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Sensitivity Analysis of Likelihood Ratio Test in
Distributed and/or Gaussian Noise
Olivier Besson, Senior Member, IEEE, and Yuri Abramovich, Fellow, IEEE

Abstract—In a recent letter we addressed the problem of de-
tecting a fluctuating target in distributed noise using multiple
coherent processing intervals. It was shown through simulations
that the performance of the likelihood ratio test is dominated by
the snapshotwhich corresponds to theminimal value of the texture.
However, for this particular snapshot the clutter to thermal noise
ratio is not large and hence thermal noise cannot be neglected. In
the present letter, we continue our investigation with a view to con-
sider detection in a mixture of distributed and Gaussian noise.
Towards this end we study the sensitivity of our previously de-
rived detectors. First, we provide stochastic representations that
allow to evaluate their performance in distributed noise only
or Gaussian noise only. Then, their robustness to a mixture is as-
sessed.

Index Terms—Detector sensitivity, distributed noise, likeli-
hood ratio, radar processing.

I. INTRODUCTION AND PROBLEM STATEMENT

D ETECTION of a target in competition with strong clutter
and thermal noise is a predominant problem in most

radar systems. The two sources of disturbance emanate from
completely different physical phenomena and result in different
power levels and statistical distributions. While the Gaussian
assumption prevails for thermal noise, in a number of appli-
cations, such as low grazing angles or with sea clutter, the
heavy-tail nature of clutter has been observed experimentally
[1]–[5]. The compound-Gaussian model [6], [7] has been
thoroughly used [8]–[14]. It consists in modeling the received
signal as where follows a
complex Gaussian distribution with zero mean and covariance
matrix , and the texture is a positive random variable.
The most well-known detector within this framework is the
normalized matched filter [10], which is derived by considering
deterministic. Most often, mainly because the clutter to noise

ratio is generally high, it is assumed that thermal noise can be
neglected.

In [15], we considered detection of a fluctuating target in fluc-
tuating -distributed clutter, a problem formalized as

(1)

where , , are a set of independent and identi-
cally distributed (i.i.d.) radar returns, and where and stand
for the target signature and amplitude, respectively. In [15], we
showed that, in contrast to what is commonly admitted, thermal
Gaussian noise cannot be ignored, even if clutter to noise ratio
is high. Indeed, it was shown that, for heavy-tailed distributions,
the detection performance is in fact dominated by a single ob-
servation within the i.i.d. observations available, namely the
snapshot corresponding to the minimal texture value. To give
an order of magnitude, for and the shape parameter of
the distribution [respectively ] the average
power of the minimal over texture values is 25 dB [respec-
tively 38 dB] below the ensemble power of the distributed
clutter. This shows that, with multiple i.i.d. observations, in-
ternal white Gaussian noise has to be considered even for prac-
tically observed input clutter to noise ratios.
Therefore, one should consider the problem of detecting a

signal of interest in compound-Gaussian clutter and thermal
Gaussian noise ( ):

(2)

where stands for the clutter covariance matrix,
and the additive white noise is assumed to be

Gaussian, i.e., . The disturbance covariance
matrix is given by

(3)

Unfortunately, one immediately faces the problem that the dis-
tribution of the overall noise is unknown and, at this stage, it
seems impossible to resort to a plain generalized likelihood ratio
(GLR) approach.
As a preliminary attempt to cope with this problem, we adopt

a common practice which consists in evaluating the sensitivity
of known detectors to a mismatch or to uncertainties, see [16],
[17] for example. More precisely, we consider the detector de-
rived from problem (1) where we assumed that disturbance is
composed of clutter only and thermal noise was neglected, and



we consider the “mirror” case where the disturbance is Gaussian
and the problem is formulated as

(4)

In both problems (1) and (4) we assume that is known: these
frameworks can be viewed as the “extreme” cases of only
and Gaussian only disturbance while (2) is a mixture of the two
kinds of noise. Whatever the case, the second order statistics
of the noise are known and the difference lies in their different
distributions. We tackle the problem by first investigating the
robustness of the detectors derived under one hypothesis when
applied to the other statistical model. This enables one to give a
hint about the ability of these detectors to perform well under a
mixture of the two sources of noise. Then we evaluate, through
numerical simulations, their performance when (2) is in force.

II. ROBUSTNESS TO EACH TYPE OF NOISE

In the sequel, and similarly to [15], we assume a Gamma
distribution for , namely , so that, under ,
follows a distribution. Let . Under the
assumption of known , an approximate log-likelihood ratio
(LLR) test was derived in [15], given by

(5)

where

(6)

Interestingly enough, (5) coincides with the GLR obtained as-
suming that the variables are deterministic and unknowns
[11], while in [15] it was obtained from a large approx-
imation of the modified Bessel function. On the other hand, for
the classical problem in (4) the GLR is the matched filter, i.e.

(7)

The normalized matched filter (actually the non coherent inte-
gration of the NMF for a single snapshot) is given by

(8)

Finally, in [15], we discovered that the test statistic in (5) is
mostly influenced by the term corresponding to the minimal
value of . Let be this snapshot and let us consider the
hypothetical test statistic

(9)

We first study the behavior of the detectors in (5)-(9) under
. As was shown in [15] (except for which was not

considered there), both for -distributed noise or Gaussian dis-

tributed noise, the distributions of , and
are the same and given by

(10)

(11)

(12)

Only has a different distribution under each assump-
tion, namely

(13)

(14)

where is the projection onto . For
, and , the same

threshold can be set to ensure a desired probability of false
alarm for both noise distributions. Only can
incur a variation of due to distribution mismatch. Indeed,

(15)

where corresponds to the threshold of to obtain
the desired under Gaussian noise. Conditioned on ,
the random variable is a sum of
distributed random variables. Its distribution can be obtained
but its expression is rather involved [18], [19]. Moreover, in
our case, the scale parameters are random and then one needs a
further marginalization, which appears a formidable task. Some
insights can be gained for instance by considering the case

. Indeed, one has

(16)

where we made use of [20, 6.592.12]. Since for ,
, one obtains a direct

relation between the actual and the
designed . In the general case , one needs to resort to
numerical evaluations but, as will be shown shortly, the ratio
between and
is approximately constant over . As an illustration, Fig. 1 dis-
plays the actual of under -distributed noise.
Clearly, this detector is not at all robust and a threshold cannot
be set which guarantees approximately the same in
distributed noise or in Gaussian noise.
Let us turn now towhat happens under . Let us address first

the situation where noise is -distributed. In this case, since
, one has



TABLE I
DISTRIBUTION OF , AND UNDER FOR THE TWO DETECTION FRAMEWORKS

Fig. 1. Probability of false alarm of in distributed noise.
Varying and . in Gaussian noise.

(17)

where . Furthermore,

(18)

from which we infer that

(19)
(20)

(21)

where and
. These distributions are recapitulated in

Table I. The case of Gaussian noise is obtained by simply
setting in the above equations. Note that any com-
pound-Gaussian distribution can be handled by an appropriate
choice of the distribution of , and hence these expressions are

not restricted to -distributed noise. These novel stochastic
representations have a double interest. First, even though they
do not provide analytical formulas for the probability of de-
tection, they allow for fast evaluation of from well-known
scalar distributions. Moreover, they provide insights onto
the influence of . Indeed, for the scaled invariant detectors

and , appears only in the non-cen-
trality parameter of the corresponding distribution. Therefore,
the smaller the larger this non-centrality parameter and
hence the greater its influence. This explains why, for very
heavy-tailed distributions (for very small ), for which
might be very small, the latter has a strong influence on the
detection performance. On the other hand, for ,
appears both in the non-centrality parameter (through ) but
also in the “weighting” of the distribution through : hence,
there is a sort of balance, which means that the snapshot with
minimal is not necessarily the most influential. In fact, we
might expect that snapshots with large values of will have a
strong impact.

III. PERFORMANCE IN A MIXTURE OF DISTRIBUTED AND
GAUSSIAN NOISE

We now evaluate the performance of the detectors
when applied to a mixture of -distributed and Gaussian
noise. We consider the case of pulses and a
moving target with Doppler frequency so that

. The power of the -dis-
tributed clutter is assumed to be one and hence . The
clutter covariance matrix is and the clutter
to white noise ratio is defined as .
Since the probability of false alarm of cannot be
controlled, while a single threshold can be set for the scale
invariant detectors , ,
to ensure the same under either distributed noise or
Gaussian noise, we consider only the three latter detectors
from now on. For each of them, the threshold is set to obtain
a under distributed noise only or Gaussian noise only
equal to . In Fig. 2, we display the actual of all
detectors (obtained from simulations) as a function
of .
This figure is worthy of some observations. First, it should be

noted that the actual probability of false alarm in Gaussian
noise is less than the specified designed under the assump-
tion of distributed noise only or Gaussian noise only. It seems
that the two extreme cases are the worst cases and constitute an
upper bound. For and the probability
of false alarm first decreases, then can be 10 times lower than the

for only or Gaussian only noise, and then re-increases to
meet the designed . For , the actual can



Fig. 2. Mixture of -distributed clutter and Gaussian white noise. Probability
of false alarm of , and versus

. Designed under distributed noise only or Gaussian noise
only is .

go to zero, at least among the simulations, none of
them exceeded the threshold.
We now study the probability of detection in Fig. 3. sim-

ulations were run to estimate . The fluctuating amplitude
was generated from i.i.d. Gaussian variables with power and
the signal to clutter and noise ratio is defined as

. As before, the thresholds of each detector are set
to ensure a probability of false alarm under distributed noise
only or Gaussian noise only equal to . Therefore,
as illustrated in Fig. 2 the detectors do not operate at the same

. However, the shown in Fig. 3 would be that obtained in
practice where a threshold cannot be set based on the correct dis-
tribution assumption. This figure shows that and

perform nearly the same, with the former slightly
better. The impact of including thermal noise is visible, espe-
cially on : the latter departs from
when is about 20 to 40 dB. This indicates that when
thermal noise is present, the snapshot with minimal does no
longer prevail over all other snapshots.

IV. CONCLUSIONS
In this letter, we pursued further our analysis of the detectors

derived in [15] under the assumption of distributed noise
only. First, we analyzed their performance in distributed
noise only or Gaussian noise only. New stochastic represen-
tations for the test statistics under were obtained, which
provided insights into the influence of the values of the textures
. Then, we assessed the detectors under a mixture of and

Gaussian noise. It was shown that the probability of false alarm
obtained with the mixture was inferior to the probability of
false alarm under only or Gaussian only noise. As for the
probability of detection, it was shown that thermal noise has an
impact even for moderate clutter to white noise ratio, and hence
improvement of the detection schemes is worthy of further
investigation. Furthermore, it was shown that, in the presence
of thermal noise, the hypothetical detector that operates on the
clairvoyantly selected snapshot with the minimal becomes
inferior to the detector that uses all snapshots, after the number

Fig. 3. Probability of detection of , and
versus . , and designed under

distributed noise only or Gaussian noise only is .

of independent observations grows above a certain value
specified by the CWNR. It is expected that in this case, in
order to be as efficient as the detector which uses all snapshots,
one could resort to a detector that would somehow select only
samples with values below WGN power.
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