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Bounds for Maximum Likelihood Regular and
Non-Regular DoA Estimation in -Distributed Noise
Yuri I. Abramovich, Fellow, IEEE, Olivier Besson, Senior Member, IEEE, and Ben A. Johnson, Senior Member, IEEE

Abstract—We consider the problem of estimating the direction
of arrival of a signal embedded in -distributed noise, when sec-
ondary data which contains noise only are assumed to be avail-
able. Based upon a recent formula of the Fisher information ma-
trix (FIM) for complex elliptically distributed data, we provide a
simple expression of the FIM with the two data sets framework. In
the specific case of -distributed noise, we show that, under cer-
tain conditions, the FIM for the deterministic part of the model can
be unbounded, while the FIM for the covariance part of the model
is always bounded. In the general case of elliptical distributions,
we provide a sufficient condition for unboundedness of the FIM.
Accurate approximations of the FIM for -distributed noise are
also derived when it is bounded. Additionally, the maximum likeli-
hood estimator of the signal DoA and an approximated version are
derived, assuming known covariance matrix: the latter is then es-
timated from secondary data using a conventional regularization
technique. When the FIM is unbounded, an analysis of the estima-
tors reveals a rate of convergence much faster than the usual .
Simulations illustrate the different behaviors of the estimators, de-
pending on the FIM being bounded or not.

Index Terms—Direction of arrival estimation, distributed
noise, Cramér-Rao bounds, maximum likelihood estimation.

I. PROBLEM STATEMENT

E STIMATINGTHEDIRECTIONOFARRIVAL (DoA) of
multiple signals impinging on an array of sensors from

observation of a finite number of array snapshots has been ex-
tensively studied in the literature [1]. Maximum likelihood es-
timators (MLE) and Cramér-Rao bounds (CRB), derived under
the assumption of additive white Gaussian noise, and either for
the so-called conditional or unconditional model [2]–[5], serve
as references to which newly developed DoA estimators have
been systematically compared. In many instances however, ad-
ditive noise is usually colored and, consequently, the problem
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of DoA estimation in spatially correlated noise fields has been
studied, see e.g., [6]–[10].
When the spatial covariance matrix of this additive noise

is known a priori, maximum likelihood estimators and
Cramér-Rao bounds are changing in a straightforward way
with whitening operations. The new statistical problem ap-
pears when the covariance matrix of the additive noise is not
known a priori and information about this matrix is substi-
tuted by a number of independent and identically distributed
(i.i.d.) training samples, that form the so-called secondary
training sample data set. In many cases one can assume that
the statistical properties of the training noise data are the same
as per noise data within the primary training set data: such
conditions are usually referred to as the supervised training
conditions. Therefore, under these conditions, one has two
sets of measurements, one primary set which
contains signals of interest (SOI) and noise, and a second set

(secondary training set) which contains noise only.
Examples of this problem formulation are numerous in the area
of passive location and direction finding. For instance, in the
so-called over-sampled 2D HF antenna arrays, ionospherically
propagated external noise is spatially non white [11], [12],
and some parts of HF spectrum (distress signals for example)
with no signals may be used for external noise sampling [13].
Despite its relevance in many practical situations, this problem
has been relatively scarcely studied [14], [15]. For parametric
description of the Gaussian noise covariance matrix with
the unknown parameter vector, in [15], the authors derive the
Cramér-Rao bound for joint SOI parameters (DoA) and noise
parameters estimation, assuming a conventional uncon-
ditional model, i.e.,
and where stands for the
complex Gaussian distribution whose respective parameters
are the mean, row covariance matrix and column covariance
matrix. is the usual steering matrix with the vector of
unknowns DoA, denotes the waveforms covariance matrix
and corresponds to the noise covariance matrix, which is
parameterized by vector .
In many cases however, the Gaussian assumption for the pre-

dominant part of the noise cannot be advocated. Typical ex-
ample is the HF external noise, heavily dominated by pow-
erful lighting strikes [16]–[18]. Evidence of deviations from the
Gaussian assumption has been demonstrated numerous times
for different applications, with the relevance of the compound-
Gaussian (CG) models being justified [19]–[24]. In essence, the
individual -variate snapshot of such a noise over the face of
an antenna array may be treated as a Gaussian random vector,
whose power can randomly fluctuate from sample to sample.
CGmodels belong to a larger class of distributions, namely mul-
tivariate elliptically contoured distributions (ECD) [25]–[27].



For the sake of clarity, we briefly review the main definitions
of ECD. A vector follows an EC distribution if it ad-
mits the following stochastic representation

(1)

where means “has the same distribution as”. In (1), is a
non-negative real random variable and is independent of the
complex random vector which is uniformly distributed over
the complex sphere . The matrix
is such that where is the so-called scatter ma-

trix, and we assume here that is non-singular. The probability
density function (p.d.f.) of can then be written as

(2)

where stands for proportional to. The function
is called the density generator and satisfies finite moment

condition . It is related to the
p.d.f. of the modular variate by .
Going back to our scenario of two data sets

and , we assume
that they are independent, and that their columns are inde-
pendent and identically distributed (i.i.d.) according to (2).
In other words, one has and

, where and are i.i.d. variables
drawn from , and and are i.i.d.
random vectors uniformly distributed on the unit sphere.
It then follows that the joint distribution of is given
by where

and

(3a)

(3b)

where . Additionally, we assume that de-
pends on a parameter vector while depends on . Our
objective is then to estimate

from . Let us emphasize an essential difference of the
problem in (3) with respect to the typical problem of target
detection in CG clutter [28]. There, within each range reso-
lution cell the clutter is perfectly Gaussian and therefore the
optimum space-time processing is the same as per the stan-
dard Gaussian problem formulation. It is the data dependent
threshold and clutter covariance matrix (in adaptive formula-
tion) that needs to be calculated from the secondary data, if not
known a priori [28], [29]. In the problem (3), the SOI DoA es-
timation should be performed on a number of ECD i.i.d. pri-
mary training samples, and maximum likelihood DoA estima-
tion algorithm and CRB should be expected to be very different
from the Gaussian case.
The paper is organized in the following way. In Section II,

we derive a general expression of the FIM for elliptically dis-
tributed noise using two data sets. Section III focuses on the case

of DoA estimation in -distributed noise. In Section III.B, we
derive conditions under which the FIM is bounded/unbounded,
and provide a sufficient condition for unboundedness of the
FIM with general elliptical distribution. The maximum like-
lihood estimate, as well as an approximation, are derived in
Section III.C. In the same section, we derive lower and upper
bounds on the mean-square error of the MLE for non-regular
estimation conditions, i.e., when the Fisher information matrix
is unbounded. Numerical simulations serve to evaluate the per-
formance of the estimators in Section IV and our conclusions
are drawn in Section V.

II. CRAMÉR-RAO BOUNDS
In this section, we derive the CRB for estimation of parameter

vector from the distribution in (3). The Fisher information
matrix (FIM) for the problem at hand can be written as [1]

(4)

where we used the fact that

(5)

Hence, the total FIM is the sum of two matrices ,
with straightforward definition from (4). In order to derive each
matrix, we will make use of the general expression of the Fisher
information matrix for ECD recently derived in [30], [31]. First,
let us introduce

(6)

where . Then, we have from [30] that the -th
element of the Fisher information matrices is given by

(7)

(8)

where . Since depends only on , it follows that
takes the following form

(9)



with

(10)

where . Let us now consider . Using the fact that
depends only on and depends only on is block-

diagonal, i.e.,

(11)

with

(12a)

(12b)

The whole FIM is thus given by

(13)

The CRB for estimation of is obtained as the upper-left
block of the inverse of the FIM and is thus simply

. Similarly to the Gaussian case, the
CRB for estimation of in the conditional model is the same
as if was known. As for the CRB for estimation of , it is
the same as if we had a set of noise only samples.

III. APPLICATION TO -DISTRIBUTED NOISE

A. Data Model
We address the specific problem where the primary data can

be written as

(14)

where follows a Gamma distribution with shape parameter
and scale parameter , i.e., its p.d.f. is given by

(15)

which we denote as , and . The
noise component is known to follow a distribution and in
(14) admits a representation similar to (1) with

. The p.d.f. of in this case is given by

(16)

where is the modified Bessel function. Note that the
-th order moment of is

(17)

where we used the fact ([32], 6.656.16) that

(18)

The density generator is thus here

(19)

where, for the sake of notational convenience, we have dropped
the subscript .

B. Cramér-Rao Bounds
The FIM for -distributed noise can be obtained from the

FIM for Gaussian distributed noise and the calculation of the
scalar

(20)

for . For the signal parameters part only, we indeed
have where the subscript and stand
for -distributed and Gaussian distributed noise. Using the fact
that , it follows that

(21)

It then ensues that

(22)



and thus

(23)

A formula for the FIM in case of -distributed noise was de-
rived in [33] based on the compound Gaussian representation
(14). While it resembles our derivations based on the FIM for
ECD derived in [30], it does not match exactly our expression
herein. Moreover, we study herein the existence of the FIM and
derive a closed-form approximation of the FIM.
Let us investigate the conditions under which the integral

(24)

converges. Towards this end, let us use the following inequality
which holds for and [34]

(25)

It follows that

(26)

The first integral converges for
while the second converges for

. Hence, for
, one has

(27)

Additionally, one has, for

(28)

which implies that

(29)

The first integral converges for and the second
converges for . In the former case, one has

(30)

Consequently, we conclude that the integral converges only for
: for this implies that which is

verified. In contrast, when , one must have . In
other words, the term in the FIM corresponding to the noise
parameters is always bounded since it depends on only. The
situation is different for signal parameters. In an unconditional
model where would depend on signal parameters as well, the
FIM is bounded. In contrast, in the conditional model where
signal parameters are embedded in the mean of the distribution,
the FIM corresponding to signal parameters is bounded only for

: otherwise, it is unbounded. The latter case corresponds
to the so-called non regular case corresponding to distributions
with singularities, as studied e.g., in [35].
Before pursuing our study of the FIM for the specific case of
-distributed noise, let us make an important observation. For

the distribution, we have just proven that does not exist for
. However, see (17), exists if and only if
and . The latter condition implies that, when

does not exist.
Observe that convergence of the latter integral is problematic in
a neighborhood of 0, since for

as is a density. Therefore, at
least for -distributed noise, if does not exist, then

is unbounded. At this stage, one may wonder
if this property extends to any other elliptical distribution. It
turns out that this is indeed the case, as stated and proved in
the next proposition.

Proposition 1: Whatever the p.d.f. of the modular variate
, if then .
Proof: For the sake of notational convenience, we tem-

porarily omit the subscript and use instead of . Let us
first observe that

(31)

Since , one can write

(32)



which implies that

(33)

Therefore

(34)

The third term of the sum is always positive. In the second
term, we have that . It follows that divergence
of is a sufficient condition for divergence of

. As said before
exists, and therefore a sufficient condition for to
be undounded is that is
unbounded.
Let us now go back to the -distributed case and investigate

whether it is possible to derive a simple expression for and
subsequently , assuming that . Towards this
end, let us make use of

(35)

to write that

(36)

The last term is obviously not possible to obtain in closed-form
so that we use a “large ” approximation of the modified
Bessel function

(37)

which results in

(38)

Therefore,

(39)

We finally have

(40)

If the large approximation is made from the start, then
one has

(41)

so that

(42)

and hence

(43)



Fig. 1 compares the approximations in (40) and (43), as well
as a method which uses random number generation to approxi-
mate based on its initial definition in (20).More precisely, we
generated a large number of random variables

and replace the statistical expectation of (20) by an av-
erage over the so-generated random variables. As can be ob-
served from Fig. 1, the 3 approximations provide very close
values, which enable one to validate the closed-form expres-
sions in (40) and (43).

C. Maximum Likelihood Estimation
We now focus on maximum likelihood (ML) estimation of

direction of arrival , signal waveforms and covariance
matrix in the model

(44)

where , and . The joint
distribution of is given by

(45)

where . Joint estimation of all parameters
appears to be very complicated and hence we will proceed in
two steps. At first, we assume that is known and derive the
ML estimates of and . Then, is substituted for some
estimate obtained from observation of only.

1) DoA Estimation With Known : Assuming that is
known, one needs to maximize with respect to and

(46)

where is given by (19). Since is monotonically de-
creasing, see (21), it follows that is maximized when the
argument of is minimized. However,

(47)

Therefore, for any is maximized when

(48)

It ensues that one needs now to maximize, with respect to

(49)

Fig. 1. Comparison of the approximations of in (40) and (43). and
.

with . In order to avoid calcula-
tion of a modified Bessel function and thus in order to simplify
estimation, we propose tomake use of the “large ” approx-
imation of the modified Bessel function given in (37) to write

(50)

This approximation results in an approximate maximum likeli-
hood (AML) estimator of which consists in maximizing

(51)

Note that

(52)

which should be compared to the concentrated log likelihood
function in the Gaussian case, as given by

(53)

A few remarks are in order about these estimates, in partic-
ular about the behavior of the AML estimator in the case of un-
bounded FIM, i.e., when . First, note that all estimates
will be a function of

(54)



Fig. 2. Cumulative density function of . and
.

where is the projection onto the orthogonal com-
plement of . Compared to (53), the logarithm oper-
ation in (51) will strongly emphasize those snapshots for
which is small. Let us thus investigate the properties
of this statistic, when evaluated at the true value of signal DOA
. Using the fact that ,

where and is a short-hand notation for
, one has

(55)

For small , it follows that, in the vicinity of
, the snapshot with minimal is more or less the

snapshot for which is minimum, hence the snapshot for
which noise power is minimum, which makes sense. If we let

, then its cumulative density function
(c.d.f.) is given by

(56)

which is shown in Fig. 2. Obviously, with small , the snapshot
which corresponds to the minimum value of exhibits a very
high signal to noise ratio and, due to the emphasizing effect of
the operation in (51), the performance of the AML estimator
is likely to be driven mainly by this particular snapshot. This
is illustrated in Fig. 3 where we display the mean-square error
(MSE) of the AML estimate which uses all snapshots and the
MSE of an hypothetical AML estimator which would use only
the snapshot corresponding to the minimum value of .
The scenario of this simulation is described in the next section.
This figure shows a marginal loss of the AML estimator using

only, as compared to the full AML estimator, especially
for small .
Let us thus analyze the behavior of the AML estimators. For

the sake of notational convenience, let and denote the
AML estimator using snapshots with -distributed noise
and the AML estimator using the snapshot corresponding

Fig. 3. Mean square error of AML estimator using either all snapshots or a
single snapshot corresponding to minimal . known, and

dB.

to the minimal , respectively. Observe that, when using a
single snapshot , minimizing (51) is equivalent to mini-
mizing the Gaussian likelihood function in (53) with .
Since exhibits a high signal to noise ratio, is close
to , one can make a Taylor expansion and relate the error

to the error as

(57)

where is some vector that depends essentially on the deriva-
tives of [36] and whose expression is not needed here. One
can simply notice that would be the same with Gaussian noise
and a single snapshot, since maximizing (51) or (53) is equiva-
lent when one snapshot is used. This implies that

(58)

Observe that is the mean-square error (MSE) that would
be obtained in Gaussian noise and a single snapshot, which is
about times the MSE obtained in the Gaussian case and
using snapshots, and the latter is approximately the Gaussian
CRB. The MSE of depends on where is the
minimum value of a set of independent and identically dis-
tributed (actually gamma distributed) variables. Therefore, in
order to obtain , one must consider statistics of extreme
values, a field that has received considerable attention for a long
time, see e.g., [37]–[39]. It turns out that only asymptotic (as

) results are available and we build upon them to de-
rive the rate of convergence of . First, note
that

(59)



Now since is small and is large, is very small and
we can approximate , which yields

(60)

It follows from (60) that, asymptotically, the p.d.f. of
is approximately

(61)

Using integration by parts, it follows that

(62)

One can then conclude that, as goes to infinity,

(63)

Therefore, in the case of , the MSE of de-
creases as , a rate of convergence much faster than the
usual . Note that this case corresponds to unbounded FIM.
Such rates of convergence are also found with distributions pos-
sessing singularities ([35], chapter 6).
As for the AML estimate obtained from snapshots, namely
, its MSE is upper-bounded by that (since it uses all

snapshots, including ), and is lower-bounded by the MSE
that would be obtained if for , and
this MSE is times the MSE of . Additionally, as said
before, we have where is
the Gaussian CRB using snapshots. Hence, one can bound
the MSE of as

(64)

As will be illustrated in the next section, the upper bound is
rather tight, while the lower bound is much lower than the actual
MSE.

2) Estimation of Using Secondary Data: When is not
known, then the secondary data can be used to estimate it.
The maximum likelihood estimator is obtained (for )

as the solution (up to a scaling factor) to the following implicit
equation [27]

(65)

can be obtained through an iterative procedure, whose
convergence is guaranteed under the assumptions made
[27]. In order to avoid evaluation of the modified Bessel
function, one can use the large approximation of

in (41) to define as the solution
to the fixed-point solution

(66)
Note that is more or less the well-known Tyler fixed-
point estimator [40], which again can be obtained from an it-
erative procedure whose convergence is guaranteed [29], [41].
The drawbacks of the two above estimators are that 1) they are
suited to a distribution for the noise and 2) is required
to be larger than . In order to gain robustness against these
problems, a solution is to use normalized data
whose distribution is independent of that of the noise, and to use
regularization. More precisely, we suggest to resort to the fol-
lowing scheme [42]–[44]

(67a)

(67b)

and define since convergence of
this iterative scheme has been proved [45]. The very good per-
formance of this scheme has been illustrated in various appli-
cations, see e.g., [43]–[47], where discussions on how to select
the regularization parameter can also be found.

IV. NUMERICAL SIMULATIONS

We assume a linear array of elements spaced a
half-wavelength apart and we consider the simple scenario of
a single source impinging from embedded in unit
power -distributed noise. The covariance matrix is given
by with . The exact and approxi-
mate maximum likelihood estimators, which consists in maxi-
mizing in (49) in (51) were implemented using the
Matlab function fminbnd, and the maximum was searched in
the interval where is the half-
power beamwidth of the array. The signal waveform was gener-
ated from i.i.d. Gaussian variables with power and the signal
to noise ratio (SNR) is defined as . The



Fig. 4. Cramér-Rao bounds andmean square error of estimators versus with
either known or estimated. dB, and .

asymptotic Gaussian CRB, multiplied by the scalar was
used as the bound for -distributed noise. For the regularized
covariance matrix estimator of (67), the value of

Fig. 5. Mean square error of estimators versus with either known or
estimated. dB, and .

was set to . 1000 Monte-Carlo simulations were used
to evaluate the mean-square error (MSE) of the estimates.



Fig. 6. Mean square error of AML estimator in a two sources scenario with
. known, and dB.

In Figs. 4 and 5 we plot the CRB (for ) or the lower and
upper bounds of (25) when , as well as the MSE of theML
and AML estimators, as a function of , and compare the case
where is known to the case where it is estimated from (67)
with snapshots in the secondary data. The following
observations can be made:
• there is almost no difference between the MLE and the
AMLE, and therefore the latter should be favored since it
does not require evaluating modified Bessel functions.

• the MSE in the case where is known is lower than that
when is to be estimated, which is expected. However,
the difference is smaller when : in other words, it
seems that adaptive whitening is not so much penalizing
with small while it seems more crucial for . In-
deed, for small , what matters most is the fact that some
snapshots are nearly noiseless, and this is more influential
than obtaining a very good whitening.

• the decrease of the MSE for is roughly of the order
. When , this rate is significantly increased and

the MSE decreases very quickly as , as predicted
by the analysis above. This rate of convergence is also ob-
served in Fig. 6 where we consider a scenario with two
sources at .

• the upper bound in (25) seems to provide quite a good
approximation of the actual MSE, at least for large
enough.

The influence of is investigated in Fig. 7, where one can
observe that about is necessary for the performance
with estimated to be very close to the performance for known
. However, as indicated above, this is less pronounced when

, where the difference becomes smaller with lower .
Finally, we investigate whether the rate of convergence of the

MLE or AMLE when varies is impacted by a small amount of
Gaussian noise. More precisely, we run simulations where the
data is generated as

(68)

where , i.e., the noise is a mixture of
-distributed noise and Gaussian distributed noise. The covari-

Fig. 7. Cramér-Rao bounds and mean square error of estimators versus .
dB, and varying .

ance matrix of the noise is now
and we use the AML estimator assuming that the noise has a



Fig. 8. Mean square error of AMLE versus in the case of a mixture of
-distributed and Gaussian distributed noise. dB, and

varying .

distribution with parameter and known covariance matrix
. In Fig. 8, we display the MSE of the AML estimator

versus and versus for different values of . Clearly, the rate
of convergence of the estimator is affected by a small amount

of Gaussian noise, even when is small. This indicates that, if
noise is not purely -distributed with small , we recover the
usual behavior of the MSE versus .

V. CONCLUSION
In this paper we addressed the DoA estimation problem in
-distributed noise using two data sets. The main result of the

paper was to show that, when the shape parameter of the tex-
ture Gamma distribution is below 1, the FIM is unbounded. On
the other hand, for , the FIM is bounded and we derived
an accurate closed-form approximation of the CRB. The max-
imum likelihood estimator was derived as well as an approxi-
mation, which induces non significant losses compared to the
exact MLE. In the non regular case where , we derived
lower and upper bounds on the mean-square error of the (A)ML
estimates and we showed that the rate of convergence of these
(A)ML estimates is about where is the number of
snapshots.
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