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Madrid, ETSI Minas y Energı́a, C./Rı́os Rosas 21, 28003 Madrid, Spain
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Abstract: In this work, we present calculations and analyses of equivalent continuum
(upscaled) coefficients describing the damaged, fissured and fractured claystone around an
underground gallery. We focus here on mechanical and coupled hydro-mechanical properties
of the damaged claystone (the upscaled Darcy permeability of the same claystone was studied
in a previous paper focused on hydraulics without mechanical deformations). Concerning the
geometric structure of the damaged clay stone around the cylindrical excavation, we use a
hybrid 3D geometric model of fissuring and fracturing, comprising (a) a set of 10 000 statistical
fissures with radially inhomogeneous statistics (size, thickness and density increasing near the
wall), and (b) a deterministic set of large curved ‘chevrons’ fractures, periodically spaced
along the axis of the drift according to a 3D chevron pattern. The hydro-mechanical coefficients
calculated here are second- and fourth-rank tensors, which are displayed using ellipsoids. For
simplicity, we also calculate equivalent isotropic coefficients extracted from these tensors:
Young’s modulus (E), bulk modulus (K), Lamé shear modulus (m), Poisson’s ratio (n), Biot
coefficient (B, stress–pressure coupling) and Biot modulus (M, pressure–fluid production coup-
ling). All of these coefficients are affected by the degree of damage and fracturing, which
increases near the wall of the gallery. Both 3D and ‘2D transverse’ distributions are analysed,
on grids of 3D cubic voxels and 2D pixels, respectively. Global coefficients upscaled over
the entire damaged and fractured zone are also analysed. Other types of averages are presented,
for example, upscaled values over a cylindrical annular shell at various radial distances from the
gallery wall. The relation to the degree of fracturing is discussed, including for instance the
effect of fracturing on bulk and shear stiffnesses, and on the hydro-mechanical coupling coeffi-
cients of the damaged claystone.

The main objective in this paper is to determine by
homogenization, or upscaling from fine to coarser
scales, the coupled hydro-mechanical (H-M) behav-
iour of a damaged (fissured and fractured), water-
saturated porous clay rock around a cylindrical
excavation. Here, the term ‘upscaling’ is used in
the following sense: obtaining equivalent conti-
nuum properties for the fractured porous rock at
selected scales (averaging volumes). The exca-
vation considered in this work is a subhorizontal
cylindrical ‘drift’ (named the GMR gallery),
located at about 525 m depth in the Underground
Research Laboratory (URL) ‘CMHM’ (Centre de
Meuse/Haute-Marne, Bure, France) operated by
ANDRA. This URL is used to develop research
studies on the stability and isolation properties of

a deep geological repository for radioactive waste
in Callovo-Oxfordian claystone.

In this context, a programme was developed
towards the simulation of hydraulic, mechanical
and coupled hydro-mechanical processes in the
near field, in the damaged and fractured zone
around a cylindrical underground excavation. Our
objective is to obtain a set of ‘upscaled’ continuum
equivalent equations and coefficients, based on the
geometry and properties of the discrete fractures,
and based on the properties of the porous rock
matrix. The zone of interest is the so-called exca-
vation damaged zone (EDZ), a cylindrical annular
zone around the gallery. The next section will
present the study site briefly, but we also refer the
interested reader to Ababou et al. (2011) for more
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details concerning the overall objectives, the pro-
grammatic context, the URL site and some of the
relevant data.

To sum up, the present work focuses on obtain-
ing a continuum equivalent model (and the cor-
responding ‘upscaled’ coefficients) for coupled
hydro-mechanical processes in the EDZ around a
cylindrical excavation (gallery).

Specifically, we are interested in achieving this
continuum characterization in three dimensions
(3D) by a fast method that does not require detailed
numerical equations for the processes taking place
in the fractured porous rock to be solved. On the
other hand, we require that the method is able to
take into account in some way the 3D geometric
structure and the hydro-mechanical properties of
the fractures (embedded discontinuities) and of the
‘intact’ porous rock (embedding matrix).

The present paper elaborates on a previous pres-
entation by the authors at the Clay 2012 conference
(Ababou et al. 2012).

Basis of the superposition method for

upscaling

With this in mind, we have selected a computa-
tionally fast upscaling method that can be consid-
ered as a generalized superposition method.
Superposition methods have been used for upscal-
ing permeability in fractured media (quite frequen-
tly), and also sometimes (more rarely) for
upscaling hydro-mechanical processes in fractured
media, but without including the full role of the
water-filled matrix porosity in these processes.
Thus, in Oda (1986) and Stietel et al. (1996), the
rock matrix is impervious hydraulically, and
does not participate in pressure–stress coupling
mechanically. Similarly, the recent paper by
Sævik et al. (2013) includes a section on superpo-
sition methods, where the fractured medium is
assumed to be made up of fractures imbedded in
a totally impervious matrix.

Note: in addition to the superposition methods
(effective medium approximation), there are sev-
eral other groups of upscaling methods, such as
the Self-Consistent approximations and their var-
iants (e.g. Sævik et al. 2013), and there are many
other upscaling methods, some quasi-analytical
and some others numerical, which are all largely
developed in the literature. Even if we do not aim
to discuss these other methods in this paper, we
briefly discuss their main limitations to state the
benefits of the superposition method in the case of
fractured porous media. For example, the Self-
Consistent approximation has well-known limit-
ations for high density of fracturing (while the

superposition approach, on the contrary, performs
well for high-density fracturing but has drawbacks
for low-density or poorly connected systems). There
are also methods that are more heavily numerical,
where the upscaled coefficients are computed
by solving a detailed solution of partial differen-
tial equations (PDEs) that are similar in complex-
ity to the non-homogenized PDEs themselves.
Such methods are therefore more computationally
intensive, and expensive, than the superposition
approach. Finally, there are also numerical solvers
that aim at obtaining detailed simulations of the
behaviour of the porous matrix, the discrete frac-
tures and their interactions. In some cases, these
solvers use a set of local-scale effective coefficients,
such as the parallel and orthogonal effective per-
meability of a joint embedded in a porous matrix
(this concept was also used in Cañamón (2006,
2009) and Ababou et al. (2011) as a building
block for implementing the hydraulic superposition
method on larger scales). For instance, Mourzenko
et al. (2010) numerically solve single-phase flow
in a matrix–fracture system with thousands of
fractures, tens of wells and millions of elementary
volumes, with local effective permeability attribu-
ted locally to the discrete joints surrounded by
porous matrix.

In the present paper, on the other hand, the aim is
to upscale, not to simulate, and the method for
upscaling is to extend the superposition approach
to obtain a fast evaluation of global and spatially
distributed upscaled coefficients describing the
coupled H-M properties of the fractured porous
rock on chosen support scales. In this upscaled
description, the rock is viewed as an equivalent
H-M continuum. The resulting coefficients can
potentially be used as inputs for numerical simu-
lations using more or less ‘standard’ H-M solvers
and codes accepting tensorial coefficients, and this
without the need for a detailed representation of
fractures. In this paper, we calculate and analyse
the upscaled coefficients without implementing the
simulations themselves.

The generalized superposition method con-
sidered in this paper goes as follows:

† For hydraulic upscaling, the local Darcy and/or
Poiseuille fluxes in both the permeable matrix
and the cracks are superposed, and the final result
is a tensorial flux/gradient law with macro-
permeability Kij (this problem is fully treated in
Ababou et al. (2011) for the same URL site
and the same GMR gallery).

† For mechanical upscaling, local strains are
superposed, in a manner that involves both the
isotropic elastic porous matrix and the strongly
anisotropic elastic cracks. When the coupling is
ignored, this results in continuum equivalent
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tensorial coefficients of compliance (Cijkl) and
stiffness (Rijkl).

† When taking into account fully coupled H-M
processes (the object of this paper), the local
strains in the matrix and cracks are still being
superposed but, in addition, the interactions
with variations of fluid pressure and with fluid
production are also taken into account. More-
over, these interactions occur both in the water-
filled cracks and in the saturated porous matrix.
At least two new coefficients are thus obtained,
the Biot coefficient, Bij, and the Biot modulus,
M (described in more detail below).

Our implementation of the effective medium/
superposition method, to date, does not deal expli-
citly with fracture–fracture interactions. On the
other hand, by various refinements of the method,
we account here for the following types of inter-
actions in 3D: (a) pressure–stress coupling and
fluid production within the matrix; (b) pressure–
stress coupling and fluid production within the
fracture system; and (c) hydro-mechanical matrix–
fracture interactions.

The tensorial superposition calculations leading
to Cijkl, Rijkl, Bij and M, are rather involved. Some
relevant theoretical relations thus obtained will be
presented in this paper, along with the quantitative
results obtained specifically for the EDZ around
the gallery of our study site.

In practice, for our specific application, the
upscaling method is implemented as follows:

† Implementation starts with the definition of
a permeable and deformable porous rock
matrix, and with the specification of several
sets of discrete embedded cracks or fractures.
In the present case, we have two main sets: (a)
a statistical set of small planar disc fissures
( joints, cracks); and (b) a deterministic set of
large curved fractures organized in a periodic
‘chevron’ pattern. The latter fractures are then
numerically discretized into triangular patches
before applying the generalized superposition
method (see Ababou et al. 2011). The statistical
cracks are disc-shaped planar objects that are
generated only once (single realization). In the
end, all planar ‘fractures’ or ‘cracks’ resulting
from these procedures are stored in a unique
object database, with 3D geometric parameters
and other properties attributed to each crack.
It should be emphasized that the cracks are
hydro-mechanical as well as geometric objects:
they are hydraulic conductors, and they are
deformable objects. In particular, they all con-
tribute to pressure–stress coupling, as does the
porous rock matrix itself (further details on this
are given below).

† Finally, given the geometric, hydraulic and
mechanical properties of these materials at the
local scale (the intact claystone matrix and
the various types of cracks), the superposition
method yields an upscaled system of continuum
laws (Darcy, Hooke, Biot) with equivalent conti-
nuum coefficients (tensors), such as mechanical
stiffnesses and H-M coupling coefficients, as
mentioned earlier.

Concerning the equivalent Darcy law, and the calcu-
lation of macropermeability, we recall again that
this was addressed separately in a previous work
(Ababou et al. 2011). The macroscale permeabil-
ity tensor Kij was calculated in the EDZ using the
flux superposition method. Therefore, in this work,
we need only be concerned with the upscaling of
coupled H-M properties, using the generalized
strain superposition method sketched earlier.

Finally, let us discuss the ‘scale’ at which the
equivalent continuum is calculated. In our pro-
cedure, the ‘equivalent continuum’ coefficients are
evaluated at some specified ‘homogenization scale’
(meso- or macroscale), which is analogous to the
support scale or measurement scale of a field mea-
surement (its volume of influence). We will see in
this paper how the upscaled coefficients obtained
in the EDZ depend on the chosen scale of homo-
genization. When the selected scale is sufficiently
‘local’ (e.g. with respect to gallery diameter), we
obtain not only the numerical values but also the
spatial distributions of these upscaled coefficients
within the damaged zone around the gallery (EDZ).

Several types of spatial distributions will be ana-
lysed, depending on the selected scales and supports
of averaging:

† 3D spatial distributions obtained by upscaling
locally on small cubic voxels (0.5 m);

† 2D transverse distributions of H-M properties –
these are obtained by upscaling along the entire
axis of the gallery as well as transversely on a
grid square pixels (0.5 m);

† 1D radial distributions – these are obtained by
upscaling on annular regions, that is, over
cylindrical annular shells (thickness 0.5 m)
located at various radial distances from the
drift wall;

† 0D global coefficients ate the scale of the entire
EDZ – these are obtained by upscaling over the
entire damaged and fractured zone around the
cylindrical drift (here the drift radius is 2 m
and the total thickness of global annular shell
is taken to be 4.0 m).

We expect that these types of results, taken together,
will lead to a simplified quantification of the effects
of fracturing on the claystone stiffness, and on the
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Hydro-Mechanical coupling coefficients, at various
scales of analyses.

Application site (Underground Research

Laboratory)

The parameters used in the upscaling calcula-
tions presented later on in this paper correspond
to the CMHM (Centre de Meuse/Haute-Marne,
Bure, France), the Underground Research Labora-
tory (URL) operated by ANDRA – the French
national agency for the management of radioac-
tive waste.

We focus here on the damaged zone around
the ‘GMR’ gallery, a subhorizontal gallery, located
at about 525 m depth underground, within the
Callovo-Oxfordian formation, a thick 130 m clays-
tone layer between depths 400 and 600 m. The
GMR gallery is oriented parallel to the minor hori-
zontal principal stress (sh). For more details, we
refer the interested reader to Ababou et al. (2011)
and references therein, concerning the overall scien-
tific objectives, the programmatic context, the URL
site and some of the available in-situ data and
observations.

For instance, see Armand & ANDRA (2007)
concerning measurements of radial permeability
profiles, and observations of rock fracture traces in
the EDZ around galleries at the URL site (including
the GMR gallery and other galleries).

The reader may consult other publications
(Vincké et al. 1997; Coste et al. 1999; Cosenza
et al. 2002) concerning various evaluations of mech-
anical and hydro-mechanical coefficients in the
Callovo-Oxfordian claystone. We will refer more
precisely to these works when discussing results
(see section on ‘Inputs, results, analyses: equivalent
H-M coefficients’).

Finally, the reader may consult ANDRA
(2005b) for an overall description of ANDRA’s
URL site and its objectives.

Based on in-situ observations like those of
Armand & ANDRA (2007) and others, it was
decided that the geometric structure of fissures
and fractures around the gallery should be rep-
resented by combining two sets: a statistical set of
planar disc cracks, and a deterministic set of
large curved chevron fracture surfaces (as explained
in the previous section on objectives and methods).
In summary, the small disc fractures (which contrib-
ute essentially to near-wall damage) are represented
statistically, while the large curved fractures (which
have a larger extent that the diameter of the drift)
are modelled as deterministic parametric surfaces,
periodically arranged along the drift axis. These
two synthetic sets of fractures constitute essentially
our ‘model’ for the internal geometric structure of

the fractured and damaged EDZ. This is defined
more quantitatively in the next section.

Geometric structure of fissured and

fractured claystone

Concerning the geometric structure of the damaged
claystone around the cylindrical excavation (gal-
lery), we use a hybrid statistical and deterministic
geometric model of 3D fissuring and fracturing,
comprising:

(1) A statistical set of 10 000 randomly distribu-
ted and randomly oriented, disc-shaped
planar fissures. This set has radially inhomo-
geneous statistics: in particular, the fractures
are more densely distributed near the wall.
Some of the statistical/geometric parameters
of this random set of cracks were calibrated
by comparing upscaled permeabilities with
measured permeability profiles along radial
boreholes (Ababou et al. 2011).

(2) A deterministic set of large curved ‘chevron’
fractures, periodically distributed along the
axis of the gallery (inter-spacing 0.5 m) and
forming a 3D chevron pattern. The curved
surface of each large ‘chevron’ fracture was
represented using a parametric surface model
(a modified conoidal surface resembling the
pinched end of a toothpaste tube). These
curved fractures surfaces were further discre-
tized into triangular planar cracks (patches).

The complete 3D system of fractures is shown in
Figure 1.

The reader is referred to Ababou et al. (2011)
for more details on the procedures that allowed us
to generate and represent each subset of frac-
tures, and for a description of the complete set
of geometric parameters, statistical as well as
deterministic.

Theory and equations of the upscaling

method

Equivalent continuum equations, tensorial

coefficients and variables

The upscaled behaviour of the claystone is
described by a system of coupled equivalent conti-
nuum hydro-mechanical PDEs that enforce mass
conservation and (quasi-static) momentum con-
servation. The variables involved are total stress
(sij or Dsij), total strain (1ij), and water pressure
(p or Dp). Other variables involved are the water
flux density vector (qi) expressed by Darcy’s law
(Darcy 1856), and the water production term Dj
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(defined further below). All these variables depend
on 3D space and time. The symbol D designates a
variation in time at any given point (x, y, z).

The mesoscale equivalent continuum equations
obtained by our generalized superposition method
take the form of linear tensorial laws involving
tensorial coefficients, all the coefficients being
calculated in terms of the given geometric structure
and properties of the fractures and of the porous
rock matrix (note: we use everywhere Einstein’s
notation of implicit sum on repeated indices,
unless mentioned otherwise).

† Hooke’s stress–strain law (without H-M coup-
ling) contains tensorial stiffness coefficients
Rijkl (Pa),

Dsij = RMC
ijkl 1kl (1)

where the superscript MC denotes ‘matrix
and cracks’ (i.e. the equivalent homogenized
medium). Some classical scalar coefficients
can be derived by various contractions of the
upscaled Rijkl tensor, a process we call ‘isotro-
pization’ (a neologism described in Appendix 1).
In this way, we obtain, for instance, isotropic
equivalent values of Young’s modulus E, the
bulk modulus K, the shear modulus m and
Poisson’s ratio n. This will be useful when
calculating the equivalent tensor Rijkl on annu-
lar regions or at the global scale of the entire
EDZ; however, the full anisotropic Rijkl tensor
is of more interest on local scales (i.e. half-
metre-scale cubic voxels).

† The hydro-mechanical Hooke/Biot stress–
strain–pressure law contains a pressure term
that couples stress to pressure via a tensorial
Biot coefficient Bij as follows:

sij = RMC
ijkl D1kl + BMC

ij Dp (2a)

1ij = CMC
ijkl Dskl + �B

MC

ij Dp (2b)

In equation (2a), sij is the stress tensor, Rijkl is
the stiffness tensor, 1ij is the strain tensor, Bij is
a dimensionless ‘Biot’ coupling coefficient and
p is the water pressure. All stresses are taken as
negative under compression (thus, fluid stress
is 2pdij). Note that Terzaghi’s (1936) ‘effec-
tive stress’ model corresponds to Bij ¼ 1 × dij

(effective stress sij + pdij). Biot’s (1941, 1956)
theory generalizes Terzaghi by considering a
scalar coupling coefficient B such that 0 ,
B ≤ 1 (effective stress sij + B pdij). In the more
general model here, Bij is a tensorial coupling
coefficient obtained by upscaling the saturated
porous rock with its water-filled cracks. The
tensor �Bij appearing in equation (2b) is called

Fig. 1. (a) 2D transverse view of the statistical set of
fissures (small fractures); (b) 3D view of a single curved
chevron fracture surface; (c) 2D longitudinal section of
the fissured and fractured system.
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in this work the ‘reciprocal Biot coefficient’, and
it corresponds to the anisotropic form of
the classical ‘poro-elastic expansion coefficient’
(�Bij is not the inverse of Bij). To sum up, equation
(2a) expresses the stress–strain relation under
pressure coupling, while equation (2b) is a for-
mulation of the reciprocal strain–stress relation
under the same pressure coupling.

† The hydro-mechanical relation expressing water
production Dj (m3 of water m23 of clay rock) in
terms of water pressure variations Dp (via the
Biot modulus M) and in terms of the global
strain (1ij) of the poro-elastic medium.

Dj = BMC
ij 1ij +

1

MMC

Dp (3a)

where strain tensor is defined as the symmetric
part of the gradient of displacement:

1ij =
∂ui

∂u j

+ ∂u j

∂ui

( )
/2 (3b)

Equation (3a) relates water production Dj to
strain and pressure, at any fixed point (x, y, z)
in space. The variations in time from an initial
reference state are represented by the symbol D
(as in Dj and Dp). Note: the strain (1ij) also con-
tains implicitly a time variation of the displace-
ment vector (ui), which could also be written
equivalently (Dui).

† Finally, the water production Dj also appears in
the water flow equation that enforces mass con-
servation of the moving fluid. This conservation
equation takes the form:

∂mW

∂t
= − ∂

∂xj

{rWQj} (4a)

where DmW = rWDj (w representing water).
The equation on the left involves the negative

divergence of the mass flux of water (rWQi). The
water flux density vector Qi ((m3 s21) m22) is
expressed by an equivalent Darcy’s law, which
relates linearly water flux to pressure gradient
at macroscopic scale via an equivalent per-
meability tensor kij (m2) (and the dynamic vis-
cosity of water mW):

Qi = −
kMC

ij

mW

∂( p + rWgz)

∂x j

(4b)

This can be simplified in some cases as follows,
in terms of hydraulic conductivity Kij (m s21),
using a reference value for rW:

Qi = KMC
ij J j = −KMC

ij

∂(( p/r0
Wg) + z)

∂x j

(4c)

Inserting the water production term Dj of
equation (3a) and the macroscale Darcy law
(equation 4b, c) in the mass conservation equa-
tion of the moving fluid (equation 4a) finally
closes the entire system of equivalent (upscaled)
continuum equations for hydraulics, mechan-
ics and hydro-mechanics. Concerning fluid pro-
duction, see also Coussy (1991), among other
authors.

In the remainder of this work, we focus on
mechanics and coupled hydro-mechanics, and
we assume that the hydraulics upscaling has
already been calculated. However, for the sake
of completeness, we will also give a brief com-
parative outline of various upscaling methods
for hydraulics and hydro-mechanics in fractured
porous media (see below).

Upscaling method for hydro-mechanics:

superposition and coupling

As explained in a previous section, all the equiva-
lent tensorial coefficients (stiffnesses, compliances,
coupling coefficients) were calculated in this work
by the superposition method, an upscaling tech-
nique that takes into account the given geometric
structure of the damaged fractured rock (geometry
of cracks), as well as the local microscale properties
of the fractured rock under various assumptions
(quasi-elastic crack with given apertures and nor-
mal/shear stiffnesses, isotropic elastic porous
matrix, etc.). Figure 2 shows a rough schematic of
the fractured porous matrix at the microscale (both
the pores of the rock matrix and the cracks are
assumed to be filled with water).

It is not the purpose of this paper to give a full
detailed account of the mathematical upscaling
theory used in this work; however, the interested
reader may consider the following discussion and
the cited references concerning the mathematical
bases of this approach.

Hydraulic upscaling and equivalent macro-
permeability tensor. Concerning hydraulic upscal-
ing, the reader is referred to Ababou et al. (2011):
that paper contains a detailed description of the
flux superposition method for obtaining an equiv-
alent Darcy permeability, or hydraulic conductiv-
ity (Kij). The permeability upscaling method was
applied to the same site as in the present work
(gallery GMR of the Meuse/Haute-Marne URL),
using the same synthetic geometric structure of frac-
tures (the near-wall statistical fractures were fitted to
hydraulic conductivity measurements).

For the sake of completeness, let us give a brief
outline of permeability upscaling calculations by
the flux superposition method. The principle of
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the methods is similar for hydro-mechanics, where a
tensorial strain superposition is applied (with
specific procedures for accounting for stress–
pressure–fluid production coupling).

In the fractured porous medium, the local flow
is assumed to be governed by the isotropic form
of Darcy’s law in the porous matrix, and by Poi-
seuille law in the plane of the cracks. This yields
for each crack a ‘cubic law’, that is, the flow rate
in each crack is proportional to the power 3 of its
aperture. Upscaling the dual medium (the per-
meable matrix and cracks) based on a generalized
form of the flux superposition method yields a
tensorial Darcy law (equation 4a) with an ‘equival-
ent conductivity tensor’ (Kij). The latter incorpor-
ates the matrix permeability, the hydraulic effects
and geometric structure of cracks (apertures,
planar sizes, etc.): see Ababou et al. (2011). When
matrix permeability goes to zero, the resulting Kij

is similar to that of Oda & Hatsuyama (1985) and
Oda (1986) without Oda’s connectivity factor.

Mechanical upscaling. Mechanical upscaling
(without hydro-mechanical coupling) is essentially

based on the superposition of local strain values
1ij, similar to the superposition of local fluxes in
hydraulics. This approach leads, first, to upscaling
the compliance coefficients. The equivalent compli-
ance tensor (resulting from strain superposition)
contains, essentially, weighted arithmetic averages
of local matrix and crack compliances (although
this is a rather simplified description of the full
expressions).

Second, the upscaled stiffness tensor is obtained
as a fourth-rank tensorial inverse of the upscaled
compliance tensor. As a consequence, upscaled
stiffnesses can be viewed essentially as weighted
harmonic averages of local matrix and crack stiff-
nesses (in a general tensorial sense).

Coupled hydro-mechanical upscaling. The method
is again based on the superposition of local strains,
but we assume this time that there is a local
stress–pressure coupling in each crack, and at
each location within the porous matrix. The local
H-M coupling in the water-filled cracks is based
on Terzaghi’s (1936) effective stress concept
(equivalent to taking a Biot coefficient equal to
one in each crack: BC ¼ 1). The local H-M coupling
within the saturated porous rock matrix is either
disregarded (cf. hypothesis ‘iii.a’ in Table 3), or
fully taken into account through a matrix Biot
coefficient BM between 0 and 1 (BM ≈ 0.5–0.6
from experimental evidence).

The latter result, taking into account Biot coup-
ling in the porosity of the matrix as well as in the
cracks, is the more interesting one. Nevertheless,
we want to conserve the results obtained both with
and without H-M coupling in the matrix for the
purpose of analysis (decomposition of coupling
effects owing to the cracks v. those owing to the
porous matrix).

Technically, and mathematically, the upscal-
ing of hydro-mechanical couplings in the dual
matrix–crack medium is a little complex; the
resulting upscaled coefficients (Bij, M) contain con-
tractions of fourth-rank tensors, and cannot be
described as simple averages except for special
cases (the details of the general calculation remain
beyond the scope of this paper).

For more details on the strain superposition
method for both mechanics and coupled hydro-
mechanics under various hypotheses, the reader is
referred to, Cañamón et al. (2007, 2009); Cañamón
(2009) and Ababou et al. (1994a, b). The present
paper constitutes a natural generalization, and also
a different application, of the latter works. Let us
briefly compare the above-cited works with the
present work, and particularly, let us point out
what simplifying hypotheses have now been
relaxed in the present work: compared with the pre-
vious cited works, the hydro-mechanical role of the

Fig. 2. Micro-scale schematic of the matrix solids
(orange circles (grey in print version)), matrix pores
(light blue background (light grey in print verison)) and
planar cracks (dark blue bars (dark grey in print
version)).

http://sp.lyellcollection.org/


permeable porous matrix is fully taken into account.
The pressure coupling terms calculated in the
present paper can fully take into account the contri-
bution of the water-filled porous matrix as well as
the water-filled cracks.

However, for simplicity and for comparison pur-
poses, when displaying the spatial distributions of
ellipsoids representing the coupling coefficients
(Bij, M), these are calculated for the sole contri-
bution of the cracks, and in that case, they are
labelled (Bij

(0), M(0)). On the other hand, all the
global and annular values of (B, M) given in the
text and tables include the complete coupling
effects of both cracks and matrix.

Spatial averaging procedures

It should be emphasized that the theoretical upscal-
ing method can be used, technically, for obtaining
different types of upscaled coefficients using vari-
ous spatial averaging ‘supports’ and various scales
(e.g. cubic or rectangular voxels of various sizes,
annular regions of various thicknesses).

Indeed, in this work, several distinct versions
of the upscaled continuum coefficients are calcu-
lated, as mentioned earlier. The equivalent coeffi-
cients are obtained either as 3D fields distributed
in (x, y, z), or as 2D fields distributed in a transverse
cross-section (y, z) orthogonal to the axis of the
gallery (x). Other types of averages will also be pre-
sented, such as the annular average over a cylindri-
cal annular shell at various radial distances from
the wall of the gallery. Furthermore, ‘global’ values
of the coefficients are calculated by taking the
annular domain to be as thick as the entire dam-
aged and fractured zone (about 4 m thickness
around the wall of the gallery). These different ver-
sions of the upscaled continuum coefficients (3D,
2D, annular, global) can be computed by two poss-
ible alternative methods:

(1) Direct upscaling – the term ‘direct upscaling’
designates the usual upscaling procedure
based on strain superposition (as described
in previous sections), starting with discrete
matrix–crack hydro-mechanical laws at the
microscale, and upscaling them to equiva-
lent continuum laws at the desired scale
(meso or homogenization scale). The upscal-
ing domain may be anything here: a 3D
voxel, a parallelepiped box, an annular shell
or a moving spherical window, etc.

(2) Sequential upscaling – here is an example of
‘sequential upscaling’ that was used in this
work. The transverse distributions of ‘2D
upscaled’ quantities were obtained, first, by
calculating the ‘3D upscaled’ quantities on
a grid of cubic voxels (each voxel is a

subdomain), and second, by applying axial
averaging operations (compatible with the
upscaling theory) to obtain ‘2D upscaled’
quantities over a transverse planar grid of
pixels. Note: each pixel represents an elon-
gated parallelepiped having the same length
as the stretch of gallery considered (L ¼20m
here).

These different ideas are illustrated in Figure 3.

Equivalent isotropic scalar coefficients at

annular and global scales

One more word of caution is needed concerning the
interpretation of ‘global scale’ and ‘annular scale’
equivalent coefficients (see results in the next
sections on global and annular upscaling, and see
Tables 3–6).

† Annular and global scale coefficients are
obtained from the tensorial superposition
method applied to a cylindrical annular shell.
When the annular shell has the thickness of
the EDZ, we call the resulting tensorial coeffi-
cients ‘EDZ-scale’ coefficients. For annular
shells of smaller thickness (e.g. 0.5 m), we
obtain an annular tensorial coefficient for each
various shell (the shells being located at var-
ious radial distances from the drift wall).

† At this stage, the calculated annular coefficients
remain generally tensorial (more precisely, we
obtain in this way annular or global values of
Rijkl, Cijkl, Bij and M).

† However, the point we want to make is that the
choice of annular upscaling leads naturally to a
loss of information on the anisotropic structure
of the coefficients (except for ‘M’, which is in
essence a scalar). For this reason, the global
and annular results presented in the next sec-
tion (Tables 3–6) are shown as scalars rather
than tensors. The scalar values are isotropic
equivalents obtained with the ‘isotropization’
procedure defined in Appendix 1. There is only
one exception: the shear compliance diagonal
values Sjj are given for various annular shells,
in Tables 4–6. This information is only used to
show one example of annular coefficients
without isotropization.

In summary, most annular and global quantities
calculated in this work based on tensorial super-
position are finally evaluated as equivalent iso-
tropic scalar properties (Appendix 1). On the
other hand, local scale continuum equivalent coef-
ficients are still evaluated as full tensors, to be
visualized in the next section as ellipsoids distri-
buted around the gallery. The term ‘local scale’
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corresponds to the case where the two transverse
dimensions of the averaging domain are smaller
than drift diameter (e.g. cubic voxels of size
0.5 ≪ 4.0 m).

Inputs, results, analyses: equivalent ‘H-M’

coefficients

Inputs, outputs and post-treatment of

hydro-mechanical upscaling

Inputs/outputs of upscaling and numerical values
of input parameters. Tables 1 and 2 present two
types of information:

(1) A list of inputs/outputs – the ‘input’ par-
ameters (porous rock matrix and cracks) and
the ‘output’ coefficients to be obtained by

implementing the upscaling procedure (set
of tensorial upscaled Hydro-Mechanical coef-
ficients); and

(2) A list of numerical values of the basic hydro-
mechanical and geometrical input parameters,
such as matrix porosity, crack aperture, crack
stiffnesses (normal and shear), matrix Young’s
modulus, Poisson’s ratio, etc.

Hydro-mechanical coefficients (B, M ) for the
rock matrix: experimental evidence. Some of the
parameters of Tables 1 and 2 (particularly for the
rock matrix) were selected by comparison with
the internal databank of ANDRA (see for instance
ANDRA 2005a), and by comparison with other
works in the literature, as explained below. The
mean value of the Biot coefficient B over differ-
ent layers in the Callovo-Oxfordian (between

Fig. 3. Upscaling and averaging, leading to 3D, 2D or radially distributed, equivalent continuum upscaled coefficients
(compliances, stiffnesses, coupling coefficients).
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depths 400–500 m roughly) was calculated by
Cosenza et al. (2002) in their table 1. They obtained
the value B ≈ 0.4 (range: B ¼ 0.37–0.42) and
observed that this value is close to that obtained
directly by hydro-mechanical tests in other works,
and they quote in particular the tri-axial tests of
Coste et al. (1999), who obtained B ¼ 0.36 ‘for
the same claystone’, while other authors like
Vincké et al. (1997) obtained higher values from
B ¼ 0.4 up to 0.8, also ‘for the same claystone’.
Other data obtained in-situ at the Meuse/Haute-
Marne URL seem to point to the value B ≈ 0.6 for
the ‘intact’ rock matrix (although small fissures can-
not be avoided on rock matrix samples extracted in-
situ). For these reasons, we have taken B

matrix
≈ 0.5

for the intact rock matrix in this study.
Concerning the Biot modulus ‘M’, based on

Cosenza et al. (2002), their calculated Biot
modulus is about M ≈ 8 GPa (range: M ¼ 7.69–
8.36 GPa in their table 1). There are few (if any)
other more direct in-situ measurements of the Biot

modulus of this claystone in the literature. We
will take therefore M ≈ 8 GPa or so, for the Biot
modulus of the intact claystone matrix. We have
verified that this value is close to that which can
be obtained theoretically (from Biot’s isotropic
theory of granular materials) for the intact rock
matrix using reasonable microscale parameters
(final value: MM ¼ 8.68 GPa in our Table 3).

Ellipsoidal representation and visualization of
upscaled tensorial coefficients. Recall that most of
the H-M coefficients are tensorial (except for the
scalar Biot modulus ‘M’). For this reason, we use
an algebraic interpretation that allows us to rep-
resent any positive definite symmetric second-rank
tensor, such as Kij and Bij, as a 3D ellipsoid. For
example, the tensorial version of Darcy’s law
(with hydraulic conductivity tensor Kij) can be
used to define a directional conductivity along the
gradient direction (Kgrad) and a directional conduc-
tivity along the flux direction (Kflux); it is then

Table 1. Input and output parameters for the upscaling process: lists of
input parameters and output coefficients (hydro-mechanical)

Parameters Crack (c) Porous
matrix

Equaivalent
continuum

Hydraulic a(c), n(c)
1

(Poiseuille)
KM KMC

IJ

Mechanic K(c)
N ,K(c)

S EM, nM RMC
ijkl

Hydro-mechanical B(c)¼1 (Terzaghi) BM, MM BMC
ij ,MMC

Table 2. Input and output parameters for the upscaling process: numerical values of input parameters used
for obtaining upscaled hydro-mechanical coefficients

Radius and length of the stretch of drift Drift radius: R ¼ 2 m, Axial length of drift stretch:
L ¼ 20 m

Apertures of planar disc fissures (small fractures) aFISSURES ≈ 5 × 1025 m near the wall, decreasing
rapidly away from wall

Diameter of planar disc fissures (small fractures) dFISSURES ≈ 0.8 m near the wall, decreasing rapidly
away from wall

Density of planar disc fissures (small fractures) (r32)FISSURES ≈ 6.11 m2 m23 near the wall,
decreasing rapidly away from the wall

Aperture of curved ‘chevron’ fractures aFRACT/CHEVRON ≈ 1 × 1024 m ¼ 100 m constant
Size of curved ‘chevron’ fractures Horizontal extension: 4 m Vertical extension: 4 m
Density of large curved ‘chevron’ fractures (r1D)FRACT/CHEVRON ¼ 2/m, periodic along the

drift axis
Normal specific stiffness of planar cracks KN ¼ 1 × 1010 Pa ¼ 10 GPa
Shear specific stiffness of planar cracks KS ¼ 1 × 109 Pa ¼ 1 GPa
Rock matrix Young’s modulus EM ¼ 5 × 109 Pa ¼ 5 GPa
Rock matrix Poisson ratio nM ¼ 0.30
Rock matrix porosity uM ¼ 0.14

http://sp.lyellcollection.org/


possible to show that the polar plots of
����������
(1/Kgrad)

√
and of

�������
(Kflux)

√
both describe an ellipse in 2D or

an ellipsoid in 3D (Bailly 2009: chapter 10; Bailly
et al. 2011). However, for simplicity, we have
chosen here to represent with ellipsoids the matrix
quantities Aij (i.e. specifically Kij, Sij or SIJ, Bij,
etc.), such that the three principal axes of an
ellipsoid indicate the directions of the three eigen-
vectors of matrix Aij, and the three principal radii
of the ellipsoid are equal to the corresponding
three eigenvalues of matrix Aij (as in Ababou
et al. 2011).

Accordingly, at any spatial position (or for any
subdomain), the upscaled second-rank tensor Bij

(Biot coefficient) is represented directionally by an
ellipsoid, just like the upscaled hydraulic conduc-
tivity Kij in the work of Ababou et al. (2011).
Thus, strongly anisotropic Bijs are indicated by
strongly elongated and/or flat ellipsoids (strongly
prolate like a rugby ball, strongly oblate like a
saucer, etc.). The Biot modulus M is plotted as
a sphere, whose radius indicates the magnitude
of M. Indeed, any scalar quantity like ‘M’ can be
expressed equivalently as an isotropic (spherical)
tensor, which can be represented by a sphere.

Finally, the purely mechanical coefficients of
compliance (Cijkl) and stiffness (Rijkl) are higher-
order tensors (fourth-rank). This makes it more
difficult to represent their spatial distribution. The
interested reader is referred to other possible rep-
resentations in the literature, some of them based
on Kelvin’s decomposition of fourth-rank elastic
tensors: Mehrabadi & Cowin (1990); Basser &
Pajevic (2007); Pouya (2007, 2011); see also
Charlez (1991).

In the present work, we have chosen to reduce
the amount of information, and to display only
some parts of the Cijkl and Rijkl tensors. For

example, the stiffness tensor Rijkl can be described
(partially) via two 3×3 matrices – each of which
can be represented by ellipsoids:

† ‘normal stiffness’ matrix NIJ containing stiffness
coefficients R1111, . . ., R3333, R1122, etc;

† ‘shear stiffness’ matrix SIJ containing stiffness
coefficients R2323, . . ., R2312, R1313,etc.

Therefore, the upscaled mechanical coefficients,
such as ‘normal stiffness’ NIJ and ‘shear stiffness’
SIJ, can be represented by ellipsoids. In fact, the
shear matrix ellipsoid (SIJ) is easier to interpret, as
it reduces to a sphere in the case of isotropic shear
stiffnesses (whereas the normal ellipsoid NIJ does
not reduce to a sphere in the case of isotropic elas-
ticity). We focus in this paper on the shear submatrix
SIJ (see also Table 6 and Appendix 1).

Post-calculation of equivalent ‘isotropized’ scalar
coefficients. In order to remedy some possible
interpretation problems with these ellipsoids (par-
ticularly for the so-called ‘normal’ ellipsoids of
stiffnesses and compliances), it was decided to
extract a set of more ‘classical’ mechanical coeffi-
cients (E, K, l, m, n) from the full fourth-rank com-
pliance and stiffness tensors and similarly for the
H-M coupling coefficients (Bij, M), which become
(B, M) after isotropization. These calculations
were performed using adequate contractions of
second- and fourth-rank tensors, based on the defi-
nition of spherical quantities similar to the definition
of a spherical bulk stiffness K in isotropic elasticity.
This is summarized in Appendix 1 (a fully detailed
algebraic implementation of these concepts for
non-isotropic/non-orthotropic fourth-rank elastic-
ity would be beyond the scope of this paper).

The resulting scalar coefficients (E, K, l, m, n, B,
M) should be considered as ‘isotropized’ versions of

Table 3. Global equivalent coefficients: hydro-mechanical coefficients of the fissured and fractured
claystone, upscaled at the global scale of the 4 m thick damaged zone, and isotropized

Table parameter
(global)

Intact
matrix

Matrix and
fissures

Matrix and fissures and
chevron fractures

Young’s modulus, E (GPa) 5.0 3.0 1.31
Poisson ratio, n 0.30 0.34 0.37
Shear modulus, G (GPa) 3.85 2.24 0.96
Biot coefficient, B (iii.a) 0 0.113 0.281
Biot coefficient, B (iii.b) 0.50 0.556 0.641
Biot modulus, M (GPa) (iii.a) 1 36.8 14.8
Biot modulus, M (GPa) (iii.b) 8.68 7.47 6.25

Hypothesis ‘iii.a’ ignores H-M coupling within the matrix (coupling is due only to cracks), hypothesis ‘iii.b’ includes both the
coupling role of the porous matrix and of the cracks
Note: ‘matrix’ values are also shown in this table. The ‘matrix’ is the intact porous rock; the ‘fissures’ are the statistical planar
disc fissures (i.e. small fractures); the ‘chevrons’ are the large curved fractures organized in a chevron pattern along the
drift axis.
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the upscaled tensorial coefficients (Cijkl, Rijkl). Each
scalar can then be represented as a spatial distri-
bution (if upscaled locally), or else it can be com-
puted as a global quantity (if upscaled at the
macroscale of the entire damaged/fractured zone).
For example, numerical values of global isotropized
coefficients (E, K, l, m, n, B, M) is presented in
Table 3.

Note: E ¼ Young modulus; K ¼ bulk spherical
modulus; (l, m) are the Lamé moduli (in particular
m is the shear modulus); n is the Poisson ratio; and
finally (B, M) are the coupling coefficients (Biot
coefficient B, and Biot modulus M).

3D upscaling: distribution of H-M coefficients

on a cartesian grid (voxels)

In this section, we display graphically the 3D
upscaled tensorial coefficients around the drift, as
spatially distributed ellipsoids located on a cartesian
grid of voxels (xIJK, yIJK, zIJK).

Recall that the upscaled coefficients are gener-
ally second- and fourth-rank tensors, to be rep-
resented via 3×3 ellipsoids. The total 3D domain
of damaged and fractured rock, in our case, is a
20 m stretch of gallery, with transverse size
13 × 13 m (comprising the 4 m diameter drift).
The chosen size of the cubic voxels (subdomains)
is 0.50 m. For these reasons, displaying the spa-
tial distributions of tensorial coefficients in 3D
space over the entire domain can be cumbersome.
Several 3D views would be needed in order to
clearly see all the 3×3 ellipsoids in (x, y, z) space.
Therefore, to save space, we show only the first
transverse layer of the 3D distribution, that is, the
(Y, Z) plane with X [ [210.0 m, 29.5 m]. This
gives an idea of the 3D heterogeneity of upscaled
coefficients inside the damaged/fractured zone
around the drift.

The results are displayed in Figure 4, showing
the first transverse layer of the 3D upscaled tensors
(3×3 ellipsoids) for several types of coefficients
(normal compliance Nij, shear compliance SIJ, Biot
coefficient Bij, and inverse Biot modulus 1/M).

2D upscaling: distribution of H-M coefficients

on a transverse grid of pixels

In this section, we display graphically the 2D
upscaled tensorial coefficients around the drift, as
spatially distributed ellipsoids located on a cartesian
grid of pixels (yJK, zJK): see Figure 5. Note that,
although their spatial distribution is 2D, these ten-
sorial coefficients are still represented by 3×3 ellip-
soids, so their ‘3D anisotropy’ can still be seen by
looking at the ellipsoids (e.g. ellipsoids of shear
compliance Sij and Biot coefficient Bij).

In comparison with the 3D spatial distributions
shown earlier, the 2D upscaled coefficients appear
less anisotropic, and less variable in space (particu-
larly near the wall). This effect was expected: it is
due to the additional smoothing induced by aver-
aging along the axis of the drift (compared with
the 3D results which were not axially averaged).
The advantage of the 2D transverse representa-
tion is that it offers a more synthetic view of the
upscaled coefficients around the drift, but at the
price of some loss of information (anisotropy and
heterogeneity have been significantly smoothed
out by axial averaging).

Global upscaling: H-M coefficients

on a 4 m thick annular

cylinder (EDZ)

The strain superposition upscaling procedure was
used to calculate the tensorial coefficients at the
global scale (macroscale) of the entire EDZ, that
is, the entire damaged zone around the 20 m long
stretch of the drift. The ‘global’ upscaling domain,
in this case, is the EDZ, defined as the 20 m long
cylindrical annular region of thickness 4 m around
the drift (EDZ thickness is about one diameter
around the drift, and the drift radius, R, is 2 m).

Once the global tensors have been calculated
by the tensorial superposition method (Rijkl, Cijkl,
Bij, M), they are processed algebraically to obtain
‘equivalent isotropic’ scalar quantities (E, K, l, m,
n, B, M ), as explained in Appendix 1. These final
results, summarized in Table 3, provide a simplified
synthetic view of the global properties of the fis-
sured and fractured claystone around the drift. In
particular, consider the Biot modulus (M ). Note
that ‘M’ can be interpreted as the stiffness of the
coupling between pressure variations and fluid pro-
duction. It can be seen, as expected, that the global
value of the coupling stiffness ‘M’ is reduced as
more cracks are ‘added’:

MM = 8.68 GPa . MM+Fiss = 7.47 GPa

. MM+Fiss+FractChevr = 6.25 GPa

Annular upscaling: H-M coefficients on

annular domains around the drift:‘near-wall’

v. ‘far-wall’ values, and comparisons with

global values

In this section, we present results obtained by
upscaling the H-M coefficients over annular shells,
rather than voxels or pixels. For simplicity, we
present here not the full tensorial coefficients, but
their equivalent isotropized values (as explained
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in Appendix 1). The resulting scalar values rep-
resent coefficients upscaled on annular shells of
various thicknesses.

For example, using this technique, we obtain
B ≈ 0.90 near the wall, that is, over a 0.5 m thick
annular shell adjacent to the wall (r [ [2.0 m,
2.5 m]). This value B ≈ 0.90 should be compared
with the global value B ¼ 0.641 given earlier at
the global scale of the entire 4 m thick and 20 m
long stretch of damaged/fractured rock around the
drift. It should also be compared with the value

B ¼ BM ¼ 0.50 assumed for the intact rock matrix
(Table 3).

We show a few more results along these lines
in Tables 4–6. The tables describe the radial dis-
tributions of several mechanical and hydro-
mechanical properties of the damaged claystone.
These properties are obtained in two steps: (a) by
upscaling the tensorial coefficients on annular
cylindrical shells; and (b) by evaluating the resulting
equivalent isotropic coefficients, at each radial dis-
tance from the centre of the drift.

Fig. 4. Frontal views of the 3D upscaled coefficients: (a) normal compliance Nij; (b) shear compliance Sij; (c) Biot
coefficient Bij

(0) (ellipsoids); and (d) inverse of the Biot modulus 1/M(0) (spheres) in the first transverse layer (Y, Z ) with
X [ [210.0 m, 29.5 m]. These upscaling calculations take into account the porous rock matrix (except for its coupling
effects on Bij and M), including the statistical set of fissures (small fractures), and the periodic set of large curved
fractures (chevron pattern). For the coupling coefficients Bij

(0) and M(0), in this figure, hypothesis (iii.a) was used;
superscript (0) indicates that the coefficient is calculated relative to the sole coupling effects of cracks (fissures
and fractures).
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However, we also show the values of a tensorial
coefficient (the shear compliance submatrix SIJ)
in order to examine its degree of anisotropy
v. radial distance: looking at the diagonal values
Sii (II ¼ 44,55,66), it can be seen that the claystone
is not only more compliant but also more anisotropic
in the near-wall region (say within 0.5–1.0 m from
the wall). On the other hand, the apparent anisotropy
of SIJ is not very strong, most probably because of
the annular averaging process (see discussion in
Section 3.4). The important thing is that shear com-
pliance decreases by a factor 15 or so from near-wall
to 4.5 m away from the wall. We will return to a

brief discussion on the results of Tables 4–6 in the
next section.

Conclusions, discussion and outlook

Conclusions and discussion

The results obtained so far for the upscaled hydro-
mechanical properties of the damaged, fissured
and fractured claystone around a gallery at the
Meuse/Haute-Marne URL site are now summarized
and discussed. (Recall that the upscaling considers
the porous claystone matrix with embedded cracks

Fig. 5. Transverse 2D distributions (averaged along the X axis) of upscaled coefficients: (a) normal compliance
Nij; (b) shear compliance Sij; (c) Biot coefficient Bij

(0) (ellipsoids); and (d) inverse of the Biot modulus 1/M(0),
taking into account the porous matrix, the small fractures (fissures) and the large chevron fractures. For the coupling
coefficients Bij and M, in this figure, hypothesis (iii.a) was used; superscript (0) indicates values relative to the sole
coupling effects of cracks (fissures and fractures).
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comprising a set of statistical planar disc fissures,
and a set of large curved ‘chevron’ fractures discre-
tized into triangular patches.)

Global v. local rock properties. At the global scale
of the damaged zone (4 m thick annular cylinder),
the Young’s and shear moduli are reduced by a
factor 4 compared with the intact rock matrix. The
global Poisson ratio is not much changed with
respect to the matrix value: it is only slightly
increased, from 0.30 to ,0.40.

On the other hand, at the local scale, the stif-
fness moduli can be reduced by one order of magni-
tude or more in the near-wall region, as shown for
instance by comparing annularly upscaled values
(r ≈ 2.0 m–2.5 m) with global values.

Furthermore, looking at the ‘3D’ coefficients,
locally upscaled on a grid of cubic voxels (Figure 4
ellipsoids), it is clear that material compliances like
the shear compliance matrix SIJ, and the inverse

Biot modulus 1/M, increase significantly near the
gallery wall.

This is confirmed by looking at Tables 4–6,
where it is also seen that material anisotropy also
increases significantly near the gallery wall (see
the values of SII in Table 6, and see also the ‘3D’
ellipsoids of SIJ and Bij in Figure 4.

Hydro-mechanical coupling coefficients Bij and M
(upscaled results). The Biot coefficient B and the
Biot modulus M are calculated first by taking into
account the sole effect of the cracks (hypothesis
‘iii.a’), and then by taking into account the complete
coupling effects owing to porous matrix as well as
cracks (hypothesis ‘iii.b’).

Looking at the global values shown in Table 3
under the more general hypothesis ‘iii.b’, and com-
paring these values with those of the intact rock
matrix, it is clear that the upscaled Biot coefficient
(B) increases with damage (while staying below
unity, as it should), and that the Biot modulus (M )
decreases with damage. These results are as
expected physically, since damaging and fracturing
should weaken the rock.

Extent of the hydro-mechanically damaged zone
(based on upscaling results). It is seen here that,
for all H-M coefficients (except the permeability,
examined in Ababou et al. 2011), the ‘far-wall’
values obtained beyond R ¼ 4.5 m coincide with
the intact rock matrix properties. Since the radius
of the gallery is R ¼ 2.0 m, it can be concluded
that, according to these upscaling calculations, the
hydro-mechanically damaged rock lies in an
annular region of thickness 2.5 m around the
gallery wall.

Remarks on full tensorial coefficients v. simplified
isotropic equivalents. From a theoretical point
of view, the proposed upscaling method yields
generally non-isotropic/non-orthotropic tensorial

Table 4. Radial distributions of mechanical and
hydro-mechanical equivalent continuum coefficients
upscaled on annular shells around the drift (the drift
wall is located at R ¼ 2.0 m from the drift centre):
hydro-mechanical coupling coefficients v. radial
distance R (for annular shells with R comprised
between R1 and R2)

R1 m R2 m B (Biot
coefficient)

M (Biot
modulus, GPa)

2.0 2.5 0.8717 6.5015
2.5 3.0 0.7812 6.9262
3.0 3.5 0.7696 6.9818
3.5 4.0 0.7519 7.0718
4.0 4.5 0.5219 8.5102
4.5 5.0 0.500 8.6778
5.0 5.5 0.500 8.6778
5.5 6.0 0.500 8.6778

Table 5. Radial distributions of mechanical and hydro-mechanical equivalent
continuum coefficients upscaled on annular shells around the drift (the drift wall
is located at R ¼ 2.0 m from the drift centre): mechanical coefficients (obtained
from Cijkl) v. radial distance R

R1 m R2 m E (Young’s modulus)
(GPa)

m (shear modulus)
(GPa)

n
(Poisson’s ratio)

2.0 2.5 0.42694 0.14971 0.4259
2.5 3.0 0.85225 0.30159 0.4129
3.0 3.5 0.69583 0.24379 0.4271
3.5 4.0 0.65671 0.22932 0.4319
4.0 4.5 3.8936 1.4592 0.3342
4.5 5.0 5.0000 1.9231 0.3000
5.0 5.5 5.0000 1.9231 0.3000
5.5 6.0 5.0000 1.9231 0.3000
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stress–strain–pressure relations, represented by
tensorial coefficients of rank up to 4.

As explained earlier, the mechanical tensors of
rank 4 (Rijkl, Cijkl) were reduced to 3×3 ‘normal’
and ‘shear’ submatrices representing the upscaled
stiffness and compliance tensors of rank 4. These
submatrices were then visualized as spatially dis-
tributed ellipsoids on the top parts of Figures 4
and 5 (admittedly, shear compliance ellipsoids are
easier to interpret than normal compliances). For
second-rank tensors, their representation via ellip-
soids is more direct and straightforward. The sym-
metric tensor Bij is shown as an ellipsoid (like the
permeability Kij in other works), and the scalar M
is shown as a sphere representing the spherical
tensor Mdij: see the bottom parts of Figures 4 and 5.

Finally, recall that the scalar values of upscaled
coefficients, like those given in Tables 4 and 5, were
obtained by ‘post-processing’ the tensorial stress–
strain–pressure relations with their second- and
fourth-rank tensorial coefficients. Indeed, we have
exploited an algebraic theoretical formulation,
which has allowed us to define consistently the
equivalent isotropic coefficients for these laws.
For a second-rank tensor like Bij, one way to
obtain the isotropic equivalent is to take the spheri-
cal part: B ¼ Tr(B)/3 ¼ Bkk/3 (however the com-
plete theory is more involved and will not be
detailed here).

Remarks on the validity of results. The equivalent
continuum H-M coefficients obtained in this work
depend on two sets of assumptions and approxi-
mations: (a) assumptions on the geometric struc-
ture and local properties of the fractured rock
(cracks and porous matrix); and (b) approximations
and hypotheses linked to the method of upscaling
for the matrix–crack medium (here the superposi-
tion method).

First, let us recall that the ‘geometric model’
used for generating the structure of the fractured
rock around the gallery, was defined in a previous

paper (Ababou et al. 2011) where hydraulic upscal-
ing was studied for the same site and the same
gallery. In particular, let us point out the following:

† The fracture system in the EDZ was composed of
two subsets – the periodic set of large curved
chevron fractures, and a statistical set of smaller
planar fractures.

† The curved chevron fractures were modelled
deterministically based on direct observations
of large fracture traces on different planes
(exploration ditches); a 3D parametric surface
model was then adjusted (a generalized conoid
having no axial symmetry).

† The probabilistic/geometric structure of the stat-
istical set was validated based on comparisons
of upscaled v. borehole permeability profiles
(in-situ). This served in particular to adjust the
radial inhomogeneity of statistical fracturing in
the near-wall region.

In this paper, we assume that the geometric struc-
ture is reasonably well established from these pre-
vious tests (Ababou et al. 2011). The assumed
geometric structure of the fractured rock in the
EDZ was partially validated by hydraulic measure-
ments and by observation of large fracture traces in
that work. That is why we have conserved the same
sets of fractures in the present study of hydro-
mechanical upscaling.

Second, the superposition method of upscaling
does not deliver exact results except in special
cases. However, it is fast to implement, it is flexible
in terms of the choice of averaging support, and it is
able to convey the anisotropic and coupled hydro-
mechanical response of a porous fractured rock.
Other upscaling methods may not be as flexible
and fast, and they too suffer from defects, approxi-
mations and limited range of applicability (as dis-
cussed briefly in previous sections).

On the other hand, as shown from the previous
discussion of results, our equivalent continuum
H-M coefficients match quantitatively some of the

Table 6. Radial distributions of mechanical and hydro-mechanical equivalent continuum coefficients upscaled
on annular shells around the drift (the drift wall is located at R ¼ 2.0 m from the drift centre): shear
compliance tensor Sij (principal components) v. radial distance R

R1 m R2 m S44 (Pa21) S55 (Pa21) S66 (Pa21)

2.0 2.5 1.8859 × 1029 2.1661 × 1029 1.5341 × 1029

2.5 3.0 9.0955 × 10210 1.2262 × 1029 7.0979 × 10210

3.0 3.5 7.4276 × 10210 1.0856 × 1029 7.8636 × 10210

3.5 4.0 7.0106 × 10210 9.1224 × 10210 8.0620 × 10210

4.0 4.5 1.5526 × 10210 1.5485 × 10210 1.5815 × 10210

4.5 5.0 1.3000 × 10210 1.3000 × 10210 1.3000 × 10210

5.0 5.5 1.3000 × 10210 1.3000 × 10210 1.3000 × 10210

5.5 6.0 1.3000 × 10210 1.3000 × 10210 1.3000 × 10210
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available observations, and they behave qualitat-
ively as expected with the degree of fracturing.

Outlook

In future, we will present the mathematical upscal-
ing theory which has led us to the above-discussed
results. A brief description of the theoretical upscal-
ing method based on strain superposition was pro-
vided earlier, along with appropriate references.
The upscaling hypotheses were clearly listed, and
it was noted that the current results on coupled
hydro-mechanics were obtained under the most
general hypothesis (i.e. under hypothesis ‘iii.b’
rather than ‘iii.a’; see Section 3.2 and results of
Table 3).

Note that we have obtained B ≈ 0.90 for the
‘near-wall’ value of the Biot coefficient (upscaled
over a 0.5 m thick annular shell adjacent to the
wall). This value should be compared with the
global value B ¼ 0.641 for the entire 4 m thick
global domain. More generally, the reader can
compare the radial distributions of stiffnesses and
coupling coefficients shown in Tables 4–6 with
the global values shown in Table 3.

We plan to complete these results and analyses
(upscaled H-M coefficients of the damaged and
fractured clay stone) by implementing the upscaling
method on a variety of other ‘spatial supports’, for
example, smaller size voxels in 3D and annular
shells of smaller thicknesses. In addition, we plan
to obtain continuously distributed upscaled par-
ameters using moving windows (rather than fixed
subdomains or partitions): see for instance the
upscaled radial permeability profiles K(r) obtained
by Ababou et al. (2011). Similarly, it is expected
that the current hydro-mechanical upscaling will
allow us to obtain properties such as K (bulk stiff-
ness) and B (spherical Biot coefficient) along
‘numerical boreholes’.

Other extensions of our upscaling method are
currently being considered for hydro-mechanical
processes. The method, based on superposition of
strains and fluxes, can be extended to account
for: (a) weakly non-elastic/non-reversible defor-
mation behaviour of the discrete cracks (a brief
review of such effects can be found in Oda (1986)
and references therein); and (b) retro-active ‘feed-
back’ effects of stress and strain on the upscaled
properties themselves, such as hydraulic conduc-
tivity Kij (which is very sensitive to crack aper-
tures), but also other hydro-mechanical properties
(compliances Cijkl, and coupling coefficients Bij

and M). Our current theoretical developments
and extensions indicate that the Biot modulus ‘M’
is indeed most sensitive to crack apertures and
normal stiffnesses. Therefore it is expected that
‘M’ is quite sensitive to mechanical feedbacks

owing to aperture variations. Note: the tensorial
feedback effect of strain–stress on permeability kij

was previously described theoretically in Ababou
et al. (1994b) and Stietel et al. (1996), for ‘Poi-
seuille cracks’.

Finally, we are continuing the extension of our
theoretical frame for obtaining equivalent conti-
nuum H-M laws and coefficients for more general
types of dual porosity media, including not only
the current case of a fractured porous claystone
comprising small statistical cracks as well as large
curved fracture surfaces, but also other types of het-
erogeneous geological media as well, for example,
with cavities and holes rather than thin cracks.

The first two authors wish to acknowledge financial
support by Andra.

Appendix 1

Equivalent isotropic coefficients from

fourth-rank stiffness Rijkl

The equivalent continuum (upscaled) material coefficients

obtained in this work are not assumed to be orthotropic at

voxel scales (see discussion in Section 3.4). However, on

large transverse scales of averaging (e.g. annular aver-

aging), we have derived equivalent scalar quantities from

the upscaled tensorial coefficients. These scalars are

obtained from spherical equivalent tensors, through a pro-

cedure we have called ‘isotropization’. This is briefly

explained in this Appendix. Let us first review the list of

tensorial continuum equivalent coefficients in this paper:

† Bij – stress–pressure coupling Biot coefficient

(second-rank tensor). In this case, the ‘isotropized’

value B is obtained by taking the spherical part of Bij,

that is: B ¼ (Bkk)/3 ¼ Tr(B)/3 where Tr(B) is the

trace of tensor B.

† M – fluid production–pressure coupling (scalar Biot

modulus). This coefficient is by essence a scalar, that

is, a zero-order tensor (it does not require ‘iso-

tropization’).

† Rijkl, Cijkl – stiffness and compliance coefficients

(fourth-rank tensors). These upscaled coefficients are

generally non-isotropic and non-orthotropic tensors,

although they do have all the other symmetries of elas-

ticity (this is one of the consequences of the linear

superposition method).

We expect the upscaled elastic tensors Rijkl and Cijkl to

become isotropic in the case of geometrically isotropic

materials. We have verified that this is indeed the case

via numerical tests with statistically isotropic and homo-

geneous fracturing (not shown here). In the isotropic

case, the classical scalar coefficients of isotropic elasticity

(E, n, m, etc.) can be directly extracted from the fourth-rank

tensors (Rijkl or Cijkl). Our goal is to obtain similar scalar
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coefficients for the case of non-isotropic/non-orthotropic

upscaled materials.

To simplify the analysis of upscaled tensorial coeffi-

cients, we can extract algebraic subsets from the fourth-

rank stiffness and compliance tensors (Rijkl, Cijkl), as

explained in the text (section ‘Inputs, outputs and post-

treatment of hydro-mechanical upscaling’). Let us focus

in particular on ‘shear stiffness’ (Pa) or ‘shear compliance’

(Pa21) submatrix SIJ, which contains the nine stiffness

coefficients R2323, . . . , R2312, R1313 (similarly for compli-

ance). Using Kelvin’s well-known 6×6 index notation

for Rijkl, this 3×3×3×3 tensor can be expressed as

a 6×6 matrix RIJ with indices I [ {1, . . . , 6}, J [ {1,

. . . , 6}, where I ¼ {1, 2, 3, and 4, 5, 6} corresponds to

(i, j) ¼ {(1, 1), (2, 2), (3, 3) and (2, 3), (1, 3), (1, 2)}.

The (3×3) shear submatrix SIJ (analysed in Table 6) corre-

sponds to the symmetric lower right part of the (6×6) RIJ

matrix. Note that the RIJ matrix, with Kelvin’s notation,

does not represent a (6×6) second-rank tensor. For the

same reason, SIJ is a matrix rather than a tensor, a priori.

Nevertheless, SIJ being a symmetric (3×3) matrix which

also appears to be positive-definite (or at least positive),

it can be diagonalized, and then, it can be represented by

an ellipsoid – which reduces to a sphere in the case of iso-

tropic shear behaviour. Finally, a few words about nota-

tion: ‘S’ stands for ‘shear’; the diagonal components of

SIJ can be labelled S44, S55, S66 with Kelvin’s (I, J ) nota-

tion, but they could be labelled S11, S22, S33 if we revert

to the standard notation Sij for a 3×3 matrix with i ¼ {1,

2, 3} and j ¼ {1, 2, 3}. Note also that SIJ represents

shear stiffness when it is extracted from Rijkl (Pa), and

shear compliance when it is extracted from Cijkl (Pa21).

We now briefly describe how equivalent isotropic coef-

ficients are defined from fourth-rank mechanical tensors,

leading to bulk and shear moduli, Young’s coefficient

(E) and Poisson’s ratio (n):

Step 1. We define a scalar bulk stiffness modulus (K) for a

non-isotropic/non-orthotropic material, in terms of the

fourth-rank stiffness tensor Rijkl, as follows:

3K = R ppll/3 = (R1111 + R2211 + R3311

+ R1122 + · · ·R3322 + R1133 + · · · + R3333)/3

(A.1)

Step 2. One can define as follows an equivalent tensor of

volumetric stiffness (Kijmn):

3Kijmn = 3Kdmidnj = (R ppll/3)dmidnj

= (R ppll/3)(dmidnj + dmidnj)/2 (A.2)

The last equality is obtained by exploiting the sym-

metries of elastic mechanics (these symmetries are con-

served by our upscaling: they are applicable to

macroscale coefficients).

Step 3. We interpret this relation in terms of the known

elastic coefficients that characterize an (equivalent)

isotropic material. We do this by inserting, in the

Kijmn and Rijkl tensors, their known expressions in

terms of Lamé moduli (l, m) for an isotropic material.

This yields:

3Kijmn = 3K(dmidnj + dmjdni)/2

= (3l+ 2m)(dmidnj + dmjdni)/2 (A.3)

where

K = (3l+ 2m)/3 (A.4)

This macroscale result is as expected, and it is also con-

sistent with the scalar K that we directly introduced in

the first step above (3K ¼ Rppll/3).

Step 4. Continuing the previous comparison process with

the case of isotropic materials, we introduce the

Young modulus, E, and the Poisson ratio, n, and we

keep the shear modulus, m, to describe the equivalent

isotropic material. Thus:

3K = (3g+ 2m); E = 3 (1 − 2n);
E = 2m(1 + n)

(A.5)

Step 5. Defining for isotropic materials the shear stiffness

modulus as G ¼ 2m (instead of the more usual G ¼ m),

we extend this notion to a shear stiffness tensor Gijmn for

the case of a non-isotropic/non-orthotropic material,

again in terms of the fourth-rank stiffness tensor Rijkl:

Gijmn = Rijmn − R ppmndij/3 (A.6a)

Step 6. For isotropic materials, the shear stiffness tensor

Gijmn reduces to:

Gijmn = 2m(dmidnj + dmjdni)/2 (A.6b)

For verification, one can show that the scalar shear stiff-

ness G ¼ 2m is indeed obtained upon introducing the

isotropic version of the Gijmn tensor (as given just

above in equation A.6b) into the general fourth-rank

tensor Rijkl, and then assuming isotropy of the fourth-

rank Rijkl.

Step 7. Further contractions of the non-isotropic Gijmn of

equation (A.6a) can lead to the equivalent isotropic

form of equation (A.6b), and this eventually defines

the scalar equivalent G or m.

In summary, when dealing with fully non-orthotropic

materials, we can use contracted forms of the fourth-rank

stiffness tensor Rijkl to define isotropic scalar equivalents

of the classical coefficients of isotropic elasticity (K, E,

n, m). We proceed similarly for the H-M coupling coeffi-

cients: thus, the spherical part of the second-rank Biot

tensor Bij yields the scalar B. We call this procedure ‘iso-

tropization’ (isotropic equivalents for fourth- and second-

rank tensors).
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age géologique en formation argileuse. ANDRA,
December.

Armand, G. & ANDRA 2007. Analyse des perméabilités
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Cañamón, I., Ababou, R. & Elorza, F. J. 2007.
A 3-dimensional homogenized model of coupled
thermo-hydro-mechanics for nuclear waste disposal in
geologic media. In: Proceedings of ENC 2007 (Euro-
pean Nuclear Conference 2007): ‘Nuclear Waste Mod-
eling’, Brussels, 16–20 September, http://www.
euronuclear.org/events/enc/enc2007/home.htm.
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ndre, J. P. 1997. Etude du comportement poromécani-
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