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Structural study and phase transition investigation

in a simple synthesis of porous

architected-ZnO nanopowder
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A B S T R A C T

In this work, zinc oxide powder with a rectangular-shaped porous architecture, made of

numerous spherical nanometric particles,was obtained. A simple precipitation/decomposition

procedure was used comprising a zinc oxalate intermediate, obtained from zinc sulfate and

oxalic acid without any additives. Detailed studies on zinc oxalate dehydration, decomposition

and zinc oxide formation, were carried out using in-situ temperature X-ray diffraction and

thermogravimetric analysis. During the investigation, the temperature dependence of particle

sizes, lattice parameters and crystal structures of ZnC2O4·2H2O, ZnC2O4 and ZnO nanopowders

were analyzed from room temperature to 450 °C. Structural transitions were also discussed.

The structure and morphology of the as-prepared ZnO nanopowder were investigated by

electron microscopy and compared to the crystalline rectangular shape of ZnC2O4·2H2O.

The calcination temperature, counter ion and precipitate agent were found to be related to the

product's shape and diameter. Spherical ZnO nanoparticles with diameters of less than 20 nm

and a maximum specific surface of 53 m2/g were obtained using this method.
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1. Introduction

Zinc oxide (ZnO) has been attracting a lot of attention for its

various applications, such as semi-conductor devices, photo

catalysts, pigments in paints and photovoltaic uses [1–6]. The

well-knownproperties, suchas thewidedirect band-gap (3.3 eV),

large exciton binding energy (60 meV), low cost, environmental

friendly and abundance, make it a very interesting material. For

different applications, ZnO can be used in various forms and

morphologies [7–13]. Syntheses of powdered formZnOusingwet

chemistry methods have already been widely reported [14–20].

There are a lot of parameters during synthesis that can affect the

structure and microstructure of ZnOwhich are essential for their

performance [17–19]. Thermal decomposition of zinc oxalate

has been reported to produce porous and relatively high specific

surface ZnO [6] which is especially interesting for gas sensing,

photovoltaic or photocatalysis applications [21,22,12]. In the

particular case of dye sensitized solar cells (DSSC), ZnO was

reported as a good alternative of the conventional TiO2 semi-

conductor material for the first time in 1994 [23]. Since then, a

lot of works focused on the development of new DSSC nano-

structured photo-anodes made of ZnO porous nanostructures

with various morphologies (nanowire, nanosheet, branched-

nanostructure of multi-layers material, nanowire-nanoparticle

composite,…) have been reported [24,9,25–27] reaching anoverall

DSSC efficiency for more than 7% [28].

In the present work, the precipitation of ZnC2O4-based

precursor in hydro-alcoholic medium was carried out first,

followed by in-situ high temperature X-ray diffraction anal-

ysis of the precursor from 50 to 450 °C. Detailed structural and
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micro-structural studies were performed for each of the

crystalline structures obtained. Finally, ZnO nanopowder

with porous architecture was prepared through the obtention

and thermal decomposition of zinc oxalate di-hydrate and

anhydrous intermediates.

2. Experimental

2.1. Material Preparation

All the chemicals were of analytical purity grade and used

as received. The raw materials used were H2C2O4·2H2O and

ZnSO4·7H2O as sources of oxalate and zinc respectively.

A solution of 0.02 mol of oxalic acid in a mixture of 192 ml

of ethanol and 64 ml of water, was added dropwise into

128 ml of an equimolar solution of zinc salt in distilled water.

After stirring for 1 h at room temperature, a white precipitate

was obtained and separated by centrifugation and washed

several times with distilled water by centrifugation again.

This precipitate was dried at 80 °C for several hours to attain

the ZnC2O4 · 2H2O powder precursor. A detailed study of the

thermal behavior of ZnC2O4∙2H2O was performed up to 450 °C,

which is a temperature compromise in DSSC application

between obtaining good electronic contacts and maintaining

high porosity while respecting the conducting glass support

stability [29]. Finally, the characteristics of the zinc oxide

obtained were investigated after cooling down to room

temperature.

2.2. Material Characterization

The structural and microstructural studies of the precursors

and products were carried out using the following equipments

and techniques. One point Brunauer–Emmett–Teller (BET)

measurement was obtained with N2 as absorption gas at

77 K by using a Micromeritics FlowSorb II 2300 apparatus.

Microstructural images were produced from scanning elec-

tron microscopy (SEM) using a Field Emission Gun SEM JEOL

JEM 6700F. Conventional and temperature dependent powder

X-ray diffraction (XRD) analyses were performed by using

Bruker D4 Endeavor and D8 Advance diffractometers respec-

tively, both equipped with a 1D LynxEye detector (Cu Kα).

For temperature dependent XRD, the sample was heated in

an Anton Paar HTK 1200 N heating chamber with a 30 °C/min

heating rate. XRD patterns were recorded every 25 °C from

room temperature to 450C° with a 20 min counting time.

Rietveld refinements of the XRD patterns were performed

using the FullProf/Win PlotR software package, in which

the background was estimated by linear interpolation, and

the peak shape was modeled by a pseudo-Voigt function.

The observed profile parameters extracted from the Rietveld

analysis (FWHMobs), coupled with the instrumental broad-

ening (FWHMinstr) determined from a standard reference

material (α-Al2O3), were used to calculate the mean crystallite

apparent size (ε), by applying the Williamson–Hall plot

((FWHMobs
− FWHMinstr)cosθ = f(sinθ)) [30]. Thermogravimetric

analysis (TGA) was performed with a SETARAM DT-TGA 92B

thermo-balance under air atmosphere with a heating rate of

3 °C/min.

3. Results and Discussion

Fig. 1 shows the successive characteristic evolution of the XRD

patterns (2θ from 17.5° to 40°) recorded upon heating, from 50

to 450 °C for every increment of 25 °C, during the decom-

position of the oxalate precursor. The corresponding TGA

plot of this precursor is shown in Fig. 2. Both TGA and XRD

analyses show that the zinc oxalate dihydrate precursor

(ZnC2O4·2H2O) decomposes first to anhydrous zinc oxalate

(ZnC2O4) at ~125 °C and then to zinc oxide (ZnO) at ~355 °C

according to the following reactions:

ZnC2O4d2H2OðsÞ→ZnC2O4ðsÞ þ 2H2OðgÞ ð1Þ

ZnC2O4ðsÞ→ZnOðsÞ þ CO2ðgÞ þ COðgÞ: ð2Þ

The two experimental TGA weight losses of 18.5% and

37.8% correspond closely to the calculated values (19.0% and

38.0%) based on reactions (1) and (2).

Fig. 1 – Temperature XRD patterns in the 50 to 450 °C temperature range for zinc oxalate precursor.



3.1. Zinc Oxalate Dihydrate (ZnC2O4·2H2O)

At room temperature, the oxalate precursor which was directly

obtained after precipitation corresponds to the pure metastable

orthorhombic β form of the zinc oxalate dihydrate (β-

ZnC2O4·2H2O). As no doublet peak located at 2θ / λCuKα ~ 18.74°

is clearly visible, there is no particular reason to index the XRD

pattern according to the monoclinic α form (humboldtine). This

result is in good agreement with previous reports of metal

oxalate dihydrate synthesized in a hydro-alcoholic solution

[31,32]. The refined cell parameters determined for this zinc

oxalate dihydrate phase in orthorhombic Cccm space group are

reported in Table 1 (ao, bo and co) at 50, 75 and 100 °C. In this

temperature range, the cell parameters are almost constant, the

calculated X-ray density is equal to ρ = 2.50 g/cm3 and the mean

crystallite size is approximately ε ~ 100 nm. In the structure that

is represented in a 3D perspective view in Fig. 3a, the zinc cation

is six-folded coordinated: four oxygen anions that belong to the

oxalate groups form -C2O4–Zn–C2O4–Zn- chains along the bo axis

and twoapical oxygen anions that belong to thewatermolecules

located along the ao axis.

3.2. Zinc Oxalate Anhydrous (ZnC2O4)

At 125 °C, the dehydration induces a structure reconfiguration

toward anhydrous zinc oxalate ZnC2O4, isostructural with

β-MC2O4 where M = {Fe, Co, Ni, Zn, Cu,…} [33]. The refined cell

parameters in monoclinic P21/n space group (am, bm, cm and β)

Fig. 2 – TGA/DTG curves in the 50 to 450 °C temperature range for zinc oxalate precursor.

Table 1 – Refined unit cell parameters, X-ray densities and mean crystallite apparent sizes of ZnC2O4·2H2O, ZnC2O4 and ZnO
materials in the 50 to 450 °C temperature range.

T
(°C)

Compound Space group a
(4)

b
(4)

c
(4)

β

(°)
V

(43)
ρ

(g/cm3)
ε

(nm)

50 ZnC2O4 · 2H2O C ccm 11.863 (3) 5.395(1) 15.718(5) 1006.5 (8) 2.500 (2) 120

75 ZnC2O4 · 2H2O C ccm 11.875 (2) 5.3910 (7) 15.720 (4) 1006.8 (6) 2.499 (2) 115

100 ZnC2O4 · 2H2O C ccm 11.910 (2) 5.3886 (8) 15.734 (4) 1009.9 (6) 2.492 (2) 110

125 ZnC2O4 P 21/n 6.042 (5) 5.24 (1) 5.253 (4) 116.0 (1) 149.5 (7) 3.41 (2) 15

150 ZnC2O4 P 21/n 6.025 (9) 5.28 (1) 5.255 (4) 115.60 (7) 151.2 (6) 3.37 (1) 17

175 ZnC2O4 P 21/n 6.013 (5) 5.297 (6) 5.246 (3) 115.20 (4) 151.3 (4) 3.37 (1) 17

200 ZnC2O4 P 21/n 6.014 (6) 5.302 (7) 5.245 (3) 115.13 (4) 151.4 (4) 3.36 (1) 16

225 ZnC2O4 P 21/n 6.016 (6) 5.294 (7) 5.241 (3) 115.21 (4) 150.9 (4) 3.37 (1) 17

250 ZnC2O4 P 21/n 6.024 (6) 5.319 (7) 5.245 (3) 115.18 (4) 151.9 (4) 3.35 (1) 17

275 ZnC2O4 P 21/n 6.030 (6) 5.313 (7) 5.237 (3) 115.23 (5) 151.2 (4) 3.37 (1) 17

300 ZnC2O4 P 21/n 6.040 (6) 5.329 (6) 5.242 (3) 115.19 (4) 152.2 (4) 3.35 (1) 18

325 ZnC2O4 P 21/n 6.051 (6) 5.337 (8) 5.249 (3) 115.13 (4) 153.3 (5) 3.32 (1) 18

350 ZnO P 63/mmc 3.253 (9) 5.22 (1) 47.8 (4) 5.65 (5) 10

375 ZnO P 63/mmc 3.257 (5) 5.223 (7) 48.0 (2) 5.63 (3) 12

400 ZnO P 63/mmc 3.259 (4) 5.217 (6) 47.9 (2) 5.64 (2) 15

425 ZnO P 63/mmc 3.259 (4) 5.222 (6) 48.0 (2) 5.63 (2) 19

450 ZnO P 63/mmc 3.260 (4) 5.223 (6) 48.1 (2) 5.62 (2) 20

50 ZnO P 63/mmc 3.250 (3) 5.209 (5) 47.6 (1) 5.67 (2) 20

50 ZnO P 63/mmc 3.250 (3) 5.209 (5) 47.6 (1) 5.67 (2) 20

450 ZnO P 63/mmc 3.260 (3) 5.222 (4) 48.0 (2) 5.62 (2) 22

50 ZnO P 63/mmc 3.250 (3) 5.209 (4) 47.6 (2) 5.67 (2) 22



are listed in Table 1. In this structure, every zinc atom is

surrounded by six oxygen atoms, forming highly distorted

octahedra which are connected to one another through

corners. These six oxygen atoms all belong to oxalate groups.

The first four oxygenanions are located at two similar distances

from the central zinc atom (d(Zn\O)1 = 1.98 4 and d(Zn\O)1′ =

2.01 4 at 125 °C). They all form -C2O4\Zn\C2O4\Zn- chains

along the cm axis (Fig. 3b). These chains with d(Zn\Zn) = cm =

5.253(4)4 in ZnC2O4 at 125 °C, correspond to the chains

that already exist in ZnC2O4·2H2O, with slightly lower zinc

to zinc distances (d(Zn\Zn) = bo = 5.3886(8)4 in ZnC2O4·2H2O

at 100 °C), due to the disappearance of the weak hydrogen

bonds. The dehydration simultaneously induces a tilt of

the -C2O4\Zn\C2O4\Zn- chains located at x = ¼ around the

bo axis of the ZnC2O4·2H2O structure. This allows one to

complete the coordination of the distorted ZnO6 octahedron

in the anhydrous structure, with the two last oxygen anions

located at d(Zn–O)2 =2.36 4. These two sets of d(Zn\O) are

confirmed in Raman spectroscopy by characteristics peaks

located at 228 and 267 cm−1 (Fig. 4), which are attributed to

metal–oxygen stretching vibrations and are in good agreement

with previous reports [34].

In the 125 to 325 °C temperature range, am and cm parameters

are quite stable (+0.16 and −0.08% respectively), whereas the bm
parameter significantly increases (+1.79%). The calculated X-ray

density then decreases from ρ = 3.41 g/cm3 to ρ = 3.32 g/cm3 in

this temperature range. The mean crystallite size is stable at

15 < ε < 20 nm. The anisotropy of the thermal dilatation leads to

an increase in the distortion of the ZnO6 octahedron. The Zn toO

bond length (d(Zn\O)2), which was already large in comparison

to the theoretical value (d(Zn2+
VI\O)th = 2.14 4 [35]), continues

to increase and tends to weaken the Zn\O bond strength.

At T ~ 350 °C, the structure is unstable and hence the process

of structure-reconfiguration consists of the following sequence

of consecutive bond breaking: the two longest Zn\O bonds,

the four other Zn\O bonds, then the C\C bonds which results

to the generation of a free CO2 molecule. This pattern is

in accordance with first principle calculations, performed by

Kolezynski et al. [36], of band structure, density of states,

electron density topology, bond orders and valences.

3.3. Zinc Oxide (ZnO)

Above 350 °C, pure zinc oxide with a wurtzite structure is

obtained. In this structure, the zinc atoms are in tetrahedral

coordination. The refined cell parameters inhexagonal P63/mmc

space group (ah and ch) are listed in Table 1. From 350 °C to

400 °C, as shown in Table 1, the lattice parameters vary rapidly

due to the process of structure reconfiguration from the anhy-

drous oxalate structure to ZnO. Above 400 °C, ah and ch converge

to reproducible values obtained for ZnO upon further cooling

and heating treatments with ah = 3.260(4)4 and ch = 5.223(6)4 at

T = 450 °C. The calculated thermal expansion coefficients αa =

7.7 10−6 K−1 and αc = 6.7 10−6 K−1 in the RT-450 °C temperature

range defined by αa = (1 / a)(da / dT) or αc = (1 / c)(dc / dT) and

the ratio, ch/ah = 1.60, at 450 °C are in good accordance with

literature values [37]. In the 350–450 °C temperature range,while

350 °C is the lowest temperature at which ZnO could be

obtained, the mean crystallite size increases from ε = 10 nm to

ε = 20 nm with no crystallite shape anisotropy as previously

reported by Audebrand et al. [38].

At room temperature, the lattice parameters of the so-

obtained ZnO material are ah = 3.2503(2) 4 and ch = 5.2091(3) 4

with a calculated X-ray density of ρ = 5.67 g/cm3 (Table 1).

The corresponding SEM images with those of the ZnC2O4.2H2O

precursor are presented in Fig. 5. The ZnO porous architecture,

confined in a sub-micronic rectangular shape (Fig. 5b), consists of

a large number of homogeneous nanometric spherical zinc oxide

particles (Fig. 5c). Its specific surface, SBET = 34 m2/g, corresponds

to an estimated particle size of DBET = 31 nm defined by DBET =

6 × 104 / ρ×SBET with ρ = 5.67 g/cm3 (Table 1). This particle size is

Fig. 3 – Schematic representations in perspective 3D view of the a) ZnC2O4·2H2O and b) ZnC2O4 zinc oxalates structures.

Fig. 4 – Raman spectra of the 100–700 cm–1 region of ZnC2O4.



consistent with XRD and SEM measurementswithDXRD = 27 nm

(DXRD = 4/3 ε because the particles are spherical) and DSEM =

20–40 nm respectively.

The particle size of the ZnO nanopowder in this porous

architecture is temperature dependent due to the merging

of the smaller particles into larger ones through solid state

diffusion [39]. For ZnO prepared by the same process but

decomposed only at 350 °C, the particle size is approximately

50% smaller than that of 450 °C with DBET = 20 nm (SBET =

53 m2/g) and DXRD = 13 nm, whereas at 500 °C, the particle

size increases up to DXRD = 48 nm. The particle size of the ZnO

nanopowder in this porous architecture is also counter ion

dependent. With the same synthesizing process by using

nitrate (Zn(NO3)2) instead of sulfate as the zinc source. The

ZnO particle size obtained at 450 °C is DBET = 71 nm, i.e. twice

of that from the ZnSO4 precursor. This has also been

corroborated by Raj et al., in which ZnO nanopowder with

similar architecture but larger crystalline and particle sizes

were obtained from zinc chloride salt and oxalic acid at 500 °C.

This porous ZnO architecture is precursor dependent

as demonstrated by the SEM in Fig. 5a. The micrograph

of the oxalate precursor exhibits an identical rectangular

shape. During the calcination process, the initial pore in the

precursor is formed by the release of the two water molecules

(Reaction (1)). Hence, the pore volume further increased for

T ≥ 350 °C with the subsequent release of CO2 and CO from

the precursor (Reaction (2)), the simultaneous nucleation and

growth of ZnO primary particles. This is in good agreement

with the work of Jia et al. [11].

4. Conclusion

ZnO nanopowders with porous architecture were synthesized

by a simple and inexpensive method. This method consists of

1) precipitation of metastable orthorhombic zinc oxalate dihy-

drate (β-ZnC2O4·2H2O) in a hydro alcoholic solution from zinc

salt and oxalic acid at room temperature, 2) its dehydration into

monoclinic anhydrous zinc oxalate (β-ZnC2O4) at 125 °C and

3) decomposition into zinc oxide nanopowder at 350 °C. Detailed

crystalline parameters for each of the specieswere analyzed and

the phase transition mechanisms between different structures

were shown in detail by high temperature XRD coupled with

TGA analysis in the temperature range of RT-450 °C. From the

XRD, SEM and BET analysis, it was confirmed that the resultant

ZnO porous architecture consists of a large number of

homogeneous nanometric spherical zinc oxide particles with a

pure hexagonal wurtzite structure, confined in a sub-micronic

rectangular shape. The particle size of the ZnO nanopowder

has been proven to be temperature and counter ion dependent.

In this synthesis, ~13 to 20 nm spherical ZnO particles with

a 53 m2/g specific surface could be easily obtained, rendering

it a very interesting candidate as a photo catalyst and for

photovoltaic application.
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