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a b s t r a c t

A branch of relative periodic orbits is found in plane Poiseuille flow in a periodic domain 
at Reynolds numbers ranging from Re = 3000 to Re = 5000. These solutions consist in 
sinuous quasi-streamwise streaks periodically forced by quasi-streamwise vortices in a self-
sustained process. The streaks and the vortices are located in the bulk of the flow. Only 
the amplitude, but not the shape, of the averaged velocity components does change as the 
Reynolds number is increased from 3000 to 5000. We conjecture that these solutions could 
therefore be related to large- and very large-scale structures observed in the bulk of fully 
developed turbulent channel flows.

1. Introduction

Transition to turbulence is subcritical in most canonical internal flows, such as the pressure-driven plane channel and 
pipe flows, or the plane Couette flow. To gain insight into the transition process, a fruitful approach has been to apply 
the nonlinear dynamical systems methodology to analyze the dynamics of the flow in small horizontally periodic domains. 
Following this approach, the subcritical transition to turbulence, is correlated with the appearance of additional solutions of 
the Navier–Stokes equations disconnected from the laminar solution. Nonlinear traveling waves (NTW), representing saddles 
in phase space, have been shown to appear at Reynolds numbers much lower than the transitional ones in plane Couette 
flow [24,3,29], plane channel flow [9,30], and pipe flow [10,31]. It was initially believed that turbulent solutions may spend 
a significant time in the neighborhood of relevant NTW, but it was later shown that these visits last only 10–20%, on 
average, of the total time [19,26]. Attention has therefore shifted to unstable periodic (in time) solutions (periodic orbits 
or relative periodic orbits), both for their potentially very important role in the transition process and because they might 
provide the missing building blocks to predict the statistics of the chaotic attractor or repeller itself [1]. Periodic solutions 
have been computed in plane Couette [4,18,28], plane channel [27] and pipe flows [7], as well as in the asymptotic suction 
boundary layer [22]. The confirmation that unstable periodic orbits and their stable and unstable manifolds are associated 
with transition to chaos in small spatially periodic domains has been recently given in plane Couette flow [23] and in 
magnetohydrodynamic Keplerian shear flows [25].

Nonlinear traveling waves and periodic solutions show an interplay between quasi-streamwise streaks and vortices that is 
also characteristic of the turbulent dynamics. This self-sustained process is believed to explain the dynamics in the near-wall 
region of turbulent flows [13,8], and self-sustained processes at larger scales [15,16], which are important at large Reynolds 
numbers (see, e.g., [21,20,12]).
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In this study, we consider the existence of periodic solutions in the plane channel flow, which is less investigated than 
plane Couette and pipe flows, despite its intrinsic interest and its dynamic similarity with boundary layer flows which are 
of interest to industrial applications. In the case of plane Poiseuille flow at Re = 3000 in a periodic domain of streamwise 
and spanwise size Lx = πh and Lz = 0.4πh, an NTW solution was first found [17] using a bisection procedure that started 
with an initial guess based on a turbulent solution. A later study in the same domain at the same Re, but using different 
initial conditions in the bisection procedure, revealed the existence of a “periodic-like solution” [27], i.e. a solution that 
could be either a genuine periodic solution or a heteroclinic connection (a single period of the solution was accessible due 
to numerical precision issues). Both solutions were localized on a single wall of the channel and are therefore thought to 
evolve to near-wall structures for increasing Reynolds numbers. In the current state of affairs, however, no solution that 
may be correlated with the large-scale dynamics of detached eddies in the bulk of the flow is available. The scope of the 
present investigation is therefore to find if periodic solutions related to large-scale structures in fully developed turbulent 
flows exist with amplitudes that remain finite in the whole channel.

After a summary of the problem formulation and of the techniques used to isolate periodic solutions in plane channel 
flow in Section 2, the main properties of the relative periodic orbits discovered are described in Section 3. The results are 
finally briefly discussed in Section 4.

2. Problem formulation and methods

We consider the pressure-gradient-driven flow of an incompressible viscous fluid of constant density ρ and kinematic 
viscosity ν in a plane channel of height 2h. The flow is ruled by the Navier–Stokes equations, which in dimensionless form, 
read:

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u (2)

where the Reynolds number Re = U0h/ν is defined with respect to the maximum velocity U0 of the usual laminar 
(parabolic) Poiseuille solution. Velocities are made dimensionless with respect to U0 , pressures with respect to ρU2

0 , lengths 
with respect to h and times with respect to h/U0 . We denote by x the streamwise axis aligned with the pressure gradient, 
by y and z the wall-normal and spanwise coordinates and by u, v and w the velocity components along x, y and z, respec-
tively. The flow is solved inside the domain [0, Lx] × [−1, 1] × [0, Lz], with no-slip conditions on both walls and periodic 
boundary conditions is the streamwise and spanwise directions.

In order to find periodic solutions that do not migrate to the near wall-region for increasing Reynolds numbers, we 
found it useful to enforce the mid-plane reflection symmetry {u, v, w}(x, y, z) = {u, −v, w}(x, −y, z). A standard bisection 
procedure on the initial conditions was used to track the edge state solutions within the enforced symmetry class. The initial 
conditions considered consist in the laminar Poiseuille solution perturbed by a pair of streamwise uniform counter-rotating 
vortices of amplitude A1 and a sinuous perturbation of the spanwise velocity with amplitude A2:

u0 =
{

U lam(y),0,0
}

+ A1

{

0,
∂ψ0

∂z
,−

∂ψ0

∂ y

}

+ A2{0,0, wsin} (3)

where
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(

1− y2
)

sin(π y) sin

(

2π z

Lz

)

; wsin(x, y) =
(

1− y2
)

sin

(

2πx

Lx

)

(4)

The stream function ψ0(y, z) is associated with streamwise uniform vortices, while wsin provides the (streamwise) sinuous 
perturbation. The initial velocity fields u0 are solenoidal and have the same volume flux as the laminar Poiseuille solution 
U lam = 1 − y2 . The bisection is operated on A1 with the ratio A2/A1 = 1/10 kept fixed to a relatively small value allowing 
the subcritical development of the streak instability [5,6].

The Navier–Stokes equations are integrated using the channelflow code [11], which is based on a Fourier–Chebyshev–
Fourier spatial pseudospectral discretization. Solutions are advanced in time using a second-order Crank–Nicolson Runge–
Kutta time stepping. Typically, results were obtained with 16 ×41 ×16 points in the streamwise, wall-normal, and spanwise 
directions, and enforcing a constant volume flux during the simulation. We verified that the characteristics of the peri-
odic solutions found by bisection on the coarse grid do not change when the number of collocation points is increased to 
32 × 65 × 32. The numerical results were further tested by recomputing the same periodic solutions with the different code
diablo [2]. The convergence of the periodic solutions was validated and improved using Newton-based iterative methods 
and then their linear stability was analyzed using the peanuts code [14,25].

3. Results

We consider the domain of extension 2π × 2 × 2.416, for which the nonlinear traveling waves solutions appear at the 
lowest Reynolds number [30], and Reynolds numbers ranging from Re = 3000 to 5000. For all these Reynolds numbers, 



Fig. 1. (Color online.) Panel (a): Temporal dependence of the perturbation kinetic energy for selected iterations of the bisection process at Re = 3000. The 
solution on the edge rapidly converges to a periodic solution. Panel (b): Converged periodic solutions represented in the ‖v ′‖–‖u′‖ plane for Re = 3000, 
4000, and 5000.

Fig. 2. (Color online.) Snapshots of the converged periodic solution obtained at Re = 3000. Four snapshots are taken in correspondence to the points 
reported on the cycle in Fig. 1b starting from the bottom left point and then rotating counterclockwise. The snapshots are taken at respectively t = 0

(panel (a)), t = 120 (panel (b)), t = 230 (panel (c)) and t = 310 (panel (d)). Only the top half of the channel is considered. The figure displays the iso-levels 
of the perturbation streamwise velocity field taken at y = h/2 are reported. In green is reported the surface where the streamwise velocity is 75% of its 
maximum value in the whole channel. In respectively blue and red are reported the surfaces where the streamwise vorticity is ±60% of its maximum value 
in panel (a) with the same value in all panels. In particular, no vortices are visible in panel (c), because they are of very low amplitude.

the laminar Poiseuille solution is linearly stable, while perturbations with sufficiently large amplitude lead to a turbulent 
state. Solutions living on the boundary of the basin of attraction of the laminar state are found by applying the bisection 
procedure described in Section 2. The bisection looks for the threshold A1 corresponding to the basin boundary. Values 
of A1 slightly above the threshold lead to turbulent solutions (dashed, blue lines in Fig. 1a), while values slightly below 
lead to the laminar state (dotted, green lines in Fig. 1a). For sufficiently long times and for values of A1 that are sufficiently 
good approximations of the exact threshold, the solutions on the basin boundary converge to a relative periodic orbit for 
all cases considered (see Fig. 1a for the Re = 3000 convergence) with a period that increases with the Reynolds number 
(T = 739 for Re = 3000, T = 1090 for Re = 4000 and T = 1418 for Re = 5000). The periodic solutions are found to travel 
in the streamwise direction with a phase speed Cx = 0.98 for Re = 3000 and 0.985 for the two other cases. This indicates 
that the active part of the process is located near the channel center. In Fig. 1b, the converged periodic solutions are 
shown in the ‖v ′‖–‖u′‖ plane, where ‖u′‖2 = (1/V) 

∫

V
(u − U lam)2dV and ‖v ′‖2 = (1/V) 

∫

V
v2dV . The norm ‖u′‖ of the 

streamwise perturbation velocity is representative of the amplitude of streamwise streaks, while ‖v ′‖ is representative of 
the amplitude of the quasi-streamwise vortices. The solutions rotate counter-clockwise in the cycles reported in Fig. 1b. 
Starting from a point on the bottom-right of the cycle, where the amplitude of the vortices is maximum, the amplitude 
of the vortices initially decays while that of the streaks increases, due to the lift-up mechanism. The streaks then reach a 
maximum amplitude where they experience a breakdown during which their amplitude decays fast, while regenerating the 
vortices, which closes the loop of the classical self-sustained process [13]. The solution travels quite fast in the lower part of 
the cycle, as can be seen also in Fig. 1a, where it is seen that the growth phase (lift-up) of K ′ ≈ ‖u′‖2 is much slower than 
the decay phase (breakdown). The evolution of the flow structures during the cycle can be seen in the snapshots of the 
flow field displayed in Fig. 2, taken in correspondence to the four points shown in Fig. 1b. The converged periodic solutions 
have the shift and reflect symmetry {u, v, w}(x, y, z) = {u, v, −w}(x + Lx/2, y, −z), which was not enforced on the initial 



Fig. 3. (Color online.) Rescaled rms amplitudes of the periodic velocity perturbations expressed in wall units and averaged over one period. The streamwise, 
wall-normal and spanwise components are reported in panels (a), (b) and (c), respectively. The solutions are rescaled using the value γ = 0.8.

Table 1

Real parts σ j of the j-th Floquet exponents of the unstable modes of the periodic orbit solutions.

Re 103σ1 103σ2 103σ3 103σ4 103σ5

3000 3.99 3.34 3.32 2.99 2.73

4000 3.39 1.34 1.16 1.06 1.03

condition. From the snapshots it is seen how every half-period the low speed streak and the quasi-streamwise vortices shift 
by half spanwise wavelength and then repeat the cycle exactly in the same way due to the shift and reflect the symmetry 
of the solutions. One period therefore corresponds to two loops of the cycles reported in Fig. 1b.

From Fig. 1b we see that the amplitude of the relative periodic solutions decreases for increasing Reynolds numbers, 
which is typical of ‘lower branch’ solutions that live on the edge of chaos (see, e.g., [23] for the asymptotic suction bound-
ary layer case). An examination of the root-mean-square velocity field perturbation, averaged over the horizontal planes 
and one temporal period, shows that most of the perturbation rms kinetic energy resides in the streamwise velocity com-
ponent (streaks) with a maximum amplitude located near y ≈ ±1/2. The wall-normal and spanwise velocity rms profiles 
are consistent with center-channel quasi-streamwise vortices. These periodic solutions, therefore, unlike previously found 
periodic-like solutions [27], are not localized near a single wall, but in the bulk of the flow.

When the Reynolds number is increased, the rms amplitude of the velocity field perturbation is seen to decrease. The 
velocity rms profiles remain approximately self-similar, with amplitudes decreasing as Re−γ for the streamwise velocity 
and Re−2γ for the wall-normal and the spanwise velocity components, with γ ≈ 0.8. The facts that the streaks amplitude 
is always larger than the vortices amplitude and that the ratio of streak to vortices amplitudes is almost proportional to 
the Reynolds number are additional indications that the non-normal amplification of streaks from the vortices plays an 
important role in the self-sustainment of these periodic solutions (Fig. 3).

These periodic solutions are unstable. A Floquet linear stability analysis was performed at Re = 3000 and 4000, once 
the convergence of the periodic solution was improved to sufficient accuracy using Newton iterations. If no symmetry 
is enforced, five unstable exponents are found, but only one mode (the most unstable) has the same symmetries of the 
periodic orbit solution. All the unstable Floquet exponents are real and their real part, reported in Table 1, decreases when 
the Reynolds number is increased.

4. Conclusions

Unstable periodic solutions of the Navier–Stokes equations have been computed in a minimal box for plane Poiseuille 
flow at Reynolds numbers ranging from Re = 3000 to Re = 5000. These solutions have long periods that increase with Re
and that are of the order of a thousand convective time units. The averaged velocity field perturbations are approximately 
self-similar in Re, with different velocity components scaling differently with the Reynolds number. The self-similar velocity 
fields are associated with quasi-streamwise streaks and vortices located in the bulk of the flow. The streaky structures 
associated with the relative periodic orbits do not migrate to the near-wall region as the Reynolds number is increased. 
These structures, which remain situated in the bulk of the flow for increasing Reynolds numbers and which are associated 
with quite low frequencies of oscillation, are therefore compatible with large- and very large-scale structures whose role is 
crucial in turbulent flows at high Reynolds numbers. Two recent investigations indicate indeed that self-sustained processes 
exist at large- and very large-scale in the bulk of the flow [15] and in the logarithmic layer [16] of turbulent channel flows 
and that these processes are not forced by the near-wall cycle. It is therefore tempting to link the large scale self-sustained 
processes in the bulk of the flow to a ‘backbone’ of underlying periodic solutions, following the same rationale invoked for 
the near-wall structures. Current effort is aimed at providing evidence supporting this conjecture, namely by quantifying the 



phase speeds of the large-scale structures, by computing their correlations to the found periodic solutions, and, even most 
importantly, by computing additional periodic solutions that might be of interest to this approach.
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