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Abstract

This paper reports  microstructural  studies  of  single-phase Mn3−xCoxO4 (0.98  ≤  x  ≤ 2.93) spinel ceramics using transmission electron  microscopy

(TEM)  and  energy  dispersive  X-ray  spectroscopy  (EDX).  These ceramics  were  obtained by  conventional  sintering or by spark  plasma sintering

(SPS)  of powders  prepared  by  thermal  decomposition  of coprecipitated  oxalate  precursors.  For x  <  1.78 or  x  ≥  1.78, the  monophasic  ceramics

correspond  respectively  to quadratic  (Q)  or  cubic  (C) spinel  structure.  The ferroelastic  character  of  the structural  phase  transition  from  C to Q

is  highlighted  by  specific microstructural features.  The effect  of chemical  composition  and  heat  treatment conditions  on the  microstructure  and

essentially  on the  presence and the characteristics  of  twins were  investigated. The coherent  twin  interfaces are parallel to  (1  1 2)  planes in  the  Q

cell.  Twins  can correspond  to: tweeds, single  lamellae  (widths: 5–306  nm) arranged  parallel to  each other,  large  lamellae  (widths:  69–928  nm)

internally  twinned  and  sometimes arranged in cyclic forms  (triangular shapes).
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1.  Introduction

Manganites  have  been of great interest  to materials

researchers since the  1950s.1–4 Indeed, in addition  to their

wide range of chemical  compositions and their broad  variety of

structural phases (with a high number  of  possible cation distribu-

tions), they can also  exhibit  a large  range of physical,  chemical,

electric, magnetic  properties, etc.

Mixed-valence transition-metal  manganites  with  a  spinel

structure Mn3−xMexO4 (Me  =  Co,  Ni, Fe, Cu,  Zn,  Cr and Zr) are

known as  basic materials  used  to manufacture  thermistors  with

Negative Temperature Coefficient (NTC).5–9 This specificity

makes them highly  attractive for  several  technology domains

(microelectronics, optoelectronics,  etc.) and  they are  thus  used

in many  industrial applications10–17: temperature  sensors, time

delay elements,  infrared detectors,  voltage  regulators,  etc.

Apart from  the  numerous applications  arising  from spinel

manganites, it is  important to note  that  these materials  are also

attracting considerable interest in fundamental  research  due to
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the complexity  of the relationships  that exist  between,  firstly,

the chemical  methods  used to  prepare powders  and ceramics,

secondly, the structures  (and  in particular  cation  distribution),

microstructures (density,  grain  size,  grain  morphology, presence

of several  phases, presence  of  defects:  precipitates, twins, etc.)

of the obtained  products and  thirdly,  their many physical  and

chemical properties:  electric,  magnetic, etc. Judicious control

of these  relationships could provide  new  ways to  obtain spinel

manganites with controlled  properties.

The microstructure  of spinel manganite  ceramics  has  been

the subject of  many  studies,7–9,18–33 many of  which were

performed in our  laboratory.  In  most cases,  these  mangan-

ites are  obtained by sintering powders  prepared either  by

hydrothermal methods (thermal  decomposition  of precursors

produced by  coprecipitation) or  by traditional  methods and cor-

respond to binary systems:  Mn–Ni–O,  Mn–Fe–O,  Mn–Zn–O,

etc. to  ternary  systems:  Mn–Ni–Co–O,  Mn–Ni–Cu–O,

Mn–Ni–Zn–O, Mn–Ni–Zr–O, Mn–Ni–Fe–O, Mn–Ni–In–O,

etc. and systems  with  four  or  more  cations:  Mn–Ni–Co–Al–O,

Mn–Ni–Co–Zn–O, Mn–Ni–Fe–Cr–O,  Mn–Ni–Co–Cu–Si–O,

etc.

Amongst these studies,  we  note  that  the presence  of defects

such as precipitates  or twins, in these  manganites,  and also  the
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characteristics  of the observed twins, depend  on  the  chemical

composition of the  samples and their  heat  treatment  conditions.

Additionally, in some  cases, these  defects  can  play  an  important

role in controlling the electrical  properties of  manganites.

Very few  studies34–41 had been  performed  on the Mn–Co–O

system before the  works conducted  in  our  laboratory.  They have

involved more  detailed works on  films  and  powders than  on

ceramics. The  recent  works on Mn3−xCoxO4 ceramics done

in our  laboratory  and which were the  subject of  several  pub-

lications, have focused  on structures (identification  of phases

and cation  distributions),  along with  magnetic  and electrical

properties.42–46 We note  that  the electrical  properties studies42,46

of single-phase  Mn3−xCoxO4 spinel  ceramics,  obtained  by con-

ventional sintering  or  by SPS,  had  shown that these  ceramics

are semiconductors  and possess interesting  electrical  character-

istics making  them attractive materials  for  industrial  applications

as NTC  thermistors.  Also,  these  studies showed  that for  mea-

surements made at  25 ◦C, the minimum resistivity (ρ25◦C)

value is of about  387 �.cm for  x  =  1.78 and this  ρ25◦C value

increases in a  much more intense  manner  on the  zone  where

x < 1.78  (particularly for  0.98  ≥x  >  1.54) then on  the  zone  where

x > 1.78  (for  x  =  0.98,  ρ25◦C =  49,552  �  cm  and for x = 2.93,

ρ25◦C =  5020  � cm). Electrical  conduction could  take place  by

the polarons  hopping  between  cations.

To our  knowledge,  the  work reported in  this  article  corre-

sponds to the first  microstructural  study  of cobalt manganese

oxide ceramics,  Mn3−xCoxO4.

2.  Experimental

2.1. Sample  preparation

As has  been  described  in detail by H.  Bordeneuve  et al.42,

oxalic precursors,  Mn1 aCoaC2O4·nH2O,  were  first  obtained

by the  coprecipitation  of  an aqueous solution  of ammonium

oxalate and a mixture  of manganese  and cobalt nitrates in pro-

portions varying according to  the chemical  composition  of  the

final product. Thus, the  resulting  solution  was  aged for  30 min,

then filtered, washed  with  water and dried  in  air at  90 ◦C.  Oxide

powders were  produced by thermal  decomposition  of  coprecip-

itated oxalate precursors  (in air  at  800 ◦C). Pellets  of  6  mm  in

diameter were  obtained  by  pressing oxide  powders  at 500 MPa.

After that,  two types  of  sintering  were used: conventional sinter-

ing and Spark  Plasma  Sintering (SPS).  As  has been  previously

reported in  detail,42,47 producing single-phase  cobalt manganese

oxide ceramics  is difficult  to achieve  and requires  an adaptation

of the sintering  conditions  according to  the  desired  chemical

composition of  the  sample.

For x < 1.78  and  taking into  account the  phase diagram of  the

Mn3O4–Co3O4 system  (reported  in previous  works42,48),  single-

phase ceramic  preparation  is restricted  by the many  structural

transformations taking  place  at  various temperatures.  Thus, as

has been  previously  described,42,47 the  sintering process must be

carried out  at  high  temperature (between  1160 ◦C  and 1280 ◦C

in air, for  the  samples  which are  the  object  of  this study) in  order

to be  placed in  the  zone  of the  single cubic (C)  spinel  phase

and to  give  the  ceramic  sufficient  densification.  Additionally,

the  samples must be  quenched  to avoid obtaining  two-phase

samples. In fact, when  they have  been  cooled  at  different  rates

(i.e. the  samples have not been quenched),  the  obtained ceramics

were biphasic.  The temperature  of quenching  could  be  a  little

lower than the  sintering temperature  (but  still in the domain

of the single C  phase)  to  avoid  cracking the  samples.  So,  for

x <  1.78, quadratic  (Q) single-phase ceramics  were successfully

produced under  the  sintering conditions  reported  in Table 2.

For samples  corresponding  to  x  =  1.54  and  for  which  the  C

spinel phase exists  at  lower temperatures  than  for  x <  1.54  (as

has been described  previously),42,47 the SPS  method has also

been used  (Table  2) in  addition  to  conventional  sintering.

For x  ≥  1.78, the preparation  of single-phase ceramics  is

restricted by the fact  that the reduction of the  C spinel  phase

occurs at lower  temperatures  than  in the domain that corresponds

to x  < 1.78, making it  difficult  to  obtain  single-phase  ceramics

with high  densities by conventional  sintering.42,47 So, in  this

case, there are  two  possibilities to  conduct  the  sintering  of  the

samples:

- conventional  sintering  with  a sintering temperature  higher

than the sample  reduction  temperature  but with a cooling  rate

low enough  to reoxidize  the  sample.

- SPS sintering which allowing  us  to decrease  the  optimum

sintering temperature compared  to  the  conventional method.

These two possibilities  have  proven  to be  valid  for x =  1.78,

but, as the x value increases,  the  reoxidation  of  the  samples

becomes more  difficult with  the conventional  method.  So,  for

x >  1.78, only  the SPS  sintering has  led to  us,  obtaining C  single-

phase ceramics  with  high  densities.42,47 All  sintering conditions

are reported in  Table 2.

For SPS  sintering,  the  apparatus used was a Sumitomo  2080

(PNF2 CNRS  platform available  at the  University  of Toulouse,

France). The  oxide  powders were  pre-compacted,  then placed  in

a graphite  die and heated under vacuum  at  temperatures  between

700 and 750 ◦C,  depending  on sample  composition and under a

pressure of  50 MPa. The  pressure was  maintained  constant  until

the end of the dwell  time at  700  or 750 ◦C. After  that, the  pressure

was removed, and  the  sample was  cooled  to  room  temperature

by shutting  down the power supply.  The  resulting  samples  were

polished to  remove  the (Co,Mn)O  thin  layer deposited on  surface

samples during  sintering (as has  been described  previously).42,47

The  densification  values46 of obtained  samples were between

93% and 94%  for  samples  subject  to conventional  sintering,  and

between 95%  and 97% for  those  sintered  by  SPS (Table  1).

2.2. Sample characterization

A Brucker  D4 powder diffractometer  was used  to  determine

sample X-ray diffraction (XRD)  patterns. The diffractome-

ter operated with an emitting source of Cu (Ka1,a2

mean  = 1.5418 Å).

We  noted that the ceramic  samples  sintered  by SPS,  along

with those  sintered  by conventional  method,  but with  low cobalt

contents, belong  to brittle materials  (like  glass) and hence,

the preparation  of these  samples for transmission electron



Table 1

Sintering conditions, space group and cell parameters determined by XRD42,47 of Mn3 xCoxO4 ceramics. The relative density46 (dR), average grain size (Dav) and

cell deformation (cell def) are also reported.

x Sintering method dR (%) Phase Dav (mm) a′ (nm) c (nm) c/a′ Cell defe (%)

0.98 conva 94 Qc 22 0.80956 (3) 0.92052 (4) 1.13706 (9) 13.7

1.27 conv 93 Q 13.5 0.81163 (5) 0.89743 (7) 1.1057 (2) 10.6

1.54 conv 93 Q 17.3 0.82258 (3) 0.85998 (4) 1.04547 (9) 4.6

1.54 SPSb 95 Q 1.00 0.82250 (2) 0.86020 (4) 1.04584 (7) 4.6

1.66 conv 94 Q 12.0 0.82481 (4) 0.85081 (4) 1.03152 (9) 3.2

1.78 conv 94 Cd 10.0 0.83183 (4) 1

1.78 SPS 95 C  0.67 0.83130  (1) 1

1.99 SPS 95 C  0.56 0.82760  (9) 1

2.22 SPS 97 C  0.44 0.82211 (3) 1

2.93 SPS 96 C  0.34 0.80995 (7) 1

a conv: conventional method.
b SPS: Spark plasma sintering.
c Q: quadratic with the space group I41/amd.
d C: cubic with the space group Fd-3m.
e Cell def (%) = (c/a′ − 1) × 100.

microscopy (TEM)  observations requires  a lot  of ability  and

resourcefulness. The  method  used  for TEM  sample  preparation

is as follows:  a diamond saw (ESCIL  3032-4)  was  used to  obtain

a sample block  from each pellet, which was then  placed  inside

a brass  tube  (of  fine diameter ∼3 mm) and bound with  an  epoxy

resin (Gatan  G1). The resin was polymerized at  50 ◦C overnight,

then 500 mm  thick discs were collected  by slicing  the  tube

using the  same diamond saw. To make each  sample  electron-

transparent, i.e.,  to reduce  its  thickness to approximately  100 nm,

each sample was  mechanically  polished  (using ESCIL: ESC

300 GTL),  then  concave  dimple  polished  (with  a EA-Fishione

– model  2000 – polishing  liquid:  solution  with  diamond in

suspension) and  finally ion beam-thinned (using  GATAN  PIPS).

The ceramic  samples  were observed  using a JEOL  JEM 2010

electron microscope (200  kV  – emitter:  single crystal LaB6

tip –  maximum  resolution: 0.23  nm point–point  and 0.14 nm

line–line). The chemical  composition  of each  sample  was ana-

lyzed both  qualitatively  and quantitatively  (simultaneously  with

TEM observations)  by using a Tracor Voyager  Energy  Disper-

sive X-ray analyzer  (EDX). Probe size  may  be  reduced  to  7 nm.

For each  sample,  granulometric  analyses  and twin lamel-

lar thickness  of  TEM  images  were performed using  imageJ

software.49

3. Results

As is reported in Table  1,  all obtained samples  correspond to

C spinel  structure  (Fd-3m space group)  for x ≥ 1.78  and to  Q

spinel structure  (I41/amd  space  group)  for x <  1.78. To  facilitate

the comparison  between Q  and  C  spinel cells,  the  Q  cell was

converted to a  bigger  unit  cell with  a′ = a
√

2  and c′ = c and the

c/a′ deformation  was evaluated for each  sample.

3.1. Grain  sizes  (GSs)

Before describing  the  GS of  ceramic samples,  we  recall  that

the GS of initial  powders,47 for  which 0.98 ≤ x  ≤ 2.93, present a

relatively wide  GS  distribution  and vary  as follows:  GSs  are  of

the order of  a few hundred  nm  for  x =  0.98. They  then  increase

with increasing  x from  0.98  to 1.27,  where they reach a  maximum

(without exceeding  a  maximum  GS  value  of about  600 nm).

They then decrease  as x varies  from 1.27  to 2.72, thus reaching

values close  to  a few tens  of  nm.  From  this latter  value  of x,

GS values  once  more increase  up to  x = 2.93 and become  of the

order of  a few hundred  nm.

3.1.1. Samples  with  conventional  sintering

(0.98 ≤  x  ≤  1.78)

TEM  observations  of the  ceramic  samples  reveal  that the

grains possess polyhedral  shapes and are  mostly equiaxed.  Each

sample presents  a  wide  dispersion  of GSs. Minimum  GS is

about few microns  (1– 4  mm)  for all samples  but maximum  GS

is respectively 40 mm,  25  mm,  33 mm and  19  mm  for x =  0.98,

x =  1.27, 1.54  and 1.78,  according to  the  sintering conditions

and the  GS of  the  initial powders.  The  average GSs (Dav)  of

these ceramic  samples  are reported in Table 1.

3.1.2. Samples  with  SPS  sintering  (1.54 ≤  x ≤  2.93)

These  samples  also  contain  grains  with  polyhedral shapes

and which are  mostly  equiaxed.  GSs  are  polydispersed and

very small compared to  those  of samples  obtained by  conven-

tional sintering.  They  vary between  300  nm  and 1.7 mm for

x =  1.54 and  decrease  systematically  with increasing  x value,

i.e., with increasing  Co  content. Thus, the  minimum  and max-

imum GS  values are  respectively  135–1210  nm,  103–1016 nm,

95–781 nm,  and  76–611  nm  for x  = 1.78, x = 1.99, x =  2.22  and

x =  2.93. The GS variation  of the  final samples  is due  to changes

in sintering conditions  and also  in the GSs  of the initial powders.

The Dav values  of these  ceramics  are  reported in  Table  1.

3.2.  Defects

Samples  with  x < 1.78  show  grains with  high  densities of

two-dimensional structural  defects.  Depending on  the  concerned

sample, these  latter correspond  to  some  of  the following types

of defects:



Fig. 1. Bright field TEM image of a single quadratic phase Mn3−xCoxO4 ceramic

sample  for x = 1.27 showing a triple junction and the intense presence in  each

grain of large lamellae (LIT) which are internally twinned (i.e. containing fine

lamellae (l)).

- twins,  in  the form  of  lamellae (L) parallel  to each  other  (each

lamella corresponds  to a single atomic domain).

- large lamellae (LIT)  which  are  internally twinned  (i.e.,  con-

taining fine  lamellae  (l)).

- tweeds  (very  fine  lamellae  arranged in  two mutually  perpen-

dicular directions).

3.2.1. Monophasic samples  with  Q structure

A single  Q phase was obtained  for  samples  with  x <  1.78  that

were sintered  by  the  conventional  method or  by  SPS sintering.

The lattice parameters and the c/a′ deformation  of these sam-

ples are  reported  in  Table  1. Quantitative  chemical  analysis  by

EDX had  shown  that each of  these samples  is homogeneous.

The experimental  values  of x  are reported in Table 2. They  fit

well with  the expected  values  of x corresponding  to  theoretical

chemical compositions.

- samples  with  0.98  ≤  x  <  1.54:  These samples  contain almost

LIT lamellae  (Figs.  1 and 2)  and  are  sometimes  arranged in

cyclic forms corresponding  to triangles (Fig. 3).  To  our  knowl-

edge, this triangle arrangement  shape  of LIT, corresponds to

Fig. 2. Bright field TEM image of a single quadratic phase Mn3−xCoxO4 ceramic

sample  for x = 0.98 showing that the lamellae (LIT) are much larger than those

of  ceramic sample with x = 1.27.

Fig. 3. Bright field TEM image of a  single quadratic phase Mn3−xCoxO4 ceramic

sample  for x = 0.98 showing LIT lamellae arranged in a cyclic form correspond-

ing  to a  triangle observed for the first time in  manganites.  This arrangement

could be explained by the existence of a  3-fold symmetry axis in the C phase

(high-temperature phase) with space group Fd-3m.

a type  of  arrangement  observed  for  the first  time in mangan-

ites. This  arrangement  could  be explained  by the existence

of a 3-fold symmetry axis  in the  C  phase  (high-temperature

phase) with  space group  Fd-3m. The  widths  of LIT and also

the widths  of the  l fine  lamellae (inside  LIT)  are reported in

Table 2.  The  maximum  value of  LIT width is greatly decreased

with increasing  x value  from 0.98  to  1.27.

- sample with  x =  1.54  sintered  by conventional  method:  This

sample contains  only approximately  L  lamellae (Fig. 4).  The

forms of  these  lamellae  correspond to either  right-angled  twins

(i.e., domains with practically right-angled  twin walls)  or

needle-shaped twins  (i.e.,  the trajectories  of the  twin  walls

are like needles)  (Fig. 5).  This is quite  typical  for a ferroelas-

tic transition.50–53 The widths of these  lamellae  are  reported

in Table  2.

-  sample with  x =  1.54 sintered  by SPS: This sample contains

only L lamellae  (Fig. 6). The  lamella widths  are  reported in

Table 2 and are much finer  than  those  of the  sample sintered

by the conventional  method. The  lattice parameters and the

c/a′ deformation  are  almost the  same as those  obtained with

conventional sintering for x = 1.54.  Also, the type  of structural

defects does  not change and corresponds to  L lamellae.  But the

SPS sintering  generated a significant  decrease  in GS  compared

to conventional  sintering, which could be the  cause  of the  drop

in lamella widths,  as  was reported  in the  literature  concerning

the effect  of GS  on the widths of twin  lamellae.54–57



Table 2

Preparation conditions, structure and microstructural defects for monophasic ceramics. The theoretical (theor.) values of x  (Co content in samples) and the experimental

ones determined by energy dispersive X-ray analysis (EDX), are also reported.

x (theor. value) Sintering method-sintering

temperature (◦C)

Cooling rate Phase Twin types Lamella widths

min–max (nm)

x value by

EDX

0.98 conva-1280 120 ◦C/h and air-quenched from T = 900 ◦C Qc LIT
e 77–928 0.95(3)

lf 3–13

1.27  conv-1180 120 ◦C/h and air-quenched from T = 800 ◦C Q LIT 69–409 1.25(5)

l  3–26

1.54  conv-1180 air-quenched from T = 1180 ◦C Q Lg 12–306 1.54(3)

1.54 SPSb-750 cut-off of the furnace Q  L 5–45 1.55(3)

1.66  conv-1160 120 ◦C/h and air-quenched from T = 900 ◦C Q Th 2–14 1.64(3)

1.78 conv-1160 10 ◦C/h to 400 ◦C and 20 ◦C/h to 25 ◦C Cd No defects 1.75(4)

1.78 SPS-750 Cut-off of the furnace C No defects 1.72(5)

1.99 SPS-750 Cut-off of the furnace C No defects 1.97(4)

2.22 SPS-700 Cut-off of the furnace C No defects 2.21(3)

2.93 SPS-700 Cut-off of the furnace C No defects 2.91(6)

a conv: conventional method.
b SPS: spark plasma sintering.
c Q: quadratic phase.
d C: cubic phase.
e LIT: large lamellae which are internally twinning.
f l: the internal twins, i.e., twins which are inside each large lamella.
g L: lamellae without internal twins.
h T:  tweed.

- sample with  x = 1.66:  This sample  includes  tweeds  with  high

frequency (Fig.  7). These tweeds  are very  fine  with  widths

varying from 2 to  14 nm.

Considering  all samples,  the  domain walls (DW) of  the  inter-

nal twins  (l)  and also  the  DW  of  domains  with  no  internal

twins (L) belong  to  the  type-I mechanical  twin,  meaning that

the atomic  arrangement  of  one  domain is  the mirror  reflection

of the  other by the  twin interface  plane, corresponding  to the

(1 1 2)  crystallographic  plane for  our samples. So, as had be

shown in a previous  study21, and mentioned in  other studies,9,26

these DW  (i.e.,  corresponding to L and  l)  constitute  coherent

Fig. 4. Bright field TEM image of a  single quadratic phase Mn3−xCoxO4 ceramic

sample  for x = 1.54 (conventionally sintered) showing L lamellae (without inter-

nal twins) corresponding to right-angled twins (i.e., domains with practically

right-angled twins walls). The maximum value of their widths is about a few

hundred of nanometers.

twin  boundaries.  The  DW  of the LIT large  lamellae,  however,

form incoherent  twin boundaries.

The type-I  mechanical 1  1  2  twins are  shown  in the  diffraction

patterns reported in  Fig.  8. The  diagrams  are  indexed  according

to the  Q  cell,  and correspond  to  the  zone axes [11̄0]  and [13̄1].

The  presence of  twins  in  sample  microstructures  is  shown  in

these diagrams by a splitting  of the  reflections  corresponding

Fig. 5. Bright field TEM image of a single quadratic phase Mn3−xCoxO4 ceramic

sample for x = 1.54 (conventionally sintered) showing L lamellae corresponding

to  needle-shaped twins (i.e. the trajectories of the twin walls are like needles)

and  indicated by arrows.



               

Fig. 6. Bright field TEM image of a single quadratic phase Mn3−xCoxO4 ceramic

sample  for x = 1.54 (sintered by SPS) showing L  lamellae that are very much

finer  (maximum width value is a few tens of nm) than those of the sample with

the  same value of x but conventionally sintered.

to  the diffraction  of  zones  located on  either side  of the (1  1 2)

twin interface  plane  (i.e.,  the twin  boundary).  Splitting  magni-

tude increases  with the  distance  from the center  of the  pattern.

Non split reflections  correspond  to  crystallographic  rows per-

pendicular to the  (1 1 2)  twin  interface  plane.

3.2.2.  Monophasic samples  with  C  structure

A single  C phase  was obtained  for  samples  with  x ≥ 1.78  and

sintered by  SPS  sintering  or by the conventional  method  (only

for x =  1.78).  The  lattice  parameters of these samples  are  reported

in Table  1. Quantitative chemical  analysis by EDX  had  shown

that each of these samples  is  homogeneous.  As  shown  in  Table  2,

for each sample, the  experimental  value  of x fits well  with that

corresponding to the  theoretical  chemical  compositions.

These samples  (i.e., x ≥ 1.78)  differ  from  previous  sam-

ples (i.e.,  0.98 ≤  x < 1.78)  in that they  contain  no defects

(Figs. 9  and  10). We noted  that,  for x  = 1.78, the  two sintering

methods (SPS and  conventional  sintering)  lead  to  the  production

Fig. 7. Bright field TEM image of a  single quadratic phase Mn3−xCoxO4 ceramic

sample  for x  = 1.66 showing the presence of defects corresponding to tweeds

(very  fine lamellae with widths of a  few nm, and arranged in two mutually

perpendicular directions).

of  samples free  from defects  (the  only changes  induced  by

the modification  of  the  sintering  method,  correspond to  a  GS

variation of  the final  samples,  as mentioned  above).

4. Discussion

Single-phase Mn3−xCoxO4 (0.98  ≤ x  ≤  2.93)  spinel ceramics

present a variety of  microstructural  characteristics  depending  on

the sample’s chemical  composition (i.e., value  of  x)  and the type

of heat  treatment  applied prior to  obtaining the final  product.

We recall that for x  < 1.78 or x  ≥ 1.78, the monophasic

ceramics correspond  to Q  (I41/amd space group)  or  C (Fd-3m

space group) spinel structures  respectively.  Q phase arises  by

the structural transition  of C  phase  in  agreement  with the  phase

diagram of the Mn3O4–Co3O4 system.42,48 This  structural

Fig. 8. Selected area electron diffraction (SAED) patterns of a single quadratic phase Mn3  xCoxO4 ceramic sample for x = 1.54: (a) along the zone axis [13̄1],  (b)

along the zone axis [11̄0],  and (c) shematic reproduction of a  part of (b). These patterns exhibit splitting of spots (in such a  way that there are spots corresponding to

the  matrix and other spots corresponding to twins which are deducted from the first ones by reflection from a  plane mirror coinciding with the twin interface plane).

The  reflections that are not split correspond to crystallographic rows perpendicular to  the (1 1 2) twin interface plane. The magnitude of splitting increases with the

distance from the center of the pattern.



Fig. 9. Bright field TEM images of all samples sintered by SPS: (a)  for x = 1.54, (b) for x  = 1.78, (c) for x = 1.99, (d) for x  = 2.22, and (e) for x  = 2.93. They show that

for x ≥ 1.78, no twins defects were observed in the single cubic phase ceramic samples, unlike the case of the single quadratic phase ceramic sample with x  = 1.54

and which contains twins lamellae, L.

phase  transition is caused  by the cooperative  Jahn–Teller effect

as in other manganite  compounds.21,22,26,58,59 The C  structure

is stable only at  high  temperatures  and cannot  be  observed  at

room temperature after  quenching  in the  manganese-rich oxide.

The grain  shapes  of the  samples  are polyhedral  and equiaxed,

in accordance  with  the identified  crystallographic  cells:  C cell

or Q cell with  parameters  close  to  those of  C cell  (since  there  is

very little difference  between  a′ (a′ =  a
√

2)  and c parameters of  Q

cell). GSs  vary  depending  on sintering type  and conditions, and

also on  the  GSs  of the  initial  powders. When x  value varies  from

0.98 to  1.27, the drop  in  maximum  GS from  40 to  25 mm could

be due to  the  decrease  in sintering temperature  from  1280 ◦C

to 1180 ◦C  as  well as to  the  decrease  in quenching  temperature

from 900 ◦C to  800 ◦C. When x changes from 1.27 to  1.54, the

maximum GS increases  from 25 to  33 mm, despite the  decrease

in initial powder  GS  and this could  be due to the increase  of the

Fig. 10. Bright field TEM image of a single cubic phase Mn3−xCoxO4 ceramic

sample  for x = 1.78 (conventionally sintered) showing a triple junction and the

absence in each grain of twin defects.

quenching  temperature  from 800 ◦C to 1180 ◦C.  For  x = 1.78  the

maximum GS  is  diminished  compared to that of x =  1.54 and

thus is reduced  to 19 mm.  This  could  be due to the decrease  in

GS of the  initial  powders,  as well  as to the  change in cooling

conditions (quenching for x =  1.54  and slow  cooling to ambient

temperature for  x =  1.78).

For ceramic  samples  obtained  by SPS  (i.e.,  x =  1.54  and

x ≥  1.78)  the  GSs  are much  smaller than  those  sintered  by the

conventional method and  are relatively similar  to those  of the

initial powders,  which is  predictable due  to  the  fact that  SPS  sin-

tering greatly  reduces  volume  diffusion (i.e., grain  coarsening)

compared to  conventional sintering.60–63

For  x < 1.78,  twins are well  present in  all ceramic  samples,

but they differ  in their  characteristics  from sample to sample.

The existence of  twins  in these  samples could  be due to the  fact

that the  structural transition is ferroelastic,  as  it  is  in Mn3O4

hausmannite.21 In fact,  ferroelastic transition,  which belongs  to

ferroic transitions,  is able  to produce  structural domains with

different orientation  states  under  adapted  conditions.64–68 In

this case, structural  domains occur  in materials  to accommodate

the constraints  accompanying  the phase  transition  since the

latter leads,  amongst  others,  to  a reduction of  crystallographic

symmetry elements and a  deformation of  the  crystallographic

cell evaluated by the  value  of c/a′ (a′ (i.e.,  a
√

2)  and  c

corresponds to  Q cell parameters)  with  respect  to  the  high-

temperature phase.  The  twins  arising  in  this case  are  called

transformation twins. We  can  also note  that  the structure  of

the samples  studied  in  this  work,  obey  the fact that  the  point

group symmetry of  the  low-temperature  phase (4/mmm) is  a

subgroup of  that of the  high-temperature  phase  (m3m)  and



thus  the  structural  transition of these  samples belongs  to Aizu

species m3mF4/mmm  in his nomenclature  of  ferroelastic  phase

transitions.67 The  results  obtained  from  electron  microscopy

revealed that  the  twins observed  in these samples  correspond

to 1 1 2 twins  (i.e., the  twin  interface plane  is (1 1 2)). These

results are  in  conformity  with  the theoretical  predictions65,66

about  the (h k l)  twin  interface planes  that may  exist  when  a

ferroelastic phase  transition occurs  from C phase with  (m3m)

point group  symmetry  to  Q phase  with  (4/mmm)  point  group

symmetry (h,  k and l  are  the Miller indices). Considering

changes in the  characteristics  of  twins  for x < 1.78, we  can

mention that the main  factors which could  have an  effect  on

these variations  are:

- increase  in cell  deformation  c/a′.

- the fact  that the chemical  composition  of  the  sample  is  near  or

far from the  composition  corresponding  to  the phase  transi-

tion. For  our samples this composition  corresponds  to x =  1.78

as indicated by  the phase  diagram  of the Mn3O4–Co3O4 sys-

tem reported  in previous  works.48

- the variation  of GSs.

For x = 1.66,  TEM  observations  indicate  the existence,  in

this sample,  of tweed  domains  shown  by a modulated  image

contrast in two  directions  with  widths on the  order of  a few

nm. This result could  be attributed to  the fact that the  chem-

ical composition  of this sample  is close  to  that  of  the phase

transition (i.e.,  x  = 1.78)  and  thus  could  be  noted  as one of

the features  highlighting  the ferroelastic character of  the phase

transition in Mn3−xCoxO4.  This  is because  many experimen-

tal and theoretical  studies have  shown  the apparition  of  tweeds

when approaching  the  phase transition  in  the  case  of  ferroelas-

tic transitions.26,55,64,68–70 Among the various interpretations  in

this regard and taking  into  account  that the sample  used  in this

study has  an  homogeneous  chemical  composition  (within  the

resolution of  the analyses) and contains only  one phase,  we  note

that the  observed tweeds  could  be related  to the  fact that, close

to the  phase  transition,  DW  motion leads the microstructure  to

assume a stable  arrangement  corresponding  to a  minimum free

energy value  (including  elastic  energy)  and which  is consis-

tent with  strains induced by the phase transformation.  Thus,  this

arrangement is established  with the  tweed  microstructure  and is

compatible with  the c/a′ sample  deformation  which is of  about

3.15% and is the  lowest value  compared  to those of  the others

samples with x <  1.78.

When x  decreases from  1.66  to  1.54, the  chemical  composi-

tion of the  sample becomes  a  little bit  far from that of  the  phase

transition and the  TEM  observations  reveal  that the modulated

microstructure is entirely replaced  by twin domains correspond-

ing to  parallel  L lamellae.  As  mentioned  above,  for the  same

chemical composition (i.e., x  = 1.54), the  decrease  in lamella

widths of the  sample sintered  by SPS  compared  to  those of  the

sample obtained  by  conventional  sintering could  be  due  to the

decrease in GSs  induced  by SPS  sintering, in accordance with

that has been  reported  in  the literature.54–57 For  both  samples

(i.e., SPS  and conventionally  sintered  samples),  the value  of

the c/a′ deformation is  of about 4.6%, not excessively  large  in

comparison to  those of the  other  samples  with  lower values  of

x. However, when  x decreases  from 1.54  to 1.27,  the  increase  in

strain caused  by the enhancement  of the c/a′ value  could  lead to

enlargement of  the lamellae as well  as  the formation inside them

of new  fine twin lamellae l, corresponding  to  internal  twinning.

In fact,  as  has  been  reported  in the literature,71 for a sample

microstructure, there are potential  sites  for  the  formation of

twins and when  the  deformation  increases, twins  are  formed  at

these sites. Thus,  the  increase  in  deformation when going  from

1.54 to  1.27, could  generate  an increase  in  the  twin  interface

energy and then  the  activation of the sites that give rise to

internal twins. The  occurrence  of these  latters is  promoted  by

the increase in  the  widths  of the  initial twin  lamellae.

Then, a decrease in  x from  1.27 to 0.98  is  also  accompanied

by an increase  in c/a′ deformation,  which could  be  contribute,

on the  one hand,  to  a large  increase  in width of the  (LIT)

lamellae (more  than  twice  the  width  of the (LIT) lamellae for

x =  1.27) and on the  other  hand,  to the apparition  of new  fine

internal twins  (i.e., to  the increase in  internal  twin  density)  and

could ultimately  lead  to internal  twin  widths a little thinner than

for x =  1.27. Also  for x  =  0.98  the LIT lamellae  are  sometimes

arranged in  cyclic forms corresponding  particularly  to triangular

shapes observed  for  the  first time  in manganites.  In  the  literature,

twins for  which arrangement  shapes are  like  three-pointed  stars,

not triangles,  have been  reported  for  ferroelastic  phase  transi-

tions and have  been  attributed  to  the  loss  of  the  3-fold  axis  of

the high-temperature phase.66

Furthermore, it  is well known  that the activation  energy of

incoherent DW  is  much higher  than  that of coherent  DW.21,26,72

Thus,  a significant  increase  in activation  energy caused  by  the

presence of incoherent  DW  could  lead to a  decrease in  cation

site exchange.  In  light  of  the fact  that a large  proportion  of the

material volume  corresponds  to DW,  the incoherent  ones  which

are present  when  x  < 1.54  could contribute,  in addition  to other

factors (related  to  cation distributions  and which are  mentioned

in previous works),42,46 to  the  fact that the  variation  in  electri-

cal resistivity  of these  ceramics  shows  a  very large  increase  for

0.98 ≤  x <  1.54.

For  x ≥  1.78, no  defects  were  observed  in  these  ceramic  sam-

ples with C  spinel structure  (for x =  1.78,  this result remains

valid for both  samples,  i.e.,  SPS  and  conventionally  sintered

samples). This  could  be due to the absence  of phase  transition

for these chemical  compositions  as it has been shown by  the

phase diagram  of the Mn3O4–Co3O4 system.48

5.  Conclusion

The  microstructure  of  cobalt manganese  oxide  ceramics  is

presented, for  the  first time,  in this paper. The studied sam-

ples correspond to  single  phase Mn3−xCoxO4 (0.98  ≤ x ≤ 2.93)

spinel ceramics  and their microstructures  were determined using

TEM and  EDX. They  were obtained by conventional sintering

or by SPS  of powders  (elaborated  by thermal  decomposition  of

coprecipitated oxalate precursors). Single  Q phase and single  C

phase were  obtained  respectively  for  x < 1.78 and x ≥  1.78.  Q

phase occurs  by the structural  transition  of  C phase in  agree-

ment with  the phase  diagram  of  the  Mn3O4–Co3O4 system.48



The structural transition of these  samples  belongs  to  Aizu

species m3mF4/mmm  in  his  nomenclature of ferroelastic phase

transitions.67 Samples  with x < 1.78  show grains with  high

domain densities  (i.e.  twin  densities)  which could  be due to the

fact that the structural transition is  ferroelastic.  Coherent twin

interface planes  are  parallel  to (1 1 2)  planes  in  the  Q cell which is

in accordance  with  theoretical  predictions65,66 for  a ferroelastic

phase transition  occuring  from C phase  with (m3m)  point  group

symmetry to  Q phase with (4/mmm)  point  group  symmetry.

The twins that are  present in ceramic  samples  with

x <  1.78,  correspond  to: tweeds,  single  lamellae, i.e., L  (widths:

5–306 nm) arranged parallel to  each  other  (and whose  forms

correspond to  either right-angled twins  or needle-shaped  twins),

large lamellae,  i.e.,  LIT (widths: 69–928 nm)  internally twinned

and sometimes  arranged  in  cyclic  forms  corresponding  to trian-

gular shapes observed for  the first  time  in manganites.  Variations

in the characteristics  of twins  were investigated  in relation  to:  the

variation of  the cell deformation  c/a′, the fact that the  chemical

composition of  the  sample  is near or  far  from  the  composi-

tion corresponding  to  the phase transition  (i.e.,  x =  1.78)  and

the GS variations.  The incoherent  twin interfaces  present  for

x <  1.54  could  have  an effect  (in  addition to  other effects  related

to cation  distributions  and  mentioned  in  previous  works42,46)

on the  important increase  in electrical resistivity for x  < 1.54

because it is well-known  that the  activation energy of an  inco-

herent twin  interface is  very much  higher  than that of  coherent

twin interface.

No  defects  were  observed in  ceramic  samples  corresponding

to C  phase (i.e., x ≥  1.78) which  could  be related  to the  absence

of phase transition for  these  chemical  compositions.
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