

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

<u>Eprints ID</u>: 14107

To cite this version: Straubhaar, Benjamin and Pauchet, Joël and Prat, Marc *Pore network simulation of water condensation in Gas Diffusion Layers of PEM Fuel Cells*. (2015) In: 7th International Conference on Porous Media - InterPore 2015, 18 May 2015 - 21 May 2015 (Padova, Italy). (Unpublished)

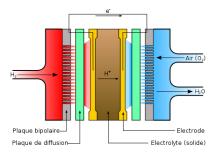
Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

Pore network simulation of water condensation in Gas Diffusion Layers of PEM Fuel Cells

B. Straubhaar¹, J. Pauchet² & M. Prat¹

 1 Institut de Mécanique des Fluides de Toulouse, France 2 CEA (LCPEM, LITEN), France

Outline

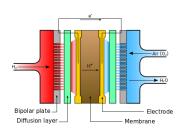

- Introduction
- Pore Network Model
- \bigcirc Water transfer $(\Delta T \neq 0)$
- Conclusion

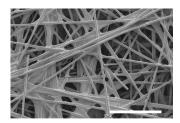
Outline

- Introduction

Introduction: Proton Exchange Membrane Fuel Cells (PEMFC)

- = Stack
- Creates electricity/heat with hydrogen and oxygen
- Operating between 60 and 80°C

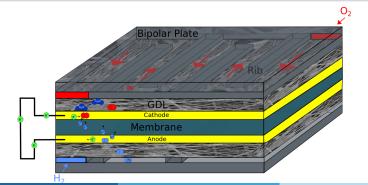



Introduction: Gas diffusion layer (GDL)

The GDL is a carbon fiber-based medium:

- hydrophobic
- 170 to 400 μm of thickness
- 0,21 to 0,73 g/cm² of density
- ullet 70 and 80 % of porosity; resulting pores between 20 and 50 μm

\Rightarrow GDL = Thin porous medium



50 µm

Introduction: Gas diffusion layer (GDL)

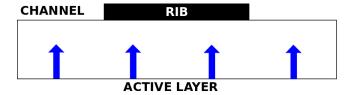
The main challenges in a GDL are:

- ✓ To diffuse reactant gas uniformally from the channel to the active layer
- ✓ To keep the membrane hydrated for proton transfer
- ✓ To evacuate excess water to avoid cell flooding and let oxygen reach the active layer = Water management issue

What kind of water transfer in the GDL?

First option

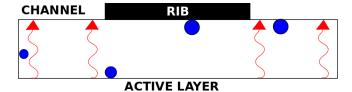
Only vapor transfer?


ACTIVE LAYER

What kind of water transfer in the GDL?

Other options

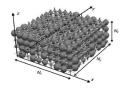
Only vapor transfer?


Only liquid transfer? e.g. Pasaogullari et al., J. Elec. Soc. 151 (3), A399-A406 (2004)

What kind of water transfer in the GDL?

Other options

- Only vapor transfer?
- Only liquid transfer?
- Transfer with condensation and evaporation?


Method: simulation of water transport using PNM

What numerical model?

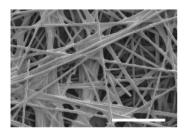
Classical 2-phase flow model based on generalized Darcy's law and macroscopic capillary pressure?

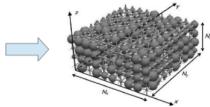
But GDL is very thin (No length-scale separation)

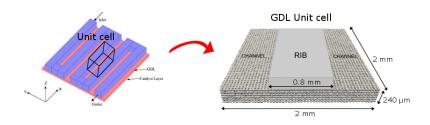
⇒ Use of 3D Pore Network Model (PNM)

Outline

- Introduction
- 2 Pore Network Model
- 3 Water transfer $(\Delta T \neq 0)$
- 4 Conclusion


Pore Network Model (PNM)

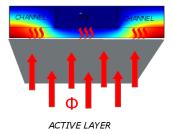

- Allow invasion percolation process (pore with largest connected bond is invaded) or invasion with viscous effects
- Allow multiple injection points :


Ceballos et al., Phys. Rev. E 84, 056311 (2011)

Less time-consuming than direct simulation (e.g. Lattice Boltzmann methods)

Properties

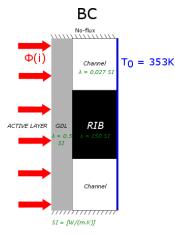
- $6 \times 50 \times 50$ pores with a $40 \mu m$ step $\Rightarrow 240 \mu m \times 2mm \times 2mm$ network
- Cubic pores and bonds
- \bullet Random distribution : $[d_{p_{min}}$; $d_{p_{max}}]=[24\mu m\,;\,36\mu m]$ and $[d_{t_{min}};d_{t_{max}}]=[10\mu m\,;\,24\mu m]$
- \bullet Fully hydrophobic : contact angle between water and carbon fibers : $\Theta=110^\circ$


Outline

- \bigcirc Water transfer $(\Delta T \neq 0)$
 - Temperature field
 - Hypothesis
 - Pore Network Model with condensation and evaporation
 - Results

Introduction

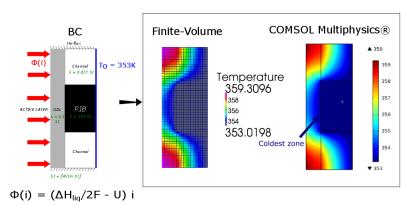
Introduction


Electrolysis \Rightarrow Heat flux Φ at the GDL/active layer interface Non uniform temperature in the GDL \Rightarrow Colder zone \Rightarrow Possibility of condensation

Temperature field

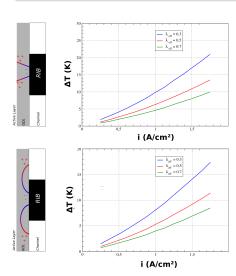
Calculation of temperature field with Finite-volume method

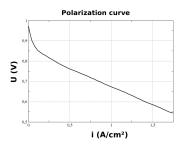
ightarrow Two cases : a) Isotropic and b) Anisotropic thermal conductivity

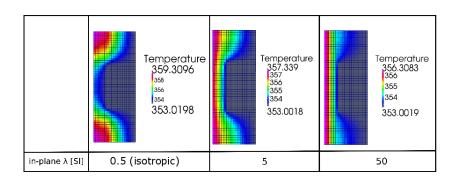

λ (W/(m.K))

/ (W/(III.K))		
	in-plane	through-plane
x1	0,5	0,5
x10	0,5	5
x100	0,5	50

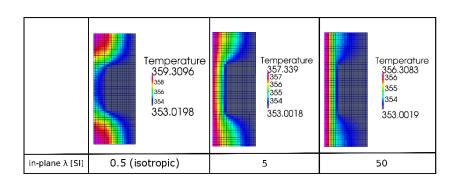
Anisotropy


$$\Phi(i) = (\Delta H_{lig}/2F - U) i$$


a) Isotropic thermal conductivity in the GDL $\rightarrow \lambda = 0.5W/(m.K)$

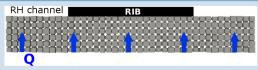

Water transfer ($\Delta T \neq 0$)

At 80°C, $\frac{\Delta H_{liq}}{2E} = 1,48$. U and i are taken from the polarisation curve below.



b) Thermal anisotropy in the GDL $\rightarrow \lambda = 0.5 W/(m.K)$ in through-plane direction and $\lambda = 5$ or 50W/(m.K) in in-plane direction (for i = 1 A/cm²)

b) Thermal anisotropy in the GDL $\rightarrow \lambda = 0.5 W/(m.K)$ in through-plane direction and $\lambda = 5$ or 50W/(m.K) in in-plane direction (for i = 1 A/cm²)


Water transfer ($\Delta T \neq 0$)

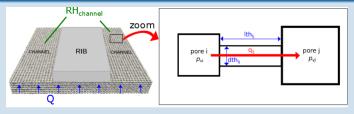
Anisotropy tends to make the in-plane temperature uniform

Hypothesis

Water production rate

$$Q = \frac{iA}{2F}$$

- ullet i : current density
- $\bullet \ A : {\it cross-sectional area}$
- ullet F: Faraday constant

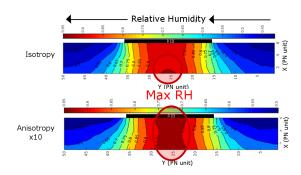

Is it possible to transfer this flux in vapor phase accross the GDL?

Water transfer ($\Delta T \neq 0$)

Estimation of Critical Relative Humidity

Critical RH = RH within the GDL marking the onset of condensation

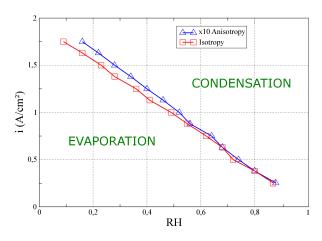
Calculation of vapor partial pressure field by PN approach



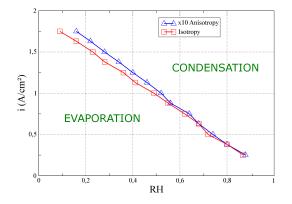
In each pore i, mass conservation : $\sum_{i=1}^{nb_{neighbours}} q_{ij} = 0$ $q_{ij} = g_{ij}(x_{vi} - x_{vj})$ is the local vapor flux from pore i to pore j $g_{ij} = cD_{w/a}dth_{ij}^2/a$

- c: mole concentration (= p/RT)
- dth_{ii}: width of the throat between i and i
- a: lattice distance
- $D_{w/a}$: molar diffusion coefficient between air and water

Example for $i = 1 \text{ A/cm}^2$ - RH channel = 50 \%


$$RH_{local} = \frac{p_v(x,y,z)}{p_{vs}(T(x,y,z))}$$

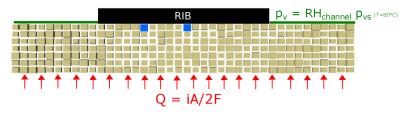
- ⇒ Isotropy : Maximum of local Relative Humidity at the GDL/AL interface
- ⇒ Anisotropy : Maximum of local Relative Humidity under the rib and at the GDL/AL interface
- \Rightarrow No condensation as long as local RH < 1 in the GDL


Phase diagram

From many simulations varying i and RH channel

Pore Network Model with condensation and evaporation

Pore Network Model with condensation and evaporation

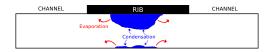


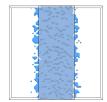
If condensation is possible \Rightarrow 2 steps : nucleation and growth of liquid clusters

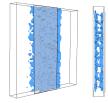
Step 1: Nucleation

Identification of nucleation spots

- **1** Compute p_v in each pore assuming no condensation
- Identify each pore where RH is ≥ 1
- Invade the pore where RH is ≥ 1 and is maximum
- Back to step 1 until RH < 1 in each remaining pore
- Initial state for growth step

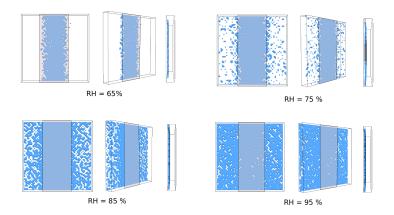

Water transfer ($\Delta T \neq 0$)


ACTIVE LAYER

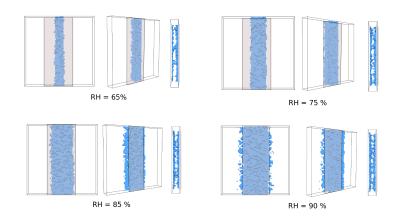

Pore Network Model with condensation and evaporation

Step 2 : Pore Network Simulation of liquid cluster growth due to condensation

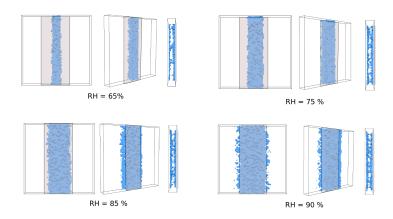

Growth stops when evaporation rate = condensation rate for each liquid cluster



Results (I) Isotropic Thermal Conductivity & $i = 1 \text{ A/cm}^2$

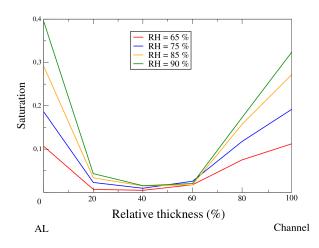


Results (I) Isotropic Thermal Conductivity & $i = 1 \text{ A/cm}^2$

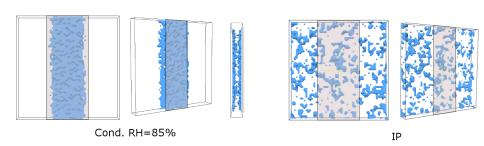


ightarrow Condensation happens at the AL/GDL interface and water spreads over the whole AL/GDL interface

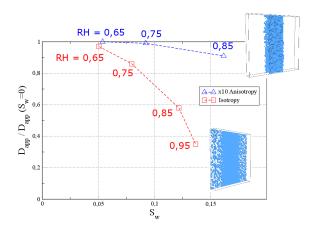
Results (II) $\times 10$ Anisotropy & i = 1 A/cm²



Results (II) $\times 10$ Anisotropy & i = 1 A/cm²


→ Condensation located under the rib and at the AL/GDL interface

Results (III) Slice saturation (Anisotropic case)


Water transfer ($\Delta T \neq 0$)

Comparison with previous works (PNM)

 \Rightarrow Patterns are very different... Can affect the O_2 diffusion

Apparent O_2 diffusion coefficient

Outline

- Conclusion

Conclusion

Conclusion

- Most of previous works using PNM = Invasion Percolation in liquid phase from catalyst layer
- \checkmark Temperature field is computed \to Temperature variations within the GDL leading to condensation under the rib and at the GDL/AL interface
- ✓ Temperature field control is a key of water management
- ✓ Thermal anisotropy has a strong impact on temperature
- \checkmark Thermal anisotropy has a beneficial impact on O_2 transfer
- ✓ Produced liquid water can be transferred through the GDL up to high RH channel
- Liquid patterns due to condensation are different from patterns using PNM(IP from active layer)

- Coupling with non uniform current density at the GDL/AL interface
- Compare with in situ vizualisations for automotive applications ('IMPALA' project)

Acknowledgements:

Financial support from European Union's Seventh Framework Program (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Undertaking (project 'IMPALA') is gratefully acknowledged

THANK YOU FOR YOUR ATTENTION QUESTIONS?