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Fluctuating Target Detection in Fluctuating
-Distributed Clutter

Yuri I. Abramovich, Fellow, IEEE, and Olivier Besson, Senior Member, IEEE

Abstract—This letter deals with the problem of fluctuating target
detection in heavy-tailed -distributed clutter over a number
of independent coherent intervals, e.g., in the case of a long ob-
servation interval (“stare mode”), or that of independent (range)
resolution cells as per the track before detect techniques. The gen-
eralized likelihood ratio test for the problem at hand is derived, as
well as an approximation of it, whose distribution under the null
hypothesis is derived. We also show some significant differences as
compared to the usual Gaussian case, in particular the influence of
and of the shape parameter of the distribution.
Index Terms—Adaptive detection, generalized likelihood ratio

test, distributed noise.

I. INTRODUCTION AND PROBLEM STATEMENT

I N THE last few decades, spurred by analysis of experi-
mental radar data [1], [2], [3], [4], [5], considerable atten-

tion has been focused on target detection in heavy-tailed clutter
environment, see e.g., [6], [7], [8], [9] and references therein.
Most studies deal with detection of non-fluctuating over co-
herent integration time (CIT) target return in a clutter that can
be presented as a compound-Gaussian process [10], [11] or,
more generally, is assumed to follow an elliptically contoured
distribution [12]. Traditionally the detection problem is formu-
lated from a single resolution cell. Herein, we consider long
observation interval (“stare mode”) that significantly exceeds
the target and clutter fluctuations spectra Nyquist rates, which
can be recast as the following hypotheses testing problem (

) [9]:

(1)

where follows a complex Gaussian distribution
with zero mean and covariance matrix , and the texture is
a positive random variable whose distribution will be specified
shortly. The problem in (1) is also relevant in the so-called track
before detect framework where the decision on target presence
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has to be made based on potential target presence in inde-
pendent range resolution cells. For Gaussian target and clutter
models, (1) leads to the classical non-coherent integration of the
coherent processing outputs, and the main focus of this study is
to investigate the type of non-coherent inter-CIT processing for
heavy-tailed distributions. Note, in this regard, that for the tradi-
tional single CIT problem, it was the data-dependent threshold
arrangement [13] that made all the difference with respect to
the Gaussian case. For multiple independent and identically dis-
tributed (i.i.d.) CIT, one can expect similarly changed nature
of inter-CIT non coherent processing. Additionally, we wish to
examine how the number of CIT and the shape of the tex-
ture distribution impact the probability of detection. As such,
the present letter is a follow-up of our recent submission [14],
where we considered maximum likelihood (ML) direction of
arrival estimation in -distributed noise. It was shown there
that the rate of convergence of the ML estimates is significantly
faster than in the Gaussian case and increases as the shape pa-
rameter of the distribution decreases. The aim of this letter
is to investigate whether a similar behavior occurs in detection.

II. DETECTION

As said before we consider the problem in (1) where we as-
sume that follows a Gamma distribution with shape param-
eter and scale parameter , i.e., its probability density function
(p.d.f.) is given by

(2)

which we denote as . The signal unknown random
amplitudes that fluctuates from CIT to CIT are considered
as deterministic and unknown. The noise component is
known to follow a distribution, and the probability density
function of the data matrix is given
by

(3a)

(3b)

where and . We
assume herein that is known, so that the generalized likeli-
hood ratio (GLR) for the problem at hand is given by

(4)



Since is monotonically decreasing, and observing that

(5)

it follows that is maximized for

(6)

Consequently, the GLR can be rewritten as

(7)

In a view to simplify the detector, let us make use of an approx-
imation of the modified Bessel function, which holds for large

[15], and write

(8)

Our experience is that this approximation yields almost no loss
compared to using the Bessel function [14]. The previous equa-
tion gives rise to an approximate GLR (aGLR)

(9)

where is the projection onto the orthogonal comple-
ment of . Taking the logarithm of (9) and scaling by

, we end up with an approximate log-likelihood ratio
(LLR) given by

(10)

For comparison, the LLR for Gaussian distributed noise is given
by

(11)

Let us investigate the properties of the test statistic under
first. Since , where , one
has

(12)

It follows that the p.d.f. of does not depend on the actual
value of , and hence all snapshots are treated equally. Further-
more, which implies that

(13)

Consequently, the p.d.f. of the approximate LLR under is
given by

(14)
The probability of false alarm, for a given threshold , is thus

(15)

where is the incomplete Gamma func-
tion [15]. Observe that the distribution of is inde-
pendent of under , and is thus the same as if the data were
Gaussian. However, in the latter case, the Gaussian likelihood
ratio, as given by (11), follows a distribution, which is dif-
ferent from (14).
Let us now investigate what happens under . We now have

, so that

(16)

As illustrated in [14], the logarithm operation in (10) will tend
to emphasize the snapshots for which is very small. Indeed,
for ,

(17)

while, for ,

(18)

whose average value is an and thus close to 1.
Moreover, there is a very high probability that some of the
take very small values [14]. Hence, one can surmise that, for
very heavy-tailed noise, i.e., for very small , the approximate
log likelihood ratio will be dominated by the term involving the
snapshot with minimal . In order to confirm this conjecture,



let be this snapshot and let us define .
Let us now consider an hypothetical detector that would use

only, i.e.,

(19)

Observe that, under ,
and, hence, the threshold of this detector is related to
as

(20)

The test statistic depends mostly on which
is the minimum value of a set of independent Gamma dis-
tributed random variables. In order to analyze its behavior, one
must consider statistics of extreme values [16], for which only
asymptotic (as ) results are available. More precisely,
we showed in [14] that, for small and large ,

(21)

Let . Then

(22)

In order to obtain the probability of detection, one must inte-
grate over the p.d.f. of . Although this marginalisation appears
infeasible, (22) provides very interesting insights into the speed
of convergence of the probability of detection as a function of
. Indeed, and this confirms what was observed for direction

of arrival estimation in -distributed noise, the probability of
detection of a signal in -distributed noise grows much faster
with than in the Gaussian case. Moreover, since the detector
in (10) based on all snapshots is expected to perform better than
the detector in (19) which uses only , its probability of de-
tection should be at least as fastly growing. This conjecture will
be illustrated in the next section.

III. NUMERICAL SIMULATIONS

We assume a set of pulse repetition intervals and a
moving target with Doppler frequency so that

. The -distributed clutter is
assumed to have unit power, so that . The fluctu-
ating amplitude was generated from i.i.d. Gaussian variables
with power and the signal to noise ratio (SNR) is defined
as where is assumed to be known.
The probability of false alarm is set to . Figs. 1 and
2 display the probability of detection of the approximate
LLR as given by (10) and the approximate LLR (19) based on
the snapshot with minimum . These figures confirm the very

Fig. 1. Probability of detection of approximate log likelihood ratio test versus
. . (a) (b) (c) .

strong influence of the shape parameter on . Indeed, for a
fixed number of snapshots , the probability of detection rises



Fig. 2. Probability of detection of approximate log likelihood ratio test versus
. . (a) (b) (c) .

very fastly as decreases, see Fig. 2. Accordingly, the influ-
ence of is more pronounced when decreases, see Fig. 1.

Fig. 3. Average value of versus and .

Moreover, one can observe that for small , and
perform nearly the same, which confirms the fact

that, for heavy-tailed distributions, the detector is mostly influ-
enced by the snapshot with minimum , i.e., with maximum
signal to clutter ratio.

IV. DISCUSSION

In this letter we addressed the problem of detecting a fluctu-
ating target over multiple CIT, in the presence of -distributed
noise, whose covariance matrix is known. An approximate like-
lihood ratio test was derived, whose distribution under the null
hypothesis was shown to be independent of the shape parameter
of the Gamma texture. This yielded a simple and closed-form

expression of the detector threshold as a function of the proba-
bility of false alarm. Qualitative insights were provided to gain
comprehension of the probability of detection . We showed
that, for very small , the detector is mostly influenced by the
snapshot corresponding to the minimum value of the texture.
Furthermore, the detector exhibits a rate of convergence of
much faster than in the Gaussian case.
In this letter, and similarly to many studies, we considered

the non-Gaussian clutter only and somehow ignored the addi-
tive thermal Gaussian noise. This assumption is usually justi-
fied by assumption of a limited clutter mitigation efficiency of
the optimum filter, i.e., the clutter to white noise ratio at the
output of this filter is still large. On the other hand, as indicated
above, the detection performance is mainly driven by the snap-
shot with minimum . However, since we assume a constant
input clutter total power ( ) for any , the clutter power
in may be very small, as illustrated in Fig. 3. This figure
provides an insight on when this commonly made assumption
on ignored additive white noise remains valid for different
and . When this is no longer the case, one needs to consider
both non-Gaussian clutter and white Gaussian noise, a problem
which is rather tedious [17] as the p.d.f. of the total noise is not
really tractable. This is a further line of research that needs to
be investigated.
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