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Pupil diameter is a widely-studied cognitive load measure, which, despite its convenience for non-intrusive
operator state monitoring in complex environments, is still not available for in situ measurements because of
numerous methodological limitations. The most important of these limitations is the influence of pupillary
light reflex. Hence, there is the need of providing a pupil-based cognitive load measure that is independent of
light conditions. In this paper, we present a promising technique of pupillary signal analysis resulting in
luminance-independent measure of mental effort that could be used in real-time without a priori on luminous
conditions. Twenty-two participants performed a short-term memory task under different screen luminance
conditions. Our results showed that the amplitude of pupillary dilation due to load on memory was
luminance-dependent with higher amplitude corresponding to lower-luminance condition. Furthermore, our
experimentation showed that load on memory and luminance factors express themselves differently according
to frequency. Therefore, as our statistical analysis revealed, the ratio between low (0–1.6 Hz) and high frequency
(1.6–4Hz) bands (LF/HF ratio) of power spectral densities of pupillary signal is sensitive to the cognitive load but
not to luminance. Our results are promising for the measurement of load on memory in ecological settings.
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1. Introduction

The pupil diameter has an important place in psychophysiology.
Receiving input from parasympathetic and sympathetic nervous
systems, the aperture in the iris provides interesting information
about autonomic nervous system activity. The parasympathetic excita-
tion and/or sympathetic inhibition result in pupil constriction, while
sympathetic excitation and/or parasympathetic inhibition result in pu-
pillary dilation (Beatty and Lucero-Wagoner, 2000). Thus, the pupil be-
havior is hypothesized to reflect the balance of relative sympathetic and
parasympathetic activations. Different correlations between pupil activ-
ity and attentional effort or cognitive processing have been established
from the early 60s (Hess and Polt, 1960, 1964; Kahneman and Beatty,
1966) to nowadays (Ariel and Castel, 2014; Kang et al., 2014; Naber
and Nakayama, 2013; Causse et al., 2010). As noted by Kahneman
(1973) in hiswork on attention and effort, a goodmeasure ofmental ac-
tivity must satisfy three criteria: it should be sensitive to between-task
and within-task variations as well as between-subject differences. The
measure of pupil diameter seems to satisfy all three of these criteria
(Kahneman, 1973; Andreassi, 2000; Beatty and Lucero-Wagoner,
2000). Nevertheless, the pupil is sensitive tomany other factors besides
mental effort. Tryon (1975) listed 23 factors that influence pupil size
e E. Belin, 31055 Toulouse,
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among which luminosity variation is the most commonly cited. Thus,
in spite of successful application of pupillometry under controlled labo-
ratory settings, this psychophysiological proxy is still not available to
infer cognitive states in realistic environments (e.g.flight deck, air traffic
control radar room).

Comparing results of studies from different laboratories, Beatty in
his review (1982) concluded that, Task-Evoked Pupillary Response
(TEPR) amplitude was a consistent index of cognitive activity despite
various illumination conditions across studies. However, the interaction
between luminance and the extent of pupillary cognitive dilation has
remained unclear. Bradshaw (1969) conducted a simple reaction task
under two different light conditions and found no difference in dilation
peaks. More recently, Pomplun et al. (2003) and Xu et al. (2011) mea-
sured pupillary changes during a visual task experiment and an arith-
metic task. No interaction between cognitive load and luminance
conditions was found in these studies.

More than that, whereas it has been known that the pupil reacts in
response to luminance changes in the environment (Loewenfeld and
Lowenstein, 1993), it should be also noted that evenwhen investigators
control light conditions (ambient, computer screen etc.) and maintain
them constant, the pupil muscles also respond to luminance of the fixa-
tion point neighborhood (Pereverzeva et al., 2012). For example, while
observing an image of a white cup filled with black coffee, a fixation of
our gaze on the black beverage will cause the iris aperture to dilate in
comparison to a fixation on the cup. Palinko and Kun (2012) described
an example of an experiment taking this pupillary light response into
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account. Three targets of different shades of gray were displayed on a
static image. The participants performed a vigilance task while focusing
on one of three presented targets. The cognitive component reflecting
the level of vigilancewas identified by subtracting the pupillary reaction
due to the change of focus between two targets of different luminance.
The results of this experimentation showed that the cognitive compo-
nent of pupil reaction was still present despite the occurrence of the
light reflex. Therefore, it was possible to detect the cognitive effort
even when it interfered with pupillary light response. Nevertheless,
this method is condition-locked since the luminance conditions were
controlled and an averaged pupillary light response was obtained for
each condition. In real environment such transitions from one level of
luminance to another are limitless and it is impossible to obtain an av-
eraged pupillary light response for each condition. Another method to
identify cognitive pupillary component by calculating an independent
component analysis was proposed by Jainta and Baccino (2010). Al-
though such methods could be successfully applied for post-analysis,
they are inconvenient for on-line estimation of mental effort. Another
method, convenient for on-line workload estimation, called “Index of
Cognitive Activity” (Marshall, 2002) identifies fast pupillary dilations
using wavelet analysis and counts their occurrences per second. It was
reported to be sensitive to workload but not to light conditions
(Marshall, 2002). Even though no experimental study was conducted,
Marshall manipulated both screen luminance and room illumination
to obtain dark and light conditions and reported that the index of cogni-
tive activitywas insensitive to luminance change. Furthermore, a recent
study on nonhuman primates (Hampson et al., 2010) confirmed that
fast pupillary dilations correlated with neurons firing in frontal cortex,
hence suggesting a neural basis for the index of cognitive activity.

Nevertheless, very few studies have addressed the interaction issues
between the TEPR and the light conditions (e.g. screen luminance, room
illumination). Steinhauer et al. (2004) conducted an experiment under
moderate room light and in darkness. They found an influence of
task difficulty on overall pupil diameter during recording in light.
Benedetto et al. (2014) manipulated both screen luminance and ambi-
ent illuminance during digital reading. They found that the screen lumi-
nance had a more significant effect on pupil diameter compared to
ambient illuminance. Authors proposed to explain it by proximity and
concentration on the computer screen. Hence, the challenge is to define
a pupil-based measure of cognitive load that would be independent of
light conditions. Indeed, frequency analysis of pupillary response
could bring to light its hidden behavior that reflects autonomic nervous
system's reaction to light and cognition.

Pupillary signal is commonly analyzed both in time and frequency
domains. In the time domain, one of themost current techniques of pu-
pillary signal analysis consists in comparing the Task Evoked Pupillary
Responses (TEPR), a notion generalized by Beatty (1982). The TEPR is
an averaged stimuli-locked pupil reaction reported to a short pre-
stimulus baseline. It could be compared to an event-related potential—
electrophysiological brain response — where pupillary “potential” is
measured in pixels or millimeters, see Beatty (1982), Beatty and
Lucero-Wagoner (2000), Goldwater (1972) and Andreassi (2000) for
exhaustive reviews.

In the frequency domain, pupillary oscillations drew researchers'
attention starting with Lowenstein's work (1963) describing pupillary
fatigue waves that were quantified later by Lüdtke et al. (1998). Since
then, spectral analysis is often applied to analyze pupillary data. Pupil-
lary spectrum is used either alone or together with other psychophysi-
ological markers, for example, as an input for an artificial neural
network (Ren et al., 2013). A few studies reported an increase of
power spectrum density (PSD) of pupillary signal under mental work-
load conditions compared to the rest or a control condition. Thus,
Nakayama and Shimizu (2004) found a significant increase of PSD in
the frequency bands of 0.1–0.5 Hz and 1.6–3.5 Hz within calculation
tasks. Fourier analysis of pupillary response is often applied in psycho-
pathology (Grünberger, 2003; Grünberger et al., 1999) and sleep
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research (Wilhelm et al, 1998; Lüdtke et al., 1998), where researchers
often have a long pupillary record that permits a precise frequency anal-
ysis. According to these studies, the amplitudes of pupillary oscillations
are proportional to cognitive activity. Eventually, irregularities of pupil-
lary oscillations can give insights about the activation of sympathetic/
parasympathetic nervous systems and the balance between them. For
instance, Lew et al. (2008) discussed a possible application of short-
time Fourier transforms for pupillary data analysis in order to investi-
gate the changes of frequency components across time.

Alongwith pupil diameter, heart activity is anotherwidespread psy-
chophysiological proxy. As the pupil, the heart is influenced by both
parasympathetic and sympathetic activity, decreasing and increasing
its rhythm, respectively. The cardiac activity can be described by the
heart rate variabilitymethod. The analysis of power spectrum of R–R in-
tervals reveals two particular frequency components of cardiac activity:
blood pressure variation located within a Low Frequency (LF) band
from 0.04 up to 0.15 Hz, as defined by Camm et al. (1996); and respira-
tory sinus arrhythmia located within a High Frequency (HF) band from
0.15 up to 0.40 Hz. Variability of the HF component is associated with
parasympathetic activity, while the LF band is thought to be under
both sympathetic and parasympathetic controls with dominant sympa-
thetic influence (Billman, 2011). Since the proposition of Pagani et al.
(1986), the ratio of cardiac signal powers within LF and HF bands, re-
ferred as LF/HF or LH ratio, although controversial (Billman, 2013), is
often used to measure the sympatho-vagal balance. Some researchers
reported an increase in LF/HF ratio induced by mental effort (Durantin
et al., 2014;Mizuno et al., 2011;Mukherjee et al., 2011). Since LF/HF ra-
tios in these studies were greater than 1, this increase could be
interpreted as a greater increase in the LF band compared with the HF
band.

Calcagnini et al. (1997) simultaneously recorded pupillary and
cardiac activity and reported that cardiovascular rhythms were
contained in the pupillary signal. Since, there have been a few applica-
tions of LF/HF ratio technique for pupillary analysis. For example,
Murata and Iwase (1998, 2000) reported increasing LF/HF ratio for
pupil oscillations with increasing mental workload, using mental arith-
metic and Sternberg short-term memory tasks. To compute the LF and
HF activity, they used bands from 0.05 up to 0.15 Hz and from 0.3 up
to 0.5 Hz, respectively. More recently, the ratio was used in a motor re-
petitive task (Reiner and Gelfeld, 2013). Authors found that the LF/HF
ratio decreased with the number of repetitions, indicating a decrease
of mental workload (probably due to a habituation effect).

The objective of the present study was to explore the interaction be-
tween luminance and cognition on pupillary dilation to deduce a pupil-
based measure of load on memory that would be independent of lumi-
nance conditions. To that end, we manipulated computer screen lumi-
nance and load on memory. We investigated the influence of the
luminance conditions on the task-evoked pupillary response and on
the power spectrum of the pupillary signal under different levels of
load onmemory. To the authors' knowledge, no studies have performed
an analysis of mental effort via the power spectrum of the pupillary sig-
nal under different light conditions. In this study, we assessed the fol-
lowing questions: a) How do luminance conditions affect the pupillary
PSD? b) Is there an interaction effect between luminance and load on
memory conditions on the TEPRs and power spectrum of the pupillary
signal? c) If so, canwe extract a frequency-based feature of the pupillary
signal that would be solely dependent on the load on memory?
2. Materials and methods

2.1. Participants

22 healthy volunteers (4 females, 3 left-handed, age 24.5 ± 2.8, ed-
ucation 15.1 ± 1.0), students of ISAE (French Aerospace Engineering
School), all native French speakers, participated in the experiment
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after they gave their informed written consent. All reported normal au-
ditory acuity and normal or corrected-to-normal vision.

2.2. Experimental design

Participants performed a short-term memory task where they were
asked to recall a paced sequence of digits. Stimuli were presented in the
auditory modality via two stereo speakers, positioned at each side of a
computer monitor. Mean sound level of stimuli was measured at
75.3 ± 0.9 dB. Three levels of difficulty were produced with stimuli of
5, 7 or 9 digits, generated pseudo randomly (never two same successive
digits) while the screen luminance was changing from trial to trial. The
screen background was black (3.4 cd/m2), gray (24 cd/m2) or white
(54.8 cd/m2). In half of cases the participants were asked to retain the
series of digits and to report it back (load on memory condition),
while in others they were only asked to listen passively (control condi-
tion). The time course of an example trial with black background and
load on memory conditions is represented in Fig. 1.

Except for the retrieval phase (when a numeric keypadwas showed)
three fixation crosses were forming a fixation triangle in the center of
the computer screen. The subject was informed about the condition
(whether or not to retain the series) bymeans of the direction of thefix-
ation triangle during thewhole trial. If the triangle pointed at the top (as
on Fig. 1), the subject was informed to recall the series. If the triangle
pointed at the bottom (inverted compared to that on Fig. 1: two fixation
crosses at the top and one at the bottom), the subject was informed to
listen to the stimulus passively (i.e. not to recall it). Furthermore, for
control trials the on-screen numeric keypad was replaced by sharp
signs placed in the same configuration as 10 pad digits.

Prior to the start of the main experiment, participants were visually
providedwith instructions and performed a practice block of 18 trials to
familiarize with each condition. Then participants completed two
blocks of 45 trials each (about 20 min long) with a 5 minute pause in-
between. The experiment lasted for a total of 45 min and contained 5
trials per condition.

2.3. Stimuli and apparatus

A pseudo-random list of stimuli (used for all participants) was gen-
erated using the following four rules: 1) the screen background changed
each trial, 2) no more than two successive control trials were adminis-
tered, 3) no more than two successive series of the same size (5, 7 or
9 digits) were presented, 4) each block began with at least two task tri-
als. The first rule helped to inform participants about the start of the
next trial. The second rule averted the excessive distraction (that one
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could expect during three or more successive control trials that would
last approximately for 1 min and a half) and prevented the rhythm
that one could expect in the case of alternation of control and load on
memory conditions on every trial. The third rule made it impossible to
think out a strategy of series retention because of the randomness of se-
ries size (i.e. the participants were never aware of the number of digits
they would have to memorize until the end of the sequence). Finally,
the fourth rule helped the participants to get into gear in the beginning
of each block.

Each trial started with an 8-second pre-stimulus accommodation
period, duringwhich participants' eyeswere adapting to the new screen
luminance condition. Then a sequence of digits was presented at a rate
of one digit per second. After a 3-second retention pause, participants
reported the sequence back (for the load on memory condition only)
through the on-screen numeric keypad using themouse. For the control
condition theywere asked to click on sharp signs randomly. Participants
had 12 s to enter the series but were not informed about the exactmax-
imum. Once the responsewas given, each trial endedwith an additional
3-second pause. No additional stimulus onset asynchrony was used as
each trial length varied randomly as a function of response duration.

The experiment was conducted in a darkened sound-proof cham-
ber. Ambient illuminance was measured at 10 lx. Participants were
seated at a distance of approximately 65 cm from the 22″ monitor
(1680 × 1250). During the whole experiment, participants' gaze posi-
tion and pupil diameter were recorded with a remote SMI RED eye-
tracker (SensoMotoric Instruments GmbH, Germany) at a sampling
rate of 120 Hz. This device tracks the pupil diameter with precision
despite the head is not fixed with a chinrest. Before each block the
5-point calibration of the eye-trackerwas validatedwith four additional
fixation points.

The stimuli presentation and data acquisition routines were imple-
mented in Python programming language using PsychoPy software
(Peirce, 2007). The data acquisition routine used iViewX SDK to
communicate with the eye-tracker. The data analysis was performed
in Matlab (Mathworks) and Statistica (StatSoft) softwares.

2.4. Pupil signal pre-processing

As suggested by Siegle (2011) the raw pupillary data were
smoothed with a simple procedure described by Glaser and Ruchkin
(1976), namely with a “two pass” 9-point filter (low-pass with cutoff
frequency of 5.9 Hz). The attenuation in the band up to 4 Hz of the ap-
plied filter was less than 0.1 dB. Identified blinks were then replaced
using linear interpolation. In order to remove the eyelid-closure effect
as well as the consequences of filtering in the neighborhood of signal
of a task trial.

http://dx.doi.org/10.1016/j.ijpsycho.2015.04.019
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discontinuities caused by blinks, 12 adjoined points (100ms) from each
side were replaced as well. The pupillary signal was then down-
sampled to 50 Hz. This was done not only to reduce the data size but
also to be able to average point-by-point stimuli-locked pupillary re-
sponses. Indeed, small irregular inter-sampling lags can interfere with
the averaging procedure. The down-sampling technique generates a
regular time grid and allows therefore computing correctly the TEPRs.

2.5. Data processing for statistical analyses

For the time domain analysis, baseline pupil diameterwas calculated
as the median value of the 500 ms preceding the stimulus onset. Trials
were segregated according to experimental conditions and averaged
point-by-point giving a TEPR per condition per participant. For the sta-
tistical analysis, the mean value of pupil diameter during the retention
pause (3 s following the stimuli) was used.

The frequency analysis was performed on 8-second periods
consisting of the last 5 s of stimuli presentation and 3 s of the pause be-
fore retrieval. The linear trend was removed using detrend MATLAB®
function that removes the best straight-line fit from the signal. Then,
each period of 400 samples (8 s × 50 Hz) was zero-padded to 512 sam-
ples so that the frequency resolution was less than 0.1 Hz. The power
spectral density (PSD) was estimated using Welch's method (pwelch
function from Matlab Signal Processing Toolbox) with segments of
length 50 with 50% overlap. Each segment was windowed with a
Hamming window. Finally, the power was converted to dB. Most of
the pupillary activity appears within the frequency band up to 4 Hz ac-
cording to Nakayama and Shimizu (2004). Thereby, the TEPRs frequen-
cy components were analyzed within the frequency band from 0 up to
4 Hz.

2.6. Statistical analyses

A trial was rejected if the overall time spent to blink exceeded 50% of
the period of interest (i.e. exceeded 4 s) and if the longest blink
exceeded 1 s in length. After data rejection, a 2 × 3 × 3 three-way
ANOVA — load (load on memory vs. control) × luminance (black vs.
gray vs. white) × size (5 digits vs. 7 digits vs. 9 digits)—was performed
to examine the number of valid trials for each condition. The analysis re-
vealed a significant data loss depending on luminous condition, F(2,
42) = 17.7, p b .001, η2 = 0.46. Tukey's HSD (Honestly Significant Dif-
ference) post-hoc comparison showed that the average number of valid
trialswas significantly lower (p b .001) for the black luminous condition
(1.9 ± 0.3 out of 5) compared with gray (3.5 ± 0.2 trials) and white
(3.5 ± 0.2 trials) background conditions. During the darkest condition
participants probably gave their eyes a rest after an exposure to a bright
screen in darkened room that implied higher blink rate (Benedetto
et al., 2014). Therefore, this condition was not used for the further anal-
ysis because of insufficient number of average valid trials to have a valid
mean value. Furthermore, as stated by Nakayama (2006), loss of pupil
signal caused by blinks has an impact on frequency analysis adding
extra power in the spectrum. More importantly, as suggested by Siegle
(2011), at least 5–10 trials have to be averaged in order to obtain
reliable results. However, we retained at most 3.9 ± 0.3 (out of 5) valid
trials per condition. In order to further increase the number of observa-
tions and to focus the analysis of the interaction between load and
luminous conditions, we aggregated the three different levels of difficul-
ties for all the subsequent analysis. Eventually, we had at least 10.2 ± 0.9
valid trials (out of 15) within each condition.

Statistical two-sided t-testwas performed on the number of correct-
ly recalled sequences for load on memory condition to investigate the
influence of the luminance condition on performance.

Four 2 × 2 two-way repeated measure ANOVAs with within subject
factor load (load on memory vs. control) and luminance (gray back-
ground vs. white background) were carried out on the absolute pupil
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diameters (during baseline and retention pause), TEPRs and total PSD.
Tukey's HSD was used for post-hoc comparisons.

To compare the effect of two levels within each of the two factors
(load and luminance) across different frequencies, we computed
Cohen's D value for each frequency point. As consistent with Cohen
(“A medium effect size is conceived as one large enough to be visible
to the naked eye.”) we chose the threshold value of 0.4 (Cohen, 1988)
to select the data points significantly impacted by the load on memory
effect across the frequencies. Low Frequency band and High Frequency
band were identified accordingly. Three 2 × 2 two-way repeated
measure ANOVAs with within subject factor load (load on memory vs.
control) and luminance (gray background vs. white background) were
carried out on the mean PSD within LF and HF bands, as well as on LF/
HF ratio. Tukey's HSD was used for post-hoc comparisons.

3. Results

3.1. Behavioral results

Statistical two-sided t-test comparison showed that screen lumi-
nance had no influence on participants' performance, t(22) = 0.34,
p = 0.74.

3.2. Absolute pupil diameter

3.2.1. During 500 ms pre-stimulus baseline period
The two-way ANOVA (load × luminance) showed no effect of task,

F(1, 21) b 1, p = 0.78, but a strong main effect of luminance (smaller
pupil for brighter screen), F(1, 21) = 128.0, p b .001, η2 = 0.86, on ab-
solute pupil diameter during the baseline period. No interaction was
found, F(1, 21) b 1, p = 0.33.

3.2.2. During retention pause
Two-way ANOVA (load × luminance) revealed significant main ef-

fects of both load, F(1, 21) = 78.8, p b .001, η2 = 0.79, and luminance
factors, F(1, 21) = 180.5, p b .001, η2 = 0.90, on absolute pupil diame-
ter. The pupil was greater for the load on memory condition compared
to the control condition. And it was greater for the gray background
compared to thewhite background. The interactionwas also significant,
F(1, 21)= 24.35, p b .001, η2= 0.54. As shown by Tukey's HSD test, the
pupil was significantly smaller within the load on memory condition
with white background (p b .001) compared to the control condition
with gray background. In addition, the post-hoc test showed that
load on memory vs. control condition implied significantly greater
(p b .001) pupil diameter for both luminance conditions.

3.3. TEPRs in time domain

The two-wayANOVA (load× luminance) revealed a significantmain
effect of load on pupil diameter thatwas larger during the load onmem-
ory condition compared to the control condition, F(1, 21) = 69.5,
p b .001, η2 = 0.77. In addition, we found a main effect of luminance,
F(1, 21)= 29.9, p b .001, η2 = 0.59, corresponding to a smaller dilation
amplitude within the white background condition (see Fig. 2). The in-
teraction of the two factors was also significant, F(1, 21) = 5.96,
p b .05, η2 = 0.22. Tukey's HSD post-hoc tests showed that the load ef-
fect (load on memory vs. control) was significant for both light condi-
tions (p b .001) whereas the influence of luminance was significant
only during the load on memory condition (pload b .001, pcontrol =
0.42; Fig. 2).

3.4. TEPRs in frequency domain

The two-way ANOVA (load × luminance) for the total spectrum
(0–4 Hz) showed that the PSD was significantly higher under load on
memory condition than under control condition, F(1, 21) = 9.6,

http://dx.doi.org/10.1016/j.ijpsycho.2015.04.019
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Fig. 2. Grand-average response-aligned TEPR (with shaped error-type) per condition.
Timeline corresponds to the last 4 s of stimulus presentation and 3 s of retention pause.
The vertical dashed line depicts the start of the retention pause.

5

p b .01, η2 = 0.31. The gray background condition yielded significantly
higher PSD compared to the white background, F(1, 21) = 38.5,
p b .001, η2 = 0.65. No significant interaction was found, F(1, 21) =
0.01, p = 0.91.
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Fig. 3. Curves of mean values (with shaped error-type) for (a) load onmemory vs. control cond
curves of Cohen's D values of point-by-point comparisons.
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Fig. 3 shows the mean spectrum values across participants for the
main effect of both load on memory (a) and luminance conditions (b).
While the effect of the luminance factor was high for the total spectrum
(d), the effect of the load factor faded away as a function of frequency
(c). After the comparison of the effect of two levels within each of two
factors (load and luminance) across different frequencies using Cohen's
D values, we determined a frequency threshold of 1.6 Hz (Low Frequen-
cy band = 0–1.6 Hz; High Frequency band = 1.6–4 Hz). We averaged
PSD in these two bands in order to assess load on memory (Fig. 3c)
and luminance effects (Fig. 3d) with classical analysis of variance.

In the Low Frequency band (0–1.6 Hz) the mean PSD was signifi-
cantly higher under load on memory vs. control condition, F(1, 21) =
9.41, p b .01, η2=0.31. In addition, thewhite background caused signif-
icantly smaller mean PSD than the gray background, F(1, 21) = 14.9,
p b .001, η2 = 0.42. No interaction was found, F(1, 21) = 0.3, p =
0.59. Regarding the High Frequency band (1.6–4 Hz), no significant ef-
fect of load on memory on the mean PSD was found, F(1, 21) = 4.1,
p = .06, while luminance had a significant effect, F(1, 21) = 32.4,
p b .001, η2 = 0.61. No interaction was found, F(1, 21) = 0.2, p =
0.64. In summary, the effect of load was significant only for the low fre-
quency band whereas the effect of luminance was significant for both
frequency bands.
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http://dx.doi.org/10.1016/j.ijpsycho.2015.04.019


6

We then computed LH/HF ratio of mean PSD. The results of the
ANOVA showed a significantly lower ratio under load on memory vs.
control condition, F(1, 21) = 6.83, p b .05, η2 = 0.25, while no effect
of the luminance was found, F(1, 21) = 1.67, p = .21. No interaction
was found, F(1, 21) = 0.5, p = 0.47. Table 1 summarizes the mean
and standard deviation values for the main results.

4. Discussion

We investigated the effect of load on memory under different lumi-
nance conditions on the pupillary task-evoked response and its different
components of power spectrum. Ourmain results showed that the TEPR
amplitudewas smaller under bright vs. dark condition and that the load
on memory impacted specifically the low frequency component of pu-
pillary spectrum, whereas the luminance affected both low and high
frequency bands. These findings allowed identifying a frequency-
based metric of pupillary activity — the LF/HF ratio — that is sensitive
to load on memory but not to luminance.

4.1. Effects of load on memory and luminance factors on the absolute pupil
diameter

There was no effect of load onmemory on the baseline (500ms pre-
stimulus) pupil diameter. This indicates the absence of the anticipation
effect, i.e. nomental preparation effect to load onmemory condition vs.
control condition. Pupil baseline diameter was solely impacted by lumi-
nance. Thus, the effects of load on memory on TEPR are not due to any
confounding factors on the baseline.

The absolute pupil diameter was significantly higher under load on
memory vs. control condition, which is coherent with Beatty and
Lucero-Wagoner (2000). Pupil diameter was also significantly smaller
under white background condition. However, the pupil size for the
load on memory condition with white background was smaller than
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Table 1
a) Effect of load onmemory condition on the dependent variables. b) Effect of background
luminance condition on the dependent variables. Values are mean± (SD), (n= 22 for all
variables).

a)

Dependent variable Load on memory factor

Control Load on
memory

Absolute diameter during
baseline period (mm)

4.04 (0.17) 4.02 (0.16)

Absolute diameter during
retention pause (mm)⁎⁎⁎

3.96 (0.16) 4.36 (0.18)

TEPR amplitude (mm)⁎⁎⁎ −0.07 (0.02) 0.33 (0.04)
Total spectrum (dB)⁎⁎ −39.80 (0.59) −38.48 (0.67)
Mean PSD in LF (dB)⁎⁎ −30.46 (0.67) −28.27 (0.78)
Mean PSD in HF (dB) −46.02 (0.60) −45.29 (0.67)
LF/HF ratio of mean PSD⁎ 0.66 (0.01) 0.62 (0.01)

b)

Dependent variable Luminance factor

Gray White

Absolute diameter during
baseline period (mm)⁎⁎⁎

4.42 (0.19) 3.64 (0.14)

Absolute diameter during
retention pause (mm)⁎⁎⁎

4.62 (0.20) 3.71 (0.14)

TEPR amplitude (mm)⁎⁎⁎ 0.20 (0.03) 0.06 (0.02)
Total spectrum (dB)⁎⁎⁎ −38.10 (0.64) −40.18 (0.59)
Mean PSD in LF (dB)⁎⁎⁎ −28.30 (0.70) −30.43 (0.68)
Mean PSD in HF (dB)⁎⁎⁎ −44.63 (0.70) −46.68 (0.57)
LF/HF ratio of mean PSD 0.63 (0.01) 0.65 (0.01)

⁎ p b .05.
⁎⁎ p b .01.
⁎⁎⁎ p b .001.
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for the control condition under gray background condition. These
results confirm the findings of Xu et al. (2011); the light reaction is pre-
dominant over the cognitive pupillary component. This major light in-
fluence motivates the use of relative pupillary dilations (TEPRs).

4.2. Effects of load onmemory and luminance factors on the TEPR amplitude

The TEPR amplitude under load on memory condition was not the
same according to luminance condition; the same amount of load on
memory induced higher relative pupillary dilation within darker back-
ground condition. Thus, to accurately measure the mental workload
based on the pupil diameter, it might be important to take the point of
fixation and its luminance into account.

This finding is coherent with previous findings. Namely, pupil diam-
eter was found to have a close relationship with the firing rate of the
locus coeruleus (LC), a nucleus in the brainstem that is involved in the
neural circuitry regulating arousal and autonomic function (Samuels
and Szabadi, 2008; Gilzenrat et al., 2010; Rajkowski et al., 1993). In-
creased LC activity correlates with higher sympathetic tone (Elam
et al., 1986; Gilzenrat et al., 2010) and leads to parasympathetic inhibi-
tion of Edinger–Westphal complex (Samuels and Szabadi, 2008), that
both result in pupillary dilation. Decreased parasympathetic tone
under dim light (Steinhauer et al., 2004) should therefore result in
higher sympathetic influence on the peak pupil diameter (i.e. larger ap-
erture). It should be noted that the sympathetic component of pupillary
dilation has greater latency; the inhibition of parasympathetic path-
ways results in an earlier peak, whereas sympathetic activity is respon-
sible for pupillary peak dilation after about 1200 ms of stimulus
presentation (Steinhauer and Hakerem, 1992). Consequently, when
studying sustained processing measuring mean pupil diameter for a
long period of time (e.g. Steinhauer et al., 2004), the average pupil
size is slightly greater under bright light conditions (contribution of
early parasympathetic dilations). Conversely, while focusing on mean
peak dilations as in our study, the brighter light diminished the TEPR's
peak amplitude as a consequence of increased parasympathetic tone.

Pomplun and Sunkara (2003) proposed to perform a calibration pro-
cedure in order to determine a pupil baseline diameter as a function of
display brightness for accurate cognitive load measurement in ecologi-
cal situations. During the experiment, the authors suggested to subtract
the calibration value from the pupillary signal according the current dis-
play brightness. This extends the standard baseline subtraction proce-
dure to the cases when the display brightness changes during stimuli
presentation, as in an ecological flight or drive stimulator. Furthermore,
our results encourage the extension of this calibration procedure by
specifying the relationship between the amplitude of pupillary dilation
for a given amount of cognitive load and current display luminance.
Interestingly, as no suchmodel presently exists, an extra “cognitive” cal-
ibration could be performed simultaneously by asking participants to
performamental calculation by varying display luminance andmeasur-
ing the corresponding TEPR amplitude.

4.3. Effects of load onmemory and luminance factors on the spectrum of the
pupillary signal

The analysis of the total considered spectrum (0–4 Hz) showed that
the PSD of the pupillary signal was higher under load on memory com-
pared to the control condition, and under the gray background condi-
tion compared to the white background condition. While the absolute
pupil diameter revealed the overall effort due to some cognitive process,
the power of spectral density of pupillary signal characterizes the activ-
ity of the nervous system during this process. In the context of our
experiment, the higher pupillary activity indicated higher overall effort
(cf. results on absolute pupil diameter in Section 3.2) because of the cu-
mulative nature of this short-memory task. This result echoes the find-
ings of Nakayama and Shimizu (2004) who observed an increase in
pupillary power spectrum during mental computations.

http://dx.doi.org/10.1016/j.ijpsycho.2015.04.019
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Besides, the statistical analysis showed that load onmemory and lu-
minance factors did not have the same effect on the pupillary signal
spectrum.While under brighter condition the PSD was higher through-
out the whole considered frequency band (0–4 Hz), the effect of the
load on memory factor was only present in the low frequency band
(up to 1.6 Hz). Indeed, the adaptation of the pupil to the luminous
level (light/dark reflexes) and the cognitive component of the pupillary
reaction have different neural pathways.

4.4. Effects of load on memory and luminance factors on the LF/HF ratio

The analysis of the effect of load on memory and luminance on the
spectrum of pupillary signal allowed us to dissociate these two effects.
The ratio of PSD of the pupillary signal within Low and High frequency
bands was significantly lower under load on memory condition com-
pared to the control condition; but it did not differ in the luminance con-
ditions. This result is in line with previous studies on the influence of
mental workload on heart rate variability showing a greater increase
of LF activity compared to HF activity (Durantin et al., 2014; Mizuno
et al, 2011;Mukherjee et al, 2011). Nevertheless, note the difference be-
tween the frequency bands used in this study compared to the stan-
dardized bands used in heart rate variability studies. As for cardiac
activity analysis (Billman, 2013), the physiological basis of these chang-
es in the low-high frequency ratio is difficult to discern.

Compared with the index of cognitive activity (Marshall, 2002), that
tracks the fast punctual pupillary dilations andmay indicate increases of
neuron firing (Hampson et al., 2010), the presented LF/HF ratio of pupil-
lary power spectrum indicates the overall tonic state during mental ac-
tivity. Thereby, the LF/HF ratio measures the cognitive load with lower
temporal resolution, but requires lower sampling frequency compared
with the index of cognitive activity.

5. Conclusion

This study showed that the amplitude of task-evoked pupillary re-
sponse depends on luminance conditions. Therefore, the interpretation
of pupillary data in complex ecological settings, where it is difficult to
constantly control for display luminosity, might be done carefully. For
example, a stimuli-locked dilation of 0.5mmona bright vs. darkfixation
area would not have the same interpretation in terms of mental effort.
Thus, an extra calibration procedure could be performed prior to the ex-
periment, in order to deduce a relationship between the extent of cog-
nitive pupillary dilation and the current luminance level. It would be
also interesting to investigate the interaction effects of the ambient illu-
minance and the fixation area luminance on the pupillary cognitive di-
lation. Such experiments could lead to a model linking the amplitude of
TEPR and light conditions to facilitate calibration procedure.

Furthermore, the frequency analysis turns to be an efficient tool for
pupillary data investigation. Different factors impact different pupillary
frequency components. While the luminance impacts both high and
low frequency components, the load on memory factor manifests itself
only within low frequency band. Therefore, we can construct some use-
ful features based on signal frequency components, for example the LF/
HF ratio of pupillary power spectrum. The presented pupillary LF/HF
ratio could potentially be an efficient objectivemeasure ofmental effort
based on pupil diameter that does not depend on luminance conditions.
Besides its off-line applications for pupillary signal analysis, this finding
could be helpful in creating a near real-time luminance-independent
metric for mental workload estimation. Thus, there will be no need of
measuring the point of fixation and its neighborhood luminance to cor-
rect the pupillarymeasurements.Mental effort could be detectedwith a
simple camera measuring pupil diameter.

Future studies could validate the current findings by recording
simultaneously the cardiac, respiratory and pupillary activities under
different luminance conditionswith longer periods of interest. The con-
frontation of cardiac and respiratory data (on one hand) and pupillary
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data (on the other) would give extra physiological sense to pupillary
frequency components.
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