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Entangled Cross-Linked Fibres for an Application as Core
Material for Sandwich Structures - Part II:
Analytical Model

L. Mezeix1,2
& D. Poquillon1

& C. Bouvet2

Abstract Entangled cross-linked carbon, aramid and glass fibres were recently produced by
epoxy spraying for an application as core material for sandwich panel. The Young’s moduli in
compression and tension have been previously measured and briefly summarized in this paper.
To optimize the core structure, modelling of these properties has been achieved in the present
paper. The cross-link fibres have a random orientation and the stiffness of the epoxy joint is
modelled by a torsion spring. A parallel model is chosen for homogenisation. It was found that
the experimentally estimated stiffness of these materials fits fairly well with the modelled ones.

Keywords Entangled fibres .Mechanical properties . Modelling . Sandwich structure . Core
material

1 Introduction

Sandwich structures are commonly used in aerospace, naval construction, and transport
structures, since they offer a great stiffness over weight ratio. The purpose of the core is to
maintain the distance between the skins and to resist the shear deformation. A variation of the
core, the thickness and the material of the face sheet of the sandwich structures, makes it
possible to obtain various properties and the desired performance [1–4]. Typical core config-
urations include different foams, honeycomb or lattice core material.

Entangled cross-linked fibres present a strong interest in highly porous metals for a wide
range of applications [5–11]. They present a relatively low density, a high porosity and a
simplicity of production thanks to its cost-effective routes with considerable versatility as far as
type of fibres and architecture are concerned. Entangled cross-linked fibres can be made by
assembling a set of metallic fibres and bonding them together by different processes such as
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welding, brazing, sintering or adhesive bonding [9, 12, 13]. Recently, a new type of entangled
cross-linked fibres was developed based on entangled carbon, aramid and glass fibres bonded
by epoxy vaporization [5, 14–16]. This material has the potential to exhibit an attractive
combination of properties for sandwich application, such as an open porosity, multifunctional
properties or the possibility to obtain complex shapes [5].

Many studies have been carried out on the mechanical characteristics of bonded fibre arrays
[12, 14, 17–20]. Gibson and Ashby works concerned with modelling of open cell foams. [17]
can be applied to entangled cross-linked fibres. Markaki and Clyne developed a simple
analytical model based on the bending of individual fibres, in order to predict the mechanical
response of metallic bonded fibres when subjected to either mechanical or magnetic forces
[12]. However, perfect bonding is modelled between fibres and therefore the stiffness of the
joint is not considered.

Therefore, in the present paper an analytical model was developed to predict the initial
stiffness of entangled cross-linked fibres bonded by epoxy spraying. The stiffness of the epoxy
joints is represented by a torsion spring and its value is determined by a FE model where the
geometry is obtained by SEM observations. The results were then examined with respect to the
experimental Young moduli identified in Part I of the current work.

2 Materials

Different types of fibres, i.e. carbon, glass and aramid, were used as entangled cross-linked
fibres [5]. In this study we used a constant density of 150 kg/m3 for the fibres and 30 kg/m3 for
the vaporized resin. As the density was not the same for all the fibres, the fibres volume
fraction, f, of the tests materials was different (Table 1). Compression and tensile tested were
performed and the Young’s moduli were always measured during unloading. According to the
experiments, the mechanical behaviour of the entangled cross-linked fibres can be summarized
as follows [5]: Firstly, carbon fibres present a higher stiffness than glass and aramid fibres for
the same fibres density (Table 2). This is mainly due to the shortest distance, L, between epoxy
joints (Table 1). Secondly, two different epoxy resins were used to study their influence on the
stiffness of the material and no difference was noted (Table 2). It was also observed that the
stiffness of the epoxy joints is smaller with the weakest resin but on the other hand, the
distance between joints is shorter on the material made with this resin. Moreover, Young
modulus experimentally measured was found higher in tension than in compression. This is
probably due to the additional stiffness of the vertical fibres (Table 2).

Table 1 Properties and volume fraction of used fibres: (1) in compression and (2) in tension [5]. L is the average
of the values determined by SEM observations

Fibres D [μm] Ef [GPa] EfI [N.mm2] f % L [μm] Resin reference

Carbon fibres 7 240 2.8×10−5 8.5 100 SR8100

120 SR1710

Aramid fibres 12.5 36(1)/120(2) 4.3×10−5 10.7 180 SR1710

Glass fibres 12 73 7.4×10−5 5.9 200 SR1710



3 Analytical Model

3.1 Deflection of Individual Fibre

Using a homogenization approach, the model integrates fibres behaviour to get the macro-
scopic behaviour of the material. All fibres are supposed to have the same displacement as
detailed in Fig. 1a (Voigt approach).

The model consists of individually oriented fibres by an angle θ, considered as a beam of
length, L (Fig. 1b). This length represents the average distance between two epoxy joints. At
each extremity of the beam, a torsion spring represents the stiffness of the epoxy joints. The
beam is subjected to an imposed vertical displacement (Δz). It can be decomposed in a
bending part (Δf) and in a compression part (ΔL). The force generated by the compression
part has no bearing on the stiffness calculation. Due to the high ratio distance, L, between
epoxy joints over fibres diameter, D, the fibres may buckle.

The displacement due to flexion (Δf) creates a bending force (wf), whose horizontal part will
randomly cancel the horizontal parts of other fibres. The vertical part, Wbending, generates the
compression force. The mathematical relationship of this compression force, Wbending is (Eq. (1)):

Wbending ¼ 12E f IΔzsin2θ

JL3
ð1Þ

With J ¼ 1þ 6E f I

KL
ð2Þ

Where Ef is the fibres Young modulus, K is the stiffness of the spring representing the
stiffness of the epoxy joint and I is the moment of inertia of the cylindrical fibre section in
bending (Eq. (3)):

I ¼ πD4

64
ð3Þ

3.2 Determination of Epoxy Joint Stiffness

The stiffness of the epoxy joint, K, between two fibres is obtained in two steps. Firstly, the
epoxy junction is modelled by a Finite Element model, where the geometry is drawn based on
SEM observations (Fig. 2). The geometry of the junction depends on the type of fibres. The
fibres and epoxy material are considered as homogeneous and their behaviours as elastic linear.
Under a torsion load, F, the displacement, δf, of the fibres is obtained (Fig. 2).

Table 2 Experimental Young modulus in compression and tension [5]

Fibres E (compression) E (tension) Resin reference

Carbon fibres 5 17.5 SR1710

5 – SR8100

Aramid fibres 3.1 6.5 SR1710

Glass fibres 1.7 4.4 SR1710



Secondly, thanks to the relation between the torsion load and the displacement obtained by
the FE model, the torsion spring stiffness, K, is determined by an analytical model (Fig. 3)
from the small strain (Eq. (4)):

K ¼ FL2

δ f
−
3EI

L
ð4Þ

Fig. 1 Schematic representation of (a) the parallel architecture of the fibres and (b) the beam under the influence
of a vertical displacement, Δz



The values of the stiffness are presented in the Table 3. Due to the small fibres diameter, the
spring stiffness is lower in the case of carbon fibres.

a b

Fig. 2 (a) Typical joint observed by SEM and (b) junction modelled by FE

Fig. 3 (a) Schematic representation of the analytical model



3.3 Elastic Deformation of Entangled Cross-Linked Fibres Under Compression

The overall applied stress is related to the axial load on individual fibre segments, by (Eq. (5)):

σ ¼ N Wbending

� � ð5Þ
Where N is the number of fibre segments per unit sectional area, and the value of N is given

for 3D randomly oriented fibres by (Eq. (6)) [21]:

N ¼ 2 f

πD2 ð6Þ

If it is assumed that interactions between neighbouring fibres have limited effects on the
average force resulting from the vertical displacement, so <Wbending>can be obtained by
simple integration, taking into account the fact that an isotropic fibre orientation distribution
exhibits a sinθ probability [12]:

Wbending

� � ¼

Zπ=2

0

Wbendingsinθdθ

Zπ=2

0

sinθdθ

ð7Þ

Using a Voigt homogenization approach (Fig. 2a), the macroscopic strain is given by
(Eq. (8)):

ε ¼ Δz

zh i ¼ Δz:

Zπ=2

0

sinθdθ

Zπ=2

0

Lcosθsinθdθ

ð8Þ

Where <z> is the average fibres height by taking the orientation probability into account.
The Young’s modulus E (=σ/ε) is therefore given by (Eq. (9)):

E ¼ E f f

8J L
D

� �2 ð9Þ

3.4 Elastic Deformation of Entangled Cross-Linked Fibres Under Tension

Irrespective of the nature of fibres used, entangled cross-linked fibres present higher stiffness
in tension than in compression due to the additional rigidity of the quasi vertical fibres, while

Table 3 Stiffness of torsion spring obtained by the model

Carbon SR1710(SR8100) Glass SR1710 Aramid SR1710

K [10−4 N.mm] 23.6(12.6) 170 101



in compression they buckle quickly [5]. Therefore, analytical model needs to be adapted to
consider this additional rigidity.

The beam is always subjected to an imposed vertical displacement (Δz). It can be divided
into a bending part (Δf) and a tension part (ΔL), but here the force generated by the tension
part is taken into consideration for the computation of the stiffness. But all the fibres should not
work in tension; only the quasi vertical fibres should really load in tension, while in compres-
sion they buckle quickly. The quasi-vertical fibres should be the fibres between the vertical and
those oriented by a low angle θ0. As the tension load is also considered, the overall applied
stress is related to the tension and bending loads on individual fibre segments by (Eq. (10)):

σ ¼ Nbending Wbending

� �þ Ntension W tensionh i ð10Þ
Where Nbending and <Wbending> are given by the Eq. (1) and Eq. (5), and Wtension is

obtained by the behaviour of a beam in tension (Fig. 4) (Eq. (11)):

Wtension ¼ E f πD2Δzcos2θ

4L
ð11Þ

As for the bending part, <Wtension> can be obtained by a simple integration, taking into
account the fact that an isotropic fibre orientation distribution exhibits a sinθ probability. But
for the tension, only the fibres between the vertical and an angle of θ=θ0 is considered. So the
overall stress due to the tension load is (Eq. (12)):

Ntension W tensionh i ¼

Z

0

θ0
E f πD2Δz

4L
cos2θsinθdθ

Zπ=2

0

sinθdθ

ð12Þ

Fig. 4 Schematic representation of the beam under the influence of a vertical displacement in tension



Where the number of fibre segments per unit sectional area is in tension (Eq. (13)):

Ntension ¼

Z

0

θ0
4 f

πD2cosθsinθdθ

Zπ=2

0

sinθdθ

ð13Þ

4 Results and Discussions

4.1 Elastic Deformation of Entangled Cross-Linked Fibres Under Compression

Results obtained by Eq. (9) can be compared with the expression given by Gibson and Ashby
[17] for open cell foam. These author’s hypotheses are also based on beam deflections (3-point
bending under a normal load), but the geometry is more constrained (Eq. (14)):

EGA ¼ 3πE f

4 L
D

� �4 ð14Þ

Equation (9) can be also compared with the work of Markaki and Clyne [12] for
metallic fibres arrays. In this article, the calculations are also based on clamped
cantilever beam deflections, but Reuss homogenization is used. Then these authors
predicted (Eq. (15)):

EMC ¼ 9E f f

32 L
D

� �2 ð15Þ

Figure 5 compares the results obtained by the different models (Eqs. (9), (14) and (15)). For
all the material tested, the proposed model predicts the Young modulus correctly.

4.2 Effect of the Junction Stiffness

Predicted Young’s moduli (Eq. (9)) are elaborated in Fig. 6 as a function of the spring
stiffness, that represents the epoxy joint stiffness. Figure 6 also details the experi-
mental initial Young’s moduli for the different fibres materials [5]. For all configura-
tions tested, the stiffness of the material increases with the value of the spring
stiffness (1). The value of the stiffness tends towards the experimentally obtained
value when the stiffness of the junction is the value predicted using FE model of the
junction. Moreover it would be possible to increase significantly the material stiffness,
especially with carbon fibres, by using a higher rigidity resin. But a modification of
the resin causes also a change in viscosity and therefore the distance between
junctions. Moreover the largest effect of the spring stiffness on the carbon fibres
stiffness is due to the smallest diameter, D, of this type of fibre (size of the junction).
Furthermore, a smaller diameter induces a smaller distance between junctions.



The effect of the spring stiffness for different distances between joints is now studied (Fig. 7).
Firstly, if the distance, L, is short, then the stiffness of the material is higher. Secondly, for a short
distance between joints, the value of the spring stiffnessmust be high, in order to raise the asymptote
(1). While for a long distance between joints, a spring with a low stiffness is required (2). The
displacement of the fibres in this case is mainly due to the bending displacement of the beam.When
this distance decreases, the stiffness is mainly due to the spring stiffness, which shows that the spring
has a greater influence.

Even without any available experimental data, it is interesting to study the Young’s modulus for
different fibres diameters (Fig. 8). For a small diameter, the size of the junction does not need to be
large to bond fibres so the stiffness value of the junction is quickly considered as infinity. For fibres
with a small diameter, the displacement of the fibres is mainly due to the bending of the beam. For
larger diameters, the junction is larger, so its stiffness increases. A greater fibre diameter results in an
increased size and rigidity of the epoxy junction. However, as the diameter of the fibre increases, its
bending stiffness (EI) also increases with the stiffness of the epoxy junctions.

4.3 Effect of the Distance Between Junctions

The distance between joints is one of the main parameters related to stiffness. This distance depends
on the volume fraction of the fibres, f, and on the quantity of the vaporized resin. Therefore, effect of
this distance, L, can be studied independently from others parameters (Fig. 9). As discussed
previously, all the materials are made with a constant fibres density (150 kg/m3), so the volume
fraction, f, of the samples differs with the fibres (Table 1). As the average distance between fibre
contacts (no cross-linked), Lcontact, is related to the diameter and the volume fraction of the fibres, we
can determine the shortest theoretical distance between junctions for a 3D random fibres material
(Eq. (16)) [22–24]:

Lcontact ¼ D

2 f
ð16Þ
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Fig. 5 Comparison between the Young modulus obtained by the proposed model (Eq. (9)) and models of Clyne
(Eq. (14) [12]) and Ashby (Eq. (15) [17])
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Fig. 7 Evolution of the Young modulus of the entangled cross-linked carbon fibres as a function of the spring
stiffness for different values of the distance between junctions



In the case of our samples, the theoretical distance between fibre contact, in case of carbon,
amid and glass fibres is respectively 41, 58 and 100 μm. It is important to note that this model
was developed for idealized rigid fibres, which is not the case in our present study. Moreover,
due to our fabrication process, each fibres contact may not be bonded by epoxy. So the
distance obtained using Eq. (16) is an approximation of the lowest distance we can obtain.
Thus the predicted Young modulus could be significantly larger than the experimental value,
as shown on Fig. 9.

4.4 Elastic Deformation of Entangled Cross-Linked Fibres Under Tension

A sequential approach is achieved to determine θ0. Indeed, as no experimental data can be
used to determine θ0, therefore it will be determined using the model (Eq. (9)). θ0 will be that
cut off value for which the experimental Young modulus of the entangled cross-linked carbon
fibres equals the predicted one. These carbon fibres were chosen because more observations
were made on them to measure the distance, L, between junctions. The value of θ0≈15° leads
to the appropriate stiffness. As the fibre length is very large compared to the distance between
junctions, the fibres length does not have any influence. So the calculation of the Young’s
modulus in tension can be realised for the others fibres using this θ0 value. We can note that the
stiffness obtained is close to the measured modulus (Fig. 10). Therefore, the identification of
the angle (θ0) seems appropriate.

In order to model tension behaviour, the assumption to take only the fibres
between the stress direction and an angle θ0 of 15°, seems to be pertinent. However,
additional experiments need to be carried out with others types of fibres to confirm
this result. In addition, the effect of fibres length on the angle θ0 also needs to be
studied.
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Fig. 8 Evolution of the Young modulus of the entangled cross-linked carbon fibres as a function of the spring
stiffness for different values of the fibre diameter



5 Conclusion

This paper relates to entangled cross-linked fibres bonded by epoxy vaporization. A simple
analytical model is developed to predict the response of these entangled cross-linked fibres
under compression and tension load. The following conclusions can be drawn:

& From an analytical model based on the bending of fibres, expressions of Young modulus in
compression are obtained. The form of the prediction is similar to that of a previously
developed expression by Markaki and Clyne [12], based on the bending beam. However,
in the model developed in this study, a Voigt approach is used and the epoxy joints
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are modelled. The stiffness of the epoxy joints used at the extremity of the beam is
modelled by a torsion spring and the values are obtained by FE models realised from
SEM observations.

& Even though we used a basic approach by taking the approximate values of the distance
between the epoxy joints measured and the very simple junction model by FE, the stiffness
in compression of entangled cross-linked fibres obtained fit well with that obtained from
experimental data. So the model developed in this work seems to account for the physical
phenomena.

& Effects of the junction stiffness and of the distance between them are studied in this work.
As expected, the lower the inter-distance, the higher the stiffness. From the theoretical
distance of an isotropic 3D assembly of fibres, the best stiffness can be determined. As the
studied materials have all the same density, the highest stiffness is obtained in the case of
carbon fibres.

& Irrespective of the nature of the fibres used, the material presents a higher stiffness in
tension than in compression due to additional rigidity of the quasi vertical fibres, while in
compression they buckle quickly [5]. With the help of the developed model, this additional
rigidity due to the quasi-vertical fibres is determined by taking into account the fibres
working in tension between the vertical and an angle θ0 of 15°. Model values are a fairly
good match with the experiments, so the concept according to which only a few fibres
work in tension seems pertinent.
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