in their scheme, ormore recently by Sheshadri
et al. [37] in the definition of a shock-detection procedure based on the concentrationmethod.
Moreover, we will explain later in this section how the degree reduction frees some DoFs and
then allow us to choose a more suitable, i.e. less oscillating, representation of the solution.
Next sections will provide the technical details of the procedure employed. These details



are for the moment not necessary to consider the consequences of such a reduction. Let
r ∈ �0, p� be the reduction order and let

P : V p
h −→ V p−r

h (8)

be a linear projection fromV p
h ontoV p−r

h (like for example the L2 projection). Its composition
with L −1 is a lesser order reconstruction step and will be referred to as:

L + = P ◦ L −1. (9)

Then, we can define new semi-discrete schemes with:

dus

dt
= R ◦ L + (us

)
. (10)

Because the polynomial reconstruction used in this scheme is of lower degree, the order of
accuracy of the scheme is theoretically lowered too. The scheme will be referred to as a
reduced order scheme.

2.2 Consequences of the Order Reduction

In order to evaluate the scheme of reduced order (10), the case of the scalar advection equation
with constant velocity is implemented. The following problem is considered:

∂t u = −a∂xu, x ∈ [0, 1] . (11)

with unitary velocity (a = 1). A sinusoidal initial condition u0 is considered:

u0 (x) = 1 + cos (4πx)

2
, x ∈ [0, 1] , (12)

We set up a first order reduction with the implementation of the spectral volumemethod of
order 3 reduced to order 2 (p = 2, r = 1). The 1D-computational domain has a unit length
and is uniformly meshed with 50 cells, each partitioned with the Gauss-Legendre points,
generating 150 DoFs. Periodic boundary conditions are considered. The simulation time is
T = 1/4, so that the signal has moved one fourth of the computational domain downstream.
Semi-discrete scheme (10) is advanced in time using the forward Euler scheme. The time
step isΔt = 1×10−2 and the resulting CFL number based on the size of the cells is 5×10−1.
Upwind flux is used for the computation of R.

The results are presented in Fig. 1. The solution displays significant spurious oscillations
that find an origin in Eq. (9). For an effective reduction, the kernel of P contains elements
different from the null polynomial 0̂ of V p

h :

∀r > 0,
{
0̂
}

� ker (P) (13)

Let us be an element ofR
N s×N c

and us,k be the component of us in ker
(
L +) = L (ker (P)).

Then by definition of the kernel:

R ◦ L + (us − us,k
) = R ◦ L + (us

)
(14)

The computation of the residual will provide the exact same value whether us,k is taken into
account or not. Thus, thanks to Eq. (10) we can write:

dus,k

dt
= dus

dt
− d

(
us − us,k

)

dt
= 0, (15)
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Fig. 1 Computation of the advection equation with the first order reduction of the third order SV scheme.
Components from the kernel of L+

p−r are not advected and generate spurious oscillations

where 0 stands for the null vector. Equation (15) indicates us that the elements of the ker-
nel have the distinctive property to be strictly conserved over each cell as long as the time
integration scheme cannot affect them. This particularity generates spurious oscillations as
those visible in Fig. 1. Indeed, after each time step, the different DoFs have been updated by
the time-marching scheme with the residual, which is, except in some very special cases, a
piecewise polynomial of degree p. Therefore, the updated solution vector us is a representa-
tive of an element of V p

h that can be split into two parts, one in V p
h and the other in ker

(
L +).

Thus, new kernel components appear in every cell where they remain stuck and pollute the
solution.

Besides, the functions used to construct the basis B2 have not been presented. However,
the element of prime importance here is the only existence of the kernel of P. Different
function choices would only affect the condition number of the matrices involved.

This leads to the following conclusion: the sole projection of ûh for the computation of
the residual is insufficient, ûh also needs to be effectively projected before it is used in the
time-marching scheme. The components of us in the kernel of L + have to be removed,
otherwise, these elements of the kernel are unnoticed by the numerical scheme and kept
stationary over the mesh, hence, polluting the results (see Fig. 1). It also must be considered
that to preserve the conservativity of the scheme, the kernel of the projection, whose elements
must be removed, should only be composed of zero mass element, i.e. :

∀ûh ∈ ker (P) ,

∫

Ω

ûh dV = 0. (16)

It has to be noted that “mass” generally refers to any conservative quantity of Eq. 1, like the
mass, the momentum or the energy if considering the Euler equations.

Eventually, if an order reduction is considered, the projected vector which has to be used
in the time-marching scheme is:

us,new = us − us,k = L ◦ L + (us
)
, (17)

For example with the forward Euler scheme, the reduction order lead to compute solution
vector us at instant tn+1 using:

us
(
tn+1

)− us,new

Δt
= R ◦ L + (us

)
, (18)



which can also be formulated using (17) as:

us
(
tn+1

)− us,new

Δt
= R ◦ L −1 (us,new

)
. (19)

The fully discretized scheme takes the exact same form as the WENO scheme presented
in [29,30]. The general idea presented in this paper of a limiter using the order reduction
is naturally compelled to follow the implementation of the aforementioned WENO limiting
procedure. Both consist in:

– the addition of a step of projection of the solution,
– the use of this projected solution in the time-marching scheme.

At this point, the projection applied to perform the reduction of the polynomial interpo-
lation degree has not been defined. We will show in the next section that a particular care
has to be taken regarding its definition in order to preserve the conservativity of the scheme.
From them on and without lack of generality, the spectral volume framework and its inte-
gral representation is going to be employed to define parametric conservative projections of
the solution and finally, to introduce a compact limiting procedure which, like the WENO
scheme [29,30], is adapted to the spectral volume and the spectral differences methods.

3 Definition of Conservative Projections

The general consideration conducted in Sect. 2 about the reduction of the solution polynomial
degree leads to two important facts:

– the reduction of the polynomial degree has to be seen as an independent projection step,
– to ensure conservativity, the elements in the kernel of the projection have to be zero mass

elements.

In this section, the integral representation of the SVM is introduced to set up the framework
in which parametric projections are defined. Then, algebraic developments lead to a set of
constraints that ensure the conservativity of the projections. A numerical example is pro-
posed to illustrate the different remarks. Finally, we expose with some examples of weighted
projections how we intend to use these projections in the definition of a compact limiting
procedure.

3.1 The Order Reduction Through an Algebraic Projection

According to the conservativity criterion, it is natural to resort to the integral representation
of the spectral volume method. LetB p be a basis of Pp [X ] and let ûi,k be the coefficient of
the polynomial representation of the solution ûh over cell Si :

ûh (x) =
N p∑

k=1

ûi,kφ
p
k (x) , x ∈ Si . (20)

The SVM representation uses a partition of each cell of the mesh in N c subcells Ci, j called
the control volumes (CVs). Using I c = �1, N c�, the spatial mesh can be described in terms
of cells and CVs with:



Ω =
⋃

i∈I s
Si , (21)

Si =
⋃

j∈I c
Ci, j , i ∈ I s. (22)

We impose N c = N p . The integral representation of the polynomial solution over cell Si is
introduced as:

ui, j = 1

Vi, j

∫

Ci, j

ûh dV, i ∈ I s, j ∈ I c, (23)

with Vi, j being the volume of CV Ci, j . Then, using the following vectors:

ui =
⎛

⎜⎝
ui,1
...

ui,N c

⎞

⎟⎠ , ûi =
⎛

⎜⎝
ûi,1
...

ûi,N p

⎞

⎟⎠ , i ∈ I s, (24)

and introducing the invertible matrix Lb as:

(Lb) jk = 1

Vi, j

∫

Ci, j

φ
p
k dV, j ∈ I c, k ∈ �1, N p�, (25)

the coefficients vector ûi is mapped to the integral representation ui of the polynomial
solution with:

Lbûi = ui , i ∈ I s. (26)

For better readability, although matrix Lb does depend on the shape and size of the cell,
subscript i is dropped in its notation. Also, subscript ’b’ is here to remind that Lb is invertible
and defines a bijection. Note that this is the arbitrary choice of the solution representation.
The same bijective transformation could be made to obtain a nodal representation as in the
SD methodology.

In the same way as in Sect. 2, r is the reduction order. Let B p−r be a basis of Pp−r [X ].
For any reduction order r > 0, matrix L is defined similarly to Lb as:

L :
{

R
N p−r −→ R

N c

û �−→ u
, (27)

with:

(L) jk = 1

Vi, j

∫

Ci, j

φ
p−r
k dV, j ∈ I c, k ∈ �1, N p−r �, (28)

We would like to emphasize that here, the coefficients in û represents a polynomial of
Pp−r [X ] and no longer Pp [X ]. Since there are too many DoFs to be represented by a
polynomial of degree lesser than p, the inverse of L is not defined. Indeed, for a distribution
of integral values not in the image space of L , there exists no corresponding polynomial
representation in Pp−r [X ]. A standard choice for a projector uses the pseudo-inverse L+ of
matrix L defined with:

L+ =
(
LT L

)−1
LT , (29)

which corresponds to the use of the L2 projection P in Sect. 2. The associated projector
matrix, which is the algebraic version of P locally to a cell, is:

Π = LL+. (30)



We now express the constraint on the mass of the elements of the kernel of Π . In our finite
volume formalism, the unknowns in vector ui defined in Eq. (23) satisfy:

∫

Si
ûh dV =

∑

j∈I c
Vi, j ui, j = V · ui , i ∈ I s, (31)

where V = (
Vi,1, . . . , Vi,N c

)T . Subscript i has also been removed from the notation used for
the CV’s volume vector V . For each element u∗ in R

N c
, a conservative affine space πc

(
u∗)

is defined with:
πc
(
u∗) :

{
u ∈ R

N c | V · (u − u∗) = 0
}

. (32)

These conservative affine spaces are the hyperplanes of R
N c

of same mass elements. The
nullity constraint on the mass of the elements of ker (Π ) which have to be removed can then
be written as:

ker (Π) ⊂ πc (0) . (33)

It should be noted that at this point, nothing ensures identity (33) to hold a priori. One can
note that for the standard non-reduced case with r = 0 and Lb invertible, condition (33) is
satisfied since:

ker (Π) = ker
(
LbL

−1
b

)
= {0} ⊂ πc (0) . (34)

The problems encountered with the reduced scheme are entirely caused by the fact that
ker (Π) �= {0}. The same conservative constraint could have been written for the continuous
representation or the nodal representation.

Matrix L is completely defined with the choice of a polynomial basis and a cell partition
and so is L+. To have control over the mass of the elements of ker (Π), additional parameters
are needed in the inversion process of L . Therewill be obtainedwith the use of the generalized
pseudo-inverse. Let M ∈ R

N c×N c
be a symmetric definite positive matrix. Its associated

norm ‖·‖M is defined with:

∀x ∈ R
N c

, ‖x‖2M = xT Mx. (35)

The generalized pseudo-inverse of L is given by:

L+
M =

(
LT ML

)−1
LT M . (36)

Clearly, L+ is obtained with M = I , the identity matrix.
The generalized pseudo-inverse L+

M gives the solution of the following convex minimiza-

tion problem. For all u∗ ∈ R
N c
:

argmin
û∈RN p−r

∥∥u∗ − Lû
∥∥
M = L+

Mu∗. (37)

This problem can be reformulated as:

argmin
u∈im(L )

∥∥u∗ − u
∥∥
M = LL+

M u∗, (38)

with im (·) designating the image space. Equation (38) proves that:

ΠM = LL+
M , (39)



is the matrix of the projector fromR
N c

to im (L) according to the norm ‖·‖M . The projection
vector pM (u) for element u, normalized for the euclidean norm ‖·‖I , is given by:

pM (u) = ΠM u − u∥∥ΠM u − u
∥∥
I

. (40)

Like that of the standard pseudo-inverse L+, the kernel of L+
M is different from the zero vector

space {0} and ΠM will be used to remove the spurious oscillations due to the components
in the kernel of ΠM .

As defined in Eq. (36), the choice for M in the generalized pseudo-inverse definition
gives a full range of different matrices L+

M to invert Eq. (26) with Lb replaced by L , each
producing a different representation and having different functions in their kernel. We will
now focus on relation (33) and obtain explicit numerical constraints on M that preserve the
conservativity of the scheme during the projection step.

3.2 Constraints for Conservative Schemes

As previously stated, in order to conservatively project the vector of unknowns and prevent
some of its components to pollute the computations, it is required that:

ker
(
ΠM

) ⊂ πc (0) , (41)

or in an equivalent manner:

ker
(
LT M

)
⊂ πc (0) . (42)

Because matrix M is invertible, we have:

ker
(
LT M

)
=
{
M−1u | u ∈ ker

(
LT

)}
. (43)

It is clear that ker
(
LT

) = im (L)⊥ the orthogonal complement of im (L) in R
N c
. Then, the

condition for conservativity can be reformulated as:
{
M−1u | u ∈ im (L)⊥

}
⊂ πc (0) . (44)

The conservativity condition of identity (44) can be expressed, since M is symmetric, as:

∀u ∈ im (L)⊥ , V · M−1u = M−1V · u = 0, (45)

which exactly express the fact that:

M−1V ∈ im (L) . (46)

Any projector onto the image of L , like Π I for example, can then be used to obtain an
explicit formulation of the conservativity constraints on matrix M :

(
Π I − I

)
M−1V = 0. (47)

This formulation represents a notable progress compared to formulation (42) since the depen-
dence on M has been transferred from the domain of validity of the equation to the equation
itself and thus simplifies its resolution.

The simple case of a diagonal matrix M is now investigated:

M =
⎛

⎜⎝
m1 0

. . .

0 mN c

⎞

⎟⎠ . (48)



It is obvious that, for any reduction order r > 0 considered, the constant polynomial:

φ : x ∈ R
N c �−→ 1, (49)

is an element of Pp−r [X ]. As a consequence, vector u = (1, . . . , 1)T , which is the repre-
sentation of φ over the CVs of a cell, satisfies:

∀r ∈ �1, p�,

⎛

⎜⎝
1
...

1

⎞

⎟⎠ ∈ im (L) . (50)

The previous relation is the expression of Eq. (46) with matrix MV as the weighting matrix,
where MV is defined by the sub-volumes of the partition:

MV =
⎛

⎜⎝
V1 0

. . .

0 VN c

⎞

⎟⎠ . (51)

This demonstrates the existence of at least one matrix M solution of (47), MV , which is
a universal parameter matrix for the definition of schemes with a conservative associated
projection. This existence can be ensured independently from the dimension of the problem
or from the basis reduction order.

3.3 Numerical Validation

We now validate the previous developments with Burgers’ equation and the computation
of a moving discontinuity since it is very sensitive to flux computation and conservation
properties. The following problem is considered:

∂u

∂t
+ ∂u2

∂x
= 0, x ∈ [0, 1] , (52)

with a Heaviside function as an initial condition u0:

u0 (x) =
{
H0 if x < x0

0 if x ≥ x0
. (53)

Like in Sect. 2.2, the spectral volume scheme of order 3 reduced to order 2 is imple-
mented. The mesh is composed of 30 identical cells partitioned with Gauss-Legendre points.
Considering two adjacent states uL and uR , the solution to the Riemann problem is given by:

if uL ≥ uR :

⎧
⎪⎪⎨

⎪⎪⎩

u2R
2

if
uL + uR

2
< 0

u2L
2

if
uL + uR

2
≥ 0

,

if uL < uR :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u2R
2

if uR < 0

0 if uLuR < 0

u2L
2

if uL > 0

.

(54)

For our computation, the parameter were chosen as H0 = 1.6, x0 = 0.1 and T = 1. Time
discretization is performed using the standard RK3 SSP scheme [38] with a time step of
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Fig. 2 Discontinuity displacement through the Burgers’ equation. Grey dots indicates the theoretical final
states. In case (b) matrix M satisfies the conservativity constraints, unlike in case (a). The projection operation
is performed using ΠM . a M = I , non-conservative projection. b M = MV , conservative projection

Δt = 10−2 (based on the cells size, the initial CFL is 4.8 × 10−1). The Rankine-Hugoniot
relation on the discontinuity velocity indicates that at instant t = T the discontinuity should
be located at xs = x0 + H0

2 T = 0.9. Boundary conditions u(0, t) = H0 and u(1, t) = 0 are
imposed and are consistent with the initial condition and total simulation time.

Results are presented in Fig. 2. Both the effect of the use of the projected solution in
the time-marching scheme and the effect of different choices for M are observed. Figure
2a presents the computation of the discontinuity evolution using matrix M = I . The two
different effects are distinguishable:

– when evaluated, the total mass of the solution is correct and matches the expected value
of xs × H0 = 1.44 (the SVM is conservative) although the discontinuity position is
incorrect. This is due to the erroneous evaluation of the flux values: the scheme does not
see the different elements with their real mass since the mass of the kernel components,
which is not null, are neglected (see Eq. 14). Consequently, the discontinuity is convected
with the wrong speed.

– the projection of the solution between each step of the time-marching scheme does sup-
press the spurious oscillations, providing a smooth solution. But as removed components
are non-zero mass elements, the projection is non-conservative and results in this case in
a loss of mass.

In Fig. 2b, the computation is made using matrix M = MV . There, the position of the
discontinuity is accurate, thanks to correct fluxes evaluation. And as the kernel is controlled to
have zero-mass elements, the projection is a conservative operation. The use of the projected
solution in the time-marching scheme does not change the mass of the solution as confirms
numerical evaluation.

We have extended the spectral volume methodology with a projection step that allows
us to change the polynomial degree of the interpolation. To ensure the conservativity of the
projection, the considered reduction order is linked to a set of constraints for the matrix M
that defines the projection. Through the new DoFs contained in M , we have access to many
acceptable conservative projections of a given element. We will now present a possible use
of the matrix M that raises an interest in the definition of a compact limiting procedure.

3.4 Weighted Projections

The reduction of the polynomial degree has two objectives: to reduce the oscillations and
to limit the boundary overshoots which appear when trying to interpolate discontinuities.
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Fig. 3 Discontinuity patterns for fourth and fifth order SVM scheme. a Left pattern ul (left) and centered
pattern uc (right) for fourth order scheme. b Left pattern ul (left) and left-centered pattern ulc (right) for fifth
order scheme.

The use of the generalized pseudo-inverse and the presence of parameter matrix M in its
definition give a full control on the projection and consequently on the projected polynomial.

Considering a reduction of order r of the polynomial degree, the conservativity constraints
on M consist in a system of N eq equations with:

N eq = dim
(
im (L)⊥

)
= N c − N p−r , (55)

and leaves N c − Neq = N p−r components of matrix M as available DoFs.
Only the case of diagonal matrices (48) will now be considered. Matrix M can be seen as

a weighting matrix. The coefficients on its diagonal represent the weights of the CVs in the
projection. Indeed, problem (38) reformulates as:

∀u∗ ∈ R
N c

, argmin
u∈im(L )

∑

j∈N c

m j

(
u∗

, j − u, j

)2 = LL+
M u∗. (56)

The heavier the weight of the j-th CV is, the closer u∗
, j and u, j will be. It is thus possible to

influence the shape of the projection with a well-chosen matrix M .
More precisely, it is possible to search for the weighting matrices that limit the overshoots

and the oscillations when interpolating a discontinuity. For a given dimension d and a given
number of DoFs per cell N c, we can identify a finite number of problematic patterns that
represent discontinuities. For example in the 1D case, Fig. 3 shows 2 possible idealized
volumic representations of a discontinuity for SVM schemes of different orders. For the
fourth order scheme (p = 3, N c = 4), we have a left and a centered pattern referred to as
ul = (2, 1, 1, 1)T and uc = (2, 2, 1, 1)T (see Fig. 3a). For the fifth order scheme (p = 4,
N c = 5), we have a left and a left-centered pattern, referred to as ul = (2, 1, 1, 1, 1)T

and ulc = (2, 2, 1, 1, 1)T (see Fig. 3b). The polynomials ûl, ûc and ûlc associated to these
representations present the different flaws (oscillations and overshoots) already mentioned
and are very likely to pollute computations. Obviously, right (ur, ûr) and right-centered (urc,
ûrc) representations and polynomials exist but have not been displayed for symmetry reasons.

We can associate each pattern with a well-chosen weighting matrix. Its role is to provide
an acceptable projection of the polynomial that represents the problematic pattern, using
the projector associated by relation (39). Different criteria could be taken into account like
the total variation, the L2 norm of the function or its derivative…In our pursuit of a new
limiting procedure, we have already mentioned that we were interested in reducing the size
of overshoots at both borders of the cell and the amplitude of oscillations. Taking care not to
violate the conservativity constraints (46) and considering a first order reduction (r = 1), we



have identified the following left and centered weighting matrices for the patterns of Fig. 3a:

M l ≈

⎛

⎜⎜⎝

0.35 0 0 0
0 2.30 0 0
0 0 11.8 0
0 0 0 10.0

⎞

⎟⎟⎠ , Mc ≈

⎛

⎜⎜⎝

1.00 0 0 0
0 2.00 0 0
0 0 2.00 0
0 0 0 1.00

⎞

⎟⎟⎠ , (57)

and for the patterns of Fig. 3b, we selected the following left and left-centered weighting
matrices:

M l ≈

⎛

⎜⎜⎜⎜⎝

0.12 0 0 0 0
0 0.90 0 0 0
0 0 5.00 0 0
0 0 0 7.18 0
0 0 0 0 5.00

⎞

⎟⎟⎟⎟⎠
, M lc ≈

⎛

⎜⎜⎜⎜⎝

5.00 0 0 0 0
0 1.00 0 0 0
0 0 1.50 0 0
0 0 0 15.1 0
0 0 0 0 4.00

⎞

⎟⎟⎟⎟⎠
. (58)

To strictly satisfy the conservativity constraints, the coefficients in the different weighting
matrices should be given with a significant number of digits. To improve readability, approx-
imated values have been given here but exact values are available in Appendix 1. Matrices
Mr and Mrc associated to the symmetric patterns are respectively defined by reversing the
main diagonal of M l and M lc. The pseudo-inverse associated to these different matrices are
naturally denoted with L+

c , L
+
l ,L

+
r , L

+
lc and L+

rc.
Figure 4 gathers the projected polynomials obtained with the projectors using the weight-

ing matrices of relations (57) and (58). For each pattern, we can see that the associated
projectors provide almost non-oscillating projected polynomial with very limited overshoots
(for each pattern, the associated projection is designated by an arrow). It also occurs that the
different projectors are not performing well with the projection of a pattern that is different
from the one they are associated with.

It should be noted that the projection described here has an even better level of compactness
than the most popular high-order methods such as the discontinuous Galerkin, the spectral
differences, or the correction procedure by reconstruction: no information from neighbouring
cells or from the boundaries are needed to perform the projection. The next section will now
describe how these newly-defined projectors will be used in the definition of a compact
limiter.

4 The Spatially Weighted Projection (SWeP) limiter

We expose in this section a compact limiter for high-order methods based on the spatially
weighted projections described in Sect. 3.4 and thus will be referred to as the SWeP limiting
procedure. Our approach is inspired by previous studies concerning the development of the
WENO procedure for the discontinuous Galerkin [29,33] and the CPR [30] methodologies.
As it has already been mentioned in Sect. 2, the common strategy adopted consists in:

– detecting the troubled cells,
– changing the polynomial representation of the solution.

This general limitation procedure only rests upon the available polynomial interpolation
of the data, making the involved limiter naturally compatible with any compact high-order
framework, as it has been proven with the multiple implementation of the already mentioned
WENO framework [29,30]. In our example, the SWeP limiter will be combined with the
spectral differences scheme and the minmod detector for which brief reviews are proposed.
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Fig. 4 Results of the different pseudo-inverse defined for a first order reduction of the fourth (a) and the
fifth (b) order SVM scheme. The arrows designate the projection associated to the discontinuity pattern. a
Different projections of the patterns ul and uc (shaded area) of the fourth order SVM scheme (β ≈ 0.77).
b Different projections of the patterns ul and ulc (shaded area) of the fifth order SVM scheme (γ ≈ 0.34,
δ ≈ 0.86)

4.1 Review of the SD Method for the One Dimensional Case

The reader is advised that some notations used in Sect. 3 will be found again in this section.
The one-dimensional version of (1) is considered:

∂t u + ∂x F (u) = 0, (59)

where u represents the scalar or vectorial form of the conservative variables. The computa-
tional domain [a, b] is partitioned into N s cells Si :

[a, b] =
⋃

i∈I s
Si =

⋃

i∈I s

[
xi− 1

2
, xi+ 1

2

]
, x 1

2
= a, xN s+ 1

2
= b. (60)

For the sake of simplicity, we will work with a regular meshing of the domain, considering
that all cells have the same size Δx .

The spectral differences method of order p + 1 uses two different sets of points inside
each element. First, the set of solution points, defined with the mapping of the Gauss points
of order p + 1 in each cell Si :

X s
i =

{
x si, j = xi− 1

2
+ Δx

2

[
1 − cos

(
2 j − 1

2(p + 1)
π

)]
, 1 ≤ j ≤ p + 1

}
, i ∈ I s (61)



and secondly, the set of p + 2 flux points X f
i , defined with the mapping of the p Gauss-

Legendre points of order p to the element Si with additional end points xi− 1
2
and xi+ 1

2
.

In the spectral differences framework, the unknowns are the conservative variables at the
solution points denoted by:

usi, j = u
(
x si, j

)
(62)

Then a polynomial interpolation ûi of the solution is defined in Si using the family of p + 1
Lagrange polynomials φ

L,s
k associated with the set of solution points X s

i :

∀x ∈ Si , ûi (x) =
p+1∑

k=1

usi,kφ
L,s
k (x) (63)

The flux is then approximated with:

∀x ∈ Si , F (x) ≈
p+2∑

k=1

F f
i,kφ

L,f
k (x) (64)

where φ
L,f
k are the Lagrange polynomials associated to the set of flux points X f

i and F f
i, j are

the values of the flux constructed at the flux points from the conservative variables given by
Eq. (63). As the flux is only element-wise continuous, a Riemann solver is needed to compute
the flux values at the boundary of each element. The solution is then updated using:

dusi, j
dt

= − (∂x F)i, j (65)

where the flux spatial derivative at the solution points can be computed thanks to (64). For
more information about the SD methodology or its generalization to higher dimensions, the
reader is referred to [3].

4.2 The Minmod Troubled Cell Indicator

To evaluate the SWeP limiting procedure, different numerical examples exposed in [29,33]
will be computed. In order to allow comparison, the detector used in the mentioned studies
is going to be set up: the TVB-modified minmod detector. A brief review of this detector
for the one-dimensional scalar case is proposed below. For a more complete investigation,
details can be found in [22].

The average ŭi of the scalar polynomial solution ûi over cell Si is defined with:

ŭi = 1

Δx

∫

Si
ûi (x) dx, i ∈ I s. (66)

We further denote:

ũi = ûi
(
xi+ 1

2

)
− ŭi , ˜̃ui = ŭi − ûi

(
xi− 1

2

)
, (67)

the difference to the average value at the cell border and:

Δ+ŭi = ŭi+1 − ŭi , Δ−ŭi = ŭi − ŭi−1, (68)

the gap between the average values of two successive cells. The TVB-modified minmod
function m̃ is defined as:

m̃ (a1, . . . , al) =
{
a1 if |a1| ≤ MΔx2,
m (a1, . . . , al) otherwise,

(69)



with:

m (a1, . . . , al) =
{
s min
1≤k≤l

|ak | if s = sign (a1) = . . . = sign (al) ,

0 otherwise,
(70)

where M is the TVB parameter that depends on the solution of the problem. We compute:

ũ(mod)
i = m̃ (ũi ,Δ+ŭi ,Δ−ŭi ) ˜̃u(mod)

i = m̃
( ˜̃ui ,Δ+ŭi ,Δ−ŭi

)
(71)

At this point, a cell is not going to be declared as a troubled cell if and only if both
following equalities are true:

ũ(mod)
i = ũi , ˜̃u(mod)

i = ˜̃ui (72)

The extension to the vectorial case consists in applying this scalar procedure to each
vectorial component. The important role played by the TVB constant M can already be
noted. Depending on its value, too many or too few troubled cells will be identified, directly
affecting the computational cost of the method. Yet, the constant M also gives a convenient
way to drive the behaviour of the detector and thus M can be used to provide substantial
information about the performance of the limiting procedure in an over- or under-limited
simulation context.

4.3 The Compact SWeP Algorithm for One-Dimensional Systems

This subsection gives the details of the SWeP limiting procedure and its integration in the
SD framework for the one-dimensional scalar and system case.

4.3.1 Scalar Problem

We assume that Si is identified as a troubled cell. First, we switch from the point-wise
representation of the SD method to the integral representation of the SVM framework. In
accordance with the notation used in Sect. 2, vector usi is defined as:

usi =
⎛

⎜⎝

usi,1
...

usi,p+1

⎞

⎟⎠ (73)

and matrix P s
jk is defined using the basis B

p = {
φ
p
k | 1 ≤ k ≤ p + 1

}
of Pp [X ] as:

P s
jk = φ

p
k

(
x sj

)
, 1 ≤ j, k ≤ p + 1. (74)

The integral representation of the polynomial solution is given by:

ui = Lb
[
P s]−1 usi (75)

where Lb is associated to basis B p by relation (25).
For a given polynomial degree p and a given reduction order r , we explained in Sect. 3.4

that a finite number of problematic patterns could be identified and associated to a set of
weighting matrices. This set of matrices is now referred to as M p,r . The idea of the SWeP
limiting procedure is to choose the most acceptable projection of the solution among those



given by the projectors associated to the different matrices inM p,r . For a first order reduction
(r = 1), the set M 3,1 associated to a fourth order scheme is composed of the 3 matrices:

M 3,1 = {
Mc, M l, Mr} , (76)

and for a fifth order scheme, M 4,1 is composed of the 4 matrices:

M 4,1 = {
M lc, Mrc, M l, Mr} . (77)

These matrices were described in Sect. 3.4. For better readability, subscript p was omitted
in the notation of the weighting matrices. The reader must keep in mind that the size of each
matrix in M 3,1 or M 4,1 depends on the order of the scheme.

Let L be the matrix associated by relation (27) to the reduced basisB p−r . Thanks to the
developments presented in Sect. 3 the set of pseudo-inverses I p,r is defined with:

I p,r =
{
L+
M =

(
LT ML

)−1
LT M | M ∈ M p,r

}
∪
{
L−1
b

}
. (78)

To identify the pseudo-inverse that provides the most acceptable projection, we evaluate the
quadratic integral of the distance to the average value. This integral works as a selective
criteria. The pseudo-inverse in I p,r that minimize this integral is labelled as optimal and
provide the sought polynomial reconstruction:

L+
opt = argmin

L+∈I p,r

(∫

Si

[
̂L+ui (x) − ŭi

]2
dx

)
. (79)

We added matrix L−1
b to I p,r because for smooth solutions, the original polynomial repre-

sentation is a very good candidate. Then, the new point-wise representation of the solution
in cell Si is defined with:

us,newi = P sL+
optui . (80)

We can now compute the numerical flux Fnew using the new solution vector us,newi .
Following remarks of Sect. 2, a time marching scheme is then used to get solution at time
level n + 1. For example with the forward Euler scheme:

usi, j
(
tn+1

)− us,newi, j

Δt
= − (

∂x F
new)

i, j (81)

From a computational point of view, all matrices in the set I p,r can be pre-computed
and the different integrals in (79) are evaluated as a weighted inner-product, reducing the
additional cost associated with the use of the SWeP limiter. The quality of this limiting
procedure is linked to the diversity of the matrices contained in M p,r and in the ability of
the minimization criteria to select the appropriate projection. Numerical results exposed in
Sect. 5 will demonstrate the quality of the sets and criteria just mentioned. The definition of
other setsM p,r for higher-order scheme and different reduction order is currently a topic of
research for the authors.

4.3.2 Non-linear System of Conservation Laws

Equation (1) is now a system of conservation laws, u and F are taken as column vectors. To
accentuate the limitation of the oscillations by the SWeP limiting procedure, we first employ
a local characteristic field decomposition. The Jacobian matrix of the flux function is denoted
with Ai = ∂F

∂u

∣∣
ŭi
and its left and right normalized eigenvectors are l(k)i and r (k)

i , k = 1, . . .m



(m = 3 for the 1D Euler equations). The m × m transfer matrix constructed with the right
eigenvectors taken as its columns is denoted with:

R (ŭi ) =
(
r (1)
i , r (2)

i , . . . , r (m)
i

)
. (82)

Because the eigenvectors are normalized, it is easy to see that:

R−1 (ŭi ) =
(
l(1)i , l(2)i , . . . , l(m)

i

)T
. (83)

At time n the values of u at solution points in cell i is represented by thematrix (super-script
n has been removed for better readability):

usi =
(
usi,1, u

s
i,2, . . . , u

s
i,p+1

)
. (84)

The matrix of the associated local characteristic representation Cs
i used is:

Cs
i =

⎛

⎜⎜⎝

c(1)i

T

...

c(m)
i

T

⎞

⎟⎟⎠ = R−1usi . (85)

Vectors c(l)i , 1 ≤ l ≤ m, are the discretization of the m polynomial characteristics ĉ(l)
i over

cell Si . We naturally denote:

Ĉ i =

⎛

⎜⎜⎝

ĉ(1)
i
...

ĉ(m)
i

⎞

⎟⎟⎠ . (86)

In order to use the minmod detector, information is needed from the immediate neighbouring
cell:

Cs
i−1 = R−1usi−1, Cs

i+1 = R−1usi+1, (87)

where matrix R is the same as the one in (85). Polynomial vectors Ĉ i−1 and Ĉ i+1 are defined
in the same manner as Ĉ i . Then we can compute:

C̃
(mod)
i = m̃

(
C̃ i ,Δ+C i ,Δ−C i

) ˜̃C(mod)
i = m̃

( ˜̃C i ,Δ+C i ,Δ−C i

)
, (88)

using for each components of the vector the previously defined function m̃. At this point, a
cell is not going to be declared as a troubled cell if and only if both the following vectorial
equalities are true:

C̃
(mod)
i = C̃ i ,

˜̃C(mod)
i = ˜̃C i (89)

Assume that cell Si is detected as a troubled cell. The scalar SWeP limiting procedure
describe in Sect. 4.3.1 is applied to all vectors c(l)i . We obtain m new vectors c(l),newi , that are
combined to obtain the projected conservative variables following:

us,newi = RCs,new
i = R

⎛

⎜⎜⎝

c(1),newi

T

...

c(m),new
i

T

⎞

⎟⎟⎠ . (90)

As in the scalar case, we can nowuse the newprojected solution in an adequate time-marching
scheme.



5 Numerical Results

In this section, numerical computations are presented to demonstrate the efficiencyof the com-
pact SWeP limiter. The different examples presented use the system of the one-dimensional
Euler equations:

∂t u + ∂x F (u) = 0, (91)

with:

u =
⎛

⎝
ρ

ρv

E

⎞

⎠ , F (u) =
⎛

⎝
ρv

ρv2 + p
v (E + p)

⎞

⎠ , (92)

where ρ is the density, v the velocity, E the total energy and p the pressure defined with:

p = (γ − 1)

(
E − 1

2
ρv2

)
, (93)

and γ = 1.4 for the air.
The SWeP limiting procedures for the fourth and fifth order SD schemes respectively

associated to the setsI 3,1 andI 4,1 detailed in Sect. 3.4 are evaluated. The TVB constant M
of theminmod detector takes the same values as those proposed in [30]. In every case studied,
an over-limiting very small value and an adapted value are used to test the permissiveness of
the limiter regarding the troubled cell detector. In the figures proposed, solid black line stands
for reference solutions and red diamonds for SD solutions computed with the SWeP limiter.
The figures present one point per cell, corresponding to the average value of the cell. In
every figure a zoom is proposed, then all the DoFs contained in each cell are displayed using
blue filled circles, allowing to differentiate specific behaviour like inner-cell oscillations or
overshoots.

In some cases, we needed to resort to the positivity-preserving limiter used in [29,30]. It
is designed to ensure the positivity of the density and the pressure at any time step. Imple-
mentation details can be found in [39,40]. All our meshes are constituted of identical cells.
The third-order RK3 SSP time-marching scheme is used. The CFL evaluation is based on the
cell size. For all our computations, a CFL number of 0.2 has been taken, except in the first
example where the spatial scheme order is evaluated and where the CFL is fixed to 0.05 so
that the error due to the time-marching scheme became negligible compared to the error due
to the spatial discretization. We used the HLLE Riemann solver [41] for fluxes evaluation.
All our computations were performed with uniform meshes.

Apart from the first example, we use a second-order finite-volume spatial scheme with
MUSCL field reconstruction [5] coupled with the HLLC Riemann solver and the RK3 SSP
time marching scheme to obtain the reference solutions. The mesh sizes used are detailed in
the examples description.

Example 1 We first test the different limiters involved with a grid-convergence study. The
computational domain is [0, 2π ]. The Euler equations are reduced to an advection problem
equations with the initial conditions ρ (x, 0) = 1+0.2 sin (x), v (x, 0) = 1, p = 1. Periodic
boundary condition are imposed. The exact solution is the advection of the density profile
following ρ (x, t) = 1+ 0.2 sin (x − t) while pressure and velocity profile remain constant.
Total simulation time is t = 2π . At every time step, if the SWeP limiter is enabled, the totality
of the mesh cells are declared as troubled so that the minmod detector is not involved in this
example.



Table 1 Grid convergence study of example 1 for the advection of a sine densitywavewith the Euler equations

N s SWeP limiter disabled, (r = 0) SWeP limiter enabled, (r = 1)

L1 norm Order L∞ norm Order L1 norm Order L∞ norm Order

p = 3

10 4.91E−5 – 1.83E−5 – 1.48E−3 – 4.84E−4 –

20 3.05E−6 4.00 1.15E−6 3.99 2.33E−4 2.66 7.55E−5 2.68

40 1.90E−7 4.00 7.19E−8 4.00 3.27E−5 2.83 9.72E−6 2.96

80 1.19E−8 4.00 4.50E−9 4.00 4.36E−6 2.91 1.27E−6 2.93

160 7.42E−10 4.00 2.81E−10 4.00 5.63E−7 2.95 1.63E−7 2.96

p = 4

10 1.53E−6 – 6.09E−7 – 2.64E−4 – 1.41E−4 –

20 4.82E−8 4.99 1.93E−8 4.98 2.51E−5 3.39 2.05E−5 2.78

40 1.50E−9 5.00 6.03E−10 5.00 1.98E−6 3.66 2.57E−6 3.00

80 4.69E−11 5.00 1.89E−11 5.00 1.40E−7 3.81 3.03E−7 3.08

160 1.78E−12 4.72 8.55E−13 4.47 8.17E−9 4.10 2.59E−8 3.55

Errors for the density profile. All the mesh cells are declared as troubled cells

Results for different mesh sizes are gathered in Table 1. Firstly, high-order convergence is
naturally recovered when the SWeP limiter is turned off. The disparity observed for the finest
mesh are attributed to the important smallness of the error recorded. Secondly, the SWeP
limiter performs as expected and maintains a high-order of accuracy equal to p + 1 − r ,
although small discrepancies are observed for the L∞ norm.

Example 2 The Sod shock tube problem is investigated. Computational domain is [−5, 5].
Initial condition respects:

u (x, 0) =
{
uL , x ≤ 0
uR, x > 0

(94)

with (ρL , vL , pL ) = (1, 0, 1) and (ρR, vR, pR) = (0.125, 0, 0.1). The Mesh is composed
of 100 cells. Results are presented in Fig. 5. The reference solution used a mesh composed
of 3000 DoFs.

The different results obtained are very close to those observed in [30]. The relaxation
profile is correctly approximated and no important smearing is discernible, even around the
contact discontinuity. It is well-known that high-order methods became more diffusive when
the polynomial degree of the solution field is lowered. This increase in the diffusive behaviour
is confirmed by two differentmodifications of the solution that appear as theminmod detector,
and consequently the SWeP limiter, gets more often activated (with M = 0.01): the reduction
of the small inner-cell oscillations and the thickening of the contact discontinuity.

Example 3 The other usual problem with a Riemann type initial condition of the form (94)
is the Lax problem. It follows (ρL , vL , pL ) = (0.445, 0.698, 3.528) and (ρR, vR, pR) =
(0.5, 0, 0.571). Computational domain is again [−5, 5] with a mesh composed of 100 cells.
Results are presented in Fig. 6. The reference solution used a mesh composed of 3000 DoFs.

The SWeP limiter provides accurate solutions. No major differences can be identified
when looking at global solutions. Yet, interesting comments concerns the density plateau. As
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Fig. 5 The Sod problem, t = 2, N s = 100. Simulations present the reference solution (solid black) and the
SWeP scheme (open red diamond). Zoomed region display all the DoFs contained in each cell (filled blue
circle). a p = 3, M = 0.01. b p = 3, M = 5. c p = 4, M = 0.01. d p = 4, M = 10

in the second example, the diffusive effect of the limiter appears as M diminishes and make
the inner-cell oscillations of the plateau shrink.

Example 4 The problem of the interaction of two blast waves is considered here. The initial
condition for the computational domain [0, 1] is taken as:

u (x, 0) =
⎧
⎨

⎩

uL , 0 ≤ x < 0.1
uM , 0.1 ≤ x < 0.9
uR, 0.9 ≤ x < 1

(95)

with (ρL , vL , pL ) = (
1, 0, 103

)
, (ρM , vM , pM ) = (

1, 0, 10−2
)
and (ρR, vR, pR) =(

1, 0, 102
)
. Reflective boundary conditions are used at the ends of the domain. More details

can be found in [42]. The positivity-preserving limiter is added here to prevent negative
density or pressure. Density plot are presented in Fig. 7. The reference solution used a mesh
composed of 104 DoFs.

In [29,30], the minmod constant takes the two values 0.01 and 200 and provides similar
results. We noticed that higher values of M could be used, we reached M = 5 × 104 and
ran some very under-limited computations. We can notice that there are no important or
major changes in the results whether M = 0.01 or M = 5 × 104. Global results for both
scheme order are good, with small imperfections disclosed by the zoom: small inner cell
oscillations and an incised maximum around x = 0.75. These flaws are here again reduced
in the over-limited computations thanks to the diffusive effect of the limiter.
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Fig. 6 The Lax problem, t = 1.7, N s = 100. Simulations present the reference solution (solid black) and
the SWeP scheme (open red diamond). Zoomed region display all the DoFs contained in each cell (filled blue
circle). a p = 3, M = 0.01. b p = 3, M = 15. c p = 4, M = 0.01. d p = 4, M = 30

Example 5 The LeBlanc shock tube problem is considered in this example. The initial con-
dition for the computational domain [−10, 10] is taken as:

u (x, 0) =
{
uL , −10 ≤ x < 0
uR, 0 ≤ x < 10

(96)

with (ρL , vL , pL ) = (
2, 0, 109

)
and (ρR, vR, pR) = (

10−3, 0, 1
)
. The positivity preserving

limiter has been used in this example for all the computations. The reference solution used
a mesh composed of 4 × 104 DoFs.

Density and velocity profile are presented in Figs. 8 and 9. To improve the perceptibility
of the scheme influence, we used a coarse mesh composed of 400 cells. Again, the results are
globally equivalent. As expected, the fifth-order scheme is better able to capture the discon-
tinuities than the fourth-order scheme, or to reproduce the plateau between the rarefaction
wave and the contact discontinuity. The behaviour of the limiter is less marked compared
to previous examples. For a scheme of a given order, the different values of the minmod
constant M used give noticeably comparable results.

Example 6 The last example is the Shu–Osher problem. It exposes the advantages of the
high-order methods as it contains both shocks and complex smooth region structures. The
initial condition for the computational domain [−5, 5] is taken as:

u (x, 0) =
{
uL , −5 ≤ x < −4
uR, 4 ≤ x < 5

(97)
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Fig. 7 The blast waves interaction problem, t = 0.038, N s = 400. Simulations present the reference solution
(solid black) and the SWeP scheme (open red diamond). Zoomed region display all the DoFs contained in
each cell (filled blue circle). a p = 3, M = 0.01. b p = 3, M = 5 × 104. c p = 4, M = 0.01. d p = 4,
M = 5 × 104

with (ρL , vL , pL ) = (3.857143, 2.629369, 10.333333) and (ρR, vR, pR) = (
1 + 0.2 sin

(5x) , 0, 1
)
. The mesh is composed of 110 cells. Results are presented in Fig. 10. For this

test case, the positivity preserving limiter as only be used in the cases where M = 300. The
reference solution used a mesh composed of 104 DoFs.

For M = 0.01, we observe that the region presenting the major density variations is
captured, but with an underestimation of the solution amplitude. Once again, this has to
be linked to the diffusive level of the SWeP limiter. For M = 300, fourth order scheme
performed very well, but fifth order scheme seems to present small oscillations at the end
of the fine structures region. We ran a computation with M = 150 (not shown here) and
observe the vanishing of these oscillations, suggesting that the value of M = 300 is a very
under-limited case.

6 Conclusion

In the present study, we developed a general framework based on the spectral volume
methodology that provides polynomial reconstruction of variable order using conserva-
tive polynomial projections. The exposed projections contain degrees of freedom gathered
in a parameter matrix and that were identified as spatial weights. Thanks to these new
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DoFs, numerical dissipation could implicitly be added to the projections and unwanted
side effects coming from the interpolation of a discontinuity have been controlled. Then,
a limiting procedure based on these spatially weighted projections have been proposed, the
SWeP limiter. Its major attribute is its compactness, competing with that of the standard
compact high-order methods. Another asset is its portability. Because the SWeP limiter
is based on the polynomial structure of the data in one cell, it can technically be com-
bined with any high-order methodology. A grid-convergence study shows that the SWeP
limiter was able to recover optimal high-order convergence rates and different numerical
examples have demonstrated the capacity of the SWeP limiting procedure to accurately
deliver non-oscillating 1D simulations of flows containing discontinuities. The authors
would also like to point out that the extension to higher dimension is theoretically straight-
forward as long as the methodology is mainly based on algebraic developments. Future
works will concern the computations of multi-dimensional cases that involve the SWeP
limiter.

Two different componentsmake up the SWeP limiting procedure. Firstly, the set ofweight-
ing matrices: it provides the different projectors needed to handle the problematic discrete
patterns identified over one cell. As of today, the different matrices are set with an empirical
approach. Yet, the development of a deterministic strategy is currently under investigation by
the authors. Secondly, the projection selection criteria: used to detect the optimal projection
to use, its evaluation should not be too complex as its implementation will directly affect the



computational cost of the SWeP limiter. The criteria used in this paper is for example very
easy to compute.

Moreover, even if the limiting procedure described in this paper is compact, the used min-
mod detector still need information from its neighbours. A fully compact limiting procedure
would use a compact detector, which is still a hot topic of research. The development of a
compact detector based on to theweighted projections presented in this paper is contemplated
by the authors.
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Appendix: Weighting Matrices for the SWeP Limiter

As stated in Sect. 3.4, we provide in this appendix the exact values of the weighting matrices
used in our computations. For the patterns of Fig. 3a:

M l =

⎛

⎜⎜⎝

0.35 0 0 0
0 2.30 0 0
0 0 11.823189085020825 0
0 0 0 10.00

⎞

⎟⎟⎠ , Mc =

⎛

⎜⎜⎝

1.0 0 0 0
0 2.0 0 0
0 0 2.0 0
0 0 0 1.0

⎞

⎟⎟⎠ , (98)

and for the patterns of Fig. 3b:

M l =

⎛

⎜⎜⎜⎜⎝

0.12 0 0 0 0
0 0.90 0 0 0
0 0 5.00 0 0
0 0 0 7.177304710492795 0
0 0 0 0 5.00

⎞

⎟⎟⎟⎟⎠
,

M lc =

⎛

⎜⎜⎜⎜⎝

5.0 0 0 0 0
0 1.0 0 0 0
0 0 1.5 0 0
0 0 0 15.145898361801240 0
0 0 0 0 4.0

⎞

⎟⎟⎟⎟⎠
. (99)
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