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a  b  s t r  a  c t

The  impedance  of  a substrate/coating/electrolyte  system  was calculated  with  the  assumptions:  (i) the

coating  uptakes  electrolyte  to  an  extent  that  progressively  decreases  from the  coating/electrolyte  inter­

face  to the  substrate/coating  interface where  it becomes  negligible;  (ii)  the  volume  fraction  of  the

electrolyte  varies along  the  coating thickness  according  to a power­law;  (iii) the  resistivity  and  per­

mittivity  profiles  of  the  electrolyte­penetrated  coating  can  be  calculated  through  an effective  medium

theory  (EMT)  formula  corresponding  to a  parallel  combination  of  the  two  media  (electrolyte  and  coat­

ing  material);  and (iv)  some  pores  extend from  the  coating/electrolyte  interface  to the  substrate/coating

interface,  providing  a low  resistance  path. The  impedance  plots  thus  calculated  exhibited  a  constant

phase  element  (CPE)  behavior  in  a large  frequency  range.  Some  experimental  results  obtained  with  2024

aluminum  alloy/hybrid  sol–gel  coating samples  immersed  in a NaCl  solution  were  analyzed  with  refer­

ence  to the  above  described  model.  The  extension  of  the recently  developed  power­law  CPE  model  to

anti­corrosion  coatings is shown  to  yield insight  into the  distribution  of  resistivity  and  associated  water

uptake.  Evaluation  of  mixing  rules  for  conductivities  and  permittivities  of  the  two  media  (coating  and

electrolyte)  showed  that  the linear  combination  provided  results  that were  consistent  with  the  observed

impedance  response;  whereas,  distributions  resulting  from  a  series  combination  of  the  two  media,  an

EMT  formula  proposed  in the  literature,  and the  Maxwell  approximation  were  incompatible  with the

observed  CPE  impedance response.

1. Introduction

Electrochemical impedance spectroscopy is  a  popular technique

for the assessment of the corrosion protection performance of

organic coatings, which has been used for some decades [1–5].

By following the evolution of the impedance response of a  sub­

strate/coating/electrolyte system over an  extended period of  time,

many research groups have been able to  monitor the degradation of

the coating material and the onset of  corrosion processes. The anal­

ysis of  the impedance data is  often based on the classical equivalent

circuit proposed by Beaunier et al. in 1976 [2] or its variants. Beau­

nier’s circuit consists of the uncompensated electrolyte resistance

in series with a  parallel connection of  (i) the coating capacitance and

(ii) a  branch including the resistance of the electrolyte­penetrated

coating, assumed to be identical to  the resistance of  the electrolyte

inside its pores, in  series with a parallel connection of  the double
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layer capacity at the base of  the pores (coating/substrate interface)

and an  impedance representing the corrosion process. In the main

variant of  Beaunier’s circuit, the coating capacity is  replaced by  a

constant phase element (CPE); additional modifications involve the

replacement of the double layer capacity by  a second CPE and/or the

inclusion of  additional elements. Substituting CPEs for capacities

may greatly improve the quality of the fitting between the  experi­

mental data, which often show a  CPE behavior, and the equivalent

circuit, but creates ambiguities in the physical interpretation of the

results,  since the CPE modulus cannot be simply identified with the

coating capacity (or the double layer capacity) and the calculation of

the effective capacity from the CPE parameters requires a  detailed

knowledge on the physical reasons for the CPE behavior [6]. Thus,

the  price to pay for improving the fitting is the loss of information

on the coating capacity, a  parameter that, following the pioneering

work of Brasher and Kingsbury [7], has been used for decades to

calculate the electrolyte uptake in  the coating.

The physical origin of the CPE behavior is still incom­

pletely understood, but it is  generally agreed that it must be

ascribed to  inhomogeneous physical properties of the system

http://dx.doi.org/10.1016/j.electacta.2012.09.061
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Fig. 1. (a) Schematic representation of  a  substrate/coating/electrolyte system. (b) Equivalent circuit; the upper box corresponds to Eq. (7)  and the  complete circuit is the one

used  for regression. The CPE  in the lower box was included to account for an oxide layer existing on the aluminum alloy electrode.

[8]. With an original experimental approach, Kittel et  al. [9,10]

demonstrated marked variations in the impedance of organic

coatings along their thickness, and concluded that accurate

models for substrate/coating/electrolyte systems should inte­

grate gradients of  properties over the thickness of the coatings.

However, those authors did not propose any specific resis­

tivity or permittivity profiles. Inhomogeneities in  the coating

properties have been considered by  Hinderliter et al. [11,12]

who related these inhomogeneities with electrolyte uptake in

the coating and, taking into account various geometries for

the electrolyte­filled coating defects, developed physical mod­

els of substrate/coating/electrolyte systems. Roche et al. [13,14]

observed the formation of  an  interphase region, next to the

substrate/coating interface, with properties significantly different

from those of the  bulk coating material. Such an inter­

phase affected the  mechanical and adhesion properties of  the

system.

Our group has recently shown that the impedance of  a  layer

exhibits a CPE  behavior if the resistivity of  the material varies along

the layer thickness according to a  power­law and its permittiv­

ity is either independent of  the position [15] or varies along the

layer thickness only in the low­impedance parts of  the layer [16].

This “power­law model” has been applied to  systems as  diverse as

passive oxides and human skin [17]. In the present paper a possi­

ble extension of the power­law model to anti­corrosion coatings is

explored. The hypotheses are made that inhomogeneities in the

coating morphology cause an  inhomogenous electrolyte uptake,

stronger near the coating/electrolyte interface and weaker near

the substrate/coating interface, and that the dependence of  the

electrolyte volume fraction on the position along the coating thick­

ness obeys a power­law. The profiles of  resistivity and permittivity

resulting from the electrolyte uptake profile are calculated for some

effective medium theory (EMT) formulas, and then used to cal­

culate the  impedance of the system. It  is  shown that only one

of these formulas leads to  CPE behavior. Finally, the theoretical

impedance expression is compared to experimental impedance

data obtained with hybrid sol–gel coatings exposed to a  0.5 M NaCl

solution.

2. Theory

A schematic representation of  a  substrate/coating/electrolyte

system is presented in Fig. 1a. The coating thickness is denoted ı

and the position along the coordinate perpendicular to the sub­

strate/coating and coating/electrolyte interfaces is expressed in

dimensionless coordinates as

�  =
x

ı
(1)

where x  is the distance from the substrate/coating interface.

The coating was assumed to be penetrated by the electrolyte

which fills  a number of pores, the lateral dimension of  which may

be distributed and not necessarily independent of  �.  In Fig. 1a,

the pores are represented as  being straight, although they are

obviously tortuous in nature. All  pores have a mouth at the coat­

ing/electrolyte interface and, most of  them are  not as  deep as the

coating. Thus, different planes parallel to  the interfaces, located

within the coating at different positions �,  cross different numbers

of pores, and different elemental layers of  the coating, d� thick, have

different local electrolyte volume fractions �(�). Some pores (only

one is shown in  the right side of  Fig. 1a) may extend throughout

the coating and provide a  low­resistivity path between the elec­

trolyte and the substrate. Thus, the electrical equivalent circuit of

the substrate/coating/electrolyte system consists of  the electrolyte

resistance in  series with the parallel combination of two  compo­

nents: a  resistance (Rpore), representing the through pores, and

an  impedance (Zc), representing the electrolyte­modified coating.

Such a  circuit is represented in the upper box shown in Fig. 1b.

The lower box, containing a  CPE, accounts for the series impedance

response of the oxide layer on the substrate surface. The scheme

in  Fig. 1a, in which the local electrolyte volume fraction increases

as � increases, is  similar to  the one proposed by  Hinderliter et al.

[11] who, however, clearly separated an outer electrolyte­affected

coating region from an  inner pristine coating region and therefore

did not consider pores that reach the substrate.

Various effective medium theory (EMT) formulas have been pro­

posed that may be used to calculate resistivity and permittivity

profiles caused by  a  distribution of  �(�). Taking into account that,

in  each elemental layer parallel to the interfaces, each position is

occupied by  either the coating material or the electrolyte, these two

media may be assumed to be in parallel to each other. Therefore, the

overall conductivity (� =  �−1)  and permittivity (ε) may be obtained

as linear combinations of  the conductivities and permittivities of

the  two media (coating and electrolyte) with coefficients equal to

the  respective volume fractions [11], i.e.,

�(�)
−1
= �−1

w �(�) +  �−1
c [1 −  �(�)] (2)



and

ε(�) =  εw�(�) + εc[1 −  �(�)] (3)

where the  subscripts w and c refer to the electrolyte and the coating

material, respectively. Since usually �(�) ≪ 1  and �−1
c ≪ �−1

w ,  �(�)−1

depends linearly on �(�).

It was recently shown [15] that a CPE behavior could be due to

a variation of �(�) according to a  power­law. For a  CPE impedance

written as

ZCPE =
1

(jω)˛Q
(4)

the power­law exponent 
  and the CPE exponent  ̨ are linked by

the relationship

 ̨ =

  − 1



(5)

In the present work, the hypothesis is made that �(�) changes

from �(0) = 0 at � = 0 to �(ı) at �  =  1  according to  a  power­law, i.e.,

�(�) =
�(ı)�


1  + �(ı)(�
 − 1)
(6)

The condition �(0) /=  0 was not  considered because Rpore

accounts for the contribution of  through pores, and therefore only

the pores not reaching the substrate/coating interface need to be

considered for  calculating Zc.  The electrolyte volume fraction �(�)

is presented as a  function of  position �  in Fig. 2  for some typical

cases. These were calculated following Eq. (6)  for different �(ı) val­

ues between 0.001 and 0.1. An exponent 
  =  5  was assumed, which

corresponds to  ̨ =  0.8, a  typical value found with systems exhibit­

ing a marked CPE behavior. Assumption of a  different value of 

would produce qualitatively similar results.

The resistivity �(�) and dielectric constant ε(�) profiles, calcu­

lated according to Eqs. (2) and (3)  for the same �w,  �c,  εw and εc

values as  those considered in Ref. [11], are shown in Fig. 3. With

�(ı) = 0.1 (corresponding to  a mean electrolyte partial volume <  2%),

the resistivity variation across the coating is ca. 8  orders of magni­

tude. Even with �(ı) as low as  0.001, �(ı) is 5  orders of  magnitude

lower than �(0). In contrast, the permittivity variations are mod­

erate: for  �(ı) =  0.1, ε(ı) is  larger than ε(0) by only a  factor of ca.

2. At low  �  values, i.e., close to the metal/coating interface, Fig. 3a

shows a high  resistivity region compatible with the assumption of

an interphase with properties significantly different from those of

the bulk coating [13,14].

Under  the assumption that each elemental layer may be rep­

resented by a parallel combination of a resistance �(�)d� and a
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Fig. 2. Water uptake profiles with �(ı) as a parameter, calculated according to  Eq.

(6)  with �(0) = 0 and 
 =  5.
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Fig. 3. Resistivity (a) and permittivity (b) profiles with �(ı) as a  parameter,

calculated  according to Eqs. (2) and (3) respectively, with �c =  2 ×  1011 � cm,

�w =  330 � cm, εc =  8, εw =  82, �(0) =  0, and 
 =  5.

capacitance ε(�)ε0/d�,  the impedance of  the electrolyte­penetrated

coating (Zc)  is calculated as

Zc(ω) = ı

1
∫

0

1

�(�)
−1
+ jωε(�)ε0

d� (7)

Plots corresponding to four different �(ı) values are shown in

Fig. 4, both in  Bode coordinates, currently used in  the coating com­

munity, and in Nyquist coordinates. Clearly, the coating impedance

becomes smaller when �(ı) increases (and the mean electrolyte

partial volume increases). However, the shape of  the plots is insen­

sitive to  the value of �(ı). The plot of the phase angle clearly shows

a CPE behavior in a  high­frequency range, approximately between

100 Hz and 10 kHz. The CPE behavior is also visible in the high

frequency branch of  the Nyquist plots.

The frequency dependence of  the d  log |Z
′′

c |/d log f derivative is

shown in Fig. 5. In  a  frequency range where the system exhibits

a CPE behavior, d log |Z
′′

c |/d log f  =  −  ̨ [18]. The plots correspond­

ing to  four different �(ı) values completely overlap with a  value of

−0.8 (corresponding to  ̨ = 0.8) in  the high  frequency range. Corre­

spondingly, the constant­phase­angle value in Fig. 4b is  given by

0.8 × 90◦ =  72◦.

To obtain the overall impedance Z of  the sub­

strate/coating/electrolyte system, the pore resistance Rpore in

parallel with Zc and the electrolyte resistance in series with

the parallel combination of Rpore and Zc should be  considered.

However, in  most cases, the electrolyte resistance is  practically
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Fig. 4. Impedance plots with �(ı) as a parameter, in Bode coordinates (a)  and (b)

and Nyquist coordinates (c), calculated according to  Eq. (7) with ı =  20 mm and the

conductivity and permittivity profiles shown in Fig. 3,  i.e., with �(0) = 0  and 
 = 5.

negligible, and henceforth will be disregarded. Thus Z may  be

simply calculated as

Z(ω) =
[

Zc(ω)−1
+ R−1

pore

]−1
(8)

Fig. 6  shows impedance plots calculated according to Eq. (8)

for various Rpore values and for the resistivity and permittivity
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Fig. 5.  Frequency dependence of  d  log|Zc " |/d  log  f, calculated with  the same param­

eters  as for Fig. 4.

profiles corresponding to �(0) =  0,  �(ı) =  0.1 and 
  =  5.  As long as

Rpore >  Zc(0), where Zc(0)  = ı

1
∫

0

�(�)d� is the zero frequency limit of

Zc, it has only a  slight effect on the overall impedance. When Rpore

becomes progressively smaller, the impedance modulus decreases

and tends to  approach Rpore,  as shown in Fig. 6a; the transition

from a  CPE to a resistive behavior is  shifted to higher frequency,

as  shown in Fig. 6b; and the shape of  the Nyquist plots becomes

more symmetrical with respect to the maximum of Z”, as shown in

Fig. 6c.

Hinderliter et  al. [11] considered other effective medium theo­

ries, in addition to  Eqs. (2) and (3). Assuming an  electrolyte uptake

described by  Eq. (6), �(0) = 0, �(ı) =  0.1 and 
 =  5,  resistivity and

permittivity profiles were calculated corresponding to

(i) a series combination of  the two media [11], i.e.,

�(�) = �wϕ(�) + �c[1 − ϕ(�)] (9)

ε(�) =

[

1  −  �(�)

εc
+

�(�)

εw

]−1

(10)

(ii) an  EMT formula proposed by  Brasher and Kingsbury [7], i.e.,

log[�(�)
−1

]  =  �(�) log [�−1
w ] + [1 − �(�)] log [�−1

c ]  (11)

log  ε(�) =  ϕ(�) log εw + [1  − ϕ(�)] log εc (12)

and

(iii) the Maxwell approximation [19], i.e.,

�(�)
−1
=  �−1

c

�−1
w + 2�−1

c + 2ϕ(�)(�−1
w − �−1

c )

�−1
w + 2�−1

c − ϕ(�)(�−1
w − �−1

c )
(13)

ε(�) = εc
εw + 2εc + 2ϕ(�)(εw − εc)

εw + 2εc −  ϕ(�)(εw −  εc)
(14)

The results are shown in  Fig. 7.  Eqs. (9), (11) and (13) give rise to

much smoother resistivity profiles than does Eq.  (3). The �(0)/�(ı)

ratio is  close to 10 for the Brasher and Kingsbury formula, and below

2 for both the series combination and the Maxwell approximation,

in agreement with Hinderliter et  al. [11]. The permittivity profiles

computed according to Eqs. (10), (12) and (14)  are also significantly

smoother than that calculated according to  Eq. (3). The profiles cal­

culated according to  Eqs. (9)–(14) were used to  obtain the Nyquist

plots shown in Fig. 8a, together with a  plot corresponding to  a  sim­

ple RC  parallel combination with R  =  �cı, and C =  εcε0/ı. All plots

have an almost perfect semicircular shape, i.e., there is  no evidence

of a  CPE behavior. This result is  confirmed by  the logarithmic plots
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Fig. 6. Impedance plots with Rpore as a  parameter, in Bode coordinates (a) and (b)

and  Nyquist coordinates (c),  calculated according to Eq. (8) with �(0) =  0, �(ı) =  0.1,

and  
 = 5. To  facilitate the comparison of  the shape of  the diagrams, the impedance

is  normalized by  the polarization resistance Rp .

of Z” as a  function of frequency, shown in Fig. 8b. Owing to the mod­

erate variation of resistivity across the coating, the impedances are

comparable to that of a  coating that has uptaken no electrolyte,

and are more than 10 times larger than that shown in Fig. 4 for

the same ı and �(ı) value. Thus, the distributions resulting from

a series combination of the two media [11], described by Eqs. (9)

and (10); the EMT  formula proposed by Brasher and Kingsbury [7],

described by Eqs. (11) and (12); and the Maxwell approximation

[19], described by Eqs. (13)  and (14) are incompatible with the

observed CPE  impedance response.

In  the next two sections a  preliminary test of  the theory

described above is  presented.
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Fig. 7.  Resistivity (a) and permittivity (b) profiles calculated for �(0)  =  0, �(ı) =  0.1,

and 
 = 5, according to the equations indicated on  the figure.

3.  Experimental

The sol–gel coating was prepared by using a  polyaminoamide

(PAA), 3­glycidoxypropylethoxysilane (GLYEO), tetraethylortho­

silicate (TEOS), butanol and an  additional epoxy resin. The

compounds were introduced with a GLYEO/TEOS/PAA/Epoxy ratio

of  1:1:10:8. The complete chemical structures of  the various

components cannot be reported here because they  are part of

proprietary formulations. The sol–gel film did not contain any pig­

ments or fillers.

The coatings were deposited onto a  2024 T3  aluminum alloy

currently used in the aerospace industry. The specimens consisted

of 125 mm × 80  mm ×  1.6 mm plates machined from rolled plate.

Before painting, the samples were degreased in an  alkaline bath

at 60 ◦C (pH = 9) for 15 min, rinsed twice with distilled water,

then etched in an  acid bath at 52 ◦C for 10 min, and rinsed

again with distilled water. The liquid paints were applied by

air spraying and cured at 100 ◦C for 1  h.  The coating thick­

ness was measured at several locations from the observation

of  the cross­sections of  the samples by  SEM  and found to be

20  ±  1  mm.

A three­electrode electrochemical cell, filled with 0.5 M  NaCl,

was used in  electrochemical impedance measurements. A coated

specimen was used as  working electrode. A cylindrical Plexiglas

tube was assembled on top of  the coated sample (exposed surface

area of 24  cm2). This cell configuration (recessed system) allowed

elimination of  the frequency dispersion due to  current and poten­

tial distributions at the disk electrode [20]. A large platinum sheet

and a  saturated calomel electrode were used as  counter and ref­

erence electrodes, respectively. The electrochemical cell was kept

at room temperature and open to air. Electrochemical impedance

measurements were carried out  using a Biologic VSP apparatus.

The impedance diagrams were obtained under potentiostatic con­

ditions at the corrosion potential over a  frequency range of  60  kHz
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Fig. 8. Impedance plots, in Nyquist (a)  and log Z”  vs. log  f (b) coordinates, calculated

according to Eq. (7),  for the resistivity and permittivity profiles shown in Fig. 7. The

solid  line  is the coating impedance in the absence of  electrolyte uptake.

to 10 mHz with 6 points per decade, using a  20 mV peak­to­peak

sinusoidal potential.

The impedance data analysis was performed using a  non­

commercial software developed at the LISE CNRS, Paris, which

allowed regression of a model consisting of a  combination of  pas­

sive circuit elements and analytical expressions. This software did

not provide confidence intervals.

4. Results and discussion

The impedance of a 2024 T3 aluminum alloy/hybrid sol–gel

coating/0.5 M NaCl solution system was measured at the corro­

sion potential as  a function of the immersion time. As an  example,

the impedance recorded after 72 h is presented in Fig. 9  (points) in

Bode and Nyquist formats. The high­frequency loop was attributed

to the coating, and the low­frequency quasi­vertical straight line

was attributed to  an  oxide film present at the surface of  the alloy

[21,22]. The  experimental data were analyzed with reference to  a

model consisting of a series combination of  an  impedance described

by Eq. (8), corresponding to  the coating, and a  CPE, corresponding

to the oxide film.  An equivalent circuit for such a model is shown

in Fig. 1b  (all  circuit elements). The oxide resistance was assumed

to be very large, in agreement with the quasi­capacitive blocking

behavior observed at low frequency in all experiments, therefore,

no resistance was considered in parallel with the CPE associated

with the oxide layer shown in Fig. 1b. Such a  behavior suggests

that, for the immersion times explored in  the present work, the
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Fig. 9. Impedance plots recorded with 2024 aluminum alloy/hybrid sol–gel coating,

after  a  72­h immersion in 0.5 M NaCl solution. The experimental data (points) are

compared  with  the  regression results (solid line).

coating­oxide ensemble effectively protects the underlying metal

from corrosion, and circuit elements accounting for corrosion reac­

tions need not be considered. Due to the resistivity of  the electrolyte

(22 � cm) and the electrode size  (24 cm2), the electrolyte resistance

could be neglected.

In  the regression procedure, 
 ,  �(ı) and Rpore were the only

adjustable parameters for the coating; whereas, �w,  �c, εw and εc

were given fixed values (�w =  2.22 × 101 � cm, �c =  2  × 1011 � cm,



Table  1

Dependence of �(ı), 
 and Rpore on the duration of  the immersion of  the 2024 aluminum alloy/hybrid sol–gel coating sample in 0.5  M NaCl.

Immersion time in 0.5  M NaCl (h) �(ı) (dimensionless) 
 (dimensionless) Rpore (� cm2)

24 1.46 × 10−5 3.5 1.04 ×  106

48 2.24 × 10−5 3.4 3.12 × 105

72 3.21 × 10−5 3.1 2.11 × 105

168  1.16 × 10−4 3.0 5.15 × 104
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Fig. 10. Resistivity profiles in an electrolyte­penetrated hybrid sol–gel coating, cal­

culated according to Eqs. (2) and (3), with the best fitted 
 and �(�) values obtained

for  the three immersion times reported on the figure.

εw = 82 and εc =  8). The adjustable parameters for the oxide, Q

and ˛, are not discussed here as  they are not relevant to the

model presented above for the coating. The regression results are

shown in Fig. 9  as solid lines. The agreement with the experi­

mental data was good over the entire frequency range, both in

Nyquist and Bode coordinates. The �(ı) 
  and Rpore values mea­

sured for four immersion times are reported in Table 1.  As the

coating degradation proceeded, the electrolyte uptake became

progressively stronger, although it remained at low levels (�(ı)

just exceeded 1 × 10−4 after 168 h), and Rpore became smaller. In

Fig. 9, the low­frequency limit of the coating impedance is close

to Rpore, i.e., the pseudo­diameter of  the high­frequency loop may

be identified with the pore resistance as  for the classical Beau­

nier’s circuit [2], and, therefore, the high­frequency loop is almost

symmetrical with respect to the Z” maximum (compare with

Fig. 6c).

The �(�)–� dependence calculated with the best fitted 
 and

�(ı) values is  shown in  Fig. 10 for three different immersion times.

Sharp resistivity profiles were obtained, even for the small fit­

ted values of �(ı). The ε(�)–� dependence was also calculated;

however, the permittivity underwent only negligible variation

(between 8  and 8.009, for 168 h)  and, therefore, no plot is

shown.

The model did not fit as well for some other hybrid sol–gel

coatings with different formulations, tested in electrolytes less

aggressive than 0.5 M NaCl. Presumably, a more sophisticated inter­

pretation is  needed for those systems, and work is underway to

refine the model. The above results, however, provide a prelimi­

nary validation of the model proposed in  the present manuscript.

The results confirm the assumption that the value of  ε in the power­

law model can be considered as  a  constant parameter. The use  of the

power­law model shows that the water uptake through the coating

induces a CPE  behavior without significant variation of  the per­

mittivity. EIS  data relevant to other substrate/coating/electrolyte

systems are being examined and will be described in  a  following

paper.

5.  Conclusions

Observation of a  CPE behavior in the impedance of  a

substrate/coating/electrolyte system may be  explained by an inho­

mogeneous electrolyte uptake giving rise to a power­law �(�)–�
profile, if the local resistivity and permittivity values at each posi­

tion along the coating thickness, �(�) and ε(�), are  calculated by  an

EMT formula corresponding to  the parallel combination of  the coat­

ing  material and the electrolyte. Since the individual resistivities of

the two  media, �c and �w,  typically differ by  several orders of  mag­

nitude, the electrolyte uptake causes marked resistivity variations

across the coating. In contrast, the permittivity undergoes only a

mild variation since the individual permittivities, εc and εw,  differ

by a factor of about 10. These results allow the extension of  a  pre­

viously derived model [15,16], applied so far to passive oxides and

human skin [17], to  anti­corrosion coatings.

When experimental EIS data recorded with 2024 aluminum

alloy coated with hybrid sol–gel coatings, immersed in  aqueous

NaCl solution, were analyzed with reference to the model described

in the present work, good quality fitting was obtained using as

adjustable parameters for the coating only  
 , �(ı) and Rpore.  The

fitted �(ı) values were quite low (of the order of 10−4 or  lower),

but sufficient to  cause resistivity variations over at least 5 orders

of  magnitude (and virtually no variation of  permittivity). The coat­

ing degradation was caused by  the combined effect of  increasing

�(ı) and increasing the number and/or cross­section of the through

pores, witnessed by  the decreasing Rpore values.
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